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ABSTRACT

Electrical resistivity tomography is a non-linear and ill-posed geophysical inverse
problem that is usually solved through gradient-descent methods. This strategy is
computationally fast and easy to implement but impedes accurate uncertainty ap-
praisals. We present a probabilistic approach to two-dimensional electrical resistivity
tomography in which a Markov chain Monte Carlo algorithm is used to numerically
evaluate the posterior probability density function that fully quantifies the uncertainty
affecting the recovered solution. The main drawback of Markov chain Monte Carlo
approaches is related to the considerable number of sampled models needed to achieve
accurate posterior assessments in high-dimensional parameter spaces. Therefore, to
reduce the computational burden of the inversion process, we employ the differen-
tial evolution Markov chain, a hybrid method between non-linear optimization and
Markov chain Monte Carlo sampling, which exploits multiple and interactive chains
to speed up the probabilistic sampling. Moreover, the discrete cosine transform repa-
rameterization is employed to reduce the dimensionality of the parameter space re-
moving the high-frequency components of the resistivity model which are not sensitive
to data. In this framework, the unknown parameters become the series of coefficients
associated with the retained discrete cosine transform basis functions. First, synthetic
data inversions are used to validate the proposed method and to demonstrate the ben-
efits provided by the discrete cosine transform compression. To this end, we compare
the outcomes of the implemented approach with those provided by a differential evo-
lution Markov chain algorithm running in the full, un-reduced model space. Then,
we apply the method to invert field data acquired along a river embankment. The re-
sults yielded by the implemented approach are also benchmarked against a standard
local inversion algorithm. The proposed Bayesian inversion provides posterior mean
models in agreement with the predictions achieved by the gradient-based inversion,
but it also provides model uncertainties, which can be used for penetration depth and

resolution limit identification.
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INTRODUCTION

Geoelectrical methods are commonly applied for mining

exploration, geotechnical characterization and hydrological
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studies (Pelton et al., 1976; Sumner, 1976; Goldie, 2002;
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Loke et al., 2013). Electrical resistivity tomography (ERT)
is usually applied for groundwater exploration, geotechnical
characterization, mapping of contaminant plumes, landfill
and levees monitoring (Uhlemann et al., 2017; Tresoldi et al.,
2018,2019; Hojat et al., 2019; Helene et al., 2020). Typically,
deterministic gradient-based algorithms (Zhang et al., 20035;
Pidlisecky and Knight, 2008) are employed to tackle the ERT
problem. These methods linearize the problem around an
initial solution, thereby losing the information for accurate
uncertainty appraisals. Moreover, these algorithms are prone
to get trapped in local minima of the misfit function (e.g. the
L2 norm difference between observed and predicted data) and
thus the starting model must lie within the valley of attraction
of the global minimum. In addition, the ERT inversion is an
ill-conditioned inverse problem in which many subsurface
models equally fit the measured apparent resistivity pseudo-
section. Therefore, an accurate estimation of the uncertainties
affecting the retrieved solution would be of great help in the
interpretation phase because it could be used to generate mul-
tiple subsurface scenarios all in accordance with the observed
data. The Bayesian approach is commonly employed to cast
an inverse problem into a solid probabilistic framework. In
this context, the final solution of the inversion is the so-called
posterior probability density (PPD) function in model space
(Ramirez et al., 2005; Tarantola, 2005; Sen and Stoffa, 2013;
Aleardi et al., 2018; Galetti and Curtis, 2018; Aleardi and
Salusti, 2020) that fully quantifies the ambiguities in the recov-
ered model. However, the ERT is a non-linear problem and for
this reason the PPD cannot be expressed in a closed form, but
it must be numerically evaluated, for example by employing
Markov Chain Monte Carlo algorithms (MCMC; Sambridge
and Mosegaard, 2000). These algorithms transform the
Bayesian inversion process into a sampling problem in which
the sampling density is proportional to the PPD. Although the
increasing computational power provided by modern parallel
architectures has considerably encouraged the applications
of MCMC methods to solve geophysical problems (Fichtner
and Zunino et al., 2019; Stuart et al., 2019; Aleardi et al.,
20205 Aleardi, 2020a), it is always crucial adopting specific
recipes to guarantee an accurate and computationally efficient
sampling of the PPD. For example, many MCMC algorithms
(e.g. the popular random walk Metropolis) are known to ex-
change models slowly when several areas of the model space
are equally probable, that is when the target distribution is
multimodal (Holmes et al., 2017; Scalzo et al., 2019). Besides,
the sampling ability of MCMC algorithms severely decreases
in highly dimensional model spaces due to the so-called

curse of the dimensionality problem (Curtis et al., 2001).

Over the past decades, many MCMC approaches have been
proposed to mitigate this issue, for example, a simple strategy
is to use multiple MCMC chains to sample the PPD. This
strategy usually offers robust protection against premature
convergence because the chains use different trajectories to
explore the parameter space. However, it turns out to be
inefficient in high-dimensional problems where the curse of
dimensionality makes the target distribution highly localized
within each model space dimension, and, consequently, the
MCMC chains are likely to get trapped in the local maxima
of the PPD. There have been many attempts to improve the
sampling ability of MCMC algorithms in high-dimensional
spaces, for example, by hybridizing standard MCMC algo-
rithms with global search methods (e.g. differential evolution
Markov chain “DEMC” or differential evolution adaptive
Metropolis; Turner et al., 2013; Vrugt, 2016).

Another viable strategy to mitigate the curse of di-
mensionality and to reduce the computational complexity
of high-dimensional inverse problems is to compress the
model space through appropriate reparameterization tech-
niques (Ferndndez-Martinez et al.,2011; Azevedo et al., 2016;
Aleardi, 2019; Szab6 and Dobrdka, 2019; Numes et al., 2019;
Aleardi 2020b). However, it should be noted that the param-
eterization of an inverse problem must always constitute a
compromise between model resolution and model uncertainty
(Grana et al., 2019).

In this work, we use the discrete cosine transform (DCT;
Ahmed et al., 1974) to reparameterize the Bayesian ERT
inversion solved through a DEMC sampling of the parameter
space. This transform, originally developed for signal process-
ing and imaging compression, is comparable to the Fourier
transform, but it uses only cosines as bases functions to signal
reconstruction so that the computed coefficients are real
numbers. Therefore, the DCT of a signal (i.e. expressing the
subsurface resistivity model) indicates the energy distribution
of the signal in the frequency domain spectrum. Usually, most
of the energy of the signal is expressed by low-order DCT
coefficients. Consequently, this mathematical transformation
can be used for model compression, which is accomplished
by setting the coefficients of the base function terms beyond a
certain threshold equal to zero (such as a low pass filtering). In
this context, the coefficients associated with the retained bases
become the parameters that express the signal, and in the
inverse problem, they are the unknown parameters to retrieve.

We first discuss some synthetic examples in which the
observed data have been derived from a schematic sub-
surface model through a 2.5D Finite Elements forward

modelling code taken from the boundless electrical resistivity
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tomography open-source software (Giuinther et al., 2006). In
this section, to demonstrate the benefits provided by the DCT
reparameterization of DEMC-ERT inversion, we compare
the outcomes provided by the proposed approach with those
yielded by a DEMC inversion running in the unreduced
model space. Then, we discuss the application to field data
acquired along a river embankment. In both the synthetic
and field examples, the results of the implemented algorithm
are benchmarked with the predictions of a gradient-based
inversion approach (Loke, 2013).

METHODS

In this section, we first describe the discrete cosine trans-
form (DCT) before discussing the implemented differential
evolution Markov chain and electrical resistivity tomography
inversion.

The discrete cosine transform

The DCT is a linear orthogonal transformation that decom-
poses a signal into a sum of cosine functions oscillating at dif-
ferent frequencies. This transformation has successfully been
used in imaging compression standards due to its energy
compaction properties (Jain, 1989). Considering that signals
are real in most applications, the DCT can be used instead
of the discrete Fourier transform to reduce the calculation

My—1My—1
R ()= 5 gy X X ol
My—1My—1 o
Rt = i o & zo i
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redundancy. There are several variants of DCT formulation,
but the most employed is the DCT-II (Ahmed et al., 1974).
For simplicity from here on we refer to DCT-II as the DCT.
Equation (1) represents one-dimensional (1D) DCT equation,
and in Figure 1 we illustrate an example of five cosinuisodal
1D bases:

1 Mx—1
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Figure 1 Example of five DCT bases associated with DCT coefficients
with different orders.

where R corresponds to the M, coefficients that describe the
original 1D signal p(x) of length M, and k, represents the
order of each DCT coefficient.

The DCT can also be extended to multi-dimensional sig-
nals (i.e. two-dimensional [2D] matrices), and such multi-
dimensional transformation follows straightforwardly from
the 1D definition because it is simply a separable product
(equivalently, a composition) of DCTs along each dimension.
For example, a 2D DCT transformation of a resistivity model

p(x,y) of [My, M,] can be computed as follows:

if ky = ky =0
: (2)

(x, ) cos (M)CO%M), if ko ey 0

oM,

where R(k,, ky) represents the transformed resistivity model,
whereas x and y indicate the horizontal and vertical co-
ordinate axes, respectively; M, and M, denote the num-
ber of parameters along the x and y directions, respectively.
Equation (2) can be compactly rearranged in the matrix

form:
R =B, pB!, (3)

where B, and B, are matrices with dimensions M, x M, and
M, x M,, respectively, and contain the orthogonal DCT basis
functions, whereas the M, x M, matrix R contains the DCT
coefficients. Most of the spatial variability of the resistivity
model is explained by low-order DCT coefficients, and for this
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reason an approximation of the subsurface resistivity model
can be obtained as follows:

5= (BZ)T R,,B’, (4)

where p is the approximated [M, x M,] resistivity model, B}
is a [q¢ x M,] matrix containing only the first g rows of By;
B is a [p x M,] matrix containing only the first p rows of
B,, whereas the matrix R,, represents the first g rows and
p columns of R. In other words, the scalars g and p repre-
sent the retained number of base functions along the y and x
directions used to derive the approximated resistivity model.
Therefore, the DCT transformation allows for a reduction of
the (M, x M,)—2D full resistivity model space to a (¢ x p) 2D
DCT compressed parameter space with p < M, and g < M,.
In all the following inversion tests, we assume log-Gaussian
prior distributions for the resistivity, and given the linearity of
the DCT transformation, the assumed a priori mean vectors
and a priori covariance matrices can be analytically projected
onto the DCT space (see Aleardi, 2020b). For example, let C,,
be the prior model covariance in the resistivity space. Then,
the prior covariance in the DCT space (C,) can be obtained as
follows:

C = (Bg)T C,.B?, (%)

In our application, the C,, matrix also codes a 2D sta-
tionary and Gaussian variogram model that expresses the as-
sumed spatial variability of the resistivity values. The correla-
tion function of the resistivity model is expressed, considering,
for example the y-direction, by the following function:

by
T, = exp - (6)
y

where b, is the spatial distance of the autocorrelation func-
tion along the y-direction and a, is the effective range of the
variogram along the y-direction. The model covariance matrix
C,. is computed as the double Kronecker product between the
prior variance, the spatial correlation function t, and the spa-
tial correlation 7, (along the x-direction):

Cw=((var(p) ®T (z:)) ® T (1)), (7)

where var(p) is the variance of the resistivity model, 7, the
correlation function along the y-direction (Equation 6), T in-
dicates the Toeplitz matrix and ® stands for the Kronecker
product. As previously mentioned, there exists a trade-off be-
tween model resolution and the number of coefficients em-
ployed (i.e. the spatial resolution of the recovered model in-
creases as the number of retained DCT coefficients increases).

For this reason, after selecting the prior model for the Bayesian

inversion, the next step involves the estimation of the optimal
number of DCT coefficients needed to approximate the sub-
surface model. To this end, we quantify how the variability of
the resistivity model drawn from the prior changes as the num-
ber of DCT basis functions varies. We compute the variability
as the ratio between the variance of the approximated model
and the variance of the uncompressed model. In our work,
the retained number of coefficients preserves 98 % of the vari-
ability. However, there exists a different strategy to select the
DCT coefficients to retain without fixing the value of g and p
(Mogadhas et al., 2019), but we apply the simplest approach.

Markov chain Monte Carlo inversion and the differential
evolution Markov chain

The final solution of a geophysical Bayesian inversion is the
posterior probability density (PPD) function that expresses the
probability of the model m conditioned upon the observed

data d:

_ p(dlm) p (m)
p(m|d) = @

where p(m|d) is the target density, p(m) and p(d) are the

(8)

prior distributions of model parameters and data, respectively;
p(d|m) is the so-called likelihood function, which under the as-
sumption of uncorrelated and normally distributed data, takes

the following form:

N pre _ »2
! exp |:—0.5(di (ml d) i| 9)

p(dim) =
" 11:1[ J2mwo? 9;

1
where d™ denotes the ith predicted data, d; is the ith ob-

served data and o} represents the variance of the noise as-

sociated with the ith data point. The target distribution can
be numerically sampled by adopting the Metropolis—Hasting
rule (Metropolis et al., 1953; Hastings, 1970), which defines
the probability to move from the current state of the Markov
chain m to the proposed (perturbed) state m’ as follows:
p(m) pdm) g (mlm/)]
x X ,

p(m)  p(dim) g (m’|m)

a = p(m'|m) = min |:1,
(10)

where g is the proposal distribution that defines the
new state m’ as a random deviate from a probability
distribution g(m’|m) conditioned only on the current state
m. The proposal ratio term becomes unity if symmetric
proposals (for instance, Gaussian proposal) are used. If m’ is
accepted m = m’. Otherwise, m is repeated in the chain, and

another model is generated as a random deviate from m. The
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ensemble of sampled models after the burn-in period is used
to numerically compute the statistical properties (e.g. mean,
mode, standard deviations, marginal densities) of the PPD.
Theoretically, for an infinite number of sampled models,
the PPD estimated by an MCMC algorithm does not depend
on the choice of the proposal. However, from a more practi-
cal perspective, the efficiency of MCMC methods increases if
the proposal distribution is a good approximation of the tar-
get distribution. For this reason, the definition of an appro-
priate proposal distribution is crucial for an efficient prob-
abilistic sampling: suboptimal choices of the proposal often
result in a persistent rejection of models or entrapments in
local optima of the PPD (Vrugt, 2016). To partially atten-
uate this issue, the PPD can be numerically evaluated from
the models collected by multiple and independent MCMC
chains. It has been demonstrated that a mixing of the infor-
mation (i.e. sampled models) brought by the different chains,
considerably increases the efficiency and the rate of conver-
gence of MCMC algorithms (Craiu et al., 2005; Vrugt, 2016).
One of the most popular MCMC algorithms that takes ad-
vantage of multiple and interactive chains is the differential
evolution Markov chain (DEMC). It exploits some principles
coming from the genetic algorithms for population evolution,
whereas it uses a Metropolis selection rule (Equation 10) to
decide whether candidate states should replace their parents
or not (Ter Braak, 2006). In DEMC, multiple Markov chains
and multivariate proposals are generated on the fly from the
collection of chains using differential evolution principles. If
the state of a single chain is given by the p-vector m (proposal
model), then at each iteration # — 1 the Q chains in DEMC
Lo
sponds to a Q x p matrix, with each chain as a row. Then

define a population M = m, , mf{l, which corre-

multivariate proposal m,, is defined for each chain:
m’pzm;;l—}—y(mffl—mfﬁJ—i—e,a;ﬁb;ﬁi, (11)

where i is the index of the current chain, y denotes the jump
rate, a and b are integer values drawn from {1,...,7 — 1,
i+ 1,..., O}, and € is drawn from a normal distribution with
a small standard deviation o tailored to the problem at hand:
€ = N(0,0). Each proposal is accepted according to equa-
tion (10). If the proposal m), is accepted, m; = m), , otherwise
m) =m’_,.The optimal y parameter depends on the model di-
mensionality and is usually setto y = 2.38/2p (Vrugt,2016).
Besides, to promote mode-jumping there exists a 10% prob-
ability for y = 1, which is a significant strength of DEMC
compared with more standard MCMC methods (i.e. random
walk Metropolis). Also, note that the DEMC avoid for the
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Figure 2 Flow chart of the procedures for DCT-DEMC inversion.

user the task of the selection of the proposal distribution be-
cause the random deviate from the current model is automat-
ically determined as y (m? | —m’ ) (Equation 11).

If the MCMC inversions run in the reduced DCT space,
the sampled models must be projected back onto the resistiv-
ity space (see equation (3)) just before the forward modelling
phase that gives the predicted data needed to compute the like-
lihood value. The posterior model can be numerically derived
from the ensemble of DCT models collected during the sam-
pling stage, after projection onto the resistivity space. The flow

chart of the procedure is shown in Figure 2.
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Any MCMC algorithm must be run until a stable esti-
mation of the PPD has been attained. The convergence of the
MCMC sampling can be monitored, for example, by compar-
ing the PPDs estimated by each chain in the first and second
halves of the sampling stage. If these PPDs are in good agree-
ment, no further sampling is needed. A more reliable measure
of convergence is given by the potential-scale-reduction-factor
(PSRF) that compares the difference between the ‘within-
chain’ and ‘between-chain’ estimated variances for each model
parameter (for details, see Gelman ef al., 1995; Brooks et al.,
1998). The PSRF decreases to 1 as the number of drawn sam-
ples tends to be infinite. A high PSRF value indicates that the
variance within the walks is small compared to that between
the walks and that a long walk is needed to attain convergence.
Usually, a PSRF lower than 1.2 for a given unknown indicates

that convergence has been achieved for that model parameter.

RESULTS

In this section, we show the results of the differential evolution
Markov chain and discrete cosine transform (DCT-DEMC)
inversion algorithm applied to synthetic and real data. The for-
ward modelling used was extracted from the boundless elec-
trical resistivity tomography open-source software (Giinther
etal.,2006) and it is a 2.5D Finite Elements code implemented
in Python.

Synthetic data inversion

To test the DCT-DEMC algorithm, we created a simple resis-
tivity model composed of a low-resistivity (50 € - m) rectan-
gular block with the dimensions of 13 m x 2.5 m located at a
depth of 1 m hosted in a higher resistivity medium (500 Q - m;
see later in Fig. 5a). We simulate an acquisition using 36 elec-
trodes 1 m spaced with the Wenner configuration; this choice
agrees with the configuration commonly used in some long-
term monitoring systems (e.g. Hojat et al., 2019; Tresoldi
et al.,2019) where the Wenner array is used to guarantee high
signal-to-noise ratio (Dahlin and Zhou, 2004). The dimension
of the model is 35 m x 5.5 m composed of 1 m x 0.5 m cells;
the total number of parameters in the uncompressed, resistiv-
ity domain is 385, whereas 11 data levels with a total number
of 185 apparent resistivity data points were calculated for this
model.

We contaminated the observed synthetic data with Gaus-
sian random noise choosing a standard deviation that corre-
sponds to 10% of the standard deviation of observed syn-
thetic data. An important factor of the MCMC inversion is

to build robust prior distribution based on previous knowl-
edge about subsurface; for simplicity, we assume a Gaussian
prior distribution calculating its moments (mean and standard
deviation) directly from the synthetic model. For example, we
calculate the mean by performing the arithmetic mean of syn-
thetic model resistivity values in the logarithmic domain. The
values of mean and standard deviation are 5.8259 and 0.8637,
respectively (Table 1). The calculated moments are used with
the covariance matrix (Equation 7) to generate prior model
realizations. At this point, we need to set the optimal DCT
coefficients number reducing the dimension of model space
without losing spatial variability. For that reason, we draw
six prior model realizations from the prior distribution, and
for each model we investigate the spatial variability of the re-
constructed model changing the retained number of DCT co-
efficients (Fig. 3).

We observe that the variability of 98% of the considered
prior model realization is expressed considering five discrete
cosine transform (DCT) coefficients along the k. direction and
three DCT coefficients along the k, direction. Therefore, we
retain the first five columns and the first three rows of the
DCT coefficient matrix for a total of 15 coefficients setting g
=3 and p =5 in R,, matrix of equation (3). The compression
reduces the 385-D original resistivity domain, to a 15-D space.

We run 10,000 iterations of the DCT-DEMC algorithm
using four chains (Table 1). Besides, to illustrate the benefit
of DCT reparameterization we compare the predictions
provided by the DCT-DEMC algorithm with those yielded by
a differential evolution Markov chain (DEMC) sampling run-
ning in the unreduced model space. In both cases, the starting
model for each chain is drawn from the prior distribution.

Figure 4(a) shows the negative log-likelihood evolution
for the DEMC inversions running in the compressed and un-
compressed space. As expected, the model compression guar-
antees faster convergence towards the stationary regime that
for the DCT-DEMC is attained in only 1000 iterations, while
the DEMC running in the uncompressed model does not reach
a data misfit values comparable to the DCT-DEMC within the
selected number of iterations. This difference is related to the
curse of dimensionality issue that is effectively mitigated by
the DCT compression.

Figure 4(a) also illustrates that the models sampled in the
first 1000 iterations must be neglected when computing the
PPD to properly burn-in.

To quantitatively assess the convergence of the al-
gorithms, we compare the potential-scale-reduction-factor
(PSRF) computed for three subsurface resistivity cells (Fig. 4b).
We note that less than 500 iterations are needed by the
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Table 1 Parameters of the DCT-DEMC algorithm. The mean and the standard deviation, which are expressed in the logarithmic domain, are

calculated from the synthetic resistivity model.a, and 4, indicate the ranges of Gaussian variogram along x and y directions

Mean Standard Deviation Chains Iterations DCT Coefficients ay ay
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Figure 3 (a)-(f) Computed variability of six prior model realizations as the number of retained DCT coefficients along the ky, and k, direction
changes. Each model variability cell with coordinate (ky, ky) represents the variability of the reconstructed model computed considering the first

k columns and ky rows in the DCT coefficients matrix of equation (3).
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Figure 4 (a) Negative log-likelihood evolution for four chains and the DCT-DEMC (black) and DEMC (blue). (b) PSRF of three resistivity cells
for the DCT-DEMC (black) and DEMC (blue) algorithm. The dotted line denotes the PSRF threshold of convergence.

DCT-DEMC to attain the PSRF threshold value of 1.2 that in-
dicates convergence (Gelman et al., 1995; Brooks et al., 1998),
whereas the standard DEMC algorithm does not reach that
threshold within the selected number of iterations. Figure 5
compares the true model with the posterior mean models es-
timated by the two DEMC inversions. The DCT-DEMC pro-
vides a posterior mean in which the resistivity anomaly of the
true model is correctly recovered. As expected, the quality of

the results decreases towards the boundaries of the model due

to poor illumination. The lower spatial resolution of the esti-
mated model with respect to the true model is related to the
resolution limits of ERT data, to the model compression tech-
nique, and also to the spatial variogram model infused into
the prior assumptions. Significant scattering affects the poste-
rior mean estimated by the DEMC running in the unreduced
space (Fig. 5¢), thus proving that this method fails to converge
towards a stable posterior probability density (PPD) and that

a model compression is needed to attain reliable results.
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Figure 5 (a) Synthetic model. (b) DCT-DEMC estimated model. (c¢) Estimated model without DCT reparameterization. (d) Standard deviation

associated with the DCT-DEMC results.

The analysis of the posterior standard deviation associ-
ated with the DCT-DEMC inversion (Fig. 5d) indicates an in-
crease of uncertainties beyond 4 m depth at the lateral edges
of the model, in agreement with the expected subsurface il-
lumination. In other terms, the posterior standard deviation
indicates that the cells located at lateral edges and below 4
m are not informed by the data and the associated resistivity
values cannot be recovered with reasonable accuracy. The
lowest values of the standard deviation are located within
the central anomaly and in the shallowest part of the model
(Fig. 5d). Figure 6 shows examples of posterior marginal dis-
tribution for six cells in the resistivity domain.

Figure 7 presents some examples of the resistivity model
drawn from the estimated PPD. In all cases, we observe that
the central low-resistivity anomaly is well recovered as well
as the resistivity values in the shallowest part of the model.
In addition, the difference between the posterior realization
increases at the lateral edge and the bottom of the model. The
posterior realizations can aid the interpretation phase because
they fully capture the uncertainty in the estimated resistivity
model or, in other terms, they represent possible subsurface
scenarios in accordance with the acquired data.

Field data inversion

The increasing need to develop methods capable of giving
early warning alarms for flood risks has resulted in the de-
velopment of permanent monitoring systems that assess the
structural health conditions of levees. The electrical resistiv-

ity tomography (ERT) technique, used in permanent moni-

toring systems, is appropriate to identify subsurface satura-
tion changes, compositional changes and weak zones (Tresoldi
et al., 2019).

The field data that we invert in this paper was acquired
along a critical section of the river levee in Colorno, Italy. The
acquisition profile is composed of 48 plate electrodes using
the Wenner array with the spacing of 2 m. The number of
apparent resistivity points is 360, whereas the subsurface is
discretized with rectangular cells 2 m long and 1 m thick with
a maximum depth of 15 m; in this way, the total number of
unknowns is 705. Preliminary knowledge and available infor-
mation about the study area (Hojat et al., 2019) helped us in
setting the prior information; the process to build the prior
realizations is schematized in Figure 2. We again assume a
stationary log-Gaussian prior, whereas a Gaussian variogram
is used to impose the lateral continuity to the prior realiza-
tions. The available previous information suggests the pres-
ence of the main clay body hosting gravels at shallow depth
(above 4 m in depth). The data have a high signal-to-noise ra-
tio; consequently, we perform only a mobile average filtering
which attenuates the high-frequency content of pseudosection
profiles.

As in the synthetic case, the optimal number of DCT coef-
ficients to retain is evaluated exploring the variability of some
resistivity models drawn from the prior distribution.

According to the model variability maps of Figure 8, if
we consider 15 DCT coefficients along k, and 10 DCT coeffi-
cients along k,, this explains about 98% of the variability of
the prior realizations. Therefore, the model space dimension
is reduced from 705 to 150.
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Table 2 Parameters of the DCT-DEMC algorithm. The mean and standard deviation, which are expressed in the logarithmic domain, are
calculated from a model inverted with the gradient-based algorithm. a, and 4, indicate the ranges of Gaussian variogram along x and y diections

Mean Standard Deviation Chains

Iteration

DCT Coefficients ay ay

3.4585 0.4223 20

50,000

150 3m 2m

We run the DCT-DEMC for 50,000 iterations and
employing 20 independent chains that start from a model
randomly drawn from the prior. A resume of the inversion
parameters is given in Table 2. By observing the evolution
of the negative log-likelihood shown in Figure 9(a), the first
15,000 iterations can be considered the burn-in period, while
the successively sampled models have been used to numer-
ically compute the posterior uncertainties. Again, the PSRF
is used to assess the convergence of the sampling towards a
stable PPD. Figure 9(b) shows examples of PSRF evolution

for 10 model parameters in the DCT space, and it emerges
that 40,000 iterations are needed to attain convergence.

To validate the DCT-DEMC outcomes, we compare the
mean model estimated by the implemented approach with
the prediction of a standard gradient-based inversion that
implements the Levenberg-Marquardt (LM) method. For
the LM inversion, we choose a starting model with constant
resistivity calculated from the arithmetic mean of observed
data. The similarity of the results provided by the determinis-
tic and probabilistic approach demonstrates the applicability
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of the proposed approach (Fig. 10a, b), while the major
differences are localized at the lateral and bottom part of the
model where the data illumination is poor. Both algorithms
predict a high-resistivity body around 2 m depth (associated
with sand/gravel) hosted in a low-resistivity medium (clay).
Differently, from the LM approach, the DCT-DEMC inver-
sion also provides hints about the uncertainty affecting the
recovered model. The posterior standard deviation is small in
the shallowest part and increases moving towards the deeper
and lateral parts of the model, according to the expected
sensitivity of the data to the subsurface resistivity values.
Figure 11 presents eight statistical realizations drawn from the
estimated posterior model. As for the synthetic inversion test,
these realizations fully capture the uncertainty in the estimated
resistivity model shown in Figure 10(b) and represent possible
subsurface scenarios. Note that all the posterior realizations

univocally predict a high-resistivity medium above 4 m
depth.

Figure 12 shows a comparison between the observed data
and the apparent resistivity sections computed on the mean
model estimated by the DCT-DEMC and on the final solu-
tion of the LM approach. The two algorithms provide similar
data matching although the data generated by the DEMC so-
lution seems to be characterized by a slightly higher mismatch
(rms = 5.2%) with respect to the observed pseudosection. This
increased data misfit is related to the compression technique
used to reduce the number of unknown parameters and to the
consequent loss of model and data resolution.

To further investigate this higher misfit, we plot the ob-
served data with the corresponding error bar (Figure 13) and
the predicted data by LM and by the DCT-DEMC algorithm.
The standard deviation has been extracted from the data
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covariance matrix employed for data likelihood evaluation
(Equation 9). From this analysis emerges that both data as-
sociated with the gradient-based solution and posterior DCT-
DEMC mean lie within the uncertainty range as depicted by
standard deviation bars, thus proving that both methods re-
produce the observed data equally well.

In Figure 14, we display examples of marginal PPD func-
tions for six DCT coefficients. For the low-order coefficients,
the posterior is different from the prior (calculated from
Equation 3), thereby indicating that the low-frequency re-
sistivity variation is well constrained by the data (Fig. 14a—
c). On the contrary, the high-order coefficients associated
with high-frequency resistivity variations are less resolved and
this results in marginal posterior very similar to the prior
(Figure 14d-f).

Figures 15 presents some examples of marginal prior and

posterior distributions after projection in the resistivity do-

main. As expected, the model uncertainties increase moving
from the shallowest (Fig. 15b-d) to the deeper part of the
model (Fig. 15e—g). The good agreement between the LM pre-
dictions and the posterior mean estimated by the DCT-DEMC
inversion again confirms the reliability of the proposed inver-
sion approach.

Finally, we run two DCT-DEMC inversion tests: in the
former, we reduce the number of retained coefficients to 100
(9 = 10, and p = 10 in Equation 4), while the latter consid-
ers 200 coefficients in the compressed domain (g = 10, and
p = 20) to explore the improvement of the spatial resolution
in that direction. In both cases, we employ the same number
of iterations (50,000), and the number of chains (20) of the
previous inversion test. The inversions running with 150 and
200 unknowns attain similar negative log-likelihood values,
while the 100-coefficient inversion results in a decreased data
matching (Figure 16a).
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The three inversions provide comparable posterior mean
models (Fig. 16b—d) in which the shallow anomalies are well
recovered, and, as expected, the spatial resolution increases
as the number of retained coefficients increases. However,
it can be noticed that the mean model estimated by the
200-coefficient inversion is very similar to the model esti-
mated when 150 coefficients are employed. The predicted data
computed on the mean models estimated by the three inver-
sions are represented in Figures 16(e—g). Again, we note that
the 100-coefficient inversion results in a higher data misfit
value (rms data error of 6.2%) than those attained by the other
two inversions (rms values of about 5%). For comparison, the
data misfit for the LM model is 2.3%.

Figure 17 shows an example of PSRF evolution for dif-
ferent model parameters associated with the 150- and 200-

coefficient inversion. This demonstrates that the number of it-
erations needed to attain stable PPD estimations significantly
increases as the dimension of the model parameter increases.
Therefore, this analysis together with the comparison shown
in Figure 16 confirms that the inversion carried out with
150 coefficients constitutes the optimal compromise between
model resolution, data fitting and the computational cost of
the sampling procedure.

DISCUSSION

This work was aimed at casting the electrical resistivity to-
mography (ERT) inversion into a solid probabilistic frame-
work for accurate uncertainty assessments. However, in ERT
inversion the number of parameters is large, the problem is
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non-linear, and, consequently, the sampling of the posterior
probability density (PPD) function is computationally pro-
hibitive. For this reason, we combined an improved Markov
chain Monte Carlo algorithm (the differential evolution
Markov chain [DEMC]) with a discrete cosine transform
(DCT) compression of the model space.

The choice of the number of DCT coefficients to com-
press the model space should always constitute a compromise
between the desired spatial resolution and the dimensionality
reduction of the parameter space. However, such a threshold

level can be conveniently set by analysing how the number

of retained coefficients is able to reconstruct the realization
drown from the prior distribution. Imposing the error in prior
model reconstruction to 98% allows in our examples to ob-
tain synthetic data computed from the inverted model within
the error bounds of the observed (synthetic or real) data.
The parallel tempering strategy (Dosso et al.,2012) could
be used to improve the mixing of the different DEMC chains,
and this approach has proven to be particularly useful when
sampling multimodal posteriors with modes separated by
low probability regions. However, our experiments showed

unimodal marginal posterior and for this reason we decided
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not to include the parallel tempering within our sampling
approach.

In this paper, to simplify the description we limit our at-
tention to analytical prior, but another considerable benefit
of the implemented approach is the possibility to derive ac-
curate uncertainty appraisal for whatever type of prior as-
sumption is desired (i.e. either parametric or non-parametric
distributions).

The DCT is defined for multidimensional signals and for
this reason the DCT-DEMC inversion can be easily extended
to three-dimensional (3D) models. Obviously, in this case, fast
forward modelling routines are needed to make the proba-
bilistic sampling computationally affordable.

Indeed, the main computational requirement of the pro-
posed approach lies in the need to run several forward model
evaluations until a stable PPD is reached. In terms of com-
putational cost, the DCT-DEMC code runs in 57 min for
the synthetic case and in about 35 h for the real data in-

version, considering a Python implementation running on a

computer equipped with Intel i7-9700 CPU at 3.60 GHz
32 Gb RAM.

The boundless electrical resistivity tomography forward
modelling code uses the CHOLMOD package (Davis, 2006)
that aims to minimize the computer storage required by the
sparse Cholesky method (George and Liu, 1981) to calculate
the potentials. The CHOLMOD code is very efficient for
large meshes such as for 3D finite-element models. However,
it uses a more complex data structure than the simpler band
and envelope methods (George and Liu, 1981) that introduces
some computational overhead. The two-dimensional finite-
element mesh used for surveys with electrodes on the ground
surface usually involves smaller meshes where the number of
nodes in the horizontal direction is much greater than in the
vertical direction. Initial research indicates that code (using
the simpler sparse Cholesky methods) optimized for such
‘long and thin’ meshes can be an order of magnitude faster.

As an alternative, the DCT-DEMC inversion can
be started from a preliminary estimate of the subsurface
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resistivity models as provided, for example, by a standard
gradient—based approach. This significantly reduces the length
of the burn-in phase, thereby reducing the computational cost
of the sampling procedure.

The proposed inversion approach is not aimed at re-
placing standard gradient-based inversion algorithms, but
it could be used to attain accurate uncertainty estimations
with a reasonable computational workload. The estimated
PPD can aid the interpretation phase because gives a hint on

the uncertainties affecting the recovered subsurface resistivity
model.

CONCLUSIONS

In this paper, we proposed an alternative approach to
the classical gradient-based electrical resistivity tomogra-
phy inversion, that makes use of the Markov chain Monte
Carlo probabilistic framework embedded in the differential
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evolution Markov chain sampling. The main advantage of
this procedure consists of the description of the solution as
a posterior probability density function that allows the un-
certainty appraisal of the estimated model parameters. To re-
duce the computational burden, the model is re-parameterized
in terms of the coefficients of the discrete cosine transform
(DCT), thereby reducing the number of unknowns to a level
that could be easily managed computationally. The DCT repa-
rameterization also acts as a model regularization strategy that
preserves reasonable spatial continuity in the recovered solu-
tion.

Synthetic and field inversions demonstrated that the im-
plemented approach provides reliable predictions in agree-
ment with the outcomes of a gradient-based inversion. How-
ever, the outstanding benefit of the differential evolution
Markov chain and discrete cosine transform algorithm is the
possibility to accurately assess the uncertainties affecting the
recovered solution. We deem that the possibility to estimate
model uncertainties is worth the additional computational ef-

fort required.
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