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Abstract. We classify log-canonical pairs (X,∆) of dimension two with KX+∆
an ample Cartier divisor with (KX + ∆)2 = 1, giving some applications to stable
surfaces with K2 = 1. A rough classification is also given in the case ∆ = 0.
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1. Introduction

The study of stable curves and, more generally, stable pointed curves is by now
a classical subject. Stable surfaces were introduced by Kollár and Shepherd-Barron
in [KSB88] and it was consequently realized (see, for instance, [Ale06, Kol12, Kol14]
and references therein) that this definition can be extended to higher-dimensional
varieties and pairs. So the study of (semi-)log-canonical pairs became an important
topic in the theory of singular higher-dimensional varieties.

Here we consider two-dimensional log-canonical pairs in which the log-canonical
divisor is Cartier and has self-intersection equal to 1, and we give some applications
to Gorenstein stable surfaces.

First we study the case with non-empty boundary:

Theorem 1.1 — Let (X,∆) be a log-canonical pair of dimension 2 with ∆ > 0,
KX + ∆ Cartier and ample and (KX + ∆)2 = 1.

Then (X,∆) belongs to one of the types (P ), (dP ), (E+) or (E−) described in
List 2.2.

In particular, Theorem 1.1 implies that X is either the projective plane, a del
Pezzo surface of degree 1, the symmetric product S2E of an elliptic curve, or a
projective bundle P(OE ⊕ OE(x)) over an elliptic curve with the section of square
−1 contracted. It came rather as a suprise to us that the list is so short and that in
each case the underlying surface itself is Gorenstein.

The case in which ∆ = 0 cannot be described so precisely, since it includes, for
instance, all smooth surfaces of general type with K2 = 1; however in Section 4 we
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give a rough classification, according to the Kodaira dimension of a smooth model
of X (see Theorem 4.1).

Although log-canonical pairs are interesting in their own right, our main moti-
vation for proving the above results is that, by a result of Kollár, a non-normal
Gorenstein stable surface gives rise to a pair as in Theorem 1.1 via normalisation
(see Corollary 3.4). In Section 3, we explain how the above pairs can be used to
construct stable surfaces and which pairs can occur as normalisations of stable sur-
faces for given invariants K2 and χ. In particular, we show that χ(X) ≥ 0 for a
Gorenstein stable surface X with K2

X = 1 improving upon results in [LR13].
We will study the geometry and moduli of Gorenstein stable surfaces with K2 = 1

more in detail in a subsequent paper, building on the classification results proven
here.
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Notation and conventions. We work over the complex numbers; all varieties are
assumed to be projective and irreducible unless otherwise stated. We do not distin-
guish between Cartier divisors and invertible sheaves in our notation. For a variety
X we denote by χ(X) the holomorphic Euler-characteristic and by KX a canonical
divisor.

2. Classification of pairs

Let (X,∆) be a log-canonical (lc) pair of dimension two (cf. [KM98, Def. 2.34]
for the definition).

Definition 2.1 — We call (X,∆) stable if KX + ∆ is ample and Gorenstein if
KX + ∆ is Cartier.

The aim of this section is the classification of Gorenstein stable lc pairs with
(KX + ∆)2 = 1 and ∆ > 0. We start by listing and describing quickly the cases that
occur in our classification.

List 2.2
(P ) X = P2 and ∆ is a nodal quartic. Here pa(∆) = 3 and KX + ∆ = OP2(1).

(dP ) X is a (possibly singular) Del Pezzo surface of degree 1, namely X has at
most canonical singularities, −KX is ample and K2

X = 1. The curve ∆
belongs to the system | − 2KX |, hence KX + ∆ = −KX and pa(∆) = 2.

(E−) Let E be an elliptic curve and let a : X̃ → E be a geometrically ruled
surface that contains an irreducible section C0 with C2

0 = −1. Namely,
X̃ = P(OE ⊕OE(−x)), where x ∈ E is a point and C0 is the only curve in
the system |OX(1)|. Set F = a−1(x): the normal surface X is obtained from
X̃ by contracting C0 to an elliptic Gorenstein singularity of degree 1 and ∆
is the image of a curve ∆0 ∈ |2(C0 + F )| disjoint from C0, so pa(∆) = 2.
The line bundle KX + ∆ pulls back to C0 + F on X̃.
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(E+) X = S2E, where E is an elliptic curve. Let a : X → E be the Albanese map,
which is induced by the addition map E×E → E, denote by F the class of
a fiber of a and by C0 the image in X of the curve {0}×E+E×{0}, where
0 ∈ E is the origin, so that C0F = C2

0 = 1. Then ∆ is a divisor numerically
equivalent to 3C0 − F , pa(∆) = 2 and KX + ∆ is numerically equivalent to
C0.

An equivalent description of X is as follows (cf. [CC93, §1]). Denote by E
the only indecomposable extension of the form 0→ OE → E → OE(0)→ 0
and set X = P(E): then C0 is the only effective divisor in |OX(1)|.

For completeness, we give in Table 1 the numerical invariants of the four possible
cases. The rest of the section is devoted to proving Theorem 1.1. We start with

Table 1. Invariants of (X,∆)

Case χ(X) q(X) pa(∆) h0(KX + ∆)

(P ) 1 0 3 3
(dP ) 1 0 2 2
(E−) 1 0 2 2
(E+) 0 1 2 1

some general remarks:

Lemma 2.3 — Let X be a normal surface and let L be an ample line bundle of X
such that L2 = 1. Then:

(i) every curve C ∈ |L| is irreducible and h0(L) ≤ 3
(ii) h0(L) = 3 if and only if X = P2 and L = OP2(1)
(iii) if h0(L) = 2, then the system |L| has one simple base point P that is smooth

for X.

Proof. (i), (ii) We have LC = 1, hence C is irreducible, since L is ample. Denote
by ν : C̃ → C the normalization: since degL|C = 1, one has h0(ν∗L) ≤ 2, with
equality holding iff C̃ is a smooth rational curve. Since h0(L|C) ≤ h0(ν∗L), the
usual restriction sequence

0→ OX → OX(C) = L→ L|C → 0

gives h0(L) ≤ 3. Moreover, if h0(L) = 3 then h0(L|C) = h0(ν∗L) = 2, C is a smooth
rational curve and the system |L| is base point free. The morphism X → P2 defined
by |L| has degree 1 and is finite, since L is ample, so it is an isomorphism.

(iii) Follows by (i) and by the fact that L2 = 1. �

Lemma 2.4 — Let Y be a smooth surface, let D > 0 be a nef and big divisor of Y
and let Dred be the underlying reduced divisor. Then:

(i) pa(Dred) ≤ pa(D)
(ii) the natural map Pic0(Y )→ Pic0(Dred) is injective.

Proof. (i) One has h1(KY +D) = 0 by Kawamata-Viehweg’s vanishing, thus taking
cohomology in the usual restriction sequence 0 → KY → KY + D → KD → 0 one
obtains

pa(D) = χ(KD) + 1 = χ(KY +D)− χ(KY ) + 1 = h0(KY +D)− χ(KY ) + 1
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Applying the same argument to Dred one obtains instead the inequality:

pa(Dred) ≤ h0(KY +Dred)− χ(KY ) + 1,

since h2(KY +Dred) = h0(−Dred) = 0. Then the claim follows since h0(KY +Dred) ≤
h0(KY +D).

(ii) This is a slight generalization of [CFML97, Prop. 1.6] and can be proven
exactly by the same argument.

�

Next we fix the notation and the assumptions that we keep throughout the rest
of the section: (X,∆) is an lc pair satisfying the assumptions of Theorem 1.1 and
ε : X̃ → X is the minimal desingularization. We set L := KX + ∆, and L̃ := ε∗L; L̃
is a nef and big divisor with L̃2 = 1 and h0(L) = h0(L̃). We define the divisor ∆̃ by
the equality L̃ = K

X̃
+ ∆̃ and by requiring that ε∗∆̃ = ∆.

Lemma 2.5 — In the above set-up:
(i) K

X̃
L̃ < 0, h2(L̃) = 0

(ii) X̃ is ruled.

Proof. (i) Using the projection formula, we compute

L̃∆̃ = ε∗L(ε−1)∗∆ = L∆ = (KX + ∆)∆,

so L̃∆̃ is a positive number and it is even, by adjunction. Thus

L̃K
X̃

= L̃2 − L̃∆̃ = 1− L̃∆̃ < 0.

By Serre duality, we have h2(L̃) = h0(−∆̃) = 0, since L̃∆̃ = L∆ > 0 and L̃ is nef.
(ii) Since L̃ is nef, the condition K

X̃
L̃ < 0 implies that κ(X̃) = −∞. �

Next we look at the adjoint divisor K
X̃

+ L̃:

Lemma 2.6 — Assume that h0(L̃) ≤ 2; then K
X̃
L̃ = −1, and there are the following

two possibilities:
(R) h0(K

X̃
+ L̃) = χ(X̃) = 1 and h0(L̃) = 2,

(E) h0(K
X̃

+ L̃) = χ(X̃) = 0 and h0(L̃) = 2 or 1.

Proof. Since L̃ is nef and big, Riemann-Roch and Kawamata-Viehweg vanishing give:

(1) h0(K
X̃

+ L̃) = χ(X̃) +
L̃2 +K

X̃
L̃

2
= χ(X̃) +

1 +K
X̃
L̃

2
≤ χ(X̃),

where the last inequality follows by Lemma 2.5. Since X̃ is ruled by Lemma 2.5,
we have χ(X̃) ≤ 1, so h0(K

X̃
+ L̃) ≤ 1 and if equality holds, then χ(X̃) = 1 and

L̃K
X̃

= −1.
Assume h0(K

X̃
+ L̃) = 0. Then equation (1) implies that either χ(X̃) = 1,

K
X̃
L̃ = −3 or χ(X̃) = 0 and K

X̃
L̃ = −1. In the first case, using Lemma 2.5 and

Riemann-Roch we obtain h0(L̃) ≥ χ(L̃) = 3, against the assumptions. In the second
case, since K

X̃
L̃ = −1, the same argument gives h0(L̃) ≥ χ(L̃) = χ(X̃) + 1 which

gives the listed cases. �
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Case (R) of the above Lemma gives case (dP ) in our classification:

Lemma 2.7 — If (X,∆) is as in case (R) of Lemma 2.6 then it is of type (dP ).

Proof. By Lemma 2.3, the base locus of the pencil |L̃| = ε∗|L| is a simple point P̃
which is the preimage of a smooth point P ∈ X; by adjunction the general C ∈ |L̃| is a
smooth elliptic curve. Blowing up the point P we get an elliptic fibration p : X̂ → P1

with a section Γ.
Denote by Z the only effective divisor in |K

X̃
+ L̃|. Since L̃Z = 0, Z does not

contain the point P̃ and it is contained in a finite union of curves of |L̃|, hence it can
be identified with a divisor Z ′ of X̂ that is contained in a union of fibers of p and
does not intersect the section Γ. By the Kodaira classification of elliptic fibers, Z ′ is
either 0 or it is supported on a set R1, . . . Rk of −2-curves; the same is true for Z,
since Z ′ does not meet Γ. In particular, we have K

X̃
Z = 0, hence

Z2 = ZK
X̃

+ ZL̃ = 0,

and therefore Z = 0 by the Index Theorem. So L̃ = −K
X̃
, X is a the anti-canonical

model of X̃ and D̃ ∈ | − 2K
X̃
|. �

We now turn to studying case (E) of Lemma 2.6. This gives rise to the cases (E−)

and (E+) in our classification, depending on the value of h0(L̃).

Lemma 2.8 — If (X,∆) is as in case (E) of Lemma 2.6, then there exists an elliptic
curve E and a vector bundle E on E of rank 2 and degree 1 such that X̃ = P(E) and
L̃ = O

X̃
(1).

Proof. By Lemma 2.5 and Lemma 2.6, the surface X̃ is ruled and q(X̃) = 1; we
denote by a : X̃ → E the Albanese map and by F a fiber of a.
Step 1: one has L̃F = 1

The linear system |L̃| is non-empty by Lemma 2.6. Fix C ∈ |L̃| and denote by Cred
the underlying reduced divisor. One has pa(C) = 1 by adjunction and pa(Cred) ≤ 1
by Lemma 2.4. The natural map Pic0(E) = Pic0(X) → Pic0(Cred) is an inclusion
by Lemma 2.4. Thus pa(Cred) = 1 and Pic0(E) → Pic0(Cred) is an isomorphism.
By [BLR90, Ch. 9, Cor. 12], Cred = C0 + Z, where C0 is an elliptic curve that is
mapped isomorphically onto E by a, Z is a sum of smooth rational curves and the
dual graph of Cred is a tree. We write C = bC0 + Z ′, where b > 0 is an integer and
Z ′ has the same support as Z. If b = 1, then L̃F = 1 as claimed.

So assume by contradiction that b > 1: in this case 1 = L̃2 ≥ bL̃C0 gives L̃C0 = 0.
Then C2

0 < 0, C0 is contracted by L̃ to an elliptic singularity and it does not intersect
any other ε-exceptional curve. Since L̃ is nef and L̃C = L̃2 = 1, there is exactly one
component Γ of C that has nonzero intersection with L̃, and Γ appears in C with
multiplicity 1. In particular, Z ′−Γ is contracted by ε and therefore C0(Z ′−Γ) = 0.
We have C0Γ ≤ 1, since Γ is contained in a fiber of a. Hence we have

0 = C0L̃ = C0(bC0 + Γ + (Z ′ − Γ)) = bC2
0 + C0Γ ≤ 1− b < 0,

a contradiction.
Step 2: conclusion of the proof
We claim that a : X̃ → E is a P1-bundle. Indeed, assume by contradiction that X̃
contains an irreducible (−1)-curve Γ: then L̃Γ > 0, because X̃ → X is the minimal
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resolution and L̃ is the pull back of an ample line bundle on X. On the other hand
L̃Γ ≤ L̃F = 1, since Γ is contained in a fiber F of a. Hence L̃Γ = 1. But then we
have L̃(F − Γ) = 0 and K

X̃
(F − Γ) = −1, namely F − Γ contains a (−1)-curve Γ1

with L̃Γ1 = 0, a contradiction.
Finally, we set E = a∗L̃. �

Lemma 2.9 — Assume we are in case (E) of Lemma 2.6.
(i) If h0(L̃) = 2, then (X,∆) is of type (E−).
(ii) If h0(L̃) = 1, then (X,∆) is of type (E+).

Proof. By Lemma 2.8 there exists an elliptic curve E and a vector bundle E on E
of rank 2 and degree 1 such that X̃ = P(E) and L̃ = O

X̃
(1). Denote by x ∈ E the

point such that det E = OE(x). We will freely use the general theory of P1-bundles
and especially the classification of such bundles over an elliptic curve, see [Har77,
Ch. V.2].

Assume that E is decomposable, i.e., that there are line bundles A and B on E such
that E = A⊕B. Then we have degA+ degB = deg E = 1 and 1 ≤ h0(A) +h0(B) =

h0(L̃) ≤ 2. So there are three possibilities:
(a) degA = −1, degB = 2;
(b) degA = 0, A 6= OE and degB = 1;
(c) A = OE and B = OE(x).

We denote by C0 the section of X̃ corresponding to the surjection E � A. In case
(a), the system |L̃| = |O

X̃
(1)| has dimension 1 and has C0 as fixed part, contradicting

Lemma 2.3. So this case does not occur. In case (b), we have L̃C0 = 0, but L̃|C0 is
non-trivial: this contradicts the assumption that L̃ is the pull-back of an ample line
bundle via the birational map ε : X̃ → X. So (c) is the only possibility. In this case
C0 is contracted to an elliptic singularity of degree 1 by ε and C0 is the only curve
contracted by ε since NS(X̃) has rank 2. We have ∆̃ = L̃−K

X̃
= 3C0 + 2F . Since

K
X̃

= ε∗KX − C0 and ∆ does not go through the elliptic singularity of X because
the pair (X,∆) is lc, we obtain ε∗∆ = ∆̃−C0 = 2C0 +2F and (X,∆) is a log surface
of type (E−).

If E is indecomposable, then E is the only non-trivial extension 0 → OE → E →
OE(x) → 0 and h0(L̃) = h0(E) = 1. Up to a translation in E, we may assume that
x is the origin 0 ∈ E. Hence X̃ = S2E and C = C0 = L̃ is the image of the curve
{0}×E+E×{0} via the quotient map E×E → S2E (cf. description of case (E+)

at the beginning of the section). Since L̃ is ample, we have X̃ = X, L̃ = L and
∆̃ = ∆ = L − KX is numerically equivalent to 3C0 − F . So the pair (X,∆) is of
type (E+). �

Finally, we summarize all the above results:

Proof of Theorem 1.1. If h0(L̃) ≥ 3, then by Lemma 2.3 we have X = P2 and L =
OP2(1), and thus (X,∆) is of type (P ).

So we may assume h0(L̃) ≤ 2, which by Lemma 2.6 leaves us with the cases (R)

and (E), according to the value of χ(X̃). The first case gives type (dP ) by Lemma
2.7 while the second splits up into the cases (E+) and (E−) by Lemma 2.9. This
concludes the proof of the Theorem. �
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3. Applications to stable surfaces

In this section we explore some consequences of the classification of pairs in The-
orem 1.1 for the study of stable surfaces with K2 = 1.

3.1. Definitions and Kollár’s gluing construction. Our main reference for this
section is [Kol13, Sect. 5.1–5.3].

3.1.1. Stable surfaces. Let X be a demi-normal surface, that is, X satisfies S2 and
at each point of codimension one X is either regular or has an ordinary double
point. We denote by π : X̄ → X the normalisation of X. Contrary to our previous
assumptions X is not assumed irreducible, in particular, X̄ is possibly disconnected.
The conductor ideal H omOX (π∗OX̄ ,OX) is an ideal sheaf in both OX and OX̄
and as such defines subschemes D ⊂ X and D̄ ⊂ X̄, both reduced and pure of
codimension 1; we often refer to D as the non-normal locus of X.

Definition 3.1 — The demi-normal surface X is said to have semi-log-canonical
(slc) singularities if it satisfies the following conditions:

(i) The canonical divisor KX is Q-Cartier.
(ii) The pair (X̄, D̄) has log-canonical (lc) singularities.

It is called a stable surface if in addition KX is ample. In that case we define the
geometric genus of X to be pg(X) = h0(X,KX) = h2(X,OX) and the irregularity
as q(X) = h1(X,KX) = h1(X,OX). A Gorenstein stable surface is a stable surface
such that KX is a Cartier divisor.

The importance of these surfaces lies in the fact that they generalise stable curves:
there is a projective moduli space of stable surfaces which compactifies the Gieseker
moduli space of canonical model of surfaces of general type [Kol14].

3.1.2. Kollár’s gluing principle. Let X be a demi-normal surface as above. Since X
has at most double points in codimension one, the map π : D̄ → D on the conductor
divisors is generically a double cover and thus induces a rational involution on D̄.
Normalising the conductor loci we get an honest involution τ : D̄ν → D̄ν such that
Dν = D̄ν/τ and such that DiffD̄ν (0) is τ -invariant (for the definition of the different
see for example [Kol13, 5.11]).

Theorem 3.2 ([Kol13, Thm. 5.13]) — Associating to a stable surface X the triple
(X̄, D̄, τ : D̄ν → D̄ν) induces a one-to-one correspondence

{
stable

surfaces

}
↔

(X̄, D̄, τ)

∣∣∣∣∣∣∣
(X̄, D̄) log-canonical pair with
KX̄ + D̄ ample,
τ : D̄ν → D̄ν involution s.th.
DiffD̄ν (0) is τ -invariant.

 .

Addendum: In the above correspondence the surface X is Gorenstein if and only
if KX̄ + D̄ is Cartier and τ induces a fixed-point free involution on the preimages of
the nodes of D̄.

An important consequence, which allows to understand the geometry of stable
surfaces from the normalisation, is that

(2)
X̄ D̄ D̄ν

X D Dν

π

ῑ

π

ν̄

/τ

ι ν
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is a pushout diagram.

Proof of the Addendum in Theorem 3.2. Clearly, if X is Gorenstein then KX̄ + D̄ =
π∗KX is an ample Cartier divisor. The converse follows from the classification of
slc surface singularities in terms of the minimal semi-resolution [KSB88, Prop. 4.27].
More precisely, in the Gorenstein case the only singular points of X̄ along D̄ are
contained in nodes of D̄ and the different DiffD̄ν (0) is the sum of preimages of the
nodes, each with coefficient 1. Thus the τ -invariance of the different gives the action
on the preimages of the nodes of D̄. Let P ∈ X be the image of a node of D̄.
If τ fixes a point in the preimage of P in D̄ν then the exceptional divisor over P
in the minimal semi-resolution cannot be a cycle of rational curves. Therefore, by
classification the non-normal point P is a quotient of a degenerate cusp and it is not
Gorenstein. This proves the remaining claim. �

Computing the main invariants of a stable surface from its normalisation is not
difficult, see for example [LR13, Prop. 2.5].

Proposition 3.3 — Let X be a stable surface with normalisation (X̄, D̄). Then
K2
X = (KX̄ + D̄)2 and χ(X) = χ(X̄) + χ(D)− χ(D̄).

Note in particular that, by Nakai-Moishezon, a Gorenstein stable surface with
K2
X = 1 is irreducible. Summing up, we now state our main motivation for the

classification in Theorem 1.1 explicitly:

Corollary 3.4 — Let X be a Gorenstein stable surface with K2
X = 1 and let

(X̄, D̄, τ) be the corresponding triple as above. Then (X̄, D̄) is of one of the types
classified in Theorem 1.1.

3.2. Numerology. In this section we feed the classification from Section 2 into
Kollár’s gluing construction. The result is a precise list of the possible normalisations
of a non-normal Gorenstein stable surface with K2

X = 1. We also give the possible
values of χ(X) for each type, showing in particular that there are no Gorenstein
stable surfaces with K2

X = 1 and χ(X) < 0.
We start with a preliminary lemma. In order to state it, we keep the notation

from Section 3.1.2 and introduce some additional numerical invariants of a stable
surface X:

• µ1, the number of degenerate cusps
• µ2, the number of Z/2Z-quotients of degenerate cusps of X
• ρ, the number of ramification points of the map D̄ν → Dν

• µ̄ the number of nodes of D̄

Lemma 3.5 — Let X be a non-normal stable surface. With the above notation:
(i) χ(D) = 1

2

(
χ(D̄)− µ̄

)
+ ρ

4 + µ1.
(ii) If KX̄ + D̄ is Cartier then χ(D) ≥ 2χ(D̄) + ρ

4 + µ1.
(iii) If X is Gorenstein, then χ(D) ≥ 2χ(D̄) + 1.

In addition, if equality holds in (ii) or (iii), then D̄ is a union of rational curves
and has −3χ(D̄) nodes.

We remark that there exist examples of non-Gorenstein stable surfaces for which the
inequalities (ii) and (iii) of Lemma 3.5 fail.

Proof. The curve D̄ has nodes by the classification of lc pairs. Recall that Diagram
(2) is a pushout diagram in the category of schemes. In particular, the points of
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D correspond to equivalence classes of points on D̄ν with respect to the relation
generated by x ∼ y if ν̄(x) = ν̄(y) or τ(x) = y. Note that if an equivalence class
contains the preimage of a node of D̄ then either it contains no fixed point of τ and
the image point is a degenerate cusp or it contains exactly two fixed points of τ
and the image is a Z/2Z-quotient of a degenerate cusp. (Compare the discussion in
[LR12, Sect. 4.2] and [KSB88, §4].)

Thus of the 2µ̄ preimages of nodes of D̄ in D̄ν exactly 2µ2 are fixed by τ and
there are exactly µ̄ + µ2 points in Dν that map to images of nodes in D. By the
normalisation sequences we have

χ(D̄ν) = χ(D̄) + µ̄,

χ(D) = χ(Dν)− ((µ̄+ µ2)− (µ1 + µ2)) = χ(Dν) + µ1 − µ̄.

Combining this with the Hurwitz formula for D̄ν → Dν , which gives

χ(Dν) =
1

2
χ(D̄ν) +

ρ

4
,

we get

χ(D) =
1

2
χ(D̄ν) +

ρ

4
+ µ1 − µ̄ =

1

2

(
χ(D̄)− µ̄

)
+
ρ

4
+ µ1

as claimed in (i).
Now assume in addition that KX̄ + D̄ is Cartier. Then, by adjunction (see e.g.

[Kol13, Sect. 4.1]), KD̄ = (KX̄ + D̄)|D̄ is ample, so D̄ is a stable curve. Therefore,
every rational component of the normalisation has at least three marked points
mapping to nodes in D̄ and thus χ(D̄ν) ≤ 2µ̄/3 which implies −µ̄ ≥ 3χ(D̄). This
gives (ii) and proves the last sentence in the statement.

Equality in (ii) is attained if and only if D̄ν consists of −2χ(D̄) rational curves,
each with three marked points; then the curve D̄ has −3χ(D̄) nodes.

In order to prove (iii), we only need to show that if equality occurs in (ii) and X
is Gorenstein, then there is at least one degenerate cusp. But if equality holds in (ii)
then D̄ has −3χ(D̄) > 0 nodes and, since X is Gorenstein, each node of D̄ maps to
a degenerate cusp, that is, µ1 > 0. �

Theorem 3.6 — There exists a non-normal Gorenstein stable surface with normal-
isation of given type (as defined and classified in Section 2) exactly in the following
cases:

normalisation χ(X) = 0 χ(X) = 1 χ(X) = 2 χ(X) = 3

(P ) X X X X
(dP ) X X X
(E−) X X
(E+) X X

One could extend the above numerical analysis to all stable surfaces with K2
X = 1

and Gorenstein normalisation (X̄, D̄). From a moduli perspective such surfaces do
not form a good class: they would include some but not all 2-Gorenstein surfaces.

Proof. The restrictions follow from Proposition 3.3, the invariants given in Table 1
and Lemma 3.5 where in the cases (E±) we use that not all components of D̄ can be
rational.

The existence of examples is settled below in Section 3.3. �



10 MARCO FRANCIOSI, RITA PARDINI, AND SÖNKE ROLLENSKE

The above results allow us to refine in the caseK2 = 1 the P2-inequality χ ≥ −K2,
proved in [LR13] for Gorenstein stable surfaces:

Corollary 3.7 — If X is a Gorenstein stable surface with K2
X = 1, then χ(X) ≥ 0.

Proof. Let X be a Gorenstein stable surface with K2
X = 1. If X is normal then

χ(X) ≥ 1 by [Bla94, Theorem 2]. If X is not normal then χ(X) ≥ 0 by Theorem
3.6. �

3.3. Examples. For completeness, we now provide explicit examples for each case
given in Theorem 3.6. We will analyse such surfaces more systematically in a subse-
quent paper.

By Theorem 3.2 and Corollary 3.4 for each type we need to specify a (nodal)
boundary D̄ and an involution τ on the normalisation of D̄ which induces a fixed
point-free action on the preimages of the nodes. The holomorphic Euler-characteristic
is then computed by Proposition 3.3.

The case (P ): Examples with 0 ≤ χ(X) ≤ 3 are given in [LR13, Sect. 5.1].
The case (dP ):

• Take D̄ to be a general section in | − 2KX̄ |, which is smooth, and τ the
hyperelliptic involution. This gives χ(X) = 3.
• Let E1, E2 ∈ |−KX̄ | be two distinct smooth isomorphic curves and fix the
intersection point as a base point on both. Let D̄ = E1 +E2 and let τ be
the involution that exchanges the two curves preserving the base-point.
Then χ(X) = 2.
• Assume that | −KX | contains two distinct nodal plane cubics and let D̄
be their union. The normalisation D̄ν consists of two copies of P1 each
with three marked points which are the preimages of the nodes of D̄.
An involution on D̄ν interchanging the components is uniquely determined
by its action on the marked points and we can choose it in such a way
that the preimage of the base-point of the pencil is not preserved by the
involution (see Figure 3.3). One can easily see that this gives a rational
curve of genus 2 (not nodal) as non-normal locus, thus χ(X) = 1.

The case (E−): The divisor D̄ is a curve of arithmetic genus 2, which after pullback
to the minimal resolution becomes a degree 2 cover of the base curve of the
projective bundle. If D̄ is smooth, choosing as τ either the hyperelliptic
involution or the involution corresponding to the double cover of the elliptic
base curve gives the two possible values for χ(X).

The case (E+):
• A general D̄ is a smooth curve of genus two and choosing τ to be the
hyperelliptic involution we get χ(X) = 2.
• For the numerical Godeaux case let E ∼= C/Z[i]. Then multiplication by

1 + i induces an endomorphism of degree 2 on E, that is, an isomorphism
E ∼= E/ξ for a particular 2-torsion element in E. We can choose D̄ ∼=
E ∪ E/ξ ∼= E ∪ E in case (E+) (cf. [CC93, §2]) and the intersection of
the two components is a single point. Thus there is an involution τ on D̄
with quotient E which exchanges the two components while keeping the
base-point. With this choice χ(X) = 1.
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Figure 1. The construction of a numerical Godeaux surface with
normalisation of type (dP )
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4. Normal Gorenstein stable surfaces with K2 = 1

In this section we complement the results of Section 2 by omitting the condition
that the boundary should be non-empty, that is, we study Gorenstein log-canonical
surfaces X with KX ample and K2

X = 1. In the terminology of Section 3.1 these
are normal Gorenstein stable surfaces and they occur in the compactified Gieseker
moduli space.

Of course, in this case we cannot hope for a complete picture: for instance surfaces
of general type with K2 = χ = 1, known as Godeaux surfaces, have been an object
of study for decades and a full classification has not been achieved yet.

Still, we are able to give a rough description according to the Kodaira dimension
of X̃:

Theorem 4.1 — Let X be a normal Gorenstein stable surface with K2
X = 1 and let

ε : X̃ → X be its minimal desingularization. Then

(i) If κ(X̃) = 2, then X has canonical singularities.
(ii) If κ(X̃) = 1, then X̃ is a minimal properly elliptic surface and X has

precisely one elliptic singularity of degree 1.
(iii) If κ(X̃) = 0, denote by Xmin the minimal model of X̃. Then there exists a

nef effective divisor Dmin on Xmin and a point P such that:
• D2

min = 2 and P ∈ Dmin has multiplicity 2

• X̃ is the blow-up of Xmin at P
• X is obtained from X̃ by blowing down the strict transform of Dmin

and it has either one elliptic singularity of degree 2 or two elliptic sin-
gularities of degree 1.

(iv) If κ(X̃) = −∞, then there are two possibilities:
(a) χ(X̃) = 1 and X̃ has 1 or 2 elliptic singularities
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(b) χ(X̃) = 0, X̃ has 1, 2 or 3 elliptic singularities; in this case, the
exceptional divisors arising from the elliptic singularities are smooth
elliptic curves.

One can show that all cases actually occur (see for example [FPR14]). The proof
of Theorem 4.1 occupies the rest of the section. We fix set-up and notations to be
kept throughout: X is a normal Gorenstein stable surface with K2

X = 1, ε : X̃ → X

is the minimal resolution and L̃ := ε∗KX , so L̃ is a nef and big line bundle with
L̃2 = 1. One has L̃ = K

X̃
+ D̃, where D̃ is effective and L̃D̃ = 0. It follows in

particular that L̃K
X̃

= 1.
By the classification of normal Gorenstein lc singularities (cf. [KSB88, Thm.

4.21]), the singularities of X are either canonical or elliptic. The elliptic Gorenstein
singularities are described in [Rei97, 4.21]: denoting by x1, . . . xk ∈ X the elliptic
singular points, we can write D̃ = D̃1 + · · · + D̃k, where D̃i is a divisor supported
on ε−1(xi) such that pa(Z) < pa(D̃i) = 1 for every 0 < Z < D̃i. The divisors D̃i are
called the elliptic cycles of X̃. The degree of the elliptic singularity xi is the positive
integer −D̃2

i .
The invariants of X and X̃ are related as follows:

Lemma 4.2 — In the above set-up:

pg(X) = h0(L̃) ≥ pg(X̃), q(X) ≤ q(X̃) χ(X) = χ(X̃) + k.

Proof. By the projection formula we have h0(L̃) = h0(ε∗L̃) = h0(KX) = pg(X); in
addition there is an inclusion H0(K

X̃
) ↪→ H0(L̃), since D̃ is effective.

The remaining inequalities follow by the 5-term exact sequence associated with
the Leray spectral sequence for O

X̃
:

0→ H1(OX)→ H1(O
X̃

)→ H0(R1ε∗OX̃)→ H2(OX)→ H2(O
X̃

)→ 0,

since R1ε∗OX̃ has length 1 at each of the points x1, . . . , xk and is zero elsewhere. �

We start by dealing with the case κ(X̃) > 0.

Lemma 4.3 — If κ(X̃) > 0, then there are the following possibilities:
(i) X has canonical singularities
(ii) X̃ is a minimal properly elliptic surface and X has precisely one elliptic

singularity of degree 1.

Proof. Let η : X̃ → Xmin be the morphism to the minimal model. LetM = η∗KXmin ,
so that K

X̃
= M + E, where E is exceptional for η. We have L̃(M + E) = L̃K

X̃
=

L̃2 = 1. Since L̃ is nef and big and some multiple of M moves, we have L̃M = 1,
L̃E = 0. Thus, since L̃ is the pullback of an ample divisor, E is also contracted by ε.
Since ε is assumed minimal, there is no ε-exceptional (−1)-curve, while on the other
hand η is a composition of blow-ups of a smooth surface. Hence E = 0, namely X̃
is minimal.

If κ(X̃) = 2, then the index theorem applied to L̃ and K
X̃

gives K2
X̃

= 1 and K
X̃

and L̃ are numerically equivalent (otherwise they span a 2-dimensional subspace on
which the intersection form is positive). It follows that D̃ ≥ 0 is numerically trivial,
hence D̃ = 0 and K

X̃
= ε∗KX , namely X has canonical singularities.
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If κ(X̃) = 1, then X̃ is minimal properly elliptic and K2
X̃

= 0. It follows that
(D̃1 + · · · + D̃k)KX̃

= D̃K
X̃

= L̃K
X̃

= 1. Since D̃iKX̃
> 0 for every i, we have

k = 1, namely D̃ is connected and D̃2 = −1. �

Next we consider the case κ(X̃) = 0:

Lemma 4.4 — If κ(X̃) = 0, then X is as in Theorem 4.1, (iii).

Proof. Let η : X̃ → Xmin be the morphism to the minimal model, so η is a compo-
sition of m blow-ups in smooth points P1, . . . Pm, possibly infinitely near. Denote
by Ei the total transform on X̃ of the exceptional curve that appears at the i-th
blow-up: then E2

i = EiKX̃
= −1, EiEj = 0 if i 6= j, and K

X̃
is numerically equiva-

lent to
∑m

i=1Ei. Observe that each Ei contains at least one irreducible (−1)-curve.
Since ε is relatively minimal, L̃ is positive on irreducible (−1)-curves. Hence we have
1 = L̃K

X̃
=
∑m

i=1 L̃Ei ≥ m, and we conclude that m = 1, i.e., ε is a single blow-up.
We set E = E1.

Write D̃ = D̃1 + · · · + D̃k, with the D̃i disjoint elliptic cycles. We have 2 =

(L̃−K
X̃

)K
X̃

= D̃K
X̃

= D̃1KX̃
+ · · ·+ D̃kKX̃

, thus either k = 1 and 2 = D̃1KX̃
=

D̃1E, or k = 2 and 1 = D̃iKX̃
= D̃iE, for i = 1, 2. In the former case we have

D̃2
1 = D̃2 = −2, and in the latter case we have D̃2

1 = D̃2
2 = −1, since pa(D̃i) = 1.

We set Dmin = η∗D̃. The divisor Dmin has D2
min = 2 and contains P with

multiplicity 2.
In order to complete the proof we need to show that Dmin is nef. Let Γ be an

irreducible curve of Xmin and write η∗Γ = Γ̃ + αE, where Γ̃ is the strict transform
and α ≥ 0. We have ΓDmin = (ε∗Γ)(ε∗Dmin) = ε∗Γ(L̃ + E) = ε∗ΓL̃ ≥ 0, since L̃ is
nef. �

Finally we consider the case κ(X̃) = −∞:

Lemma 4.5 — If κ(X̃) = −∞, then there are the following possibilities:
(a) χ(X̃) = 1 and X̃ has 1 or 2 elliptic singularities
(b) χ(X̃) = 0, X̃ has 2 or 3 elliptic singularities and D̃ is a union of disjoint

smooth elliptic curves.

Proof. Since X̃ is ruled, we have χ(X̃) ≤ 1, with equality if and only if X̃ is rational.
Assume χ(X̃) ≤ 0 and let a : X → B be the Albanese map, where B is a smooth

curve of genus b > 0. Write D̃ = D̃1 + · · · + D̃k; since the general fiber of a is a
smooth rational curve and pa(D̃i) = 1 for all i, no D̃i can be contracted to a point
by a, hence D̃i dominates B. It follows that b = 1 and D̃i contains a smooth elliptic
curve D′i. Since D̃i is minimal among the divisors Z > 0 supported on ε−1(xi) and
such that pa(Z) = 1, it follows that D̃i = D′i.

One has χ(X) ≥ 1 by [Bla94, Theorem 2] and χ(X) ≤ 3 by the stable Noether
inequality for normal Gorenstein stable surfaces [Sak80, LR13]. Since k > 0, Lemma
4.2 gives 1 ≤ k ≤ 3 if χ(X̃) = 0 and 1 ≤ k ≤ 2 if χ(X̃) = 1. �
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