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We consider a noncompact lattice formulation of the three-dimensional electrodynamics with
N-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge
fields. For any N ≥ 2, the phase diagram shows three phases differing for the behavior of the
scalar-field and gauge-field correlations: the Coulomb phase (short-ranged scalar and long-ranged
gauge correlations), the Higgs phase (condensed scalar-field and gapped gauge correlations), and the
molecular phase (condensed scalar-field and long-ranged gauge correlations). They are separated
by three transition lines meeting at a multicritical point. Their nature depends on the coexisting
phases and on the number N of components of the scalar field. In particular, the Coulomb-to-
molecular transition line (where gauge correlations are irrelevant) is associated with the Landau-
Ginzburg-Wilson Φ4 theory sharing the same SU(N) global symmetry but without explicit gauge
fields. On the other hand, the Coulomb-to-Higgs transition line (where gauge correlations are
relevant) turns out to be described by the continuum Abelian-Higgs field theory with explicit gauge
fields. Our numerical study is based on finite-size scaling analyses of Monte Carlo simulations
with C∗ boundary conditions (appropriate for lattice systems with noncompact gauge variables,
unlike periodic boundary conditions), for several values of N , i.e., N = 2, 4, 10, 15, and 25. The
numerical results agree with the renormalization-group predictions of the continuum field theories.
In particular, the Coulomb-to-Higgs transitions are continuous for N & 10, in agreement with the
predictions of the Abelian-Higgs field theory.

I. INTRODUCTION

Models of scalar fields with U(1) gauge symmetry and
SU(N) global symmetry emerge as effective theories of
superconductors, superfluids, and of quantum SU(N) an-
tiferromagnets [1–8]. In particular, three-dimensional
(3D) classical U(1) gauge models with N = 2 sup-
posedly describe the transition between the Néel and
the valence-bond-solid state in two-dimensional antifer-
romagnetic SU(2) quantum systems [9–16], that repre-
sent the paradigmatic models for the so-called deconfined
quantum criticality [17].

This class of quantum models and their classical coun-
terparts have been extensively studied with the purpose
of identifying the nature of their different phases and
transitions. It has been realized that topological aspects,
like the Berry phase or the compact/noncompact nature
of the gauge fields, play a crucial role in determining the
nature of the transition. For example, the critical be-
havior of the simplest classical model with U(1) gauge
symmetry, the lattice CPN−1 model, drastically depends
on the presence/absence of topological defects [18–20],
such as monopoles, both for large and small values of N ,
in particular for N = 2. Analogous differences emerge
in the behavior of compact and noncompact lattice for-
mulations of scalar electrodynamics, i.e., of the multi-
component Abelian-Higgs (AH) model. In particular, for
N = 2, theoretical and numerical investigations of clas-
sical and quantum transitions that are expected to be
in the same universality class as those occurring in non-
compact scalar electrodynamics have provided evidence
of weakly first-order or continuous transitions belonging
to a new universality class, see, e.g., Refs. [7, 9–18, 21–
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FIG. 1: Sketch of the phase diagram of the lattice AH model
with noncompact gauge fields and unit-length N-component
complex scalar fields, for genericN ≥ 2. Three transition lines
can be identified: the Coulomb-to-Higgs (CH) line between
the Coulomb and Higgs phases, the Coulomb-to-molecular
(CM) line, and the molecular-to-Higgs (MH) line. They are
continuous or of first order depending on the value of N , see
Sec. IV for details. We also report the models emerging in
some limiting cases: the CPN−1 model for κ = 0, the O(2N)
vector model for κ → ∞, and the inverted XY or O(2) model
for J → ∞.

35].

Here we present a numerical study of the phase dia-
gram of the AH model with noncompact gauge fields, for
several values of N , the number of components of the
complex scalar field. Our study confirms the existence of
important differences with the compact AH model [36],
for both small and large values of N .

In Fig. 1 we sketch the phase diagram of the noncom-
pact lattice AH model with unit-length N -component
scalar fields. For any N ≥ 2 the phase diagram is char-
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acterized by three phases. There is a Coulomb phase,
in which the global SU(N) symmetry is unbroken and
the electromagnetic correlations are long-ranged. The
other two phases are characterized by the breaking of
the SU(N) symmetry. They are distinguished by the
behavior of the gauge modes. In the Higgs phase, elec-
tromagnetic correlations are gapped, while in the molec-
ular phase the electromagnetic field is ungapped. The
Coulomb, molecular, and Higgs phases are separated by
three different transition lines meeting at one point of
the phase diagram. The nature of the transition lines
is different, due to the fact that they separate different
phases. Moreover, their nature crucially depends on the
number N of components.

Our numerical study allows us to characterize the na-
ture of the different transition lines. For large N , the
critical behavior along the Coulomb-to-Higgs (CH) tran-
sition line belongs to the universality class associated
with the stable fixed point of the multicomponent AH
field theory, which predicts a continuous transition only
for a large number of components (we present numerical
evidence of continuous transitions for N ≥ 10), and in
particular in the large-N limit. For small N , instead, the
CH line is characterized by weak first-order transitions
(this is the case for N = 2, 4). Along the Coulomb-
to-molecular (CM) transition line, gauge correlations do
not play any particular role. Numerical results are consis-
tent with the predictions of the Landau-Ginzburg-Wilson
(LGW) Φ4 field theory with SU(N) global symmetry and
without explicit gauge fields. Therefore, for N = 2 CM
transitions are continuous and belong to the O(3) vector
universality class, while they are expected to be of first
order for any larger value of N . Finally, the molecular-
to-Higgs (MH) transitions are essentially related to the
behavior of the gauge correlations. They are expected to
belong to the universality class of the inverted XY model,
for any N .

The paper is organized as follows. In Sec. II we in-
troduce the lattice AH model. In Sec. III we discuss
the field-theoretical models that may be relevant for the
phase transitions of the model. In Sec. IV we present
the possible scenarios for the phase diagram and for the
nature of the transition lines, focussing on some limits of
the Hamiltonian parameters. Sec. V presents our numer-
ical results, for N = 2, 4, 10, 15 and N = 25. Finally, we
summarize and draw our conclusions in Sec. VI. In the
appendix we discuss the pathologies of periodic boundary
conditions in systems with noncompact gauge variables
(averages of gauge-invariant noncompact Polyakov lines
are not defined); to overcome this problem, we introduce
C∗ boundary conditions [37, 38], which allow a rigorous
definition of the model in a finite volume.

II. THREE-DIMENSIONAL LATTICE

ABELIAN-HIGGS MODELS

We consider d-dimensional systems characterized by
a global SU(N) symmetry and a local U(1) gauge sym-
metry. A paradigmatic quantum field theory with these
symmetries is the multicomponent scalar electrodynam-
ics, or AH field theory, in which an N -component com-
plex scalar field Φ is minimally coupled to the electro-
magnetic field Aµ. The corresponding continuum La-
grangian reads

L = |DµΦ|2 + rΦ∗
Φ+

1

6
u (Φ∗

Φ)2 +
1

4g2
F 2
µν , (1)

where Fµν ≡ ∂µAν − ∂νAµ, and Dµ ≡ ∂µ + iAµ.
In the following we consider lattice models that are

formal discretizations of the continuum AH model. In
particular, one may consider lattice models that differ
on the topological—compact or noncompact—nature of
the gauge fields. We consider unit-length N -component
complex variables zx associated with each site of a cubic
lattice and gauge fields associated with the lattice links.
The lattice Hamiltonian reads

H = Hz +Hg , (2)

with

Hz = −JN
∑

x,µ

2Re (z̄x · λx,µ zx+µ̂) , (3)

where the sum runs over all links of the cubic lattice, and
λx,µ is a complex gauge field with |λx,µ| = 1. In compact
formulations the link phase λx,µ is the fundamental gauge
variable. The corresponding simplest gauge Hamiltonian
reads

Hg = −κ
∑

x,µ>ν

Re (λx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν) , (4)

where the sum is over the lattice plaquettes and κ plays
the role of inverse gauge coupling. The partition function
is Z =

∑
{z,λ} e

−βH .

In noncompact formulations the fundamental gauge
variable is the real vector field Ax,µ and

λx,µ = eiAx,µ . (5)

In this case, the gauge Hamiltonian Hg can be straight-
forwardly derived from the continuum theory (1), by re-
placing the tensor field Fµν(x) with its discretized lattice
counterpart, i.e.

Hg =
κ

2

∑

x,µ>ν

(∆µ̂Ax,ν −∆ν̂Ax,µ)
2 . (6)

Here the sum runs over all plaquettes, ∆µ̂ denotes the
discretized derivative along µ̂ (i.e. ∆µ̂Ax ≡ Ax+µ̂−Ax),
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and κ ≥ 0 corresponds to the inverse gauge coupling 1/g2

of the continuum theory (1). The partition function reads

Z =
∑

{z,A}

e−βH . (7)

In the following we rescale J and κ by β, thus formally
setting β = 1.
It is important to note that, at variance with the com-

pact case, the partition function (7) is only formally
defined. Because of gauge invariance, there is an infi-
nite number of zero modes, therefore Z = ∞. As dis-
cussed in detail in App. A, by an appropriate choice
of boundary conditions and by restricting our attention
to gauge-invariant observables, we can make Z, as well
as any gauge-invariant average, well-defined. This is, of
course, of crucial importance for the numerical compu-
tation. Note that periodic boundary conditions cannot
be used for the noncompact model. Indeed, in this case
the Polyakov loops in terms of the noncompact variables
are not bounded and never thermalize; thus, even gauge-
invariant observables are ill-defined.
In the following we study the phase diagram and the

transition lines of the noncompact model (6). Appropri-
ate order parameters can be defined in terms of the zx

and Ax,µ fields. In our study we focus on the correlations
of the gauge-invariant bilinear operator

Qab
x

= z̄a
x
zb
x
− 1

N
δab , (8)

which is a hermitian and traceless N × N matrix that
transforms as Qx → U †Qx U under the global SU(N)
transformations.

III. FIELD-THEORETICAL APPROACHES

One of the motivations of this work is that of under-
standing the relation between the phase diagram of 3D
lattice Abelian gauge models and the renormalization-
group (RG) flow of the continuum AH model (1), which
has been studied within the ε ≡ 4 − d expansion frame-
work [39–41], using the functional RG approach [42],
and in the large-N limit [39, 43–46]. One expects that
the 3D RG flow of the continuum AH model describes
some critical transitions occurring in 3D statistical sys-
tems characterized by an Abelian gauge symmetry and
a global SU(N) symmetry. However, as far as we know,
the correspondence between the transition lines observed
in lattice systems and the fixed points of the continuum
AH model has not been fully clarified yet.

A. RG flow of the AH field theory

In the ε-expansion framework, the RG flow is deter-
mined by the β functions associated with the renormal-
ized couplings u and f ≡ g2. One-loop computations

give [39]

βu ≡ µ
∂u

∂µ
= −εu+ (N + 4)u2 − 18uf + 54f2 ,

βf ≡ µ
∂f

∂µ
= −εf +Nf2 (9)

[we used rescaled couplings u → u/(24π2) and f →
f/(24π2) to simplify the equations]. A stable fixed point
is present only for

N ≥ N4 = 90 + 24
√
15 ≈ 183 . (10)

It is located at

u∗ =
N + 18 +

√
N2 − 180N − 540

2N(N + 4)
ε , f∗ =

ε

N
. (11)

More generally, in generic dimensions d = 4 − ε, a sta-
ble fixed point exists only for N > Nc(ε). This implies
that 3D lattice AH models may undergo a continuous
transition associated with the AH stable fixed point only
if

N > Nc ≡ Nc(1) . (12)

The critical number of components Nc(ε) has been de-
termined to four loops [41]:

Nc(ε) = N4

[
1− 1.752 ε+ 0.789 ε2 + 0.362 ε3 +O(ε4)

]
.

(13)
The large coefficients of the expansion (13) make a re-
liable 3D (i.e., for ε = 1) estimate quite problematic.
Nevertheless, by means of a resummation of the expan-
sion that takes somehow into account two-dimensional
results, Ref. [41] obtained Nc = 12.2(3.9) in three di-
mensions, which confirms the absence of a stable fixed
point for small values of N .
In the limit κ → ∞, the gauge fields order so that

λx,µ = 1. The lattice AH model becomes equivalent
to the symmetric O(2N) vector theory. Therefore, for
large κ, one expects significant crossover effects, which
increase as κ increases, due to the nearby O(2N) critical
transition. In the continuum AH model, the crossover is
controlled by the RG flow in the vicinity of the O(2N)
fixed point

u∗
O(2N) =

1

N + 4
ε , f = 0 . (14)

This fixed point exists for any N and is always unstable.
The analysis of the stability matrix Ωij = ∂βi/∂gj shows
that it has a positive eigenvalue λu = ω, where ω > 0 is
the exponent controlling the leading scaling corrections in
O(2N) vector models [48], and a negative eigenvalue λf ,
which makes the fixed point unstable. Since [36] λf = −ε
to all orders in perturbation theory, the RG dimension
yf = −λf = ε of the operator that controls the crossover
behavior is one in three dimensions.
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B. The AH field theory in the large-N limit

The existence of a stable fixed point for sufficiently
large values of N and, therefore, of a universality class
described by the AH field theory, is confirmed by 1/N cal-
culations [39, 44–46]. Critical exponents have also been
computed [39, 44] to order 1/N . For the critical exponent
ν associated with the correlation length, one finds [39]

ν = 1− 48

π2N
+O(N−2) , (15)

for the three-dimensional model. Also the critical behav-
ior of the two-point function

G(x,y) = 〈TrB(x)B(y)〉 (16)

of the gauge-invariant bilinear composite operator

Bab(x) = Φa(x)
†Φb(x)−

1

N
δab|Φ|2 (17)

has been considered. Here, Bab(x) is the coarse-grained
continuum counterpart of the lattice operator Qab

x
de-

fined in Eq. (8). At the critical point, G(x,y) has the
power-law behavior

G(x,y)|J=Jc
∼ 1

|x− y|d−2+ηq
(18)

characterized by the critical exponent ηq. At order 1/N
one finds [44]

ηq = 1− 32

π2N
+O(N−2) , (19)

in three dimensions.

C. The gauge-invariant LGW framework

A second approach that has been used to predict the
critical behavior of lattice AH models [36, 47] is the LGW
framework [48–50]. It assumes that the relevant critical
modes are associated with the gauge-invariant local site
variable (8). As discussed in Refs. [36, 47, 51–53], this
is a highly nontrivial assumption, as it postulates that
gauge fields do not play a relevant role in the effective
theory. In this approach, the order-parameter field is
a traceless hermitian matrix field Ψab(x), which can be
formally defined as the average of Qab

x
over a large but

finite lattice domain. The LGW field theory is obtained
by considering the most general fourth-order polynomial
in Ψ consistent with the SU(N) global symmetry:

HLGW = Tr(∂µΨ)2 + rTrΨ2 (20)

+ w trΨ3 + u (TrΨ2)2 + vTrΨ4.

Also in this framework continuous transitions may only
arise if the RG flow in the LGW theory has a stable fixed
point.

For N = 2, the cubic term in Eq. (20) vanishes and the
two quartic terms are equivalent. Therefore, one recov-
ers the O(3)-symmetric vector LGW theory. Thus, for
N = 2 continuous transitions, belonging to the Heisen-
berg universality class, are possible. ForN ≥ 3, the cubic
term is generically present. Its presence is usually taken
as an indication that phase transitions occurring in this
class of systems are generally of first order. Indeed, a
straightforward mean-field analysis shows that the tran-
sition is of first order in four dimensions, where the mean
field approximation is exact. If statistical fluctuations are
small—this is the basic assumption—the transition is of
first order also in three dimensions. In this approach,
continuous transitions may still occur, but they require a
fine tuning of the microscopic parameters, leading to the
effective cancellation of the cubic term [60].

It is important to note that the field-theoretical ap-
proaches based on the continuum AH field theory (1)
and the effective LGW field theory (20) are not equiva-
lent, as they make different assumptions on the role of
the gauge correlations. They give different predictions,
both for small and large values of N . For N = 2 the
continuum AH model predicts the absence of continuous
transitions, due to the absence of a stable fixed point. On
the other hand, a stable O(3) vector fixed point exists in
the effective LGW theory, leaving open the possibility of
observing continuous transitions.

For large values of N (more precisely, for N > Nc, see
Sec. III A), the continuum AH theory and the effective
LGW approach give again contradictory results. If one
trusts the argument based on the relevance of the cubic
term, the LGW approach predicts a first-order transi-
tion unless a fine tuning of the microscopic parameters is
performed. Instead, continuous transitions are possible
without any fine tuning according to the continuum AH
field theory. For intermediate values of N , that is for
3 ≤ N < Nc, both approaches predict lattice models to
undergo first-order transitions.

The field-theoretical predictions have been compared
with numerical results for the lattice CPN−1 and AH
models, loop models, and 2D quantum systems [5–7, 54–
56]. Simulations of the CP1 model [36, 47] confirm the
existence of continuous transitions, belonging to the O(3)
vector universality class, for N = 2. Therefore, the LGW
theory provides the correct description of the large-scale
behavior of these systems. Evidently, gauge correlations
are not relevant in the CP1 model, and the continuum
AH model does not predict the correct behavior.

For N = 3 numerical results are not yet conclusive.
Indeed numerical simulations for the lattice CP2 model
favor a first order transition [47], while the results for the
loop model of Refs. [54, 55] apparently favor a continu-
ous transition. The available numerical results for lattice
CPN−1 models for N ≥ 4 are consistent with first-order
transitions [47, 55–57], again confirming the LGW pre-
dictions. We note that a continuous transition has been
observed in a monopole-free version of the CPN−1 model
[18] for large values of N , demonstrating the relevance of
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these topological defects.

IV. THE PHASE DIAGRAM OF THE

NONCOMPACT LATTICE AH MODEL

A. Transition lines and limiting cases

To sketch the phase diagram of the noncompact lattice
AH model with N -component scalar fields, see Fig. 1, it
is useful to consider some particular cases, in which the
thermodynamic behavior is already known. No transi-
tions are expected along the J = 0 line, while transitions
occur along the κ = 0, the J = ∞, and the κ = ∞ lines.
Phase diagram along the κ = 0 line. For κ = 0 the

lattice AH model is equivalent to a lattice formulation
of the CPN−1 models with explicit lattice gauge vari-
ables [47]. Its phase diagram has been recently discussed
in Refs. [47, 56]. There are two phases separated by a
finite-temperature transition, where the order parame-
ter is the gauge-invariant matrix defined in Eq. (8). The
available estimates of the transition point Jc are reported
in Table I. The phase transition is continuous for N = 2,
belonging to the O(3) vector universality class [48] (ac-
curate estimates of the O(3) critical exponents can be
found in Refs. [62–66]), and of first order for N ≥ 3. It
is very weak for N = 3 [47], and it becomes stronger and
stronger with increasing N [56]. It is natural to conjec-
ture that analogous transitions occur along the CM line
for small values of κ. Thus, we expect a line of contin-
uous transitions belonging to the O(3) universality class
for N = 2, and a line of first-order transitions for N ≥ 3.
Note that, for N = 2, this scenario implies the stability
of the O(3) critical behavior against perturbations due to
the noncompact gauge field. We shall report numerical
evidence that confirms it.
Phase diagram along the J = ∞ line. For J → ∞ the

relevant configurations are those that minimize Hz, cf.
Eq. (3). There is no frustration, so that we obtain

z̄x · λx,µ zx+µ̂ = 1 , (21)

which implies zx = λx,µ zx+µ̂. A repeated use of this
relation along a plaquette implies

λx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν = 1 (22)

on each plaquette. Therefore, by an appropriate gauge
transformation we obtain Ax,µ = 2πnx,µ, where nx,µ ∈
Z. We thus obtain a dual loop representation of the 3D
XY model, which is expected to undergo an “inverted”
XY transition, i.e., a transition belonging to the XY
universality class but with inverted high and low tem-
perature phases [67]. Such a transition occurs at [68]
κc(J = ∞) = 0.076051(2) [we obtained it by using the
estimate βc = 3.00239(6) reported in Ref. [68] and identi-
fying κc = βc/(4π

2)]. Note that N does not play any role
here, thus the critical behavior does not depend on N .
It is natural to conjecture that the same behavior holds

N Jc (κ = 0) Jc (κ = ∞)

2 0.7102(1) [47] O(3) 0.233965(2) [58] O(4)

3 0.6196(2) [47] FO 0.23813(3) [59] O(6)

4 0.5636(1) [47] FO 0.24084(1) [60] O(8)

7 0.4714(5) [56] FO 0.244 O(14)

10 0.4253(5) [56] FO 0.247 O(20)

15 0.381(1) [56] FO 0.249 O(30)

20 0.353 [56] FO 0.250 O(40)

∞ 0.252731... FO 0.252731... [61] O(∞)

TABLE I: Estimates of the critical values Jc for κ = 0 and
κ → ∞. We also report the nature of the transition: FO
and O(n) indicate a first-order transition and a continuous
transition in the O(n) vector universality class, respectively.
The estimates of Jc for κ → ∞ for 7 ≤ N ≤ 20 are obtained
by interpolating the results of Ref. [61] for the lattice O(n)
vector model (the uncertainty on these interpolations is safely
below 1 on the last reported digit). For N → ∞, the results
of Ref. [61] allow us to obtain Jc(κ → ∞) = b∞ + b∞,1N

−1 +
O(N−2), with b∞ = 0.252731... and b∞,1 ≈ −0.0585.

for finite but large J . Thus, we expect a line of contin-
uous transitions of the inverted XY type separating the
molecular and Higgs phases.
Phase diagram along the κ = ∞ line. In the κ → ∞

limit, we have Ax,µ = 0 apart from gauge transforma-
tions. Therefore, in this limit the N -component AH
model can be exactly mapped onto the standard real 2N -
component vector model, which undergoes a continuous
transitions for anyN , see Table I. At finite κ, the RG flow
of the continuum AH model predicts that gauge modes
are a relevant perturbation of the O(2N) fixed point,
see Eq. (14) and the subsequent discussion in Sec. III A.
Therefore, if the CH transitions are continuous, they do
not belong to the O(2N) vector universality class. How-
ever, the O(2N) continuous transition for κ = ∞ may
give rise to crossover phenomena for large values of κ.
On the basis of the above considerations, the most nat-

ural hypothesis of phase diagram is the one reported in
Fig. 1, with three different phases. For small J and any
κ there is a phase (it will be named Coulomb phase) in
which the z fields are disordered and the gauge modes
are in the inverted XY low-temperature phase; for large
J and large κ (Higgs superconducting phase) there is a
phase in which the z fields are ordered and the gauge
modes are in the inverted XY high-temperature phase;
for large J and small κ (mixed molecular phase) gauge
interactions are long-ranged, while the spin degrees of
freedom condense. Presumably, for anyN the three tran-
sition lines meet at a multicritical point at (κmc, Jmc), see
Fig. 1. This phase diagram was proposed for N = 2 in
Refs. [22, 23], but it should hold for any N ≥ 2.
For any N , we expect the MH transition line to be

continuous, in the XY universality class, for any J > J∗,
where J∗ may coincide with the position of the multicrit-
ical point, i.e., J∗ ≥ Jmc. Along this transition line the
spins are expected to be frozen. They should only act as
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spectators.
The transitions along the CM line are expected to have

the same nature as the κ = 0 transition, at least for
κ < κ∗, where κ∗ must satisfy κ∗ ≤ κmc. As we said, we
do not expect the addition of Hg for small κ to change
the nature of the transition. Therefore, as it occurs for
κ = 0, we expect gauge modes to be irrelevant. This
suggests that these transitions are controlled by the LGW
Φ4 field theory (20), in which gauge modes are effectively
integrated out. Thus, they should belong to the O(3)
vector universality class for N = 2 and be of first order
for N ≥ 3. Like the transition of the CPN−1 model
for κ = 0, the CM transition line is characterized by the
condensation of the gauge-invariant bilinear operator (8).
Finally, along the CH transition line, both scalar and

gauge fields change their long-distance behavior. There-
fore, we expect this transition line to be described by the
continuum AH model (1), whose RG flow predicts that
continuous transitions may be observed only for N > Nc,
see Sec. III A. Along the CH line the gauge-invariant bi-
linear operator (8) is expected to be an appropriate order
parameter.

B. Nature of the multicritical point for N = 2

As discussed above, the phase diagram of the noncom-
pact lattice AH model is characterized by three transition
lines meeting at a multicritical point. To discuss its na-
ture within the field-theory framework, it is crucial to
identify the relevant critical modes. For N = 2, we ex-
pect continuous transitions along the CM line with an
O(3) scalar order parameter, first-order transitions along
the CH line, and XY behavior along the MH line. Thus,
the nature of the multicritical point is determined by the
dynamics of two effective order-parameter fields, a three-
component and a two-component scalar field, which are
associated with the two continuous transition lines. This
hypothesis seems quite reasonable, as the two transitions
are associated with different degrees of freedom: along
the CM line the spin degrees of freedom associated with
the bilinear Qab

x
defined in Eq.(8) condense, while gauge

degrees of freedom control the transitions along the CM
line.
Note that this description is not expected to be appro-

priate for N 6= 2, and, in particular, for large values of
N . In that case, the CH transition line should be associ-
ated with the AH FP point, the CM line is of first order,
while the MH transitions belong to the XY universality
class. In this case a correct description of the multicriti-
cal point should describe the interaction of the XY order
parameter with the AH fields. Thus, one should consider
an extension of the AH model that includes an additional
two-component order parameter.
For N = 2, assuming that the multicritical behavior

occurs from the competition of two different scalar fields,
we may investigate it within a LGW framework. If φa

and ϕa are a three-component and a two-component field,
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disordered
phase

ordered
phase 2

ordered
phase 1

(a)

O(3)

O(2)

disordered
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ordered
phase 2

ordered
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mixed
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(b)

O(3)

O(2)

disordered
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ordered
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FIG. 2: Sketches of the possible phase diagrams close to a
multicritical point in the plane of the two relevant variables.
Thin lines represent continuous phase transitions, while thick
lines represent first-order transitions. (a) Phase diagram with
a bicritical point. (b) Phase diagram with a tetracritical
point. (c) Phase diagram with a first-order bicritical point.

respectively, the most general Φ4 theory that is invariant
under O(3)⊕O(2) transformations [69–72] is

H =
1

2

[
(∂µφ)

2 + (∂µϕ)
2
]
+

1

2

(
rφφ

2 + rϕϕ
2
)

+
1

4!

[
uφ(φ

2)2 + uϕ(ϕ
2)2 + 2wφ2ϕ2

]
, (23)

where φ2 ≡
∑3

a=1 φ
2
a and ϕ2 ≡

∑2
a=1 ϕ

2
a. Such model ap-

pears in several other contexts, for instance, it is relevant
for the behavior of high-T superconductors (see Ref. [73]
and references therein). It has been extensively studied
in Refs. [69–73]
In the mean-field approximation [69–71], two possible

phase diagrams are possible: a phase diagram, where
two continuous transition lines meet a first-order transi-
tion line, see Fig. 2(a)—the corresponding multicritical
point is called bicritical—and a phase diagram where four
transition lines meet, see Fig. 2(b)—in this case the mul-
ticritical point is called tetracritical. In our case, the
multicritical point is bicritical, the first-order transition
line being identified with the CH transition line. Indeed,
the numerical results reported in Refs. [22, 23] confirm
that the transitions along the CH line are of first order,
at least for κ not too large (they apparently disagree only
far from the multicritical point). To clarify whether the
bicritical transition is continuous or of first order, it is
necessary to analyze the RG flow of the multicritical Φ4

theory (23): the multicritical transition can be continu-
ous only if a stable fixed point can be associated with the
bicritical point.
The analysis reported in Refs. [72, 73] indicates that

the only stable fixed point is the decoupled fixed point
describing decoupled O(3) and O(2) critical behaviors,
which is naturally associated with a tetracritical point,
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see Fig. 2(b). There is no stable fixed point that can be
associated with a bicritical point. Indeed, fixed points
that can be associated with a bicritical behavior, for in-
stance, the O(5) fixed point (in this case there would
be an enlargement of the symmetry at the multicritical
point) and the so-called biconical fixed point, are both
unstable [72, 73]. In the absence of stable fixed points
that may be associated with a bicritical point, close to
the multicritical point the transitions are expected to be
of first order along all three lines, see Fig. 2(c). There-
fore, the continuous O(3) and XY transition lines start-
ing from the κ = 0 and J = ∞ lines are expected to
turn into first-order transition lines before reaching the
multicritical point.

The above LGW RG analysis predicts the CH tran-
sition line to be of first order close to the multicritical
point. Increasing κ along this line, the first-order tran-
sition should become weaker and weaker (the latent de-
creases) as the O(4) continuous transition at κ = ∞ is
approached, with substantial crossover phenomena oc-
curring for large values of κ. Alternatively, the first-order
transition could turn into a continuous transition line be-
longing to a different universality class already for finite
values of κ. We note that the existence of a corresponding
universality class is still controversial, see, e.g., Refs. [7–
10, 12, 18, 19, 22, 23, 35].

V. NUMERICAL RESULTS FOR THE

NONCOMPACT AH MODELS

We now present a Monte Carlo (MC) study of the
phase diagram of the noncompact lattice AH model, for
N = 2, 4, 10, 15 and N = 25. We perform standard
Metropolis updates of Ax,µ and zx, combined with mi-
crocanonical updates of zx to reduce autocorrelations,
see, e.g., Ref. [36].

As already noted, due to the peculiarities of the non-
compact formulation, we cannot consider finite systems
with periodic boundary conditions. Indeed, in this case
there are gauge-invariant zero modes, that make the
model always ill-defined. The zero modes correspond
to the so-called noncompact Polyakov lines, the gauge
invariant sum of the fields Ax,µ along nontrivial paths
winding around the lattice. Therefore, even if a maxi-
mal gauge fixing is added, the partition function is still
infinite. Under these conditions, it is not clear whether
finite size scaling (FSS) methods can be safely used to in-
vestigate the critical behavior of the model. To overcome
this problem, we adopt C∗ boundary conditions [37, 38].
They preserve gauge invariance, providing a rigorous def-
inition of the partition function in a finite volume. More-
over, they essentially preserve translational invariance. A
detailed description is provided in the App. A.

A. Observables and finite-size scaling analyses

We compute the energy density and the specific heat,
defined as

E =
1

V
〈H〉, C =

1

V

(
〈H2〉 − 〈H〉2

)
, (24)

where V = L3. We consider the two-point correlation
function of the gauge-invariant operator Qab

x
defined in

Eq. (8),

G(x− y) = 〈TrQxQy〉, (25)

where the translation invariance of the system has been
taken into account (note that Qx is periodic also in
the presence of C∗ boundary conditions, see App. A).
The susceptibility and the (second-moment) correlation
length are defined by the relations

χ =
∑

x

G(x) = G̃(0), (26)

ξ2 ≡ 1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
, (27)

where G̃(p) =
∑

x
eip·xG(x) is the Fourier transform of

G(x), and pm = (2π/L, 0, 0).
It is convenient to introduce RG-invariant quantities,

such as the Binder parameter

U =
〈µ2

2〉
〈µ2〉2

, µ2 =
1

V 2

∑

x,y

TrQxQy , (28)

and

Rξ = ξ/L . (29)

At continuous phase transitions they are expected to
scale as [48] (we denote by R a generic RG invariant
quantity)

R(β, L) ≈ fR(X) , X = (β − βc)L
1/ν , (30)

where ν is the critical exponent associated with the cor-
relation length, and β is the parameter we vary in the
system (in the following sections J will play the role of
β). Scaling corrections decaying as L−ω have been ne-
glected in Eq. (30), where ω is the exponent associated
with the leading irrelevant operator. The function fR(X)
is universal up to a multiplicative rescaling of its argu-
ment. In particular, U∗ ≡ fU (0) and R∗

ξ ≡ fRξ
(0) are

universal, depending only on the boundary conditions
and the aspect ratio of the lattice. Since Rξ defined in
Eq. (29) is an increasing function of β, we can write

U(β, L) = FU (Rξ) +O(L−ω) , (31)

where FU now depends on the universality class, bound-
ary conditions and lattice shape, without any nonuniver-
sal multiplicative factor. The scaling relation (31), which
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does not involve any nonuniversal parameter, is particu-
larly convenient to test universality-class predictions and
to identify weak first-order transitions [36, 47].
At first-order transitions the probability distributions

of the energy and of the magnetization are expected to
show a double peak for large values of L. However, in
order to definitely identify a first-order transition, it is
necessary to perform a more careful analysis of the large-
L scaling behavior of the distributions or, equivalently,
of the specific heat and of the Binder cumulants [74–
78]. Regarding the specific heat C, for each lattice size
L, there exists a value βmax,C(L) of β where C takes its
maximum value Cmax(L). For large volumes, we have
[74]

Cmax(L) =
V

4
∆2

h +O(1), (32)

βmax,C(L)− βc ≈ c V −1, (33)

where ∆h = E+ − E− is the latent heat, and E+ and
E− are the values of the energy corresponding to the two
maxima of the energy-density distribution.
As discussed in Ref. [36, 47] the Binder parameter is

a particularly convenient quantity to identify first-order
transitions. In this case [75], for each L, U(β, L) has a
maximum Umax(L) at β = βmax,U (L) < βc which scales,
for sufficiently large values of L, as

Umax ∼ a V + O(1) , (34)

βmax,U (L)− βc ≈ b V −1 . (35)

This should be contrasted with the behavior at a con-
tinuous transition, where U is always finite. Thus, we
can distinguish first-order from continuous transitions by
looking at the behavior of U as L increases. In particu-
lar, the absence of scaling when plotting the data of U
versus Rξ may be considered as an evidence in favor of a
first-order transition.
Note that FSS also holds at first-order transitions [77,

79–81], although it is more sensitive to the geometry and
to the nature of the boundary conditions [78]; for in-
stance, FSS differs for boundary conditions that favor or
do not favor the different phases coexisting at the transi-
tion [82, 83]. In the case of 3D cubic systems with bound-
ary conditions respecting translation invariance, such as
periodic boundary conditions, FSS is typically charac-
terized by an effective exponent ν = 1/d = 1/3, so that
α/ν = d = 3. Thus, effective exponents that decrease
towards 1/3 as L increases, signal a discontinuous tran-
sition.

B. The noncompact lattice AH model at N = 2

The lattice AH model with N = 2 has already been
studied in Refs. [22, 23], obtaining the phase diagram
shown in Fig. 3. We present a different FSS analysis, us-
ing C∗ boundary conditions, which is not affected by the
pathologies of periodic boundary conditions, see App. A.

κ

J

0 0.1 0.2 0.3 0.4

0.4

0.8
△

△
△

Coulomb

Higgsm
ol
ec
u
la
r

FIG. 3: Phase diagram of the noncompact N = 2 lattice AH
model, as obtained from the data of Refs. [22, 23]. Triangles
correspond to the transition points obtained in the present
work. The shadowed blob indicates the region where the tran-
sition lines meet and the transitions along the three lines are
predicted to be of first order, see Sec. IVB.

In particular, we present results along the CM and CH
transition lines, see Fig. 3.

To begin with, we discuss the critical behavior along
the CM line starting at κ = 0, J = Jc = 0.7102(1). We
present a FSS analysis of MC data taken at fixed κ =
0.04. The data of Rξ, see Fig. 4, show a crossing point at
Jc = 0.7099(1), which is very close to the critical value
at κ = 0. The plot of the Binder parameter U versus Rξ,
see Fig. 5, shows that the critical behavior is the same for
κ = 0 and κ = 0.04. Since the CP1 transition belongs to
the O(3) vector universality class, the same is expected
for the transition at κ = 0.04. The O(3) scaling is also
confirmed by the scaling of Rξ and of the susceptibility:

this is observed when plotting Rξ versus (J − Jc)L
1/ν

and the ratio χ/L2−ηq versus Rξ using the O(3) critical
exponents ν ≈ 0.7117 and ηq ≈ 0.0378 [62–65], see Figs. 4
and 6.

To investigate the nature of the transitions along the
CH line, we have performed MC simulations at κ = 0.2
and κ = 0.4. As we shall see, in both cases the data
clearly favor a first-order transition. This confirms the
analysis reported in Ref. [23]. It disagrees instead with
Ref. [22], that claimed the transition for κ = 0.4 to be
continuous. Fig. 7 reports the behavior of the Binder
parameter U for κ = 0.2 and 0.4: data indicate the pres-
ence of a transition at J = Jc ≈ 0.472 for κ = 0.2 and
at J = Jc ≈ 0.353 for κ = 0.4, the latter result being
in agreement with Ref. [22]. In Fig. 8 we plot U versus
Rξ for both κ = 0.2 and 0.4. Data do not scale, pro-
viding evidence in favor of a weak first-order transition
for both κ = 0.2 and 0.4 (see the discussion in Sec. VA).
Comparing the data, we observe that the first-order tran-
sition becomes weaker with increasing κ, in agreement
with the expectation that the latent heat vanishes in the
limit κ → ∞. For comparison we also report data for the
O(4) vector model with the C∗ boundary conditions, to
identify possible crossover effects, which indeed seem to
appear.
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FIG. 4: Plot of Rξ for N = 2 and κ = 0.04 (along the CM
transition line) for lattice sizes up to L = 64. Top panel: Rξ

versus J ; data show a crossing point at J = Jc = 0.7099(1).

Bottom panel: Rξ versus (J −Jc)L
1/ν using the O(3) critical

exponent ν = 0.7117 [62–65].
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κ=0

FIG. 5: Plot of U versus Rξ for the noncompact N = 2 lattice
AH model at κ = 0.04 and κ = 0 (along the CM transition
line). All data fall onto a single curve, providing a robust
evidence that the transition belongs to the O(3) universality
class.
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χLη
q
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FIG. 6: Plot of χ/L2−ηq at κ = 0.04 versus Rξ along the
CM transition line, using the O(3) value ηq = 0.0378 [62–65].
Results for the N = 2 AH model.

C. The noncompact lattice AH model at large N

We now present numerical results for large values of
N . As discussed in Sec. IV, we expect a phase diagram
characterized by three phases also for N > 2. However,
for N 6= 2, the CM transition line is expected to be of
first order, as for κ = 0. On the other hand, continuous
transitions may appear along the CH transition line for
sufficiently large N , since the RG flow of the continuum
AH theory has a stable fixed point, see Sec. II.
We first consider the N = 25 model, performing sim-

ulations for κ = 0.4. The data of Rξ, see Fig. 9, show a
crossing point for Jc ≈ 0.295, that we identify as a tran-
sition point along the CH line. To understand the order
of the transition, we plot the Binder parameter U versus
Rξ, see Fig. 10. Data scale nicely, strongly suggesting
that the transition is continuous. To determine the crit-
ical exponent ν and obtain a more accurate estimate of
the critical point, we fit U and Rξ to

R(J, L) = fR(X) , X = (J − Jc)L
1/ν , (36)

using a polynomial approximation for fR(X). To esti-
mate the role of the scaling corrections we restrict the fit
to the data satisfying L ≥ Lmin, with Lmin = 16, 32. For
Lmin = 16 we obtain ν = 0.789(2), ν = 0.785(1) from the
analysis of U and Rξ, respectively. For Lmin = 32, we
find ν = 0.782(5), 0.796(2). The variation of the results
appears larger than the statistical errors, indicating that
scaling corrections are significant, at the level of precision
of our data. We have thus performed fits that include
scaling corrections, fitting the data to

R(J, L) = fR(X) + L−ωgR(X) , (37)

using a polynomial approximation for both scaling func-
tions. To improve the accuracy of the estimates, we have
performed a combined fit of the two observables. It turns
out that our data are not precise enough to allow us to
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FIG. 7: Binder parameter U for the N = 2 lattice AH model,
at κ = 0.2 and for L ≤ 32 (top), and at κ = 0.4 for L ≤ 64
(bottom). Both transitions should be along the CH transition
line.

determine the exponent ω. The χ2 of the fit takes essen-
tially the same value for any ω & 0.8. Correspondingly,
ν varies between 0.796 and 0.808, with a statistical error
of 0.002 at fixed ω. This analysis allows us to estimate
ν = 0.802(8). The quality of the fit is excellent, as can be
seen from Fig. 11. The estimate of ν is very different from
that corresponding to the O(50) vector model, ν ≈ 0.96
(we use here the large-N expansion of ν), confirming the
instability of the O(50) fixed point in the AH field theory.
This is also confirmed by the comparison of the plots of
U versus Rξ, see Fig. 10, where we report data for the
O(50) vector model, i.e., U and Rξ as obtained from the
spin-2 correlation function in the vector model.

The estimate of ν is very close to the estimate obtained
using the 1/N expansion at order 1/N [39, 44–46], νln =
0.805, see Eq. (15). The large-N expansion appears to be
very accurate for ν at N = 25. It is interesting to note
that the exponent ω is equal to 1 for N = ∞ and thus
we expect it to be close to 1 also for N = 25. Using this
information, we can verify that the large-N expansion is
probably accurate for the exponent ν at the level of a few
per mille. Indeed, our combined fits give ν = 0.805(2)
and ν = 0.808(2) for ω = 1 and 0.8, respectively.

The analysis also provides estimates of Jc and of the

0.0 0.2 0.4 0.6 0.8
Rξ
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1.2

1.4

1.6

1.8

U
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L=16
L=32
L=16
L=32
L=64

κ=∞

κ=0.2
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L=32
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κ=∞
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FIG. 8: Estimates of U versus Rξ for the N = 2 AH model
at κ = 0.2 (top) and κ = 0.4 (bottom), thus along the CH
transition line. For comparison O(4) data, corresponding to
κ = ∞, are also reported; the continuous lines are cubic spline
interpolations and have the only purpose of guiding the eye.

universal quantities R∗
ξ and U∗, the last two quantities

being the asymptotic values (L → ∞) of Rξ and U com-
puted for J = Jc. The results are reported in Table II.
We have also analyzed the susceptibility χ in order to
determine the exponent ηq. We have performed fits to
χ = L2−ηqfχ(Rξ), which has the advantage that nei-
ther Jc nor ν appear in the fitting function. We obtain
ηq = 0.923(1) and ηq = 0.901(1), if we only consider the
data with L ≥ 16 and 32, respectively. There are clearly
scaling corrections. We have therefore performed fits to

χ = L2−ηq
[
fχ(Rξ) + L−ωgχ(Rξ)

]
, (38)

where we use polynomial approximations for fχ(Rξ) and
gχ(Rξ). The χ2 of the fit has a shallow minimum for
0.9 . ω . 1.5, As ω varies in this interval, ηq varies
from 0.880(5) and 0.887(3). We thus end up with the
estimate ηq = 0.883(7). The corresponding scaling plot
is shown in Fig. 12: data scale quite precisely onto a
single curve for L ≥ 32. Note that the final estimate
is essentially consistent with the large-N result ηq,ln =
0.870, see Eq. (19).
We have also observed a transition for N = 15 along
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N Jc ν νln ηq ηq,ln R∗

ξ U∗

25 0.295511(4) 0.802(8) 0.805 0.883(7) 0.870 0.29405(5) 1.0254(1)

15 0.309798(6) 0.721(3) 0.676 0.815(10) 0.784 0.316(1) 1.0433(3)

10 0.32187(3) 0.64(2) 0.514 0.74(2) 0.678 0.341(8) 1.0621(4)

TABLE II: We report the estimates of the critical coupling Jc, of the critical exponents ν and ηq , and of the universal critical
values R∗

ξ and U∗ for C∗ boundary conditions at the continuous transitions observed for N = 10, 15, and N = 25 along the
CH transition line (κ = 0.4). We also report the estimates νln and ηq,ln obtained from the O(1/N) approximations reported in
Eqs. (15) ad (19).

the line κ = 0.4. Indeed, data for Rξ and U show a cross-
ing point for Jc ≈ 0.31. To identify the order of the tran-
sition, we plot U as a function of Rξ, see Fig. 13. Scaling
corrections are clearly visible, but note that the data for
L ≥ 32 lie on top of each other. The Binder parameter
does not increase with the size, indicating that the tran-
sition is continuous. To estimate the critical exponents,
we have repeated the analysis we did for N = 25. Scal-
ing corrections are significant, as it appears from Fig. 13.
Therefore, they must be taken into account to obtain re-
liable estimates. We perform combined fits of Rξ and U
to the Ansatz (37). If we only include data with L ≥ 16,
the χ2 of the fit is essentially constant for 1 . ω . 2. In
this range of values of ω, the exponent ν varies between
0.722(2) and 0.720(2), allowing us to obtain the final es-
timate 0.721(3). Results for Jc and for the critical values
R∗

ξ and U are collected in Table II. The corresponding
scaling plot is reported in Fig. 14: the scaling behavior
is excellent. We have also determined the exponent ηq,
fitting χ to Eq. (38). We obtain ηq = 0.815(10). Again
we can compare the results for ν and ηq with the large-N
results. In this case, see Table II, some discrepancies are
observed, indicating that for N = 15 the corrections of
order 1/N2 are now significant.
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FIG. 9: Estimates of Rξ ≡ ξ/L for the N = 25 lattice AH
model at κ = 0.4, for several lattice sizes up to L = 64. The
data show clearly a crossing point providing an estimate of
the critical value Jc ≈ 0.2955.
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FIG. 10: Plot of U versus Rξ for the N = 25 lattice AH model
at κ = 0.4. For comparison we also report data for the O(50)
vector model, corresponding to the κ → ∞ limit.
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FIG. 11: Plot of Rξ ≡ ξ/L versus (J − Jc)L
1/ν at at κ = 0.4

for N = 25. We use Jc = 0.295511 and ν = 0.802.

D. The noncompact lattice AH model for

intermediate values of N

In the previous sections, we observed that the CH tran-
sition line is of first order forN = 2, while it is continuous
for N = 15, 25. Therefore, there must be an intermediate
number Nℓ, where the nature of the transition changes:
forN ≥ Nℓ the transition is continuous, while forN < Nℓ

it is of first order. An analogous behavior is predicted by
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FIG. 12: Plot of χLηq−2 versus Rξ for the N = 25 lattice AH
model at κ = 0.4. We use ηq = 0.883.
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FIG. 13: Plot of U versus Rξ for the N = 15 lattice AH model
at κ = 0.4.

the continuum AH field theory, as discussed in Sec. III A.
The results of the previous sections give 2 < Nℓ < 15.
In this section we present some results for N = 4 and
N = 10, that further constrain Nℓ.

In Fig. 15 we plot U versus Rξ for N = 4 along the line
κ = 0.4. As it occurs for N = 2, see Sec. VB, the data
do not scale. Moreover, the Binder parameter U has a
maximum that increases with L. The data therefore favor
a first-order transition, allowing us to conclude Nℓ > 4.
Note that the increase of the maximum of U with the size
signals that the first-order transition is stronger than for
N = 2. The transition is however too weak to allow us
to reliably estimate the latent heat using lattice sizes up
to L = 64. This is a serious obstruction to what would
be the natural strategy to estimate Nℓ, i.e., to determine
the behavior of the latent heat as a function of N .

To obtain an upper bound on Nℓ, we performed simu-
lations for N = 10 at κ = 0.4. Estimates of U against Rξ

are shown in Fig. 15. The maximum of the Binder pa-
rameter appears to increase with the size for small values
of L, but the results for L = 64 and L = 48 apparently
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FIG. 14: Top panel: Rξ ≡ ξ/L versus (J − Jc)L
1/ν for Jc =

0.309798 and ν = 0.721. Bottom panel: L−2+ηqχ versus Rξ

for ηq = 0.815. Results for the N = 15 lattice AH model at
κ = 0.4 for several lattice sizes up to L = 64.

fall one on top of the other. Therefore, data suggest that
the transition is continuous, implying the upper bound
Nℓ < 10.

To determine the critical exponent ν for N = 10, we
perform a combined fit of U and Rξ to Eq. (37). In
this case the fit is sensitive to ω and indeed the fit gives
ω = 1.05(10) and ν = 0.642(4). However, the χ2 per
degree of freedom (DOF) is quite large, χ2/DOF ≈ 16.
Clearly, there are still significant scaling corrections that
are not taken into account by the scaling Ansatz (37).
Therefore, the statistical errors are not reliable: system-
atic errors due to the neglected scaling corrections are
significantly larger. To get a rough idea of the size of
the systematic errors, we can compare the previous es-
timate of ν with those obtained by using the simpler
Ansatz (36). For Rξ, if we only include the data with
L ≥ 32, we obtain ν = 0.658(1). This suggests that a
reliable estimate for ν might be ν = 0.64(2). Using the
same criterion for Jc, R

∗
ξ , and U∗, we obtain the esti-

mates reported in Table II. The scaling plot of Rξ are
reported in Fig. 16. Scaling deviations are clearly visi-
ble for L = 16. We have also determined the exponent
ηq. The susceptibility has been fitted to the Ansatz (38).
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FIG. 15: Top panel: estimates of U versus Rξ for the N = 4
lattice AH model at κ = 0.4. Bottom panel: estimates of of
U versus Rξ for the N = 10 lattice AH model at κ = 0.4.

The χ2 is little sensitive to ω and is essentially constant
for ω & 1.4. Correspondingly, ηq varies between 0.745(4)
and 0.759(2). However, note that we expect ω ≈ 1 and
thus we have conservatively considered the larger interval
ω & 0.8. Since ηq = 0.727(6) for ω = 0.8, we end up with
the final estimate ηq = 0.74(2). The quality fo the fit is
excellent, see Fig. 16.
In conclusion, the numerical results for N = 4 and

N = 10 allow us to conclude that

4 < Nℓ < 10 . (39)

A more precise determination of Nℓ would require a sub-
stantially bigger computational effort, so that we do not
pursue this issue further.
The upper bound on Nℓ provides an upper bound on

the number Nc, the smaller value of N for which the
3D AH field theory has a stable fixed point, as discussed
in Sec. III A. If we assume that the transitions observed
for N ≥ 10 can all be associated with the field theory
stable fixed point—we provided evidence for that in the
previous sections—we can conclude that

Nc < 10 . (40)

−1.5 −1.0 −0.5 0.0 0.5 1.0
(J-Jc)L

1/ν
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L=64

0.0 0.1 0.2 0.3 0.4 0.5
Rξ

0.0
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χLη
q
-2

L=16
L=32
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L=64

FIG. 16: Top: Plot of Rξ versus (J − Jc)L
1/ν ; we use Jc =

0.32187 and ν = 0.64. Bottom: Plot of χLηq−2 versus Rξ; we
use ηq = 0.74. Results for the N = 10 lattice AH model at
κ = 0.4, for several lattice sizes up to L = 64.

On the other hand the lower bound on Nℓ cannot be
straightforwardly extended to Nc. Indeed, the evidence
of a first-order transition for a lattice model does not
exclude the possibility that the corresponding field theory
has a stable fixed point, since the given lattice model
might be outside its attraction domain. We finally note
that the bound Eq. (40) is in substantial agreement with
the estimate Nc = 12.2(3.9) obtained by the analysis of
the four-loop ε expansion [41], mentioned in Sec. III A.

VI. CONCLUSIONS

We have investigated the phase diagram and nature
of the phase transitions of the 3D multicomponent lat-
tice AH model with noncompact gauge fields. Our study
confirms the existence of significant differences with the
lattice AH model with compact gauge fields, both for
small and large N [36]. As sketched in Fig. 1, the phase
diagram of the noncompact model with N ≥ 2 is gen-
erally characterized by three phases: (i) the Coulomb
phase, where the global SU(N) symmetry is unbroken
and the electromagnetic correlations are long-ranged;
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(ii) the Higgs phase, where the local bilinear operator
Qx [cf. Eq. (8)] condenses, breaking the global SU(N)
symmetry, and electromagnetic correlations are gapped;
(iii) a mixed molecular phase, where the local bilinear
Qx condenses, but the electromagnetic field remains un-
gapped. We recall that the phase diagram of the com-
pact lattice AH model presents only two phases. They
are characterized by the condensation of the bilinear op-
erator Qx, while gauge fields are always in the confined
phase [36].

We have studied in detail the Coulomb-to-Higgs tran-
sition line that ends at the O(2N) transition point for
κ = ∞ (i.e., for vanishing gauge coupling), and the
Coulomb-to-molecular transition line that ends at the
CPN−1 transition. Transitions along the CH line, if con-
tinuous, are expected to be associated with the stable
fixed point of the RG flow of the continuum AH model
(1). On the other hand, transitions along the CM line
should be described by the LGW theory (20), because
gauge correlations do not play a relevant role.

We summarize the behavior along the three transition
lines as follows:

(i) The CH transitions separating the Coulomb and Higgs
phases are weak first-order transitions for N = 2. The
same behavior is expected for sufficiently small N . In-
deed, a first-order transition is observed for N = 4. As N
increases, the transitions become continuous, at least not
too close to the multicritical point. We observe contin-
uous transitions for N ≥ 10. The corresponding critical
behavior turns out to belong to the universality class of
the stable fixed point of the continuum AH field theory,
which predicts a continuous transition only for a large
number of components, and in particular in the large-N
limit. Our numerical results provide a bound on the num-
ber Nc defined in Sec. III A, which separates the small-N
first-order transition regime from the large-N continuous
transition regime predicted by the 3D AH field theory.
We obtain the upper bound Nc < 10. If we further as-
sume that the absence of continuous transitions along the
CH transition line of the model considered in this paper
corresponds to the absence of stable fixed points of the
continuum AH field theory, we may conclude that Nc

belongs to the interval 4 < Nc < 10.

(ii) For N = 2 the CM transitions separating the
Coulomb and molecular phase are continuous and be-
long to the O(3) vector universality class, as predicted
by the LGW theory (20), for sufficiently small values of
the inverse gauge coupling κ. As κ increases along the
CM line, the transition should eventually become of first
order, as all transitions are expected to be of first order
close to the multicritical point. For N ≥ 3, the CM tran-
sitions are expected to be of first order, as predicted by
the LGW theory.

(iii) The transitions along the MH line are expected to be
continuous, and to belong to the XY universality class,
at least for sufficiently large values of the parameter J .
However, we have not presented results along this tran-
sition line.

The identification of the large-N continuous CH tran-
sitions with the universality class of the stable fixed point
of the AH model is strongly supported by the excellent
agreement of the numerical results for the critical expo-
nent ν and η with the predictions obtained using the 1/N
expansion within the continuum AH model. For instance,
for N = 25 we find ν = 0.802(8) and ηq = 0.883(7), to
be compared with the large-N estimates ν = 0.805 and
ηq = 0.870. As far as we know, this is the first quantita-
tive evidence of such a correspondence.
It is worth comparing these results with those re-

ported in Ref. [18] for a lattice CPN−1 model with-
out monopoles. Numerical results for the monopole-free
CPN−1 model provided clear evidence of a continuous
transition for N = 25 [56], at variance with what hap-
pens in the standard CPN−1, where the transition is dis-
continuous for any N ≥ 3. Ref. [18] conjectured that
the transition for N = 25 in the monopole-free model
might be associated with the large-N stable fixed point
of the continuum AH field theory. The results of the
present paper rule out this conjecture. The estimate of
the critical exponent [18] ν = 0.595(15) for the N = 25
monopole-free model definitely disagrees with the result
ν = 0.802(8) obtained for the N = 25 noncompact lattice
AH model, which is instead in agreement with the large-
N expansion of the continuum AH field theory. Thus, we
conclude that transitions of the large-N monopole-free
CPN−1 model are not described by the continuum AH
field theory. It is tempting to conjecture that the reason
of the difference is in the nature of the coexisting phases
at the transition. The AH field theory is appropriate
to describe transitions between a Coulomb and a Higgs
phase, but it is not appropriate to describe the transition
in the monopole-free CPN−1 model. Indeed, in the latter
case no Higgs phase exists: a disordered monopole-free
high-temperature phase coexists with a molecular phase
in which electromagnetic modes are still ungapped.

Acknowledgement. Numerical simulations have been
performed on the CSN4 cluster of the Scientific Comput-
ing Center at INFN-PISA.

Appendix A: C∗ boundary conditions

We wish now to discuss the role that boundary con-
ditions play in noncompact formulations. We consider
a finite system of size L in all directions. As already
discussed in Sec. II, the partition function defined in
Eq. (7) is ill-defined: Z = ∞ for any L, because of
gauge invariance. A standard way out consists in con-
sidering only gauge-invariant observables and in intro-
ducing a gauge fixing that eliminates all zero modes. Let
us indicate symbolically with G[Ax,µ] = 0 a maximal
gauge fixing: if {Ax,µ} is a configuration that satisfies the
gauge-fixing condition, there is no gauge transformation
such the gauge-transformed configuration also satisfies
the gauge-fixing condition. Considering a gauge invari-
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ant operator B, one can hope to obtain a well-defined
average value by defining

〈B〉 =
∑

Az B δ(G) e−βH

∑
Az δ(G) e−βH

. (A1)

Unfortunately, in the case of periodic boundary condi-
tions, also this expression in ill-defined.
To clarify this issue, let us first consider the gauge

Hamiltonian Hg, Eq. (6). It is invariant under the local
gauge transformation

A[α]
r,µ = Ar,µ + α(r + µ̂)− α(r) , (A2)

where α(r) is an arbitrary function satisfying periodic
boundary conditions. The Hamiltonian Hg, however, is
also invariant under the shift

Ar,µ → Ar,µ + cµ , (A3)

where cµ is a direction-dependent constant. To clarify
the role played by the shift (A3), it is convenient to intro-
duce the noncompact Polyakov loop along the direction
µ, defined by

Pr⊥,µ =

L∑

i=1

A(i,r⊥),µ . (A4)

A generic point r is denoted with (i, r⊥) where rµ = i,
and r⊥ stands for the components of r different from the
µ-th one. It is immediate to verify that the noncompact
Polyakov loop is gauge invariant, while

Pr⊥,µ → Pr⊥,µ + Lcµ (A5)

under the transformation (A3). This shows that the shift
transformation cannot be rewritten as a gauge transfor-
mation. As a consequence there are three zero modes
that cannot be eliminated by the introduction of a gauge
fixing. Therefore, in the absence of the spin variables,
also Eq. (A1) is ill-defined.
The transformation (A3) is also present in compact for-

mulations. It corresponds to λx,µ → λx,µe
icµ . However,

in this case the integration domain is compact and, there-
fore, zero modes do not make average values ill-defined.
This is obviously also the case of gauge transformations
and, indeed, in the compact case no gauge fixing is needed
to define rigorously the model.
The shift symmetry is broken when the spin fields zx,µ

are added. However, because the gauge coupling of the
spins is obtained through the fields λx,µ, transformations
such that eicµ = 1, leave the full Hamiltonian invariant.
Therefore, the infinite discrete subgroup of transforma-
tions

Ar,µ → Ar,µ + 2πnµ , nµ ∈ Z , (A6)

is an invariance of the model, making expressions like
Eq.(A1) ill-defined. An identical problem is encoun-
tered in lattice Quantum Chromodynamics when study-
ing the electromagnetic properties of hadrons using a

noncompact formulation for the photon field (see, e.g.,
Refs. [84, 85]).
To solve the problems mentioned above, we now dis-

cuss the C∗ boundary conditions proposed in Ref. [38].
For the system studied in this work, the C∗ boundary
conditions are defined by the relations

Ar+Lν̂,µ = −Ar,µ , zr+Lν̂ = z̄r . (A7)

For consistency with Eq. (A7), the function α(r) entering
local gauge transformations

A[α]
r,µ = Ar,µ + α(r + µ̂)− α(r)

z
[α]
r

= exp[−iα(r)]zr
(A8)

has to satisfy antiperiodic boundary conditions

α(r + Lν̂) = −α(r) . (A9)

Moreover, from the relation zr+Lν̂ = z̄r it follows that
the global U(1) symmetry is explicitly broken down to
its Z2 subgroup:

A[α]
r,µ = Ar,µ , z

[α]
r

= szr , (A10)

with s = ±1. Note that C∗ boundary conditions do
not break translational invariance, but care should be
taken when performing Fourier transforms. For instance,
the field Qab is periodic, while the plaquette operator is
antiperiodic.
We will now show how to rewrite the previous condi-

tions using only the fields that belong to the cubic lat-
tice [1, L]3, changing the form of the Hamiltonian for the
sites and links close to the boundary. This is necessary
for the MC implementation. Let us first consider the
gauge transformations: the transformation law of the
scalar fields in (A8) does not require any modification,
just like the transformation rule of the gauge field when
r + µ̂ ∈ [1, L]3. The gauge transformation of the fields
Ar,µ on the boundary of the cube can instead be rewrit-
ten, using the anti-periodicity of α(r), in the form

A
[α]
1 (L, a, b) = A1(L, a, b)− α(1, a, b)− α(L, a, b)

A
[α]
2 (a, L, b) = A2(a, L, b)− α(a, 1, b)− α(a, L, b)

A
[α]
3 (a, b, L) = A3(a, b, L)− α(a, b, 1)− α(a, b, L)

(A11)
where a, b ∈ [1, L].
The interaction term Hz in Eq. (3) is written as a sum

of terms which, for sites in the bulk of the lattice, are
proportional to

hµ(r) = z̄(r)λµ(r)z(r + µ̂) + c.c. . (A12)

For sites on the boundary of the lattice instead, the in-
teractions can be written as

h1(L, a, b) = z̄(L, a, b)λ1(L, a, b)z̄(1, a, b) + c.c.

h2(a, L, b) = z̄(a, L, b)λ2(a, L, b)z̄(a, 1, b) + c.c.

h3(a, b, L) = z̄(a, b, L)λ3(a, b, L)z̄(a, b, 1) + c.c.

(A13)
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These are the terms that explicitly break the global U(1)
invariance. They are still gauge invariant, due to the
different gauge transformations that are applied on the
field Ar,µ on the boundary.
The noncompact gauge interaction term Hg in (6) is

written as a sum of terms involving the noncompact pla-
quette operator, which for sites in the bulk of the lattice
can be written as

Πµν(r) = [Aµ(r) +Aν(r + µ̂)−Aµ(r + ν̂)−Aν(r)]
2
.

(A14)
For plaquettes on the boundaries this expression has to
be changed and we provide here explicit expressions for
the case case (µ, ν) = (1, 2) (the other two cases are com-
pletely analogous). For a ∈ [1, L) and b ∈ [1, L] we have
to use

Π12(L, a, b) = [A1(L, a, b)−A2(1, a, b)

− A1(L, a+ 1, b)−A2(L, a, b)]
2

Π12(a, L, b) = [A1(a, L, b) +A2(a+ 1, L, b)

+ A1(a, 1, b)−A2(a, L, b)]
2

Π12(L,L, b) = [A1(L,L, b)−A2(1, L, b)

+ A1(L, 1, b)−A2(L,L, b)]
2
,

(A15)

which are easily shown to be gauge invariant.
Let us now show that C∗ boundary conditions elimi-

nate the shift symmetry that makes periodic boundary
conditions ill-defined. Indeed, in the C∗ case, Polyakov
loops are not gauge invariant. Using for definiteness the
Polyakov loop in the ẑ direction, i.e.,

P3(x, y) =

L∑

z=1

A3(x, y, z), (A16)

we have

P
[α]
3 (x, y) = P3(x, y)− 2α(x, y, 1) . (A17)

A simple consequence of this fact is that, by means of
local gauge transformations, we can enforce A3(r) = 0
for all points, obtaining the maximal temporal gauge
(this is obviously not possible when using periodic bound-
ary conditions, since Polyakov loops are gauge invariant
in that case). The algorithm to implement the maxi-
mal temporal gauge is the following. We first perform a
gauge transformation with α(x, y, 2) = −A3(x, y, 1) and
α(x, y, z) = 0 for z 6= 2 (this fixes A3(x, y, 1) = 0),
then we use a gauge transformation with α(x, y, 3) =
−A3(x, y, 2) and α(x, y, z) = 0 for z 6= 3 and so on, until

we reach the plane z = L. At this point only A3(x, y, L)
is not vanishing and we perform a transformation with
α(x, y, z) = A3(x, y, L)/2 (the same for all z values).
To conclude the proof that C∗ boundary conditions

make the gauge-fixed theory well-defined, let us show
that, once the maximal temporal gauge is introduced,
there is a unique minimum of the gauge Hamiltonian Hg,
confirming the absence of dangerous zero modes. Start-
ing from

Π13(x, y, 1) = [A1(x, y, 1)−A1(x, y, 2)]
2 (A18)

we obtain by minimization A1(x, y, 2) = A1(x, y, 1) for
all x, y. If we now consider Π13(x, y, 2), we obtain in
the same way A1(x, y, 3) = A1(x, y, 2), and repeating the
same procedure for Π13(x, y, z) with 1 ≤ z ≤ L−1, we get
A1(x, y, z) = A1(x, y, 1) for all x, y, z. The minimization
of the boundary plaquette

Π13(x, y, L) = [A1(x, y, 1) +A1(x, y, L)]
2

= 4A1(x, y, 1)
2

(A19)

finally implies A1(x, y, 1) = 0, hence A1(x, y, z) = 0 for
all x, y, z. Using Π23 instead of Π13 the same argument
shows that A2(x, y, z) = 0. We have therefore proved
that, at variance with the case of periodic boundary con-
ditions, when using C∗ boundary conditions, there is a
single configuration (up to gauge transformations) that
minimize the gauge Hamiltonian: no gauge-invariant zero
modes are present.
To conclude the appendix, let us go back to the ques-

tion of the gauge fixing. We have proved that the statisti-
cal averages are well defined provided that C∗ boundary
conditions and a maximal gauge fixing are used. How-
ever, in the simulation we have not introduced any gauge
fixing. We wish now to explain why the gauge fixing
is irrelevant in MC calculations of gauge-invariant ob-
servables. Let us collectively call φt the fields we have
generated at MC time t. There is obviously a gauge

transformation that maps φt onto new fields φ
[α]
t that

satisfy the gauge fixing condition: the correspondence

between φt and φ
[α]
t is unique. Therefore, the dynamics

φ1 → φ2 → φ3 . . . can be mapped onto the dynamics

φ
[α]
1 → φ

[α]
2 → φ

[α]
3 . . .. Thus, even if we do not imple-

ment the gauge-fixing condition, gauge-invariant quanti-
ties take the same values as if they were obtained in a
simulation in the gauge-fixed model. This is, of course,
not true for non-gauge-invariant quantities: for instance,
the fields Ax,µ perform a random walk and their absolute
values increase with time: their averages are not defined.
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the SU(N) Néel to Valence-Bond Solid Quantum Phase
Transition at Large N , Phys. Rev. Lett. 108, 137201
(2012).

[6] M. S. Block, R. G. Melko, and R. K. Kaul, Fate of
CPN−1 fixed point with q monopoles, Phys. Rev. Lett.
111, 137202 (2013).

[7] A. Nahum, J. T. Chalker, P. Serna, M. Ortuǹo, and A.
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Bond-Solid Transition on the Honeycomb Lattice: Evi-
dence for Deconfined Criticality, Phys. Rev. Lett. 111,
087203 (2013).

[16] H. Shao, W. Guo, and A. W. Sandvik, Quantum critical-
ity with two length scales, Science 352, 213 (2016).

[17] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath,
and M. P. A. Fisher, Quantum Criticality beyond the
Landau-Ginzburg-Wilson Paradigm, Phys. Rev. B 70,
144407 (2004).

[18] A. Pelissetto and E. Vicari, Three-dimensional
monopole-free CPN−1 models, Phys. Rev. E 101,
062136 (2020).

[19] O. I. Motrunich and A. Vishwanath, Emergent photons
and transitions in the O(3) σ-model with hedgehog sup-
pression, Phys. Rev. B 10, 075104 (2004).

[20] G. Murthy and S. Sachdev, Actions of hedgehogs instan-
tons in the disordered phase of 2+1 dimensional CPN−1

model, Nucl. Phys. B 344, 557 (1990).
[21] A. B. Kuklov, N. V. Prokof’ev, B. V. Svistunov, and M.

Troyer, Deconfined criticality, runaway flow in the two-
component scalar electrodynamics and weak first-order

superfluid-solid transitions, Ann. Phys. 321, 1602 (2006).
[22] O. I. Motrunich and A. Vishwanath, Comparative study

of Higgs transition in one-component and two-component
lattice superconductor models, arXiv:0805.1494 [cond-
mat.stat-mech]

[23] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B.
V. Svistunov, and M. Troyer, Deconfined Criticality:
Generic First-Order Transition in the SU(2) Symmetry
Case, Phys. Rev. Lett. 101, 050405 (2008).

[24] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B.
V. Svistunov, and M. Troyer, Comment on “Com-
parative study of Higgs transition in one-component
and two-component lattice superconductor models”,
arXiv:0805.2578 [cond-mat.stat-mech].

[25] D. Charrier, F. Alet, and P. Pujol, Gauge Theory Picture
of an Ordering Transition in a Dimer Model, Phys. Rev.
Lett. 101, 167205 (2008).

[26] J. Lou, A. W. Sandvik, and N. Kawashima, Anti-
ferromagnetic to valence-bond-solid transitions in two-
dimensional SU(N) Heisenberg models with multispin in-
teractions, Phys. Rev. B 80, 180414 (2009).

[27] G. Chen, J. Gukelberger, S. Trebst, F. Alet, and L. Ba-
lents, Coulomb gas transitions in three-dimensional clas-
sical dimer models, Phys. Rev. B 80, 045112 (2009).

[28] D. Charrier and F. Alet, Phase diagram of an extended
classical dimer model, Phys. Rev. B 82, 014429 (2010).

[29] A. Banerjee, K. Damle, and F. Alet, Impurity spin tex-
ture at a deconfined quantum critical point, Phys. Rev.
B 82, 155139 (2010).

[30] L. Bartosch, Corrections to scaling in the critical theory
of deconfined criticality, Phys. Rev. B 88, 195140 (2013).

[31] T. A. Bojesen and A. Sudbo, Berry phases, current lat-
tices, and suppression of phase transitions in a lattice
gauge theory of quantum antiferromagnets, Phys. Rev.
B 88, 094412 (2013).

[32] A. Nahum, P. Serna, J. T. Chalker, M. Ortuǹo, and
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