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Recently developed plasmonic nanostructures are able to generate intense and localized magnetic
hot spots in a large spectral range from the terahertz to the visible. However, a direct measurement
of the magnetic field at the hot spot has not been performed yet, due to the absence of magnetic
field detectors that work at those high frequencies and that fit the hot-spot area. We propose to
place a graphene ribbon in the hot spot of a plasmonic nanostructure driven by a laser beam, such
that a current is generated due to both the magnetic field at the hot spot and the electric field of the
laser. We demonstrate that a nonlinear Hall voltage, which can be measured by standard electrical
means, builds up across the ribbon, making it possible to directly probe the magnetic field at the
hot spot.

I. INTRODUCTION

Recent advances in nanofabrication have made it pos-
sible to build plasmonic nanostructures that are able
to generate magnetic field hot spots at optical frequen-
cies spanning from the terahertz (THz) to the visible
(VIS) range [1] when driven by laser light. These nanos-
tructures, also known as nanoassemblies, or plasmonic
oligomers, are composed of neighboring metallic islands,
with sub-wavelength spatial separation. Strong near-
field coupling between the local plasmonic modes of the
islands results in delocalized hybrid plasmonic modes,
analog to the delocalized electronic orbitals of aromatic
molecules. [2] Moreover, small asymmetries in the ge-
ometry of the nanoassemblies [3] allow coupling between
broad electric resonances (which can be excited by a driv-
ing laser) and sharp magnetic modes, [4] whose signature
appears as a Fano-like resonance in the extinction spec-
trum. Appropriate geometries support modes where a
circulating displacement current is present in the gaps
between the islands, thus reducing Ohmic losses due to
conduction currents in the metal. One such structure,
consisting of three metallic disks, has been realized and
studied in Ref. [5]. (See Fig. 1.) The structural asym-
metry, necessary to couple the radiative electric reso-
nance with the sub-radiant magnetic mode, is obtained
by changing the size of one of the disks, relatively to the
other two. In this structure, the magnetic hot spot is con-
fined in the gap between the three disks. By substituting
the larger disk with a moon-shaped island, supporting a
quadrupolar-like plasmonic resonance, it has been shown
that it is possible to tune the Fano-like resonance fre-
quency without affecting the spatial extent of the hot
spot. [6]

∗ These authors contributed equally.

(a)

(b) (c)

FIG. 1. (Color online) (a) Schematics of a graphene ribbon
of width W placed in the gap of a nanoassembly composed
of three metal disks of different sizes. [5] The Hall voltage
〈∆VH(t)〉 between opposite sides of the bar is measured. (b)
The profile of the magnetic field BR generated by a plasmonic
resonance of the nanostructure. The magnetic hot-spot is
localized in the gap between the three disks. (c) The profile
of the electric field ER generated by the plasmonic resonance.
The white arrows schematically represent oscillating dipoles
generating the resonant magnetic field. The electric field is
negligible at the position of the magnetic hot-spot. In both
(b) and (c) the fields are shown in units of the corresponding
field of the driving laser. We assume that the electric field EL

of the driving laser is polarized along x̂.
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Notwithstanding the progress in the design and fab-
rication of nanoassemblies able to harvest external ra-
diation into a sub-wavelength near-field, a general and
convenient approach to convert the generated AC field
into a DC electric signal (i.e. to “rectify” the field) in a
spatially-resolved fashion has not been devised yet. The
reasons are twofold. (i) First, there are no magnetic
field gauges that can operate at the required high fre-
quencies and that, at the same time, are small enough
to probe the local intensity of the magnetic component
of the near-field. (ii) Second, detectors based on bulk,
three-dimensional geometries influence the operation of
the nanoassembly with their own conductive or dielectric
response.

In this Article we propose to use a graphene ribbon
as a detector, exploiting its carriers’ nonlinear response
to rectify the near-field of the nanostructure. Graphene
overcomes both difficulties described above. (i) Coupling
between the electromagnetic response of the plasmonic
nanostructure and graphene plasmons allows to funnel
electromagnetic energy into smaller regions, leading to
a spatially-resolved detection. (ii) Moreover, the distur-
bance to the neighboring nanostructure is minimized by
graphene’s reduced footprint. Graphene-based devices
have been demonstrated to be incredibly versatile pho-
todetectors of radiation in the spectral range where these
plasmonic magnetic nanostructures operate, i.e. from the
THz to the VIS. [7, 8] The literature on this topic is vast
and we refer the reader to reviews for details. [9, 10]

For definiteness, in this Article we discuss our pro-
posal in the context of the geometry reported in Ref. [5],
(see Fig. 1,) but we emphasize that our approach is suit-
able to be adapted to several systems with comparable
2D geometry and spectral features. [1] Fig. 1(a) shows
a schematics of the setup. We consider a graphene rib-
bon of length L and width W placed at the location of
the magnetic hot spot produced by the nanoassembly.
The ribbon is contacted in such a way that the electric
potential difference between its edges can be measured.
We assume L � W and that the ribbon is uniform in
the x̂ direction. The average carrier density n̄ in the
graphene ribbon is tuned by a metallic back-gate, located
at a distance d below the plane where the nanoassembly
lies. The plasmonic response of the disks is driven by
a linearly-polarized laser beam impinging orthogonally
onto the structure. Its in-plane electric field is uniform
and, we assume, directed along x̂: EL(t) = EL(t)x̂,
where EL(t) = EL cos(ωt). (We denote by ω = 2πf
the angular frequency of the field and by T = 1/f its
period.) The magnetic field BR(t) is generated by the
resonant plasmonic response of the nanostructure. At
the location of the hot spot, the field BR(t) = BR(t)ẑ
is assumed, for simplicity, to be (i) uniform, (ii) normal
to the plane of the structure, and (iii) in phase with the
driving electric field, i.e. BR(t) = BR cos (ωt). [11] We
neglect the magnetic field of the impinging laser beam
because it is much smaller than BR. Moreover, we also
neglect the electric field ER of the Fano-like resonance,

responsible for the magnetic response, because it is local-
ized away from the hot spot, where the graphene ribbon
is located [cfr. Fig. 1(b) and (c)].

Here we show that, due to the oscillating magnetic field
at the hot spot and the oscillating electric field which
drives the plasmonic response of the nanostructure, a fi-
nite DC Hall voltage is generated between the edges of
the ribbon. The origin of the Hall voltage resides in the
nonlinearity implicit in the Lorentz force, which mixes
the current induced by the electric field with the mag-
netic field. Since the two driving fields oscillate at the
same frequency, it happens that the Lorentz force is al-
ways directed along ŷ. Indeed, when the electric field
induces a current along x̂, the magnetic field is directed
along ẑ; when the induced current is along −x̂, the mag-
netic field is also reversed, pointing towards −ẑ. Thus,
the graphene ribbon acts as an optical rectifier, yielding
a DC signal in response to the local AC magnetic field of
the nanostructure, exploiting the AC electric field of the
driving laser. From the magnitude of the Hall voltage,
the enhancement factor of the nanostructure [1] can be
determined as a function of the frequency of the driv-
ing field. The simplicity of our setup makes it a general
tool to characterize plasmonic magnetic nanostructures
without resorting to indirect methods, such as numerical
simulations of extinction spectra. [5, 6]

Our Article is organized as follows. In Sec. II we dis-
cuss the electric potential which builds up across the
graphene ribbon, which we call nonlinear Hall voltage
(NLHV). In Sec. III we show that plasma waves are
launched in the graphene ribbon by the joint action of
the electric and magnetic field acting on graphene’s car-
riers. In Sec. IV we focus on the nonlinear mixing of
the electric and magnetic fields, which is responsible for
the NLHV, and compare it to related nonlinear transport
effects. In Sec. V we summarize our main findings.

II. THEORY OF THE NLHV GENERATED BY
OSCILLATING DRIVING FIELDS

A. Time-averaged Hall voltage

In the presence of the driving due to the oscillating
electric and magnetic fields, a finite electric potential dif-
ference ∆VH(t) arises between the upper and lower edge
of the graphene ribbon. Our key result is that the DC
component, i.e. 〈∆VH(t)〉 (where 〈. . . 〉 denotes averaging
with respect to time t) does not vanish, notwithstanding
the vanishing time-average of the driving fields. Indeed,
as we show below, the magnitude of such DC signal, the
NLHV, is well approximated by the expression

〈∆VH(t)〉 =
Wσ(ω)ELBR

2n̄e
, (1)

where σ(ω) is the frequency-dependent conductivity of
graphene’s carriers and −e is the electron charge. The
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expression for the NLHV contains the product of the elec-
tric and magnetic fields, and it is thus nonlinear in the
strength of the external driving. The graphene ribbon
works thus as a rectifier for the driving fields, whose pe-
riodic oscillations give rise to a constant time-averaged
signal 〈∆VH(t)〉. By measuring the NLHV, it is thus pos-
sible to obtain the enhancement factor of the magnetic
field at the location of the hot spot, at every frequency
f .

Let us now demonstrate Eq. (1). The total electric
field in the graphene ribbon is

E(y, t) ≡ EL(t)x̂ + EH(y, t)ŷ − J(y, t)×BR(t)

n̄e
, (2)

where, on the right-hand side, we have the external driv-
ing field, the Hall field EH(y, t), and the field due to
the Lorentz force acting on the electric current density
J(y, t). (We use the SI system of units.) In turn, the
electric current density is proportional to the total elec-
tric field according to Ohm’s law

J(y, t) = σ0E(y, t) , (3)

where the constant σ0 is the electrical conductivity. [12]
The time average of the y component of the electric

current density vanishes, i.e.

〈Jy(y, t)〉 = 0 , (4)

where the time-average over a period of the driving is
defined by

〈g(t)〉 ≡ 1

pT

∫ t0+pT

t0

g(t)dt , (5)

with integer p� 1. To see this, we first recall the conti-
nuity equation

− e∂tn(y, t) + ∂yJy(y, t) = 0 , (6)

where n(y, t) is the carrier density and −e is the elec-
tron charge. Assuming that the system reaches a steady
state where the density oscillates periodically under the
driving, the time average of the derivative of the carrier
density vanishes, leading to ∂y〈Jy(y, t)〉 = 0. We con-
clude that the time-averaged y component of the electric
current density is uniform. Since Jy(y, t) vanishes at all
times at the edges of the ribbon (i.e. at y = 0 and y = W ),
Eq. (4) follows.

The y component of Eq. (3) reads

Jy(y, t) = σ0

[
EH(y, t) +

Jx(y, t)BR(t)

n̄e

]
. (7)

Taking the time-average of Eq. (7) and using Eq. (4), one
obtains

〈EH(y, t)〉 = −〈Jx(y, t)BR(t)〉
n̄e

, (8)

The x component of Eq. (3) reads

Jx(y, t) = σ0

[
EL(t)− Jy(y, t)BR(t)

n̄e

]
. (9)

We neglect the second term on the right-hand side, be-
cause the field due to the Lorentz force is much smaller
than the external driving. After performing the latter
approximation, we can upgrade the constant conductiv-
ity σ0 (which is not adequate beyond the THz range) to
the frequency-dependent conductivity σ(ω). The sub-
stitution is made possible by this approximation, be-
cause EL(t) oscillates at the single angular frequency
ω. In contrast, the product Jy(y, t)BR(t), that we ne-
glect, would introduce oscillations at all the harmon-
ics of the driving frequency, and the linear relation be-
tween the current and the field would involve an integral
in time, or equivalently, a convolution between Jy(y, ω)
and BR(ω) in the frequency space. [31] (This approxima-
tion and the appearance of the harmonics of the driv-
ing frequency are extensively discussed in Sec. IV.) For
the frequency-dependent conductivity, we use the stan-
dard Drude expression σ(ω) = σ0/[1 + (ωτ)2], [12] where
σ0 = (τe2n̄)/mc, τ is the Drude scattering time, and

mc = ~
√
πn̄/vF is the cyclotron mass, with vF the Fermi

velocity of graphene’s carriers. [13]
Substituting Jx(y, t) into Eq. (8), we find

〈EH(y, t)〉 ≈ −σ(ω)ELBR

2n̄e
. (10)

The Hall electric potential VH(y, t) is related to the field
EH by

EH(y, t) = −∂yVH(y, t) . (11)

Finally, the Hall voltage, i.e. the difference between the
time-average of the Hall electric potential at the upper
and at the lower edge of the graphene ribbon, reads

〈∆VH(t)〉 ≡ 〈VH(y = W, t)〉 − 〈VH(y = 0, t)〉

= −
∫ W

0

dy〈EH(y, t)〉 . (12)

Using Eq. (10) one finds Eq. (1).

B. Linearized hydrodynamic model

To assert the validity of the assumptions and approxi-
mations made in the derivation of Eq. (1), we now resort
to a hydrodynamic model of the electron system in the
presence of the electric field EL(t) and the magnetic field
BR(t). Hydrodynamic models of the electron flow are
routinely employed in the modelization of semiconduc-
tors. [14] In graphene, recent experimental results [15–18]
have demonstrated that a transport regime dominated
by hydrodynamic effects is attained in a wide range of
carrier densities and temperatures, motivating extensive
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FIG. 2. (Color online) The magnitude of the Hall voltage is
shown as a function of the frequency f of the driving laser,
within the THz range. The red dashed line corresponds to the
analytical estimate in Eq. (1) while the black circles to the
numerical solution of Eqs. (13) for vanishing viscosity ν = 0.
The inset shows the Hall electric potential as a function of
time, at the frequency f = 1 THz (indicated by the arrow in
the main panel), obtained from the numerical solution, mea-
sured in units of the period T = 1/f of the driving laser. After
an initial transient, the signal oscillates periodically around a
non-vanishing average value.

theoretical investigations, especially focused on the role
of the shear viscosity of the electron fluid. [19–25] (For a
recent popular review, see e.g. Ref. [26].)

The linearized hydrodynamic model [27] comprises the
continuity equation [28, 29]

∂t[δn(y, t)] + n̄∂yvy(y, t) = 0 , (13a)

and the Navier-Stokes equations [28, 29]

∂tvx(y, t) = −eEL(t)

mc
− e

mc
vy(y, t)BR(t)

−vx(y, t)

τ
+ ν∂2yvx , (13b)

∂tvy(y, t) = −eEH(y, t)

mc
+

e

mc
vx(y, t)BR(t)

−vy(y, t)

τ
+ ν∂2yvy . (13c)

Here, δn(y, t) is the carrier density fluctuation on top of
the constant value n̄, vx(y, t), and vy(y, t) are the Carte-
sian components of the fluid element velocity. (More
precisely, v(r, t) is the average velocity of a patch of
locally-thermalized electrons.) [28, 29] The coefficient ν
represents the kinematic viscosity of graphene’s carri-
ers. In this framework, the Hall electric field EH(y, t)
directed along ŷ arises because of the charge density dis-
tribution, δρ(y, t) = −eδn(y, t), associated to the den-
sity fluctuation. In the absence of a back gate, one

(a)

(b)

FIG. 3. (Color online) Time-evolution of the components of
the velocity v(y, t), obtained from the numerical solution of
Eqs. (13). (a) After an initial transient, the y component of
the velocity oscillates with frequency 2f , where f = 1/T is
the frequency of the external drive. (b) The x component
of the velocity oscillates with the frequency f of the external
drive. The velocity is calculated at position y = W/4.

should solve the Poisson equation in three dimensions
(∂2y + ∂2z )VH(y, z, t) = −ρ(y, t)δ(z)/ε (with ε = εrε0 the
average dielectric constant of the surrounding medium)
to find the electric potential VH(y, t) = VH(y, z = 0, t)
on the graphene ribbon produced by the density fluctua-
tions. However, if the distance at which the back gate is
located, d, is much smaller than the typical wavelength
of the density fluctuations, it is appropriate to use the
so-called local-capacitance approximation [30]

VH(y, t) =
e

C
δn(y, t) , (14)

where C = ε/d is the capacitance per unit area of the
parallel-plate capacitor composed by the graphene rib-
bon, the underlying back gate, and the dielectric spacer
between them. The linearized hydrodynamic model is
complemented by the following boundary conditions: (i)
since no current flows through the top and bottom edges
of the ribbon, the orthogonal components of the velocity
must vanish, i.e. vy(y = W, t) = vy(y = 0, t) = 0; (ii) for
the tangential component, we choose no-slip boundary
conditions, i.e. vx(y = 0, t) = vx(y = W, t) = 0 (for a dis-
cussion of these conditions in 2D electronic systems see
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Refs. [20, 23, 25]). The integration over time of Eq. (13)
also requires a set of initial conditions. At t = 0, we
choose vanishing density fluctuation and a random dis-
tribution of velocities with vanishing spatial average, rep-
resenting thermal excitations.

One can easily see that Ohm’s law, Eq. (3), can be ob-
tained from the linearized Navier-Stokes equations (13),
for vanishing viscosity and by neglecting the kinetic terms
∂tvx,y(y, t) on the left-hand side. This term can be safely
neglected when it is much smaller than the Ohmic fric-
tion term vx,y/τ , i.e. under the condition ωτ � 1. It is
thus expected (as we verify below) that the estimate (1)
deviates from the results of the linearized hydrodynamic
model at sufficiently large frequencies only.

C. NLHV as a function of the driving frequency

We now present our results based on the numerical so-
lution of Eqs. (13) and compare them to the analytical
estimate in Eq. (1). We use the following set of param-
eters (unless otherwise noted): W = 5 µm, d = 100 nm,
n̄ = 1011 cm−2, τ = 1 ps, EL = 1.5 × 104 V/m, and
BR = 5 mT. We investigate driving frequencies in the
range 0.3 THz to 50 THz, corresponding to the THz and
VIS spectral ranges. Plasmonic nanostructures operat-
ing in the THz range are larger in size, and thus allow an
easier placement of the graphene ribbon. [1] Moreover, in
the THz range, our proposed setup is of particular prac-
tical interest due to the scarcity of other magnetic field
gauges.

Fig. 2 shows that the Hall voltage decreases with in-
creasing frequency. Inspection of Eq. (1) shows that this
decrease is due to the Lorentzian shape of the dynamical
conductivity. The numerical results and the analytical
estimate (1) show excellent agreement in the frequency
range f < 3 THz. The inset shows the difference between
the Hall electric potential at the upper and lower edges
of the graphene ribbon, as a function of time. After an
initial transient (which depends on the initial random-
ization of the velocity variables), the signal oscillates at
twice the frequency f of the driving electric field. This
behavior is easy to understand, since it stems from the
fact that this quantity is at least of the second order in
the driving fields EL(t) and BR(t). The signal oscillates
around a non-zero value, which is the Hall voltage shown
in the main panel. To exclude the initial transient from
the calculation of the time average, we perform the inte-
gration in Eq. (5) with t0 = 4T and we use a sufficiently
long integration window, with p = 102−103, to achieve a
high accuracy. Not surprisingly, a similar time evolution
is displayed by the component of the velocity parallel to
the Hall field, as shown in Fig. 3(a). On the contrary, the
component of the velocity parallel to the driving electric
field, see Fig. 3(b), oscillates at the same frequency of the
field itself, and shows a negligible initial transient. This
is due to vx being of the first order in EL(t).

The agreement of the analytical estimate in Eq. (1)

with the numerical results turns out to be excellent in
a very wide frequency range, as shown in Fig. 4. How-
ever, deviations up to 50% arise when the frequency is
increased to several tens of THz, i.e. in the mid-infrared
(MIR) part of the spectrum. Since there are metallic
nanoassemblies operating at these frequencies, [1] the nu-
merical solutions turns out to be important to predict the
response of a real device on a quantitative level.

Finally, in Fig. 5, we show the effect of a finite kine-
matic viscosity on the Hall voltage. [22] Viscosity is
relevant to the dynamics only if the diffusion length
Dν =

√
ντ is comparable to or larger than the width

W of the ribbon. For this reason, to use realistic val-
ues of the viscosity in graphene [15, 18], Fig. 5 reports
results for a thinner ribbon than the other figures. More-
over, the hydrodynamic model with finite viscosity is
justified if ωτee � 1, where τee is the quasiparticle life-
time due to electron-electron collisions. [20, 22] Since in
graphene, for n̄ = 1011 cm−2 and at room temperature,
τee ' 100 fs, [20, 22], we keep f < 3 THz in this figure.
We see that the frequency dependence of the Hall volt-
age is substantially unaltered by a finite viscosity. This
demonstrates that the measurement of the NLHV allows
to determine the enhancement factor of the magnetic field
at the hot spot, even if the precise value of the kinematic
viscosity in the graphene sample is not known. We no-
tice, however, that the value of the Hall voltage depends
on the viscosity in a non-monotonic fashion, as shown in
the inset.

III. PLASMA WAVES IN THE GRAPHENE
RIBBON

In the previous sections, we used the value of the car-
rier density fluctuation at the upper and lower edges of
the graphene ribbon, obtained by solving Eqs. (13), to
calculate the Hall potential via the local-capacitance ap-
proximation [see Eqs. (12) and (14)]. However, it is also
interesting to look at the spatial profile of the density
fluctuation along ŷ. Fig. 6 shows periodic oscillations
δñ(y, t) in both the space and time coordinates, (y and
t, respectively,) on top of a constant linear density slope
〈δn(y, t)〉 which decreases from the bottom to the top
edge of the ribbon. The total density fluctuation is given
by the superposition of a constant and an oscillating
term, δn(y, t) = 〈δn(y, t)〉 + δñ(y, t). Oscillations take
place at an angular frequency ωP = 4πf , corresponding
to twice the driving frequency, as for the Hall electric
potential (see Fig. 2). The density slope is responsible
for the time-averaged Hall field along ŷ and its steepness
determines the Hall voltage.

In the following, we demonstrate that the periodic os-
cillations of the density can be identified as plasma waves
propagating along the transverse direction ŷ of the rib-
bon. Plasma waves are the collective modes of the two-
dimensional (2D) electron liquid [31, 32] hosted by the
graphene ribbon in the presence of a back gate. In the
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(a)

(b)

FIG. 4. (Color online) Hall voltage at large drive frequencies.
In both panels (a) and (b), the red dashed line corresponds
to the analytical estimate in Eq. (1) while the black circles
to the numerical solution of Eqs. (13) for vanishing viscosity
ν = 0. The bottom axis shows the value of the drive frequency
f and the top axis the corresponding value of the wavelength
λ. (a) Frequencies in the far-infrared range. (b) Frequencies
in the MIR range. Despite its drop in magnitude at large
frequencies, the Hall voltage is measurable even in the MIR
frequency range.

long-wavelength q → 0 limit, the energy dispersion ~ω(q)
of standard 2D plasmons is proportional to the square
root of the wave vector q [31, 32]. On the contrary,
plasma waves feature a linear (“acoustic”) dispersion [33–
35] because of the presence of the back gate. Screening
exerted by free charges in the back gate cuts off the long-
range tail of the Coulomb interaction between electrons
and thus reduces the energy of (“softens”) the collective
modes. Plasmons and plasma-waves in graphene are rela-
tively long-lived, due to the reduced impurity scattering,
and can be frequency-tuned over a large range (from the
THz to the MIR) by varying the average carrier density n̄
by means of the back-gate. [36, 37] Our analysis reveals
that the combined action of the electric and magnetic
fields at the hot spot is to launch plasma waves along the

FIG. 5. (Color online) Hall voltage as a function of the
frequency f of the external drive for several values of the vis-
cosity ν = 0.1 m2s−1 (black short-dashed line), 0.3 m2s−1 (red
solid line), and 0.5 m2s−1 (black long-dashed line), obtained
from the numerical solution of Eqs. (13). Differently from
the previous figures, here the width of the ribbon is set to
W = 1 µm. The inset shows the Hall voltage, calculated at
frequency f = 0.45 THz (marked by an arrow in the main
panel) as a function of the viscosity ν. The blue vertical line
marks the value ν̄ of the viscosity where the Hall voltage is
maximal.

transverse direction ŷ of the ribbon.
To substantiate our statement on the nature of the

density oscillations, we calculate the Fourier transform
δn̂(qm) of δñ(y, t) with respect to y,

δn̂(qm) =
1

W

∫ W

0

dy δñ(y, t)e−iqmy , (15)

at a large time t = pT with p ∼ 100, for a discrete set of
wave vectors qm = mπ/W . (We remind the reader that
T is the period of the external driving.) The Fourier
spectrum

S(qm) =
|δn̂(qm)|2∑
m |δn̂(qm)|2

(16)

is represented in Fig. 7(a) as a density plot. Each hor-
izontal slice of the plot shows the Fourier spectrum, on
the discrete set of wave vectors qm, at a fixed driving
frequency f . The spectrum is represented as a piecewise
constant function over segments of width π/W , centered
at each wave vector qm. Only wave vectors corresponding
to an odd m have a sizable spectral weight, which is due
to fluctuations having a node at y = W/2 but not at the
edges y = 0, L [see Fig. 6(a)]. The solid line in the plot
shows the expected acoustic dispersion of plasma waves
in the graphene ribbon, i.e.

ωP = sq, with s =
√
e2n̄/(Cmc) . (17)

For each discrete wave vector qm, the maximum of the
Fourier spectrum is obtained for a driving frequency f =
sqm/(4π), corresponding to the plasma wave with that
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(a)

(b)

FIG. 6. (Color online) Time-evolution of the carrier density.
(a) The color plot displays the value of the density fluctuation
δn(y, t) (in units of the equilibrium density n = 1011 cm−2) as
a function of time t (in units of the driving period T ) and as a
function of the coordinate along the transverse direction ŷ of
the ribbon. (b) The black lines show the space profile of the
density fluctuation at several times t = 5.5T (short-dashed
line), 5.6T (long-dashed line), and 5.7T (solid line). These
times are marked by vertical lines with corresponding dashing
in (a). The green solid line is the value of the time-average of
the density fluctuation at each point of the graphene bar.

wave vector. We reiterate that the extra factor of 2 in the
denominator is due to the fact that the electron density
oscillates with twice the frequency f of the driving field.

Fig. 7(b) reconstructs the dispersion of the density os-
cillations by relating the number N of nodes in the profile
of δñ(y, t) to the driving frequency. The number of nodes
is expressed in terms of the wave vector qN = (πN)/W .
As in panel (a), we obtain that the dispersion coincides
with the plasma waves of the graphene ribbon.

IV. DISCUSSION

The main result of this work is that a graphene ribbon
placed in a magnetic hot spot of a nanoassembly acts as
a rectifier, converting the oscillating driving fields into
a DC signal. The rectification is due to the response of
the electron gas hosted in the graphene ribbon, which
oscillates at the frequency f of the driving fields EL(t),

(a)

(b)

FIG. 7. (Color online) Dispersion of the density fluctuations.
(a) Power spectrum S(qm) of the density fluctuations along ŷ,
calculated from Eq. (16) as a function of qm and of the driv-
ing frequency f = ωP/(4π). (b) Wave vector qN = (πN)/W ,
defined as the number of nodes N of the profile of the den-
sity fluctuations along ŷ. In both panels, the red solid line
corresponds to the plasma-wave dispersion in Eq. (17). For
our choices of parameters (see first paragraph of Sec. II C) the
plasma-wave speed is s = 3.54 nm/fs.

BR(t), and its harmonics, and in particular at the 0th-
order harmonic (which represents a constant density dis-
placement).

To understand this rectification mechanism, let us il-
lustrate in more detail why the harmonics of f appear in
the spectrum of the observables. The current Jx(y, t)
is proportional to EL(t) in Eq. (9), and thus its fre-
quency spectrum contains f . Because of the product
Jx(y, t)BR(t) in Eqs. (7), which represents the Lorentz
force, the frequency spectrum of Jy(y, t) contains both
frequencies f±f = 0, 2f . Then, with a similar argument
applied to Eq. (9), the spectrum of Jx(y, t) contains the
frequency f + 2f = 3f as well. Iterating these consider-
ations, it follows that the frequency spectrum of the cur-
rents contains all the harmonics of f . The same happens
to the Hall electric field and the Hall electric potential. In
particular, the Hall voltage is just the 0th-order harmonic
of the difference of the Hall electric potential between the
upper and lower edges of the graphene ribbon.

It is important to notice that, because of the hierarchi-
cal harmonics generation described above, the 0th-order
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harmonic includes contributions from arbitrarily large
powers of the driving fields. In other words, the recti-
fication mechanism is highly nonlinear. In the derivation
of Eq. (1), by neglecting the Lorentz force in Eq. (9), we
retain only the contribution of the second order nonlin-
earities to the 0th order harmonic.

A similar hierarchy of harmonic generation is present
also in the Navier-Stokes equations (13), where the veloc-
ity plays the role of the current. The numerical solution
of the linearized hydrodynamic model does not limit the
order of the nonlinear contributions and thus arbitrary
harmonics can contribute to the time evolution of the
variables. However, as Figs. 2, 3, and 6 illustrate, af-
ter an initial transient, the dynamics can be described
in terms of 0th (Hall voltage), 1st [vx(t)], and 2nd [vy(t)
and δñ(y, t)] harmonics only. For this reason, as Fig. 4
shows, the agreement between the analytical and numer-
ical calculation of the Hall voltage is excellent in a large
frequency range.

It is useful to contrast the rectification mechanism de-
scribed above with the well-known Dyakonov-Shur (DS)
photodetection scheme, which also involves plasma waves
in a driven 2D electron liquid. [38, 39] The DS scheme is
based on hydrodynamic nonlinearities, which are intrin-
sic to the hydrodynamic equations of motions describing
electron liquids, i.e. the product of density and velocity in
the continuity equation and the convective derivative in
the Navier-Stokes equation. On the contrary, the mecha-
nism discussed here stems from linearized hydrodynamic
equations (see Sec. II B) and is thus fundamentally dif-
ferent from the DS scheme.

We also point out that, in our setup, the Hall voltage
arises because of purely classical interactions, in contrast
to Hall-like nonlinear quantum effects in 2D and 3D ma-

terials [40, 41], arising from a Berry curvature dip.

V. SUMMARY

In conclusion, in this work we have shown that a
graphene ribbon placed in the magnetic hot spot of a
nanoassembly can be used as a magnetic field gauge. The
graphene’s carriers are subject to the electric field driving
the nanoassembly and to the magnetic field produced by
it. The carrier’s response to the driving fields generates a
constant potential difference (the Hall voltage) between
two opposite edges of the ribbon. The magnetic field, os-
cillating at optical frequencies, is thus rectified into a DC
electrical signal which can be measured by a voltmeter
connected to contacts at the ribbon’s edges. We have
found a compact expression for the Hall voltage, Eq. (1),
by resorting to an approximate solution of the coupled
equations for the current densities. We have also nu-
merically solved the linearized hydrodynamic equations
for the two-dimensional electron liquid in the graphene
ribbon, finding excellent agreement with the predictions
based on Eq. (1). Finally, we have shown that, on top
of the carrier’s density slope generating the Hall voltage,
standing plasma waves form across the ribbon.
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