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Abstract: Lightweight roofs are extremely sensitive to extreme snow loads, as confirmed by recently
occurring failures all over Europe. Obviously, the problem is further emphasized in warmer climatic
areas, where low design values are generally foreseen for snow loads. Like other climatic actions,
representative values of snow loads provided in structural codes are usually derived by means of
suitable elaborations of extreme statistics, assuming climate stationarity over time. As climate change
impacts are becoming more and more evident over time, that hypothesis is becoming controversial,
so that suitable adaptation strategies aiming to define climate resilient design loads need to be
implemented. In the paper, past and future trends of ground snow load in Europe are assessed
for the period 1950–2100, starting from high-resolution climate simulations, recently issued by the
CORDEX program. Maps of representative values of snow loads adopted for structural design,
associated with an annual probability of exceedance p = 2%, are elaborated for Europe. Referring
to the historical period, the obtained maps are critically compared with the current European maps
based on observations. Factors of change maps, referred to subsequent time windows are presented
considering RCP4.5 and RCP8.5 emission trajectories, corresponding to medium and maximum
greenhouse gas concentration scenarios. Factors of change are thus evaluated considering suitably
selected weather stations in Switzerland and Germany, for which high quality point measurements,
sufficiently extended over time are available. Focusing on the investigated weather stations, the study
demonstrates that climate models can appropriately reproduce historical trends and that a decrease
of characteristic values of the snow loads is expected over time. However, it must be remarked that,
if on one hand the mean value of the annual maxima tends to reduce, on the other hand, its standard
deviation tends to increase, locally leading to an increase of the extreme values, which should be
duly considered in the evaluation of structural reliability over time.

Keywords: climate change; extremes; European climatic actions maps; ground snow loads; Eurocodes

1. Introduction

Impacts of climate change in several relevant societal and political sectors will become
more severe in coming decades [1]. Looking at the available climate observations, a clear
consequence of global warming is that the probability of occurrence of extreme weather
and climate events has generally increased [2–5]. Aiming to make key economic and policy
sectors more resilient to climate change, reduction of disaster risks and development of
adaptation strategies have become global and European priorities [5].

Focusing on civil engineering structures and infrastructures, the challenge is the
assessment of projected changes in extremes of climatic actions over time [6–9]. In struc-
tural engineering, variable actions connected to climate, such as wind, snow, precipitation,
temperature and so on, are commonly referred to as “climatic actions” [10,11]. The represen-
tative values of such actions are associated with specified probabilities of being exceeded
during a given reference period: e.g., the characteristic value in EN1990 corresponds
to p = 2% in one year [10]. The representative values are usually determined by elaborating
extreme measurements covering a period of 40–50 years, assuming the climate as stationary
over time. To consider the influence of changing climate, suitably extended data series
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should be handled, including available past observations as well as future projections
provided by climate models [12].

Trends of extreme temperature, precipitation and snow loads in Europe based on
observations and reanalysis data have been recently discussed by the authors in [13].
In this paper, the study is extended to ground snow loads considering high resolution
climate projections.

Impacts of climate changes on temperature and precipitation are commonly assessed
using climate projections [2–5], while little has yet been done for snow [14], although
it represents a significant climate variable. In addition to the complexity of the snow
accumulation phenomena, it must be remarked that, on the one hand, changes in snow
parameters cannot be appreciated by using only general or global circulation models
(GCMs), having low grid resolution (>100 km) [14]. On the other hand, regional climate
models (RCMs) with adequate grid resolutions (10–50 km) have been developed only in
recent time. In any case, it is often necessary to rely on sophisticated snow models forced
by climate projections of temperature and precipitation [6,7,15].

Recent collapses of large-span lightweight roofs [6,7,16–18] confirmed that extreme
snow loads can cause significant economic damages and causalities [19]. A discussion
about the reliability and failure of roofs subjected to snow loads can be found in [20]
where a total of 249 roof collapses during the winter 2005/2006 is investigated identifying
main observed causes into human errors and insufficient code provisions. Aiming to
assess trends of extreme values of snow loads, a general methodology is presented in [6]
and [7]. This procedure, combining available projections of daily minimum and maximum
temperature and precipitation with site specific information on snowfall accumulation and
melting processes, has been successfully applied to some specific regions in [8], and for the
evaluation of long-term structural reliability too [21].

In climate impact studies for engineering applications, a common way to repre-
sent climate change induced variations is the “factor of change” (FC) or “change factor”
approach [22–25], which “employs the (climate) model’s response to climate change to modify
observations” [23]. Although in other contexts, like specific climatology studies FC can
be associated to change of other relevant physical variables such as solar radiation and
land use or land cover and so on, in the following factors of change (FCs) are used consis-
tently with their definition in [22–25], for assessing impact on climate variables relevant in
engineering applications.

In this paper, an assessment of changes of ground snow loads from 1951 to 2100 at
European scale is presented considering climate projections of snow water equivalent
recently made available within the EURO-CORDEX initiative [26,27] according to different
scenarios [28]. First, ground snow load maps for characteristic values, i.e., 0.02 probability
of exceedance in one year [10], obtained from climate projections for the historical period
are discussed in comparison with the current European maps, based on observations.
Then, FC maps elaborated for subsequent time windows are presented considering a
climate model ensemble and different scenarios. These FCs are thus compared with long
series of point observations at selected weather stations in Switzerland and Germany, so
assessing the suitability of climate projections to capture current and past trends of snow
water equivalent.

The influence of climate change on structural reliability represents also a challenging
task in the ongoing revision of structural Eurocodes, requested to the European Committee
for Standardization (CEN) by the European Commission [29,30].

2. Material and Methods
2.1. Snow Loads

Snow load on structures s, is usually determined from the snow load on ground, sk,
using a suitable loading chain, like

s = sk Ce µi Ct, (1)
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where Ce, the exposure coefficient, depending on the orographic conditions of the neighbor-
hood of the construction, on the shelter effect of trees and other surrounding construction
works, and on wind velocity, accounts for the removal or the accumulation of snow on roof
exerted by wind; µi, the shape coefficient, which is a function of the shape and extension of
the roof, and on the presence of taller adjacent constructions, is used to convert the ground
into the roof snow load as well as to model possible non-uniform snow distributions on
roof; finally Ct, the thermal coefficient, accounts for changes in the snow cover caused by
the heat flux through the roof.

In the snow load model, the key information for structural design is snow load on
ground [31]. In modern codes and standards, representative values of snow load on
ground, characterized by a given annual probability of exceedance, are usually derived
by extreme statistics, analyzing measurements of snow cover depth or of snow water
equivalent (SWE) [32,33]. In the past, the SWE was measured directly only in some weather
stations of European countries such as Germany, Finland, Switzerland and partially UK,
in the other cases, the height of snow cover was converted into snow load by means of
analytical snow density laws depending on the climatic conditions and the snow lasting
period [33].

In Europe, snow loads are defined in the Eurocode EN1991-1-3 [34], where an annual
probability of exceedance equal to 0.02 of the time-varying part is considered. In the
Eurocode, a loading chain format according to Equation (1) is adopted, but several ongoing
studies are improving the formulation of design shape coefficients [35] and the main results
are being introduced in the new revised version of the EN1991-1-3 standard. Maps of
climatic actions are given in National Annexes to Eurocodes, since they are Nationally
Determined Parameters (NDPs). A detailed discussion concerning the definition of snow
load maps in Eurocodes, and the actual situation of European harmonization based on
Eurocode recommendations and national provisions can be found in [31].

Despite the different methods adopted for the statistical treatment of extremes, the
elaboration of climatic action maps in European countries, including ground snow load,
is based on the extreme value statistics covering a time period of 40–50 years. In the
statistical analysis, climate is hypothesized stationary over time, although that assumption
potentially leads to an underestimation of possible consequences of climate change.

The general methodology to elaborate snow load maps can be resumed as follows:

• First, annual extremes are collected for the considered period in a proper set of weather
stations adequately spread over the investigated area;

• Then, available data for each weather station are fitted to an appropriate extreme value
probability distribution, in such a way that representative values can be derived. In Eu-
rope, a Gumbel (EVI) distribution is generally adopted for annual maxima [31,33,36],
including also non-snowy winters, following a “mixed distribution approach” [31,37];

• After that, homogenous climatic zones, which are characterized by a common load–
altitude relationship, are identified;

• Finally, isopleths are drawn to show the variation of the load within the considered
geographic area.

The background study for definition of roof and ground snow loads in Europe was
the European Snow Load Research Project (ESLRP) [33], led by the university, involving
18 CEN countries. In this project, snow data series from approximately 2600 weather
stations were analyzed according to a common approach. Ten climatic regions were
identified for snow loads (Iceland, UK and Eire, Norway, Finland and Sweden, Central
West, Central East, Alpine, Iberian Peninsula, Mediterranean Region, Greece), and adopted
in EN1991-1-3 [34] (see Figure 1).
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The snow load maps, given in [34], were the reference for each country to develop
the National Maps provided in the National Annexes. Due to the different approaches
and methodologies adopted country by country, the National Maps suffer from some
inconsistencies especially across the borders, further emphasized by lack of homogeneity
of available data [31].

In view of future revisions, there is still a strong need for a harmonized definition of
snow parameters across different countries and for an update of current values, also con-
sidering more recent measurements, as well as information provided by satellite networks,
reanalysis and climate models. In this framework, the evaluation of snowfall response to
global warming is a challenging task. Although a decrease of snowfalls is expected on av-
erage, global warming can have diverging effects on extremes; in fact, the drop of snowfall
fraction of precipitation is associated with an increase of precipitation rate during extreme
events [38]. The temperature rise, on the one hand, facilitates the melting of snow and
increases the fraction of precipitation falling as rain, on the other hand, it can increase the
intensity of the single snow events, leading to higher ground snow loads [39]. For example,
increasing trends in intensity and frequency of daily heavy precipitation have been already
observed, even over the Alps [40,41], confirming theory and early models [4,42].

Decreases of SWE extremes, and snow cover duration are generally predicted for
central Europe at the scale of Global Climate Models (GCMs), like those provided by the
Coupled Model Intercomparison Project (CMIP3 and CMIP5) [43] within the World Climate
Research Program (WCRP). However, the coarse resolution of GCMs is not able to capture
topographic features, which are extremely relevant in the assessment of snow variables.

First, evaluations of changes in snow parameters based on Regional Climate Models
(RCMs) are discussed in [44,45]. These studies were based on low resolution models,
49 and 25 km horizontal grid resolution for [44,45], respectively, considering the previous
generation of forcing emission scenarios [46].

The rise of intensities of extreme snow precipitation can cause not only more severe
snow loads, but also increased risk of ice accretion on structures particularly sensitive
to atmospheric icing, like power lines and communication towers [44]. The relevance of
heavy snowfalls is confirmed by events occurred in the last years, which affected central
Europe in Winter 2005/2006 [16,17,20], central Italy in January 2017, southern Germany
in 2019 [47], and Madrid in January 2021. Possible correlation of extreme winter event



Climate 2021, 9, 133 5 of 20

with arctic amplification has been assessed in [48], however, not enough evidence has been
found [49].

2.2. Datasets

Aiming at evaluating the evolution of snow load on ground in Europe, the climate
model data produced by the EURO-CORDEX initiative [25,26], which are provided by the
Earth System Grid Federation (ESGF), are considered in the following, focusing on snow
variables [14]. Daily snow water equivalent data were collected from the combination of
nine global and regional climate models as described in Table 1. The nine GCMs/RCMs
were chosen for the availability of climate projections for both RCP4.5, medium scenario
with stabilization of radiative forcing due to climate policy measures to limit emissions,
and RCP8.5, representative of the highest emissions and non-climate policy scenarios.
These scenarios are generally adopted in impact studies due to the higher availability of
climate model runs with respect to RCP2.6 and RCP6. The discussion about the applica-
bility of climate change scenarios is rapidly evolving and at present, RCP4.5 appears to
offer more realistic baselines [50] while the use of RCP8.5 is debated within the scientific
community [51,52].

Table 1. Description of the main characteristics of the of the members of climate model ensemble used
in the study. Data are provided for the historical, RCP4.5 and RCP8.5 experiment by the following
Institutions: the Climate Limited-area Modeling Community (CLMcom), the Danish Meteorological
Institute (DMI), Royal Netherlands Meteorological Institute (KNMI), the Max Planck Institute (MPI-
CSC) and the Laboratoire des Sciences du Climat et de l’Environnement—Institute Pierre Simon
Laplace (IPSL-INERIS).

Model Acronym Institution Acronym Driving GCM RCM

EC-EARTH-CCLM CLMcom ICHEC-EC-EARTH CCLM4-8-17
HadGEM2-CCLM CLMcom MOHC-HadGEM2-ES CCLM4-8-17

MPI- CCLM CLMcom MPI-M-MPI-ESM-LR CCLM4-8-17
EC-EARTH-
HIRHAM DMI ICHEC-EC-EARTH HIRHAM5 v2

HadGEM2-HIRHAM DMI MOHC-HadGEM2-ES HIRHAM5 v2
EC-EARTH-RACMO KNMI ICHEC-EC-EARTH RACMO 22E

MPI-Remo2009 MPI-CSC MPI-M-MPI-ESM-LR Remo 2009
NCC-Remo2015 MPI-CSC NCC-NorESM1-M Remo 2015
IPSL-WRF381P IPSL-INERIS IPSL-IPSL-CM5A-MR WRF381P

The selected RCMs provide not only future projections for the period 2006–2100, but
also historical simulations for the period 1951–2005. Therefore, the historical run and the
RCPs ones are merged to obtain two series of SWE for the period 1951–2100.

Since the outcome of each climate model can represent an independent sample of
future climate, a combination of available models, as large as possible, should be considered
to increase the robustness of the assessment. The opportunity to adopt a multi-model
ensemble for climate change studies is presented and discussed in [53]. A methodology to
enlarge the number of simulations, which are strictly limited by the huge computational
time of climate model runs, thus increasing the statistical representatives of the ensemble,
has been previously presented by the authors in [54,55]. Statistical adjustment procedures
based on data augmentation and Bayesian inference are presented in [56] and recently
applied to large RCM ensemble for the assessment of uncertainty associated to the expected
changes in mean temperature and total precipitation in Europe [57].

Regarding climate projections of snow variables, some inconsistencies were already
identified in previous studies for high altitude cells [14], usually above 1500 m. For example,
the snow accumulation process may lead to cells characterized by constant snow cover,
and unrealistic snow accumulation. This result is not surprising since the resolution and
the refinement of the climate model does not allow to capture huge local variations; for this
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reason, the grid cells affected by unrealistic snow accumulation, higher than 70 kN/m2

according to [14], were disregarded in the elaboration of RCMs outputs.

2.3. The Factor of Change Approach

Trends will be assessed in Section 3.2 according to common practice for engineering
applications by means of the FC approach [20–23]. FCs are synthetic measures of changes
in the statistics of climate variables and can be derived also for characteristic values of
climatic actions investigating the n− th time window and the initial time window. The
main assumption in the FC approach is that errors in measurements and predictions of
climate variables are nearly constant over time. Of course, the higher the quality of the
data the more reliable are the results obtained with the proposed method.

To be consistent with the actual definition of climatic hazard maps for structural
design [6–8,58,59], a 40-year period is considered in the present study for the definition of
the time windows and a time shift of 10 years between each other is adopted.

The fundamental steps of the procedure are the following:

1. Extraction of annual maxima of the investigated climate variable for the investigated
time windows (e.g., 1951–1990, 1961–2000, 1971–2010, . . . , 2050–2090);

2. Elaboration of extreme values for each time period, via the block maxima method [60].
Of course, several extreme value distributions can be assumed for the considered
variable. Since ground snow load extremes in Europe are usually described by the
extreme value type I (EVI) distribution [31,33,36], an EVI distribution was assumed
in the present study too. The cumulative distribution function (CDF) of the EVI
distribution, also known as Gumbel distribution, is

F(x < X) = exp
{
− exp

[
−
(

x− µ

σ

)]}
with µ ∈ R; σ > 0, (2)

being µ the location, and σ the scale of the distribution.
3. Characteristic values of ground snow load, qk(n), are thus evaluated for the n-th time

window, from
qk(n) = µ + σ·{− ln[− ln(1− p)]}. (3)

In the equation, p is the given probability of exceedance, i.e., p = 0.02 in one year
according to EN1990 [10].

4. FC are derived in terms of ratios between the characteristic value in the n-th time
window and that obtained in the first one

FC(n) =
qk(n)

qk(n = 1)
. (4)

FCs can provide advice for the update of climatic maps given in codes and standards,
relying on the analysis of past observations. In this context, it is important to underline
once more that engineering works shall cope with climatic hazards during their physical
life, which can obviously be longer than the design service life [8]. Therefore, to guarantee
adequate reliability levels over time for the designed structures, an adaptation strategy
for structural design was proposed in [8], which consists of adopting an envelope of
characteristic values in the future time windows for the updated climatic load maps [8,59].

According to the proposed approach, the updated values of ground snow load
q′k, including influence of climate change, are obtained multiplying the maximum FC
in the future time windows by the current value of qk obtained from the analysis of
observations (qk,obs)

q′k = max(FC(t))·qk,obs (5)
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3. Results and Discussion
3.1. Climate Simulations for the Historical Period

First, the capability of RCM ensemble to reproduce the observed climate was assessed,
comparing the outcomes of historical simulations for the period 1951–2005, which are
based on the measured atmospheric composition changes, with the available observations.
Characteristic ground snow load maps were developed with this aim and illustrated
in Figure 2.
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Figure 2. Characteristic ground snow load maps, showing load values associated to 0.02 probability
of exceedance in one year, elaborated from the analysis of the nine climate models, described in
Table 1, considering the period 1951–1990.

The maps in Figure 2 were developed extracting, for each considered GCM/RCM and
for each cell in the EUR11 domain, the annual maxima in the period 1951–1990, by means of
an extreme value analysis, fitting an EVI distribution. White areas in the maps in Figure 2
represent cells characterized by unrealistic snow accumulation (SWE > 70 kN/m2), which
were disregarded in the analysis according to the already mentioned criterion.

The reference ground snow load map, derived for each climate region from the
analysis of observations covering the same period [33] during the ESLRP, and reported in
EN1991-1-3 Annex C (Figure 3a) was compared with the snow load map derived according
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to the Climate Models Ensemble mean (Figure 3b), in terms of differences of characteristic
values (Figure 3c). To be consistent with EN1991-1-3 provisions, cells characterized by
altitude higher than 1500 m are not represented in Figure 3.
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Figure 3. Characteristic ground snow load maps as provided in EN1991-1-3:2003 (a) and derived according to the Climate
Models Ensemble mean (b), difference map between CMs ensemble and EN1991-1-3:2003 (c) for the period 1951–1990.

The reference map in Figure 3a was obtained considering the altitude of the cell of the
climate model and the snow load-altitude relationship provided in EN1991-1-3:2003 [34]
for the corresponding climatic regions.

Error statistics (root-mean-square error, RMSE, and mean absolute error, MAE) were
evaluated considering characteristic load values obtained from RCMs simulations over the
period 1951–1990 (ensemble mean) and the reference values obtained from the analysis
of measurements in ESLRP for the different climatic regions defined in [33,34], shown in
Figure 1. Error statistics were thus computed for each cell in the climatic region (Alpine,
Mediterranean, Central East, Central West, Iberian Peninsula, UK and Eire) comparing
snow loads given by the RCMs and EN provisions. Error values were then averaged for
cells belonging to the same region and reported in Table 2.

Table 2. RMSE and MAE statistics between RCMs ensemble mean and EN1991-1-3:2003 ground
snow load map.

Climatic Region RMSE (kN/m2) MAE (kN/m2)

Alpine 2.43 1.44
Mediterranean 1.10 0.73

Central East 0.39 0.30
Central West 0.32 0.16

Iberian Peninsula 0.83 0.34
UK–Eire 0.36 0.17

RMSE values range from 0.32 (Central West) to 2.43 kN/m2 (Alpine) and highlight
significant errors especially for the Alpine, Mediterranean and Iberian regions. Differences
in error magnitude can be motivated by the different orographic features. In fact, the
considerable smoothing of surface orography in RCMs, associated to cell dimension, leads
to higher errors in orographically structured terrain [27], while regions characterized with
small orography variability show a better performance. Moreover, higher snow loads are
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associated to high altitude regions and consequently higher absolute errors are obtained
for regions such as the Alps.

The detected errors suggest the adoption of a calibration strategy to analyze climate
projections of snow water equivalent. The FC approach is an efficient methodology, com-
monly used in climate impact research [20]. As described before, changes can be derived
comparing future and current climate simulations provided by RCMs and then applied to
observed values at local scale to estimate modeled future values. In this way, it is assumed
that the ensemble of climate simulations is particularly effective in detecting changes in the
statistics of climate variables over time [54]. In Section 3.3, the ability of the investigated
RCM ensemble to detect changes for the observation period (1951–2020) will be evaluated
at selected weather stations.

3.2. Future Climate Projections

In this section, climate projections provided by the nine climate models described
in Table 1 are analyzed to assess future changes in characteristic ground snow loads
depending on the RCP4.5 and RCP8.5 scenarios. With this objective, consecutive time
windows of 40 years, shifted 10 years from each other, are considered from 1950 to 2090,
i.e., (1951–1990, 1961–2000, 1971–2010, . . . , 2050–2090).

Ensemble mean FC maps referring to three time windows (1971–2010, 1991–2030
and 2011–2050) are illustrated in Figures 4 and 5, for two scenarios RCP4.5 and RCP8.5,
respectively. These maps show the regional variability of the expected future trends across
Europe. A general decreasing trend is obtained for most of Europe, but there are still areas
characterized by constant or increasing trend in the future.

The statistical significance of the expected changes was evaluated performing a two-
sample Kolmogorov–Smirnov (K-S) test, for the distribution of annual maxima in the
moving time windows at each cell. A 5% significance level was considered, and dots
were added in the maps at cells where changes are statistically significant for the K-S test
according to the majority of the investigated climate models. Although in the first time
windows statistical significance is observed in few regions, it substantially increases moving
far into the future; in fact, almost the whole EUR-11 domain is characterized by statistically
significant changes if the time window 2011–2050 is considered (see Figures 4 and 5).

In Figures 4 and 5, ensemble mean values of FC computed for each cell in the EUR11
domain are shown, however, an explicit evaluation of uncertainty among the different
simulations is needed to ensure robust climate adaptation strategies [61]. A first assessment
of the uncertainty in the detected changes was carried out considering the variability of dif-
ferent climate change projections. The agreement among each of the 18 (2RCPs × 9 RCMs)
alternative climate projections was evaluated following the procedure illustrated in [61].
FC were classified for all grid cells into four quartiles and an integer value of 1 (lower
quartile) to 4 (upper quartile) was assigned to each quartile. The quartile assignment was
done separately for each of the 18 simulations, then, for each grid cell, the most frequent
quartile value assigned to each grid cell (i.e., the mode) was identified together with the fre-
quency of the mode (i.e., the number of occurrences of the mode). When all 18 simulations
are available for the investigated grid cell, the frequency of the mode ranges from 5 (no
agreement among simulations) to 18 (perfect agreement). This parameter represents an
index of the agreement among different models and scenarios; moreover, its complement
to 18 can indirectly provide a rough quantification of the uncertainty of the projections.
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Figure 4. FC maps (ensemble mean) for characteristic ground snow loads, associated to 0.02 probability of exceedance in
one year, in the Euro-Cordex domain (first row) and a focus on central Europe (second row). Three moving time windows
are considered (1971–2010 (a), 1991–2030 (b), and 2011–2050 (c)) in the elaboration with respect to 1951–1990, based on
RCP4.5 scenario. The dots indicate statistically significant changes in the distribution of annual maxima at the 5% level.

The results are shown in terms of mode and frequency of the mode for FCs in the time
window 2011–2050 with respect to 1951–1990, in Figure 6a,b, respectively. The mode of
quartile (Figure 6a) shows the most frequent quartile value associated with each grid cell.
For example, in a large part of the Scandinavian region (red areas) the mode is equal to four
(fourth quartile), corresponding to higher FC values. In the same areas, a high frequency
of the mode value is obtained, therefore a high level of agreement is achieved among the
investigated ensemble members (blue areas in Figure 6b).
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RCP8.5 scenario. The dots indicate statistically significant changes in the distribution of annual maxima at the 5% level.

The level of agreement among climate simulations varies on the investigated territory.
Looking at the histogram of the frequency of the mode in Figure 6b: an agreement is
obtained (≥10 of 18) for 52% of the EUR-11 domain, higher frequency values (≥16 of 18)
are obtained in 7% of the domain, while full agreement among the simulations occurred in
3% of the grid cells.

In Figure 7, the envelope of FC is illustrated for the two considered emission scenarios.
For each cell of the EUR-11 domain, the maximum value of FC in the moving time windows
t is shown.



Climate 2021, 9, 133 12 of 20Climate 2021, 9, x FOR PEER REVIEW 12 of 20 
 

 

  

 

(a) (b) 

Figure 6. Mode of quartile (a) and frequency of the mode map and histogram (b) among the 18 different projections of 
expected changes in characteristic ground snow loads in the time window 2011–2050 with respect to 1951–1990. In (b) red 
areas in the map indicate lower intermodel agreement and higher uncertainty while blue areas indicate higher agreement 
and lower uncertainty. The histogram is drawn for the frequency of the mode considering the number of cells as % of the 
total in the EUR-11 domain. 

The level of agreement among climate simulations varies on the investigated terri-
tory. Looking at the histogram of the frequency of the mode in Figure 6b: an agreement is 
obtained (≥10 of 18) for 52% of the EUR-11 domain, higher frequency values (≥16 of 18) 
are obtained in 7% of the domain, while full agreement among the simulations occurred 
in 3% of the grid cells. 

In Figure 7, the envelope of FC is illustrated for the two considered emission scenar-
ios. For each cell of the EUR-11 domain, the maximum value of FC in the moving time 
windows  is shown. 

 
(a) 

 
(b) 
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expected changes in characteristic ground snow loads in the time window 2011–2050 with respect to 1951–1990. In (b) red
areas in the map indicate lower intermodel agreement and higher uncertainty while blue areas indicate higher agreement
and lower uncertainty. The histogram is drawn for the frequency of the mode considering the number of cells as % of the
total in the EUR-11 domain.
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Green areas show zones where the update of characteristic values is not needed
(max(FC) ≤ 1) while in the blue colored areas an increase is expected (max(FC) > 1)
according to the investigated climate ensemble and an update of the reference value of
ground snow load would be recommended. In fact, an adaptation of design load is needed
when an increase of the load is expected for the future to guarantee that structure designed
now will be able to withstand future changes. In case of expected decreasing trend, no
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adaptation is necessary since structure should be designed according to the current value
of the load which can be experienced by the structure during the first years of its service.

FC values higher than one are obtained for UK, Norway and Sweden, but the
most significant FC values result for the southern part of the French Atlantic coast,
for the Iberian Peninsula, and Mediterranean coastal areas where few snow events are
however experienced.

3.3. Evaluation of Current and Future Trends at Selected Weather Stations

A first comparison against point observations was carried out to assess the ability of
climate projections to reproduce current and past trends. To the aims of the present study,
42 weathers station in Germany and Switzerland, characterized by a high-quality data
series of snow measurements in the period 1951–2020, were considered (see Figure 8).
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Obviously, to obtain a general assessment for the whole European territory, more
uniformly distributed weather stations should be considered. However, this is not an easy
task since snow data are still poorly documented and long series of high-quality data, from
which trend can be evaluated, are available for few countries in Europe [62]. Moreover,
the number of reliable weather station can vary from site to site, so that the coverage of
various areas is non-uniform.
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Table 3. Comparison of FC of qk in the time window 1981–2020 with respect to 1951–1990 obtained from the RCMs ensemble
and the observations.

Station
Id. Station Lon

[◦]
Lat
[◦]

Alt.
[m]

FC
Obs.

FC
Ensemble Mean

S01 Angermünde 13.99 53.03 54 0.72 0.81
S02 Arkona 13.43 54.68 42 1.01 0.94
S03 Augsburg 10.94 48.43 462 0.61 0.81
S04 Basel 7.58 47.54 316 1.09 0.79
S05 Berlin-Dahlem (FU) 13.30 52.45 51 0.79 0.78
S06 Bern 7.46 46.99 553 0.86 0.86
S07 Bernburg/Saale 11.71 51.82 85 0.84 0.94
S08 Bremen 8.80 53.05 4 0.68 0.90
S09 Chemnitz 12.87 50.79 418 1.10 0.90
S10 Cottbus 14.32 51.78 69 0.72 0.82
S11 Elm 9.18 46.92 958 0.80 0.92
S12 Essen-Bredeney 6.97 51.40 150 0.87 0.69
S13 Freiburg 7.83 48.02 237 0.68 0.75
S14 Geisenheim 7.95 49.99 110 0.88 0.94
S15 Görlitz 14.95 51.16 238 0.94 0.86
S16 Göttingen 9.95 51.50 167 0.82 0.79
S17 Hamburg-Fuhlsbüttel 9.99 53.63 14 0.77 0.85
S18 Hannover 9.68 52.46 59 0.78 0.90
S19 Heinersreuth-Vollhof 11.52 49.97 350 1.01 0.80
S20 Hohenpeißenberg 11.01 47.80 977 0.87 0.86
S21 Jena (Sternwarte) 11.58 50.93 155 0.87 0.93
S22 Kahler-Asten 8.49 51.18 839 0.79 0.80
S23 Kaiserslautern 7.76 49.43 271 0.64 0.78
S24 Kirchdorf/Poel 11.43 54.00 12 0.93 0.86
S25 Kleve 6.10 51.76 46 0.74 0.82
S26 Leipzig-Holzhausen 12.45 51.32 138 0.73 0.90
S27 Lindenberg 14.12 52.21 98 0.79 0.83
S28 Lingen 7.31 52.52 22 0.67 0.76
S29 Locarno 8.79 46.17 367 0.82 0.77
S30 Lugano 8.96 46.00 273 1.05 0.74
S31 Magdeburg 11.58 52.10 79 0.65 0.88
S32 Neuchotel 6.95 47.00 485 0.76 0.91
S33 Neukirchen-Hauptschwenda 9.41 50.89 500 0.79 0.77
S34 Oberstdorf 10.28 47.40 806 0.84 1.00
S35 Regensburg 12.10 49.04 365 0.96 0.81
S36 Rostock-Warnemünde 12.08 54.18 4 0.88 0.83
S37 Schwerin 11.39 53.64 59 0.97 0.82
S38 Sigmaringen-Laiz 9.19 48.07 581 0.80 0.76
S39 Stuttgart-Echterdingen 9.22 48.69 371 0.72 0.83
S40 Weißenburg-Emetzheim 10.93 49.01 439 0.80 0.79
S41 Würzburg 9.96 49.77 268 1.01 0.90
S42 Zurich 8.57 47.38 556 0.91 0.76

FC were evaluated at the selected weather stations for characteristic values of ground
snow loads qk, mean of annual maxima Q and the coefficient of variation of annual maxima
COVQ for the available time windows in the observation period (1951–1990, 1961–2000,
1971–2010 and 1981–2020). Results are summarized in Figure 9 for FC of qk, in Figure 10a
for FC of Q and in Figure 10b for FC of COVQ, considering the average µ and the confidence
interval µ± 1.645σ. Observed trends (in red) were compared against those obtained by
climate projections for the corresponding cells for the historical and future period (in blue
and in green for the RCP4.5 and 8.5, respectively).
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for the investigated area is the result of a significant reduction of the mean value of annual 
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consistent with the theory illustrated by O’Gorman in [38] about the contrasting responses 
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In Table 3, results for single stations are reported for the FCs of qk in the time
window 1981–2020.

It is important to highlight that observations and predictions give similar trends for the
study area, in particular, the decreasing tendency in characteristic values of ground snow
load predicted by the projections matches the observations. This decreasing trend for the
investigated area is the result of a significant reduction of the mean value of annual maxima
Q which is combined with a contrasting increase in variability (COVQ), and it is consistent
with the theory illustrated by O’Gorman in [38] about the contrasting responses of mean
and extreme snowfall to climate change. The increase in variability is often combined with
an increase in the skewness of the distribution.

It is important to recall that extreme events in a changing climate are much more
sensitive to changes in the variability than on averages as first demonstrated by Katz and
Brown in [63] and this sensitivity is relatively greater the more extreme the event. In fact,
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the increase in variability, which is confirmed by the observations and expected to be even
more relevant for the future, may have a significant impact in the long-term structural
reliability. For example, in [25] the assessment of variations in structural reliability over
time is discussed, starting from the expected changes in mean and COV of annual maxima.

Error statistics (root-mean-square error, RMSE) between FC obtained from the RCMs
ensemble and the point observations are reported in Table 4 considering the whole inves-
tigated area (RMSE in regional average) and the single stations (mean of RMSE for the
single stations). RMSE were computed for qk, mean of annual maxima Q and coefficient of
variation of annual maxima COVQ considering the two different emission scenarios. It is
important to recall that the simulation period for the RCP scenarios starts from 2006.

Table 4. RMSE statistics between FC obtained from the RCMs ensemble and the point measurements
for the investigated weather stations.

Scenario Parameter RMSE Regional Average RMSE Single Stations Average

RCP4.5
qk 0.021 0.113
Q 0.073 0.150

COVQ 0.108 0.239

RCP8.5
qk 0.018 0.108
Q 0.055 0.139

COVQ 0.068 0.228

Results confirm the capability of the ensemble to adequately reproduce regional trends
for the investigated parameters, as it was already observed in Figures 9 and 10. Clearly,
higher errors were obtained considering FC for individual weather stations. It can be
also noticed that the scenario RCP8.5, which is characterized by lower errors than RCP4.5,
seems to better capture trends up to now.

4. Conclusions

The estimate of the evolution of extreme snow loads in a changing climate is a crucial
issue for structural design of roofs. In fact, even in a warmer climate, the relevance of snow
induced collapses is confirmed by the negative impacts of recent heavy snowfall events,
which took place in various European countries. In this context, the current assumption
of stationary climate for the statistical elaboration of historical extreme values of climatic
actions, is becoming controversial due to the impacts of climate change, that are calling for
the set-up of suitable adaptation strategies for a climate resilient structural design.

In the paper, changes in extreme ground snow loads in Europe from 1951 to 2100,
were estimated considering an ensemble of high-resolution projections, recently provided
by EURO-CORDEX. Maps obtained from climate model simulations for the historical
period were compared against maps based on observations, showing a general snow load
underestimation by the RCMs. This general underestimation was expected and can be
motivated by the gap between the scale of observations and of climate models, even at the
finest available resolution. In fact, the smoothing of surface topography in RCMs and the
consequent orography mismatch between RCMs grid and weather stations may lead to
significant biases in snow loads, especially in orographically structured terrain.

In the author’s opinion, this issue can be considerably mitigated when the evolution
of snow loads is described focusing on factors of change, rather than on absolute load
values. In fact, the adoption of a calibration strategy based on the FC approach, seems to be
very effective to overcome this problem, allowing a satisfactory estimate of the evolution
over time of snow loads at the scale of observations.

Consistently with the current techniques adopted to derive climatic load maps based
on observations, FC maps are derived considering consecutive time windows of 40 years,
shifted 10 years from each other. FC maps are an easy to use representation of climate
change signals to adapt load maps in codes and standards [58,59], as well as to assess
variations in structural reliability over time under non-stationary loads [25]. In addition,
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uncertainty in the FC maps can be evaluated considering the variability in climate change
projections too. The satisfactory agreement achieved in large areas of the European do-
main demonstrates that these maps can be a useful tool for planning of conservation and
adaptation strategies. Moreover, the comparison of the outcomes of the procedure with the
analysis of high-quality point observations at selected weather stations in Switzerland and
Germany for the period 1951–2020, confirms the capability of the multi-model ensemble to
reproduce historical trends of extreme snow loads on ground in that area. The investigated
stations show a general decrease of characteristic values: this is the result of a significant
decrease of mean annual maxima, however associated with an increased variability of
the action. Such increased variability, combined with the inherent uncertainty of climate
models and scenarios, should be duly considered in the assessment of long-term structural
reliability and suggests the implementation of suitable adaptation measures in the defi-
nition of design loads, aiming to maintain the required target reliability of the structure
during its whole real life [25].

An example of FC map is given at European scale in Figure 7, where regions are
identified, in which it results FC > 1 and increases of reference values of snow load for
structural design are expected in the future. FC values higher than one are obtained for
UK, Norway and Sweden, but the most significant changes affect the southern part of the
French Atlantic coast, the Iberian Peninsula, and the Mediterranean coastal areas. Both
RCP scenarios lead to similar FC maximum values; exceptions are found in some limited
regions located for example in south-west England (Cornwall and Devon), north-Iceland,
north-Scandinavia, south-Spain and east-Romania.

In the highlighted regions, an adaptation is needed, especially for design of lightweight
roof structures, considering both the FC value given by the map and the current load value
given by the structural Code. It must be stressed that the FC values obtained according
to the illustrated procedure are consistently referred to the elaboration of available data,
in terms of climate projections and observations. Therefore, they should be critically
reviewed and handled since they disregard possible safe-sided assumptions, or inherent
additional safety provisions, which could be already implemented in the current structural
Code maps.
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