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Thermoelectric phenomena in photoexcited graphene have been the topic of several theoretical and experi-
mental studies because of their potential usefulness in optoelectronic applications. However, available theoret-
ical descriptions of the thermoelectric effect in terms of the Seebeck coefficient do not take into account the
role of the photoexcited electron density. In this work, we adopt the concept of effective Seebeck coefficient
[G.D. Mahan, J. Appl. Phys. 87, 7326 (2000)] and extend it to the case of a photoexcited two-dimensional
(2D) electron gas. We calculate the effective Seebeck coefficient for photoexcited graphene, we compare it to
the commonly used “phenomenological” Seebeck coefficient, and we show how it depends on the photoexcited
electron density and temperature. Our results are necessary inputs for any quantitative microscopic theory of
thermoelectric effects in graphene and related 2D materials.

I. INTRODUCTION

Thermoelectricity in solid-state systems consists of a group
of related effects, where charge currents are coupled to tem-
perature gradients and heat flows. [1, 2] In particular, the See-
beck effect consists in the appearance of an electromotive
force, measured in terms of a voltage ∆V , at the ends of a
junction between two different conductors, if the junction is
subjected to heating.

The procedure to relate ∆V to the heating of the junction
in a quantitative way is not straightforward. The standard ap-
proach [1, 2] is to join a wire of material A to two leads of ma-
terial B and consider the temperature difference ∆T between
the two resulting junctions; the voltage ∆V is measured at the
two free ends of the leads, which are held at the same temper-
ature, with the circuit open. [See Fig. 1(a).] Then, one finds
that ∆V = (SB− SA)∆T , where SX is the Seebeck coefficient
(or “thermopower”) of material X . Although only the differ-
ence between Seebeck coefficients can be experimentally de-
termined, the expression ∆V =−SA∆T is used if SB is known
and its contribution can be subtracted, or is negligible, as in
the case of superconducting leads.

The voltage ∆V is proportional to the difference of the elec-
trochemical potentials µ̃ = µ − eφ at the end of the leads,
∆V = −∆µ̃/e, [3] where µ is the chemical potential, φ the
electric potential, and −e the elementary charge. [4] In metal-
lic circuits, continuity of the chemical potential implies that
∆V = ∆φ , because the free ends of the leads are kept at
the same temperature. [2] However, Mahan and co-workers
pointed out [6, 7] that the difference between ∆V and ∆φ can-
not be overlooked when evaluating the local value of the See-
beck coefficient in a material, and introduced an effective (or
“theoretical”) Seebeck coefficient S̄(r) defined by the differ-
ential relation

∇rφ(x)≡−S̄(r)∇rT (r) , (1)

(a)

(b)

(c)

FIG. 1. (a) The temperature difference ∆T between two junctions
(dashed ovals) of materials A and B generates the voltage ∆V be-
tween the ends of the leads, maintained at the same temperature T0.
(b) Valence and conduction bands in a semiconductor, before, during,
and after photoexcitation (from left to right, respectively). Left: elec-
trons have electrochemical potential µ̃ and temperature T0. Center:
the incoming radiation (wavy line) of angular frequency ω generates
electron-hole (e-h) pairs. Right: photoexcited e-h pairs relax into a
state with higher temperature T > T0 and different electrochemical
potentials µ̃τ in each band τ . (c) Radiation impinging onto a p-n
junction (dashed oval) in graphene (thick line) induced by a split-
gate (dark rectangles) with opposite potentials VL,R. The electron
(ne, gray) and hole (nh, white) densities in space are shown above
graphene. The electrochemical potential (µ̃L,R) is well-defined away
from the junction only. The voltage ∆V is measured between the
contacts L, R (light gray).
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which differs from the local expression of the “phenomeno-
logical” Seebeck coefficient S(r), which is defined by

∇r µ̃(x)≡ eS(r)∇rT (r) . (2)

The origin of this difference is that the gradient of the chemi-
cal potential, which vanishes when integrated along the junc-
tions’ loop, is in general not negligible in a system where the
temperature varies in space.

When the materials in the junctions are semiconductors, a
more careful consideration of the terms involved in the def-
inition of the Seebeck coefficient might be necessary. More
precisely, heating of one junction can be achieved by shin-
ing electromagnetic radiation onto it, locally photoexciting the
electrons from the valence to the conduction band. [8] (The
appearance of the voltage ∆V is called photo-thermoelectric
effect, to emphasize its origin.) [9, 10] In this case, the elec-
tronic system is not at equilibrium and the value of the tem-
perature T does not uniquely determine the carrier density
in each band. [See Fig. 1(b).] In other words, electrons
in each band τ establish a separate electrochemical poten-
tial µ̃τ and the standard definition of the Seebeck coefficient
outlined above cannot be adopted. Gurevich and co-workers
pointed out this difficulty and used a specific model to cal-
culate the spatial dependence of the electrochemical poten-
tials and hence ∆V . [11, 12] Their analysis is focused on the
quasi-neutrality regime, in a one-dimensional geometry, and
includes electron-hole recombination processes and boundary
effects at the junctions.

While this approach is adequate to a junction’s loop, its
extension to more complex geometries and current patterns
seems cumbersome. We put forward that a more general cal-
culation framework can be obtained by first evaluating the ef-
fective Seebeck coefficient as a function of the system’s pa-
rameters, and then using this transport coefficient, instead of
S(r), in the set of transport equations appropriate to the de-
vice under consideration. [13–15] Indeed, the effective See-
beck coefficient is naturally well-defined for a photoexcited
electron system as long as electrons thermalize at a com-
mon temperature T . The time-scale for thermalization due
to Coulomb interactions is typically on the order of tens of
femtoseconds, [16] such that one can consider thermalization
to be attained locally and instantaneously with respect to other
transport length- and time-scales (e.g. the transit time through
a micron-sized device). As thermalization with the lattice pro-
ceeds through electron-phonon scattering, the electron tem-
perature and the photoexcited electron density evolve in time,
and so does the effective Seebeck coefficient.

In this work, we outline the theory of the effective See-
beck coefficient of a photoexcited electron gas and we per-
form our calculations explicitly in the case of graphene. [17]
The motivation for focusing on graphene resides in the in-
creasing relevance that this 2D material has been gaining in
the field of optoelectronics. [18, 19] In particular, photodetec-
tors based on the photo-thermoelectric effect can be designed
around graphene-based field-effect transistors (GFETs) using
a split-gate, that subjects neighboring regions of the graphene
channel to different electric potentials, modulating the carrier
density and thus creating an effective lateral “junction” within

graphene. [20–24] Focusing a laser beam onto the junction
leads to the generation of a photo-signal (voltage or current)
measured at the contacts on either side (L, R) of the junction.
[See Fig. 1(c).]

The generation of a photo-signal in this setup has been in-
terpreted in terms of the photo-thermoelectric effect, relying
on the standard junction picture with different Seebeck coeffi-
cients (SL, SR) in the two graphene regions: [20–24] (i) a tem-
perature difference ∆T is established between the illuminated
spot and the contacts, which remain at room temperature; (ii)
a potential difference is then generated between each side of
the junction and a contact on that side, ∆VL,R =−SL,R∆T ; (iii)
finally, a voltage ∆V = (SL−SR)∆T proportional to the differ-
ence of the Seebeck coefficients in the two gated regions is es-
tablished between source and drain, and a photocurrent flows
if the circuit is closed. Although this picture has been success-
ful in explaining the profile of the photo-signal measured in
the experiments, it does not take into account the photoexcited
electrons at the junction, which, due to the vanishing density
of states of graphene at charge-neutrality, can easily exceed
the intrinsic carrier density. In other words, this approach ne-
glects that the voltage ∆V is not just a function of the average
carrier density induced by the gate on each side of the junc-
tion, but also of the laser fluence, the recombination rate, and
all the processes that determine how the electrons relax to a
single electrochemical potential µ̃L,R away from the junction.
For this reason, it is desirable to have a more complete the-
ory of the photo-thermoelectric effect in graphene junctions,
which requires the calculation of the effective Seebeck coeffi-
cient. The goal of the present work is to provide such theory.

We point out that several works have investigated the elec-
tronic properties of photoexcited graphene, including the ex-
pression of the dielectric function, [25] the optical [26] and
terahertz [27] conductivity, and the heat capacity. [28] The ex-
pressions discussed in these works are naturally defined in the
presence of photoexcitation, by taking into account the band-
dependent chemical potentials. On the contrary, the thermo-
electric effect poses a more subtle and fundamental problem,
because, as we discussed above, the very definition of the See-
beck coefficient assumes the existence of a single chemical
potential.

Our Article is organized as following. In Section II we
present a general theory of the effective Seebeck coefficient
in the presence of photoexcitation. In Section III we specify
our theory to photoexcited graphene and present the results of
our calculations for a range of parameters. Finally, in Sec-
tion IV we draw our main conclusions and identify theoretical
and experimental implications of our results.

II. THEORY

Let us denote by fkτ(r, t) the electron distribution function
in a crystal, where r is the space coordinate, t the time, k the
Bloch wave vector in the Brillouin zone, and τ a multi-index
representing all relevant discrete quantum labels, such as band
index, spin, and valley. The distribution function obeys the
semiclassical Boltzmann equation, [2] which, linearized for
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a small electric field E(r) around the quasi-equilibrium so-
lution f̄kτ(r), in the absence of a magnetic field, and in the
relaxation-time approximation, [29] reads

∂tδ fkτ(r, t)+vkτ ·∇rδ fkτ(r, t)−
e
h̄
E ·∇kδ fkτ(r, t)

=− 1
τkτ(r)

δ fkτ(r, t) , (3)

where δ fkτ(r, t) ≡ fkτ(r, t)− f̄kτ(r), vkτ ≡ h̄−1
∇kεkτ is

the band velocity obtained from the band energy εkτ , and
τkτ(r) is a relaxation time that depends on the collision pro-
cesses. [29] When electron-electron scattering is the dominant
collision term in the semiclassical Boltzmann equation, the
quasi-equilibrium solution assumes the Fermi-Dirac form

f̄kτ(r) =
1

e[εkτ−µτ (r)]/[kBT (r)]+1
, (4)

where µτ(r) is the chemical potential, kB the Boltzmann con-
stant, and T (r) the temperature. The quasi-equilibrium dis-
tribution function (4) depends on the band energy but not on
k explicitly, fkτ(r) = fτ(εk,τ ,r). (As anticipated in the In-
troduction, we assume that the temperature is the same in all
bands.)

Writing the electric field as E(r) = −∇rφ(r), in terms of
the electric potential φ(r), and exploiting Eq. (4), the steady-
state solution to Eq. (3) reads

δ fkτ(r) =−τkτ(r)vkτ ·

{
∇r[µτ(r)− eφ(r)]

+
εkτ −µτ(r)

kBT (r)
∇r[kBT (r)]

}(
− ∂ f̄

∂εkτ

)
, (5)

where ∂ f̄/∂εkτ is shorthand for
[
∂ f̄τ(ε,r)/∂ε

]
ε=εkτ

. The
charge current density is given by J(r) = ∑τ Jτ(r), where

Jτ(r) =
1
L2 ∑

k

(−e)vkτ δ fkτ(r) (6)

is the contribution of the electrons belonging to the band τ .
The standard derivation of the transport equations [2, 13, 14,
30] proceeds by inserting Eq. (5) into Eq. (6) and express-
ing the charge current density in terms of the gradients of the
electrochemical potential and the temperature. We cannot take
this step, however, because of the presence of band-dependent
chemical potentials µτ , which cannot be combined with the
electric potential φ(r).

To proceed further, let us carefully parametrize µτ(r) in
terms of the electron density. Let us denote the electron den-
sity in the band τ by n(i)τ +nτ(r)> 0, where n(i)τ is the carrier
density of the intrinsic system (i.e. in the absence of electrical
or chemical doping, or photoexcitation) at zero temperature,
and nτ(r) ≷ 0. The chemical potential of the band τ is de-
termined as a function of the density nτ(r) and the tempera-
ture T (r) by n(i)τ + nτ(r) = L−2

∑k f̄kτ(r). The total carrier

density is n(i)+n(r) = ∑τ [n
(i)
τ +nτ(r)] and the Fermi energy

εF(r) is determined by n(i)+n(r) = L−2
∑kτ Θ[εF(r)− εkτ ],

i.e. the Fermi energy is the common value of the chemical
potentials at zero temperature, which yields the actual total
density. Similarly, we can define a local equilibrium distri-
bution function f (0)kτ

(r) by substituting µτ(r) in Eq. (4) with
a band-independent value µ(0)(r), determined by requiring
n(i)+ n(r) = L−2

∑kτ f (0)kτ
(r), and, in turn, define n(0)τ (r) by

the expression n(i)τ + n(0)τ (r) = L−2
∑k f (0)kτ

(r). The photoex-
cited electron density is then

δnτ(r) = nτ(r)−n(0)τ (r) , (7)

i.e. the difference between the actual value of the electron
density and the one that would be present if the system was
at equilibrium. From the definitions above, it follows that
∑τ δnτ(r) = 0, which represents the fact that photoexcitation
does not inject electrons into the system, but promotes them
between bands.

Using the equations above, we can implicitly define the
band-dependent chemical potential as a function of the Fermi
energy, the temperature, and the photoexcited density

µτ(r) = µτ [εF(r),T (r),δnτ(r)] , (8)

with the equilibrium, zero-temperature limit given by the
Fermi energy, i.e. µτ [εF(r),0,0] = εF(r).

Depending on the intrinsic band filling, it might be conve-
nient to perform the calculations in terms of the hole distri-
bution f h

kτ
(r, t) = 1− fkτ(r, t), energy εh

kτ
= −εkτ , chem-

ical potential µh
τ (r) = −µτ(r), and density p(i)τ + pτ(r) =

L−2
∑k f̄ h

kτ
(r). For the photoexcited density it holds that

δ pτ(r) = −δnτ(r) and, if a band is entirely filled in the in-
trinsic system, p(i)τ = 0, it also follows that pτ(r) =−nτ(r).

Using Eq. (8), we can express the gradient of the chemical
potential appearing in Eq. (5) as

∇rµτ(r) =
∂ µτ(r)

∂εF(r)
∇rεF(r)+

∂ µτ(r)

∂ [kBT (r)]
∇r[kBT (r)]+

∂ µτ(r)

∂δnτ(r)
∇rδnτ(r) . (9)

In principle, as discussed in the introduction, one would need
to solve the complete set of coupled transport equations, [13–
15] with the charge current density given by Eq. (6) (and a
similar expression for the energy current density) to determine
the spatial profile of Fermi energy, temperature, and photoex-
cited density, and calculate the gradients which appear in the
right-hand side of Eq. (9).

In the following, however, we introduce two parametriza-
tions which allow us to focus on the effective Seebeck coeffi-
cient only. First, we assume that the relaxation lengths of the
photoexcited density in all bands have the same value, which
we parametrize in terms of the relaxation length of the tem-
perature:

1
δnτ(r)

∇rδnτ(r) = α
1

kBT (r)
∇r[kBT (r)] , (10a)
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where α is a band-independent dimensionless constant. This
is a very reasonable assumption, because the recombination
processes which are responsible for the relaxation of the pho-
toexcited carrier density couple different bands, and thus must
lead to comparable relaxation lengths. Second, we assume
that the local charge density is neutralized by the gate, adopt-
ing the so-called local capacitance approximation [31]

− en(r) =Cφ(r), C =
ε

4πd
, (10b)

where d and ε are the thickness and the (relative) dielectric
constant of the gate layer, respectively, and C is the capaci-
tance per unit area of the parallel-plate capacitor consisting of
the gate and the graphene layer. (We use Gaussian electro-
magnetic units.) With the parametrization (10), the gradient
of the chemical potential in Eq. (9) reads

∇rµτ(r) =−
C
e

∂ µτ(r)

∂εF(r)

∂εF(r)

∂n(r)
∇rφ(r)+{

∂ µτ(r)

∂ [kBT (r)]
+α

δnτ(r)

kBT (r)
∂ µτ(r)

∂δnτ(r)

}
∇r[kBT (r)] . (11)

Using Eq. (11), we can rewrite Eq. (5) as

δ fkτ =−τkτ(r)vkτ ·
{
− e

ε
(e)
τ (r)

∇rφ(r)+

εkτ −µ
(e)
τ (r)

kBT (r)
∇r[kBT (r)]

}(
− ∂ f̄

∂εkτ

)
, (12)

where we have defined an effective dielectric constant

1

ε
(e)
τ (r)

= 1+
C
e2

∂ µτ(r)

∂εF(r)

∂εF(r)

∂n(r)
(13)

and chemical potential

µ
(e)
τ (r) = µτ(r)−α

∂ µτ(r)

∂δnτ(r)
δnτ(r)−

∂ µτ(r)

∂ [kBT (r)]
kBT (r) .

(14)
We notice that the band dependence has now disappeared from
the argument of the gradient operators in Eq. (12), so that,
inserting Eq. (12) into Eq. (6), one finds for the charge current
density

Jτ(r) = σ̄τ(r)[−∇rφ(r)]− σ̄τ(r)S̄τ(r)∇rT (r) . (15)

The coefficients in Eq. (15) depend on summations over the
Brillouin zone. To make analytical progress, we assume that
the relaxation time depends on the band energy, but not on
k explicitly, τkτ(r) = ττ(εkτ ,r), and that the band disper-
sion has azimuthal symmetry, i.e. ∇kεkτ = (∂εkτ/∂k)∇kk =
h̄vkτ (cosθkx̂+ sinθkŷ), where θk is the polar angle of the
wave vector k. We obtain the expressions

σ̄τ(r) =
e2

h
1

ε
(e)
τ (r)

∫
∞

∞

dε
ττ(ε,r)

h̄

(
−∂ fτ(ε)

∂ε

)
gτ(ε) ,

(16a)

and

σ̄τ(r)S̄τ(r) =−
kBe
h

∫
∞

∞

dε
ττ(ε,r)

h̄
ε−µ

(e)
τ (r)

kBT (r)
×(

−∂ fτ(ε)

∂ε

)
gτ(ε) , (16b)

with

gτ(ε) = π h̄2 1
L2 ∑

k

v2
kτ δ (εkτ − ε) . (16c)

Summing over the band indices, the total (charge)
current density reads J(r) = [∑τ σ̄τ(r)] [−∇rφ(r)] −[
∑τ σ̄τ(r)S̄τ(r)

]
∇rT (r). Finally, the open-circuit condition

J(r) = 0 leads to the expression for the effective Seebeck
coefficient

S̄(r) =
[
∑τ σ̄τ(r)S̄τ(r)

]
/ [∑τ σ̄τ(r)] (17)

in terms of Eqs. (16). Before discussing S̄ for photoexcited
graphene in Sec. III, let us consider two limiting behaviors of
Eq. (15).

(i) In the local equilibrium limit of vanishing photoexci-
tation, δnτ(r) = 0, we have nτ(r) = n(0)τ (r) and µτ(r) =

µ(0)(r) [defined in the paragraph leading to Eq. (7)]. In this
limit, a common electrochemical potential µ̃(r) = µ(0)(r)−
eφ(r) for all the bands is well-defined. The expansion in
Eq. (9) is not needed and, instead of Eq. (15), one finds the
standard expression [2, 13, 14, 30]

Jτ(r) = στ(r)∇r µ̃(r)/e−στ(r)Sτ(r)∇rT (r) , (18)

with the conductivity στ(r) and the Seebeck cofficient Sτ(r).
The expressions for στ(r) and Sτ(r) are obtained from
Eqs. (16a) and (16b) with the substitutions 1/ε

(e)
τ → 1 and

µ
(e)
τ (r)→ µ(0)(r).
(ii) If the system is locally at equilibrium and the electron

density is homogeneous, ∇rn(r) = 0 and ∇rεF(r) = 0. In
this case, the local-capacitance approximation (10b) leads to
∇rφ(r) = 0, which limits the applicability of the theory, un-
less we also assume C = 0 [or a full solution of the Poisson
equation is used to relate n(r) and φ(r), instead of Eq. (10b)].
Under these assumptions, Eq. (11) simplifies to

∇rµτ(r) =
∂ µτ(r)

∂ [kBT (r)]
∇r[kBT (r)] . (19)

This temperature-dependent variation of the chemical poten-
tial has been discussed by Mahan and co-workers in Refs. [6,
7]. Making this dependence explicit allows to rewrite Eq. (15)
as

Jτ(r) = στ(r)E(r)−στ(r)S̄τ(r)∇rT (r) . (20)

This manipulation proves convenient because the authors of
Ref. [7] showed that S̄ [defined as in Eq. (17) with σ̄τ →
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(a) (b)

FIG. 2. (Color online) (a) “Phenomenological” S and (b) effective S̄ Seebeck coefficient as a function of the electron density n at temperature
T = 77 K (red ×), 300 K (black ?), and 1000 K (blue +), for vanishing photoexcited electron density δne = 0.

στ ] does not depend on doping and on the material’s de-
tails. Moreover, S̄ directly relates the temperature gradient
to the electric field under the open-circuit condition J(r) = 0.
The consequences of a homogeneous electron density were
also investigated in Ref. [32], where it was shown that the
temperature-dependence of the chemical potential is indeed
the crucial function governing the thermoelectric coefficients.

III. RESULTS

To evaluate Eqs. (16) for photoexcited graphene, let us
first summarize the main properties of the electronic disper-
sion in graphene: [17] the band energy is εkλ = λ h̄vF‖k‖,
where vF is the Fermi velocity and λ indicates either the in-
dex of the valence (v) and conduction (c) band or the sign
−1 and +1, respectively; the density of states is ν(ε) =
gSgV|ε|(h̄vF)

−2(2π)−1, where gS = 2 and gV = 2 are the
spin and valley degeneracy, respectively; we suppose that the
spin and valley populations are balanced, hence in Eq. (6)
∑kτ 7→ gSgV ∑kλ ; the Fermi energy as a function of the elec-
tron density is εF(r) = sign[n(r)]h̄vF

√
π|n(r)|; the intrisic

density n(i) vanishes and n(r) ≷ 0 corresponds to a zero-
temperature electron or hole carrier density, respectively. Us-
ing the expressions above, the quantity in Eq. (16c) simplifies
to gλ (ε) = 2εΘ(λε)/(gSgV), where Θ is the Heaviside func-
tion.

To evaluate Eqs. (16), it is also necessary to specify the
energy-dependence of the relaxation time ττ(ε,r), which de-
pends on the collision processes. Following the calculation
of the Seebeck coefficient by Das Sarma and co-workers in
Ref. [33], in this work we focus on electron scattering with
Coulomb impurities, which is the dominant scattering channel
at room-temperature. In this way, we can provide explicit re-

sults for the effective Seebeck coefficient in the limit of weak
photoexcitation. We use the expression for the relaxation time
in the random-phase approximation, which has been discussed
extensively in the literature [34–37]. We remark that electron
scattering with acoustic and optical phonons in graphene can
dominate the transport coefficients in some regimes [38–43].
However, since the focus of the present paper is on the effects
of photoexcitation, we defer the investigation of other electron
scattering channels to future work.

The results shown in Figs. 2 – 6 have been obtained with
the following numerical parameters: Dirac cone slope h̄vF =
0.66 eVnm; dimensionless coupling constant e2/(ε̄ h̄vF) =
0.8, where ε̄ is the average dielectric constant; Coulomb im-
purity density ni = 1012 cm−2; and distance of the Coulomb
impurities from the graphene sheet di = 1 nm. In Figs. 2 – 4
we take α = 0 and C = 0 (corresponding to a gate far-removed
from the graphene layer), while results with finite α and C are
shown in Figs. 5 and 6, respectively.

Fig. 2 compares the “phenomenological” and effective See-
beck coefficients at local equilibrium, i.e. in the absence of
photo-excitation. Let us focus on n > 0, as all the profiles are
skew-symmetric. At high temperatures, the two coefficients
display a similar dependence on the total density n, although
S̄ is smaller in magnitude. At low temperatures, however, the
behavior of the two coefficients around the neutrality point is
the opposite, with S (S̄) diverging to negative (positive) values
as the density is reduced from larger values, where the two
coefficients have the same sign. At room temperature, with
decreasing n, the profile of S̄ first follows the low-temperature
behavior towards positive values but, approaching the charge
neutrality point, bends towards negative values, always re-
maining much smaller than S. To understand this behavior,
let us consider the temperature dependence of the chemical
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FIG. 3. (Color online) Effective Seebeck coefficient as a function
of the electron density n for a non-equilibrium system with photoex-
cited electron density δne = 1010 cm−2 (red ×), 1011 cm−2 (black
?), 1012 cm−2 (blue +), and 5×1012 cm−2 (magenta �) and temper-
ature T = 1000 K.

potential for vanishing photoexcitation, which can be approx-
imated as [17]

µc(T ) =

{
εF

(
1− π2T 2

6T 2
F

)
T . TF

εF
1

4ln2
TF
T T & TF ,

(21)

where TF = |εF|/kB is the Fermi temperature. Then, in
Eq. (14) we can substitute

∂ µλ (r)

∂ [kBT (r)]
kBT (r) =

{
− kB

2
π2T 2(r)

3εF(r)
T (r). TF(r)

−µλ (r) T (r)& TF(r) ,
(22)

which finally yields

µ
(e)
λ

(r) =

{
2µλ (r) |εF(r)|. kBT (r)

µλ (r)+
kB

2
π2T 2(r)

3εF(r)
|εF(r)|& kBT (r) .

(23)

Observing how µ
(e)
λ

enters Eq. (16b), we can rationalize the

profiles in Fig. 2 as following. For large density, µ
(e)
λ

tends to
µλ and the two coefficients S, S̄ have the same sign. As the
density decreases, µ

(e)
λ

becomes larger than µλ in magnitude,
contributing a positive (negative) quantity to S̄ for n > 0 (n <
0). Finally, if the density is sufficiently small, the sign of the
integral in Eq. (16b) is determined by the band energy ε and
not the chemical potential.

Fig. 3 shows the effect of increasing the photoexcited elec-
tron density δne on the effective Seebeck coefficient S̄. This
information is not available using the “phenomenological”

FIG. 4. (Color online) Effective Seebeck coefficient as a function
of the electron density n for a non-equilibrium system with photoex-
cited electron density δne = 1012 cm−2 and temperature T = 300 K
(red ×), 1000 K (black ?), and 1500 K (blue +).

Seebeck coefficient, which is not defined unless the electronic
system is in local equilibrium. All profiles correspond to the
same electronic temperature T = 1000 K, which can be eas-
ily reached in a photoexcited graphene system. Indeed, with a
heat capacity c∼ 10−6 J/(Km2) [28], a temperature increase
∆T ∼ 103 K requires an energy density ∆U delivered to the
electron gas on the order of ∆U ∼ 10−3 J/m2, which is compa-
rable to the product of graphene absorbance αU ∼ 2.3% [17]
and a laser pulse fluence F . 102 µJ/cm2. We see that, in-
creasing the photoexcited density, S̄ decreases in magnitude.
Of course, decoupling the temperature from the photoexcited
density is not possible, in general, in a real experiment, where
∆U ∼ h̄ωδne, so that T will increase with δne. (In our cal-
culations, we do not solve the electron dynamics following
photoexcitation, but consider δne and T as fixed parameters.)
However, these results show that photoexcitation, although a
very effective heating scheme, is not ideal to generate a ther-
moelectric signal.

The degradation of the Seebeck coefficient with photoex-
citation was first reported by Tauc [9] in the 50s for n-type
Ge, and was generally understood in terms of a photo-induced
doping of the majority carriers. Our results in Fig. 3 not only
take into account the increase of the carrier density in both
bands due to photoexcitation, but also the change in the relax-
ation time ττ(ε,r) due to the increased Coulomb screening.
We point out that an anomalous increase of the Seebeck coef-
ficient with photoexcitation was reported by Harper et al. [10]
in the 70s for p-type Si, but its origin was traced back to the
phonon-drag effect – which we do not take into account in the
present theory.

Fig. 4 shows the effect of increasing temperature at fixed
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FIG. 5. (Color online) Effective Seebeck coefficient as a function
of the electron density n for a non-equilibrium system with photoex-
cited electron density δne = 1012 cm−2, temperature T = 1000 K,
and gate layer thickness d = 1 nm (red ×), 30 nm (black ?), and
300 nm (blue +).

photoexcited density. A higher temperature corresponds to
a larger thermoelectric signal, which implies a non-linear re-
sponse of the system to a temperature gradient. If the tem-
perature of the system was modulated periodically, one could
expect higher harmonics of the modulating frequency in the
resulting electrical signal. It is interesting that, at room tem-
perature, the effective Seebeck coefficient changes sign in a
large range of densities, being positive (negative) above (be-
low) the charge neutrality point. This behavior is a signature
of the sharp peak shown in Fig. 2(b) and discussed analytically
with Eqs. (21) – (23) in the local equilibrium case. The solu-
tion of the transport equations in specific geometries might
be necessary to appreciate the consequences of this change of
sign. Indeed, if the temperature decreases in space (away from
the laser spot where photoexcitation takes place) on a shorter
length-scale than the photoexcited density, (i.e. α� 1,) it can
happen that neighboring spatial regions are characterized by
effective Seebeck coefficients with opposite sign, leading to
unexpected thermoelectric current patterns.

Finally, Figs. 5 and 6 show the dependence of S̄ on the two
coefficients α and C introduced in Eq. (10) to parametrize the
gradient expansion (11) of the chemical potential. We see that
S̄ changes very weakly when α and C vary over several or-
ders of magnitude. This reassures us that the results shown
in Figs. 2 – 4, where we fixed α = 0 and C = 0, are gener-
ally valid. Moreover, the weak dependence of the results on
α and C emphasizes the role of the temperature-dependence
of the chemical potential, Eq. (19), which was discussed in
Refs. [6, 7, 32] in the absence of photoexcitation.

FIG. 6. (Color online) Effective Seebeck coefficient as a function
of the electron density n for a non-equilibrium system with photoex-
cited electron density δne = 1012 cm−2, temperature T = 1000 K,
and relaxation length ratio α = 0.01 (red ×), 1 (black ?), and 100
(blue +).

IV. CONCLUSIONS AND PERSPECTIVES

In this Article we have formulated a theory of the Seebeck
effect when the temperature gradient is generated by photoex-
citation. We have discussed how the standard definition of
the Seebeck coefficient is not adequate in this case, because
it assumes the existence of a well-defined chemical potential,
which is missing in a photoexcited multi-band electron sys-
tem. We have thus formulated our theory in terms of the effec-
tive Seebeck coefficient S̄, first introduced by Mahan and co-
workers, [6] which is properly defined for photoexcited elec-
tron systems, and we have provided explicit results in the case
of graphene. We have shown that S̄ decreases at fixed tem-
perature with increasing photoexcited density, implying that
photoexcitation, although effective at increasing the electronic
temperature, is not ideal to generate a thermoelectric signal.
Moreover, we have found that S̄ displays a sign change at
lower temperatures, which could lead to unexpected thermo-
electric current profiles in specific geometries. To investigate
this issue, it will be necessary to use S̄ in the framework of a
complete set of transport equations.

Recently, an experimental technique has been introduced
which allows to measure the Seebeck effect locally, without
resorting to photoexcitation, [44, 45] demonstrating that the
Seebeck coefficient can undergo variations of several orders
of magnitude due to purely geometric constraints on the elec-
tronic motion. This technique is based on a scanning Joule
heating element and is characterized by high spatial resolu-
tion, comparable to the length-scale of a junction produced
by a split-gate. [20–24] Moreover, local and ultra-fast mea-
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surement of the electronic temperature has also been recently
demonstrated. [46] Hence, it is becoming experimentally fea-
sible to measure the thermoelectric signal generated by heat-
ing the same spot on a graphene sample, in the presence or
absence of a concurrent photoexcited density, extracting valu-
able information on the local electronic relaxation processes.
The theory described in this work is the first one that can con-

sistently treat both cases on equal footing.
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[43] S. Poncé, W. Li, S. Reichardt, and F. Giustino, Rep. Prog. Phys.

83, 036501 (2020).

[44] A. Harheim, J. Spiece, C. Evangeli, E. McCann, V. Falko, Y.
Sheng, J.H. Warner, G.A.D. Briggs, J.A. Mol, P. Gehring, and
O.V. Kolosov, Nano Lett. 18, 7719 (2018).

[45] A. Harzheim, C. Evangeli, O.V. Kolosov, and P. Gehring, 2D
Mater. 7, 041004 (2020).

[46] M.A. Aamir, J.N. Moore, X. Lu, P. Seifert, D. Englund, K.C.
Fong, and D.K. Efetov, Nano Lett. 21, 5330 (2021).

https://doi.org/10.1103/PhysRevB.79.115447
https://doi.org/10.1103/PhysRevB.79.115447
https://doi.org/10.1103/PhysRevB.93.195103
https://doi.org/10.1088/1361-6633/ab6a43
https://doi.org/10.1088/1361-6633/ab6a43
https://doi.org/10.1021/acs.nanolett.8b03406
https://doi.org/10.1088/2053-1583/aba333
https://doi.org/10.1088/2053-1583/aba333
https://doi.org/10.1021/acs.nanolett.1c01553&ref=pdf

	Theory of the effective Seebeck coefficient for photoexcited 2D materials: the case of graphene
	Abstract
	Introduction
	Theory
	Results
	Conclusions and Perspectives
	Acknowledgments
	References


