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Abstract— Restoring tactile sensation is essential to enable
in-hand manipulation and the smooth, natural control of
upper-limb prosthetic devices. Here we present a platform
to contribute to that long-term vision, combining an anthro-
pomorphic robot hand (QB SoftHand) with a neuromorphic
optical tactile sensor (neuroTac). Neuromorphic sensors aim
to produce efficient, spike-based representations of information
for bio-inspired processing. The development of this 5-fingered,
sensorized hardware platform is validated with a customized
mount allowing manual control of the hand. The platform is
demonstrated to succesfully identify 4 objects from the YCB
object set, and accurately discriminate between 4 directions of
shear during stable grasps. This platform could lead to wide-
ranging developments in the areas of haptics, prosthetics and
telerobotics.

I. INTRODUCTION

The sense of touch in humans allows us to interact with the
environment, and is also an essential component for human
social interaction [1] and in-hand object manipulation [2].
As such, restoring tactile sensation to users of prosthetic
and telerobotic devices seems essential to provide a highly
functional and intuitive user experience.

A key step to achieve this long-term goal is the develop-
ment of accurate tactile sensors [3] able to capture relevant
contact information. We suggest that neuromorphic sensors,
which produce spike-based representations of information for
efficient, bio-inspired processing, are ideally suited to the
task.

Most neuromorphic sensors currently consist of event-
based vision systems [4], [5]. In past work [6], we proposed
the combination of these vision systems with the TacTip [7],
an optical tactile sensor able to perform tactile tasks such as
slip detection [8] and contour following [9]. Here, we further
develop the neuroTac sensor, miniaturising and adapting it
for use with the QB Softhand.
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Fig. 1: The QB SoftHand with an integrated neuromorphic
optical tactile sensor. The neuroTac is integrated with the
hand’s index finger.

The QB SoftHand is a soft actuated, anthropomorphic
robot hand based on adaptive synergies [10]. The hand
features intuitive control and flexible grasps based on natural
motions of the human hand.

Our aims in this paper are as follows:
• Miniaturise a neuromorphic optical tactile sensor and

adapt it for use on the QB SoftHand, creating a hard-
ware platform for the investigation of biomimetic tactile
perception, haptic feedback and shared autonomy.

• Validate the sensor and its integration into the hand
on an object recognition task and direction of shear
detection task.

The performance of the sensor and its integration with the
QB SoftHand is validated on an object recognition task, in
which 4 objects from the YCB object set [11] are classified
using a nearest-neighbour classification algorithm (k=3). The
sensor is also shown to accurately identify within-grasp shear
in 4 different directions with each of the 4 different objects.



II. BACKGROUND AND RELATED WORK

Closing the loop between action and perception involves
three key aspects, according to Antfolk et al. [3]: (i) accurate
sensors, (ii) reliable actuators and (iii) a tactile elicitation that
allows an intuitive re-learning and adaptation of the Central
Nervous System to the delivered inputs. Recent advances
address point (ii) through the development of novel actuation
methods [12], [13] and (iii) through non-invasive [14], [15]
and invasive haptic feedback paradigms [16]. Here, we focus
on point (i), the development of tactile sensors and their
integration with robotic hands.

Robotic hands tend to be developed according to one of
two design philosophies: highly complex anthropomorphic
hands [17], or simple under-actuated robot hands and grip-
pers [18]. The QB SoftHand utilised here combines these
design philosophies as a five-fingered, under-actuated an-
thropomorphic hand. The QB SoftHand implements adaptive
synergies [10] and soft actuation to enable a wide range
of potential grasps from a single degree of actuation. Soft
actuation introduces challenges when it comes to sensitizing
the hand with tactile or proprioceptive capabilities, with
classical solutions not being applicable due to the absence
of rigid links. Proposed solutions have included the use of
flexible strain sensors [19] in continuum soft robot hands and
IMUs [15], [20] or motor encoder values [21] in soft artic-
ulated hands. Here our aim is to develop technologies and
methods around neuromorphic sensing that could integrate
with a soft articulated hand and lead to the sensitization of
upper-limb prosthesis and telerobotics.

Neuromorphic engineering developed as a field in the late
1980s from work by Mead and colleagues [22] with the aim
of replicating biological signal processing in electronic hard-
ware [23]. The strong link to biology make neuromorphic
technologies ideal candidates for integration with the human
nervous system, as has been demonstrated with the creation
and integration of artificial neuromorphic retinas [24]. We
hypothesize that neuromorphic tactile sensors could be sim-
ilarly developed to feed into the peripheral nervous system
and restore a natural sense of touch to amputees [25].

As such, our interest here lies mainly in the creation
of a neuromorphic tactile fingertip for integration with a
prosthetic hand. Large-scale event-based tactile sensors such
as those developed by Bergner et al. [26] or Lee et al. [27]
have led to essential advances in event-based signal pro-
cessing and architectures. These systems have demonstrated
advantages in terms of speed and efficiency, and could enable
the development of fully tactile robot skins. However our
focus is on developing a platform for integration with a
robotic hand, and thus our sensor’s form factor should be
approximately the size of a human fingertip.

Existing fingertip-sized neuromorphic tactile sensors in-
clude a sensor designed by Oddo et al. [28], [29] which
combines analog outputs from 4 microelectromechanical
sensors with an Izhikevich neuron model to produce a 16
taxel spike-based output. Crucially, this sensor is set up to
mimic slowly adapting type 1 afferents, producing spikes

during constant pressure. Conversely, the neuroTac sensor is
more akin to fast adapting type 1 afferents [30], transducing
dynamic changes in the state of contact.

The miniaturised neuroTac sensor developed in this article
is based on past work [6], which combines the design of
the TacTip optical tactile sensor [7] with an event-based
camera [5] to produce a spike-based output. Here, we use
a miniaturised version of the camera [4] which has been
succesfully demonstrated on visual tasks such as 2d visual
tracking [31], and integrate it in a human fingertip-sized
tactile sensor for use with the QB SoftHand anthropomorphic
hand.

III. METHODS

A. The QB SoftHand

The QB SoftHand (qbrobotics, QB SoftHand Research)
is a commercial anthropomorphic robot hand based on
the IIT/Pisa SoftHand [10]. The hand is designed using
principles of soft robotics, with innovative flexible joints
which are able to adapt to different object morphologies.
The thumb is constructed with a hinge joint at its base
enabling its flexion and extension, whereas the second,
third, fourth and fifth digit comprise a base hinge joint
which enables the fingers’ abduction and adduction move-
ment. Between the phalanges of each finger, a compliant
rolling-contact element (CORE) joint comprising two cou-
pled rolling cams guided by 3d-printed gears and elastic
ligaments adds flexibility to the finger’s trajectory during
grasping. The flexibility inherent in the QB SoftHand’s joint
design makes it safe, robust and able to perform adaptable
grasps, with nominal grasp forces of 62 N in the pinch
configuration, and 84 N in the power grasp configuration
(https://qbrobotics.com/products/qb-softhand-research/).

Another important aspect of the hand’s construction is
its reliance on adaptive synergies [32], a design method for
underactuated hands which exploits the idea of motor prim-
itives in human hand motion [33]. This method combined
with mechanical compliance enables the QB SoftHand to be
controlled through a single motor and single tendon system,
yet be capable of a large number of grasps due to its intrinsic
ability to adapt to object morphologies. The hand’s single
tendon runs in a loop from the palm through all five fingers,
going up each finger through the CORE joints, around a
pulley in each distal phalanx and then back towards the palm
(for further technical details on the hand’s design, see [10]).

Here, we use the QB SoftHand mounted on a device which
attaches to a human user’s arm and is powered by a battery
(Parrot, ARDrone 2.0 1500mAh), allowing for self-contained
operation. The hand is operated by the user through a lever
which actuates the grasp when pulled, and returns to an open
palm configuration when released.

B. Integration of the neuroTac

The neuroTac sensor was developed in previous work with
a larger camera able to produce events and frames (iniVation,
DAVIS240) [6] and is based on the design of a soft optical
tactile sensor, the TacTip [7]. Although the neuroTac holds



Fig. 2: Exploded CAD model of the neuroTac sensor. The
event-based camera (mini-eDVS) captures movements of the
pins in the compliant tip and transmits contact information
in the form of precisely-timed spikes.

promise from an engineering perspective due to its speed
and efficient representation of tactile data, we seek mostly
to replicate and explore biological properties of touch in
this artificial system. The neuroTac thus aims to emulate the
structure of human skin through internal pins, and produces a
spike-based output, mimicking mechanoreceptors in glabrous
skin. Here, we miniaturise the design of the sensor and
adapt it for integration with the QB SoftHand. The main
contributions to hardware development are the following:

• Replacing the original event and frame-based cam-
era [5] with a lower form factor, purely event-based
camera, the mini-eDVS [4] with an adapted lens (de-
veloped by Conradt and colleagues).

• Adjusting the shape of the compliant tip from a hemi-
spherical dome to mimic that of a human finger, with
dimensions 20 mm (W) × 25 mm (L) × 30 mm (D).
The hemispherical shape of the sensor is designed to
ensure maximal coverage of the sensor during grasps.

• Redesigning the QB SoftHand’s distal phalanx to house
a more compact pulley system, leaving room for the
sensitized tip.

The sensor is made up of a 3d-printed fingertip-shaped
compliant tip, with 79 internal markers mimicking the in-
termediate ridges in human glabrous skin. These markers
are white-tipped inward extrusions of the 3d-printed skin
which mechanically accentuate deformations. The number
of markers is maximised within the limits of the 3d printer’s
(Stratasys, Connex Objet 260) resolution. A 3d-printed rigid
body and lid hold the event-based camera (mini-eDVS [4]),
which produces events at the pixel level by thresholding
changes in brightness (Fig. 2). The camera is made up
of 128×128 pixels, with each pixel processing brightness
changes in parallel at the hardware level and producing
events in the address-event representation (AER) format. The
threshold for these pixel events is manually set to capture
displacements of the markers based on the sensor’s internal
illumination.

The sensor outputs a series of precisely timed spikes
(≈ 1µs resolution) with spatial addresses corresponding to

Fig. 3: Objects used in the object recognition and shear
detection experiments. Objects are from the YCB object
set [11] and are labelled from left to right as “Racquetball”,
“Tomato soup can”, “Box of sugar” and “Foam brick”.

Fig. 4: Experimental setup for data collection. Objects are
grasped by the QB SoftHand through the use of a hand-held,
manually-controlled device attached to the experimenter’s
arm.

their pixel location within the image. The neuroTac sensor is
dynamic, in that it only outputs data when there is a change
in contact conditions.

C. Experimental setup

We validate the sensor’s performance by testing it on
two experiments: object recognition and shear detection. In
both experiments, we use four objects from the YCB object
set [11] chosen for their diverse materials and shapes (Fig. 3):
a compliant rubber ball (labelled “Racquetball”), an empty
metal can (labelled “Tomato Soup Can”), an empty cardboard
box (labelled “Box of Sugar”) and a compliant brick made
of soft foam (labelled “Foam Brick”).

Data is gathered from the sensitized QB SoftHand
mounted on a hand-held device with manual grasp control
(through the pull of a lever). In the object recognition
condition, the hand is held palm upwards and objects placed
by the experimenter in approximately the same in-hand



location for each grasp. In the shear condition, the device
is held with a downwards facing open palm (Fig. 4), and
perturbations correspond to a light push against the grasped
object with one finger. Most investigations of artificial tactile
sensing tend to operate in tightly-controlled environments
with high precision robotic arms gathering data [7], [8], [34].
Here we are operating in a less controlled environment, and
anticipate a larger presence of noise during data gathering.
The aim here is to investigate the sensor’s performance in
a more realistic scenario that could relate to prosthetics or
tele-operation applications.

In the object recognition task, each object is grasped 20
times, with data recording being triggered approximately
1 second before the grasp is manually activated. Data is
recorded over a 5 second period, capturing spikes over the
full dynamic grasping motion. In the shear detection task,
20 runs of 5 second data trials are recorded for each of
the 4 objects in each of the 4 directions of perturbation.
Perturbations are defined as the experimenter gently pushing
the grasped object with a finger of their free hand in one
of four directions: Up (distal direction with relation to
the palm), Down (proximal direction), Left (direction of
adduction movement of the index) and Right (direction of
abduction movement of the index). The resultant spikes are
then processed and classified as described below.

D. Data processing and Classification

The data produced by the sensor for each trial is initially
separated into T = 64 taxels indexed as t = 1..64 arranged
in a 2d grid over the camera image. Each taxel is defined
here as a region of the camera frame containing 16×16
pixels. The spikes produced within the taxel area are then
accumulated over the trial duration (5 seconds here),and
normalized by the total number of spikes over all pixels: N .
This method effectively corresponds to the spatial coding
method described in previous work [6], and results in an
array of 64 integers, Rt, representing the spatial distribution
of spikes across taxel areas.

Rt =

∑
pt
np

N
(1)

where the index t = 1, ...64 represents taxel identity, pt is
the set of pixels belonging to taxel t, np denotes the number
of spikes for pixel p and N is the total number of spikes
over all pixels.

Data gathered consists of 80 trials (20 trials × 4 classes)
for each experimental condition, and is randomly split into
training and testing sets according to an 80-20 split. Classi-
fication of object class and shear direction is performed in
python through scikit-learn’s nearest neighbours algorithm
(k=3) applied to processed data Rt, which assigns a class to
each test sample based on its 3 closest training samples.

IV. RESULTS

A. Inspection of data

Data is gathered by grasping objects with the hand-held
QB SoftHand device (Fig. 4). Due to the event-based nature

Fig. 5: Outputs of the sensor during an example grasp on
the Racquetball object. The top row of figures show the three
grasp phases, from left to right: pre-grasp, inception of grasp,
completed grasp. The bottom row of figures show the output
of the sensor during each phase, with events above the noise
level occuring only during the inception of grasp phase.

of the mini-eDVS camera [4], the sensor outputs spikes only
when a dynamic contact occurs.

The spike-based output of the sensor remains at a low
level of activity resulting from noise during no-contact, and
demonstrates high activity triggered by the movement of
internal markers in the sensor during inception of contact.
Post-contact, if the grasp is stable, the sensor returns to a
low-activity mode, with bursts of spikes occurring during
perturbation (Fig. 5). The two colours of events illustrated
here correspond to ON events, when brightness increases
above a given threshold (green events) and OFF events,
when brightness decreases below a given threshold (red
events). Although both types of events carry potentially
relevant tactile information, we focus here on ON events
for simplicity, and for their analogous nature to excitatory
spikes in the human nervous system. Spikes are processed
by separating the image into a 2d grid of 64 spatially distinct
16 × 16 pixel regions denoted taxels and accumulating spike
activity over each taxel as described in section III-D.

B. Object recognition

Our initial validation of the sensor involves a test of
within-grasp object recognition capabilities. This task is
challenging since the hand’s inherent flexibility combined
with our data acquisition method (Section III-C) can result
in variable grasping configurations for the same object.

Classification of the four objects is performed by separat-
ing the camera’s pixels into a grid of 16×16 pixel regions,
deemed taxels, and accumulating the spikes at each taxel
over a 5s period for a given grasp (Fig. 6, Middle row).
These taxel-wise spike counts are then normalised by the
total number of spikes across the sensor, to obtain the relative
spike rates of each taxel during the grasp(Fig. 6, Bottom
row).

The taxel-wise spike distribution data is classified using
an 80-20 train-test split and a nearest neighbours classifier,
with k=3 using python’s scikit-learn module. This results in a
perfect classification accuracy, as illustrated in the confusion
matrix (Fig. 7) .



Fig. 6: Processing of spikes for classification in the object recognition task. Each column corresponds to one of the objects,
from left to right: Racquetball, Tomato Soup Can, Box of Sugar, Foam Brick. Top row: Objects being grasped. Middle Row:
Pixel-wise accumulation of spikes over the grasp duration and separation of the image into taxels. Bottom row: Proportional
distribution of spikes over the taxel locations.

Fig. 7: Confusion matrix of the object classification task with
a KNN classifier (k=3) on the spatial distribution of spikes.

These results are promising, but considering the objects are
quite distinct in their shape and compliance characteristics,
perhaps not surprising. We predict that the identification of
more similar objects, such as balls of different dimensions,
may require the integration of additional neuroTac sensors
on the QB SoftHand.

C. Shear detection
Next, we investigate the sensor’s potential to detect and

identify a perturbation occurring during a stable grasp. Per-
turbations are defined as pushing the grasped object with a
finger in one of four directions: Up, Down, Left and Right.
Up is defined as the distal direction with relation to the palm,
and Down is the proximal direction, Left is the direction of
adduction movement of the index and Right is the direction
of its abduction movement(Fig. 8, leftmost panel).

Initial data gathered with the sensor while grasping the
Racquetball object (Fig. 8, four rightmost panels) seems
to indicate distinct signatures for each shear direction. The
horizontal lines of pixel events appearing in the Up/Down
directions and vertical lines in the Left/Right directions cap-
ture the movement of rows or columns of internal markers,
respectively. We hypothesize that these characteristic spatial
layouts of pixel events will enable the identification of
within-grasp shear direction by the neuroTac sensor.

To verify this claim, we gather 20 runs of data in each of
the 4 shear directions with all 4 objects. We then apply the
same processing procedure as for object recognition, creating
normalised taxel-wise spike counts over the sensor image
(Sec. III-D), and classify shear direction independently for
each object. We use an 80-20 train-test split with a nearest



Fig. 8: Outputs of the sensor during grasp perturbations
on the Racquetball object. The perturbations correspond to
pushing the grasped object in one of four directions, shown
in the left-most panel. The four images to the right show
the sensor’s output for each direction of perturbation (as
indicated by the red arrows).

Fig. 9: Confusion matrices for the shear direction identifica-
tion task for all 4 objects. Top Left: Racquetball, Top Right:
Tomato Soup Can, Bottom Left: Box of Sugar, Bottom Right:
Foam Brick. We use a nearest neighbour classifier (k=3) on
the spatial distribution of spikes to identify the direction of
shear.

neighbour classifier (k=3).
Results show an overall strong performance on the classi-

fication of shear direction (Fig. 9), with perfect accuracy for
the Racquetball and Box of Sugar objects, and near perfect
accuracy for the Tomato Soup Can (93.75%) and Foam Brick
(97.5%) objects. Misclassification of these objects likely
results from variations in the direction and force exerted
during perturbation of the grasp.

V. DISCUSSION

In this paper, we presented the integration of the neuroTac
sensor with the QB SoftHand. The performance of the
neuroTac and its integration with the hand is validated on
two tasks involving 4 objects from the YCB object set [11].
Both experiments involve classification of the taxel-wise

accumulated spikes by a nearest neighbour algorithm (k = 3).
The first task is the classification of grasped objects, showing
perfect accuracy over this restricted set of objects. The
second task is the identification of a direction of perturbation
of the object from within the grasp. We demonstrate the
sensor is able to accurately identify shear direction within
the hand’s grasp for the 4 different objects.

The platform developed here combines the adaptive, ver-
satile grasping and simple control of the QB SoftHand with
dynamic, spike-based contact information from the neuroTac
sensor. The question of how best to process neuromorphic
data is an unsolved problem, however for prosthetic or teler-
obotic applications, tactile information from the neuroTac
sensor should be used in ways that minimise cognitive load
on the user, in keeping with the QB SoftHand’s focus on
intuitive control.

Areas of further development could include an updated
design of the mechanical joint in the sensitized phalanx to
reduce friction on the tendon. Additional sensors could also
be integrated into the hand, which would likely provide a
more complete picture of grasp contact for more complex
tactile tasks. Finally, the processing method used here to
validate the sensor focuses on the spatial distribution of
spikes, akin to a biological rate code [35]. Recent theories
in neuroscience hold that the representation of spike times
as a rate code, though appealing because of its simplicity,
does not capture the full spectrum of information conveyed
by neural codes [36]. Alternative coding strategies have been
suggested that take into account the precise or relative timing
of spikes, such as rank order coding [37]. Future studies
with the neuroTac could implement these methods to explore
more biologically plausible somatosensory processing, as
well as considering OFF events which provide additional
information on shear and object shape.

Here we have demonstrated the integration of the neuroTac
sensor with the QB SoftHand, and its application to a
simple object recognition task and shear direction detec-
tion task. This platform shows promise for applications to
prosthetics and telerobotics, with the adaptive grasping of
the QB SoftHand allowing for versatile grasping of irregular
objects, and the sensor’s comprehensive biomimetic output
being highly suited for future implementations of shared
autonomy protocols, in which embedded intelligence within
the hand performs reflex-like actions while haptic feedback
is provided to the user.

VI. CONCLUSION

We presented a platform comprising a neuromorphic opti-
cal tactile sensor (neuroTac) integrated with a soft articulated
anthropomorphic robot hand (qbrobotics, QB SoftHand). The
system was validated on two tasks, demonstrating succesful
object recognition and accurate detection of in-hand shear
direction. The hardware developed presents a combination
of intuitive control and neuromorphic dynamic contact in-
formation, and could lead to wide-ranging developments in
the areas of haptics, prosthetics and telerobotics.
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