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A TWO-PHASE PROBLEM WITH ROBIN CONDITIONS

ON THE FREE BOUNDARY

by Serena Guarino Lo Bianco, Domenico Angelo La Manna
& Bozhidar Velichkov

Abstract. —We study for the first time a two-phase free boundary problem in which the
solution satisfies a Robin boundary condition. We consider the case in which the solution is
continuous across the free boundary and we prove an existence and a regularity result for
minimizers of the associated variational problem. Finally, in the appendix, we give an example
of a class of Steiner symmetric minimizers.

Résumé (Un problème à frontière libre à deux phases avec conditions au bord de Robin)
Nous étudions pour la première fois un problème à frontière libre à deux phases pour lequel

la solution satisfait à une condition de Robin au bord. Nous considérons le cas où la solution est
continue au bord et nous montrons un résultat d’existence et de régularité pour les minimiseurs
du problème variationnel associé. Enfin, nous donnons dans l’appendice un exemple d’une classe
de minimiseurs avec une symétrie de Steiner.
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1. Introduction

For a fixed a constant β > 0 and a smooth bounded open set D ⊂ Rd, d > 2,
we consider the functional

Jβ(u,Ω) =

∫
D

|∇u|2 dx+ β

∫
∂∗Ω

u2 dHd−1,

defined on the pairs (u,Ω), where u ∈ H1(D), Ω ⊂ Rd is a set of finite perimeter in
the sense of De Giorgi (see Section 2) and ∂∗Ω denotes the reduced boundary of Ω

(see Section 2); when Ω is smooth, ∂∗Ω is the topological boundary of Ω.
In this paper we study the existence and the regularity of minimizers of the func-

tional Jβ among all pairs (u,Ω), which are fixed outside the domain D. Precisely,
throughout the paper, we fix a set E ⊂ Rd of finite perimeter, a constants m > 0 and
a function

v ∈ H1
loc(Rd) such that v > m in Rd and

∫
∂∗E

v2 dHd−1 < +∞ ;

we define the admissible sets

V =
{
u ∈ H1

loc(Rd) : u− v ∈ H1
0 (D)

}
,

E =
{

Ω ⊂ Rd : Per(Ω) < +∞ and Ω = E in Rd rD
}
,

and we consider the variational minimization problem

(1.1) min
{
Jβ(u,Ω) : u ∈ V, Ω ∈ E

}
.

Our main result is the following.

Theorem 1.1 (Existence and regularity of minimizers). — Let β>0, D⊂Rd, v, E, V
and E be as above. Then the following holds.

(i) There exists a solution (u,Ω) ∈ V × E to the variational problem (1.1).
(ii) For every solution (u,Ω) of (1.1), u is Hölder continuous and bounded from

below by a strictly positive constant in D.
(iii) If (u,Ω) is a solution to (1.1), then the free boundary ∂Ω∩D can be decomposed

as the disjoint union of a regular part Reg(∂Ω) and a singular part Sing(∂Ω), where:
– Reg(∂Ω) is a C∞ hypersurface and a relatively open subset of ∂Ω, and the

function u is C∞ smooth on Reg(∂Ω);
– Sing(∂Ω) is a closed set, which is empty if d 6 7, discrete if d = 8, and of

Hausdorff dimension d− 8, if d > 8.

Remark 1.2. — We notice that if (u,Ω) is a solution to (1.1), then u is harmonic in the
interior of Ω and DrΩ. Thus, as a consequence of Theorem 1.1(iii), in a neighborhood
of a regular point x0 ∈ Reg(∂Ω), the functions u : Ω→ R and u : D r Ω→ R are C∞
up to the free boundary ∂Ω.
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A two-phase problem with Robin conditions on the free boundary 3

1.1. Outline of the proof and organization of the paper. — The main difficulty
in the proof of Theorem 1.1 is to prove the existence of a minimizing pairs (u,Ω)

and to show that the function u is Hölder continuous and bounded from below by a
strictly positive constant in D. The almost-minimality of the solutions is proved in
Theorem 5.1. Finally, in the Appendix, we give examples of minimizers in domains D
symmetric with respect to the hyperplane {xd = 0}.

1.1.1. Existence. — The existence of a solution (u,Ω) and the regularity of u (Hölder
regularity and non-degeneracy) are treated simultaneously. The reason is that if
(un,Ωn) is a minimizing sequence for (1.1), then in order to get the compactness
of Ωn, we need a uniform bound (from above) on the perimeter Per(Ωn), for which
we need the functions un to be bounded from below by a strictly positive constant.
Now, notice that we cannot simply replace un by un ∨ ε, for some ε > 0; this is due
to the fact that the second term in Jβ is increasing in u:∫

∂∗Ωn

u2
n dHd−1 6

∫
∂∗Ωn

(ε ∨ un)2 dHd−1.

Thus, we select a minimizing sequence which is in some sense optimal. Precisely, we
take (un,Ωn) to be solution of the auxiliary problem

(1.2) min
{
Jβ(u,Ω) : u ∈ V, Ω ∈ E , u > 1/n in D

}
,

for which the existence of an optimal set is much easier (see Section 3, Proposition 3.1).
Still, we do not have a uniform (independent from n) bound from below for the
functions un, so we still miss the uniform bound on the perimeter of Ωn.

On the other hand, we are able to prove that the sequence un is uniformly Hölder
continuous in D (see Section 3, Lemma 3.5). This enables us to extract a subse-
quence un that converges locally uniformly in D to a non-negative Hölder continuous
function u∞ : D → R (see Section 4). Now, on each of the sets {u∞ > t}, t > 0,
the sequence Ωn has uniformly bounded perimeter. This enables us to extract a sub-
sequence Ωn that converges pointwise almost-everywhere on {u∞ > 0} to some Ω∞.
Thus, we have constructed our candidate for a solution: (u∞,Ω∞).

In order to prove that (u∞,Ω∞) is an admissible competitor in (1.1), we need to
show that Ω∞ has finite perimeter. We do this in Section 4. We first use the optimality
of (un,Ωn) to prove that (u∞,Ω∞) is optimal when compared to a special class of
competitors. This optimality condition can be written as (we refer to Lemma 4.1 for
the precise statement):

(1.3) Jβ(u∞,Ω∞) 6 Jβ(ut,Ωt), where ut = u∞ ∨ t and Ωt = Ω∞ ∪ {u∞ 6 t},

for any t > 0. Next, from this special optimality condition we deduce that the func-
tion u∞ is bounded from below by a strictly positive constant (see Proposition 4.2).
From this, in Section 4, we deduce that Ω∞ has finite perimeter in Rd and that the
pairs (u∞,Ω∞) is a solution to (1.1).

J.É.P. — M., 2021, tome 8



4 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

1.1.2. Hölder continuity and non-degeneracy of u. — Let now (u,Ω) be any solution
of (1.1). In order to prove the Hölder continuity and the non-degeneracy of u it is
sufficient to exploit some of the estimates that we already used to prove the existence.
Indeed, we can test the optimality of (u,Ω) with the competitors from (1.3). Thus,
for t > 0 small enough, we have

(1.4) Jβ(u,Ω) 6 Jβ(ut,Ωt) where ut = u ∨ t and Ωt = Ω ∪ {u 6 t}.

In particular,∫
D

|∇u|2 dx+ β

∫
∂∗Ω

u2 6
∫
D

|∇(u ∨ t)|2 dx+ β

∫
∂∗(Ω∪{u<t})

u2

6
∫
D

|∇(u ∨ t)|2 dx+ βt2 Per({u < t}) + β

∫
{u>t}∩∂∗Ω

u2,

which proves that u satisfies the optimality condition (4.1) from Lemma 4.1:

(1.5)
∫
{u<t}

|∇u|2 dx 6 β t2 Per
(
{u < t}

)
.

Now, applying Proposition 4.2, we get that u is bounded from below by a strictly
positive constant in D. Finally, Proposition 3.5 gives that u is Hölder continuous
in D. This proves Theorem 1.1(iii).

1.1.3. Regularity of the free boundary. — In order to prove the regularity of the free
boundary (Theorem 1.1(iii)), we use the Hölder continuity and the non-degeneracy
of u to show that a solution Ω is an almost-minimizer of the perimeter. We do this in
Theorem 5.1. Now, from the classical regularity theory for almost-minimizers of the
perimeter (see [8]), we obtain that (insideD) the free boundary ∂Ω can be decomposed
into a C1,α-regular part Reg(∂Ω) and a (possibly empty) singular part of Hausdorff
dimension smaller than d− 8.

Finally, in Theorem 5.2, we prove the C∞ regularity of Reg(∂Ω). In order to do so,
we first show (see Lemma 5.3) that in a neighborhood of a regular point x0, the
restrictions u+ and u− of u on Ω and DrΩ are solutions of the following transmission
problem: 

∆u+ = 0 in Ω,

∆u− = 0 in D r Ω,

u+ = u− = u on ∂Ω,
∂u+

∂νΩ
− ∂u−
∂νΩ

+ 2βu = 0 on ∂Ω,

where νΩ is the normal derivative to ∂Ω. Now, using the recent results [4] and [5],
we get that u+ and u− are as regular as the free boundary ∂Ω (see Lemma 5.4).
On the other hand, using variations of u along smooth vector fields, we obtain that
Reg(∂Ω) solves an equation of the form

“Mean curvature of ∂Ω" = F (∇u+,∇u−, u±) on ∂Ω,

J.É.P. — M., 2021, tome 8



A two-phase problem with Robin conditions on the free boundary 5

where F is an explicit (rational) function of∇u± and u. In particular, this implies that
∂Ω gains one more derivative with respect to u, that is, u ∈ Ck,α ⇒ ∂Ω ∈ Ck+1,α.
Thus, by a bootstrap argument, the regular part of the free boundary is C∞.

1.2. On the non-degeneracy of the solutions. — We notice that the competitors
(ut,Ωt) in (1.3) are the two-phase analogue of the ones used by Caffarelli and
Kriventsov in [3], where the authors study a one-phase version of (1.1). Nevertheless,
the functional in [3] involves the measure of Ω, which means that the optimality
condition there corresponds to

Jβ(u,Ω) + C|Ω ∩ {u 6 t}| 6 Jβ(ut,Ωt), where ut = u ∨ t and Ωt = Ω r {u 6 t},

where C > 0. The presence of the constant C enables us to prove the bound from
below by using a differential inequality for a suitably chosen function f(t), which is
given in terms of u and {u < t} (see Proposition 4.2 and [3, Th. 3.2]). In Proposition
4.2, we exploit the same idea, but since we do not have the constant C, we can only
conclude that f(t) > εt (which is not in contradiction with the fact that f(t) is defined
for every t > 0). So, we continue, and we use this lower bound to obtain a bound of
the form

(1.6) c 6 β1/2Per({u < t})1/2|{u < t}|1/2 for every t > 0,

where u := u∞ and c is a constant depending on β and d. Then, we notice that this
entails

c 6 β3/4Per({u < t})1/4|{u < t}|3/4 for every t > 0.

and we use an iteration procedure to get that

c 6 β1−1/2nPer({u < t})1/2n |{u < t}|1−1/2n for every t > 0.

Passing to the limit as n→∞, we get that if u is not bounded away from zero, then

(1.7) c 6 β|{u < t}| 6 β|D| for every t > 0.

Now, this means that the measure of the zero-set |{u = 0}| is bounded from below.
Thus, using again the optimality of u, we get that (1.6) holds with an arbitrary small
ε > 0 in place of β, we get that

c 6 ε|{u < t}| for every t > 0,

which is impossible.
A similar non-degeneracy result was proved by Bucur and Giacomini in [1] by

a De Giorgi iteration scheme(1). Precisely, one can prove that any solution to (1.1)
satisfies the optimality condition from [1, Rem. 3.7]. Thus, [1, Th. 3.5] also applies
to the solutions of (1.1). Conversely, the argument from 4.2 can be applied to the
minimizers of [1] to obtain the bound from below of [1, Th. 3.5].

(1)We are grateful to the anonymous referee for bringing to our attention the reference [1].
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1.3. One-phase and two-phase problems with Robin boundary conditions

The problem (1.1) is the first instance of a two-phase free boundary problem with
Robin boundary conditions. Precisely, we notice that if Ω is a fixed set with smooth
boundary and if u minimizes the functional Jβ(·,Ω) in H1(D), then the functions

u+ := u on Ω and u− := u on D r Ω,

are harmonic in Ω and D r Ω, and satisfy the following conditions:

(1.8) u+ = u− and
(∂u+

∂ν+
+
β

2
u+

)
+
(∂u−
∂ν−

+
β

2
u−

)
= 0 on ∂Ω ∩D,

where ν+ and ν− are the exterior and the interior normals to ∂Ω. Notice that (1.8) is
a two-phase counterpart of the one-phase problem

(1.9) ∆u = 0 in Ω,
∂u

∂ν
+ βu = 0 on ∂Ω ∩D,

which was studied by Bucur-Luckhaus in [2] and Caffarelli-Kriventsov in [3].
As explained in [3], the Robin condition in (1.9) naturally arises in the physical
situation in which the heat diffuses freely in Ω, the temperature is set to be zero on
the surface ∂Ω, which is separated from the interior of Ω by an infinitesimal insulator.
The two-phase problem (1.8) also may be interpreted in this way, in this case the
heat diffuses freely both inside Ω and outside, in D r Ω; the temperature is set to
be zero on the surface ∂Ω, which is insulated from both sides; the continuity of the
temperature means that the heat transfer is allowed also across ∂Ω, which happens
for instance if the surface ∂Ω is replaced by a very thin (infinitesimal) net.

Even if the problems in [2, 3] and in the present paper lead to the free boundary
conditions of the same type, the techniques are completely different. For instance,
the problem studied in [2, 3] is a free discontinuity problem as the function u jumps
from positive in Ω to zero in DrΩ. Thus, the corresponding variational minimization
problem can be naturally stated in the class of SBV functions, which clearly influences
both the existence and the regularity techniques; roughly speaking, the existence is
obtained through a compactness theorem in the SBV class, while the regularity relies
on techniques related to the Mumford-Shah functional.

In our case, the problem can be stated for the functions (u1, u2) with disjoint
supports (u1u2 = 0 almost-everywhere in D) which satisfy the following constraints:
the sum u1 + u2 should be a Sobolev function (this corresponds to the continuity
condition in (1.8)); u2

1 and u2
2 are SBV functions whose jump sets are contained in

the boundary of the positivity sets {u1 > 0} and {u2 > 0}. Now, it is reasonable to
expect that an existence result can be proved also in this class, but then, in order to
prove that a solution to (1.1) exists, one should show that u1 and u2 are of the form
u1 = u1Ω and u2 = u1DrΩ for a set of finite perimeter Ω ⊂ Rd, u being the sum
u1 + u2. Summarizing, working in the class of SBV functions would allow to state
(1.1) in a weaker form, but it doesn’t seem to be a shortcut to the existence of a
solution (of (1.1)) as it will require the analysis of the jump sets of the optimal pairs

J.É.P. — M., 2021, tome 8



A two-phase problem with Robin conditions on the free boundary 7

in the SBV class. Thus, we prefer not to rely on the advanced compactness results for
SBV functions, but to prove the existence of a solution from scratch.

Finally, as explained in Section 1.1, once we know that an optimal pairs (u,Ω)

exists, and that u is non-degenerate and Hölder continuous, the regularity of the free
boundary ∂Ω follows immediately since the set Ω becomes an almost-minimizer of the
perimeter.

2. Preliminaries

2.1. Sets of finite perimeter. — Let A ⊂ Rd be a an open set in Rd. We recall that
the set E ⊂ Rd is said to have a finite perimeter in A if

(2.1) Per(E,A) = sup
{∫

A

div ξ(x) dx : ξ ∈ C1
c (A;Rd), sup

x∈Rd
|ξ(x)| 6 1

}
is finite. We say that E has a locally finite perimeter in A, if for every open set B ⊂ Rd

such that B ⊂ A, we have that Per(E,B) <∞. We say that E is of finite perimeter if
Per(E) := Per(E,Rd) < +∞.

By the De Giorgi structure theorem (see for instance [7, Th. II.4.9]), if the set E ⊂ Rd

has locally finite perimeter in A, then there is a set ∂∗E ⊂ A ∩ ∂E called reduced
boundary such that

Per(E,B) = Hd−1(B ∩ ∂∗E) for every set B b A,

where Hd−1 is the (d − 1)-dimensional Hausdorff measure in Rd. Moreover, there is
a Hd−1-measurable function νE : ∂∗E → Rd, called generalized normal such that
|νE | = 1 and∫

E

div ξ(x) dx =

∫
∂∗E

νE · ξ dHd−1 for every ξ ∈ C1
c (A;Rd).

2.2. Capacity and traces of Sobolev functions. — We define the capacity (or the
2-capacity) of a set E ⊂ Rd as

cap(E) = inf
{
‖u‖2H1(Rd) : u ∈ H1(Rd), u > 1 in a neighborhood of E

}
.

Suppose now that d > 3. It is well-known that the sets of zero capacity have zero
d− 1 dimensional Hausdorff measure (see for instance [6, §4.7.2, Th. 4]):

If cap(E) = 0, then Hd−1(E) = 0.

The Sobolev functions are defined up to a set of zero capacity (i.e., quasi-everywhere),
that is, if A ⊂ Rd is an open set and u ∈ H1(A), then there is a set Nu ⊂ Rd such
that cap (Nu) = 0 and

u(x0) = lim
r→0

1

|Br|

∫
Br(x0)

u(x) dx for every x0 ∈ ArNu.

Moreover, for every function u ∈ H1(A) there is a sequence un ∈ C∞(A) ∩ H1(A)

and a set N ⊂ A of zero capacity such that:
– un converges to u strongly in H1(A);
– u(x) = limn→∞ un(x) for every x ∈ Ar (N ∪Nu).

J.É.P. — M., 2021, tome 8



8 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

In particular, if E ⊂ Rd is a set of locally finite perimeter in the open set A ⊂ Rd and
if u ∈ H1(A), then the function u2 is defined Hd−1-almost everywhere on ∂∗E and is
Hd−1 measurable on ∂∗E. Thus, the integral

I(u,E) :=

∫
A∩∂∗E

u2 dHd−1 is well-defined.

As a consequence of the discussion above, we have the following proposition.

Proposition 2.1. — Let D be a smooth bounded open set in Rd and u ∈ H1(D) be a
Sobolev function. Then, there is a set Nu ⊂ D such that Hd−1(Nu) = 0 and

u(x0) = lim
r→0

1

|Br|

∫
Br(x0)

u(x) dx for every x0 ∈ D rNu.

Moreover, if E ⊂ Rd is a set of locally finite perimeter in Rd, then the function
u : ∂∗E ∩ D → R is defined Hd−1-almost everywhere and is Hd−1-measurable on
∂∗E ∩D. In particular, the integral I(u,D) is well-defined.

Remark 2.2. — In the case d = 2, (2.1) still holds. In fact, it is sufficient to notice
that if u ∈ H1(D), then u ∈W 1,p(D) for any 1 < p < 2. In particular, it is sufficient
to results from [6], this time in the space W 1,p(D), for p close to 2.

In the next subsection, we will go through the main properties of this functional,
which we will need in the proof of Theorem 1.1.

2.3. Properties of the functional I. — We first notice that we can use an integra-
tion by parts to write I as in (2.1).

Lemma 2.3. — Let E ⊂ Rd be a set of locally finite perimeter in the open set A ⊂ Rd

and let u ∈ H1(A) be locally bounded in A. Then, the following holds.
(i) For every ξ ∈ C1

c (A;Rd) we have

(2.2)
∫
A∩∂∗E

(ξ · νE)u2 dHd−1 =

∫
A

div(u2ξ) dx.

(ii) We have the formula
(2.3)∫

A∩∂∗E
u2 dHd−1 = sup

{∫
A∩∂∗E

(ξ · νE)u2 dHd−1 : ξ ∈ C1
c (A;Rd), |ξ| 6 1

}
.

Proof. — The first claim follows by a classical approximation argument with functions
of the form φn ∗ u, where φn is a sequence of mollifiers. In order to prove claim (ii),
we notice that∫

A∩∂∗E
u2 dHd−1 6 sup

{∫
A∩∂∗E

(ξ · νE)u2 dHd−1 : ξ ∈ C1
c (A;Rd), |ξ| 6 1

}
.

Thus, it is sufficient to find a sequence ξn ∈ C1
c (A;Rd), |ξn| 6 1, such that∫

A∩∂∗E
u2 dHd−1 = lim

n→∞

∫
A∩∂∗E

(ξn · νE)u2 dHd−1.

J.É.P. — M., 2021, tome 8



A two-phase problem with Robin conditions on the free boundary 9

Let An be a sequence of open sets such that An b A and 1An → 1A. Then∫
A∩∂∗E

u2 dHd−1 = lim
n→∞

∫
An∩∂∗E

u2 dHd−1.

Setting Mn = supAn u
2, we can find ξn ∈ C1

c (A;Rd) such that |ξn| 6 1, and

0 6 Per(E,An)−
∫
∂∗E

(ξn · νE) dHd−1 6
1

nMn
.

In particular, this implies that

0 6
∫
An∩∂∗E

u2 dHd−1 −
∫
An∩∂∗E

(ξn · νE)u2 dHd−1 6
1

n
,

which concludes the proof. �

Lemma 2.4 (Main semicontinuity lemma). — Suppose that A ⊂ Rd is a bounded open
set and that h : A → R is a non-negative function in L1(A). Let un ∈ H1(A) be a
sequence of functions and Ωn ⊂ Rd be a sequence of sets of locally finite perimeter
in A such that:

(a) 0 6 un 6 h in A, for every n ∈ N;
(b) there is a function u∞ ∈ H1(A) such that un converges to u∞ weakly in H1(A)

and pointwise almost-everywhere in A;
(c) there is a set Ω∞ ⊂ Rd of locally finite finite perimeter in A such that the se-

quence of characteristic functions 1Ωn converges to 1Ω∞ pointwise almost-everywhere
in A.

Then,

(2.4)
∫
A∩∂∗Ω∞

u2
∞ dHd−1 6 lim inf

n→∞

∫
A∩∂∗Ωn

u2
n dHd−1.

Proof. — Notice that, for every u∈H1(A) and every set of finite perimeter Ω, we have∫
A∩∂∗Ω

u2 dHd−1 = sup

{∫
A∩∂∗Ω

(ξ · νΩ)u2 dHd−1 : ξ ∈ C1
c (A;Rd), |ξ| 6 1

}
,

where νΩ denotes the exterior normal to ∂∗Ω. We use the notation

νn := νΩn and ν∞ := νΩ∞ .

Let now ξ ∈ C1
c (A;Rd), |ξ| 6 1 be fixed. By the divergence theorem, we have

lim inf
n→∞

∫
A∩∂∗Ωn

u2
n dHd−1 > lim inf

n→∞

∫
A∩Ωn

div
(
u2
nξ
)
dx = lim inf

n→∞

∫
A

1Ωndiv
(
u2
nξ
)
dx

= lim inf
n→∞

∫
A

(
2
(
un1Ωnξ

)
· ∇un +

(
un 1Ωn

)
(un div ξ)

)
dx

=

∫
A

(
2
(
u∞1Ω∞ξ

)
· ∇u∞ +

(
u∞ 1Ω∞

)
(u∞ div ξ)

)
dx

=

∫
A∩Ω∞

div
(
u2
∞ξ
)
dx =

∫
A∩∂∗Ω∞

(ξ · ν∞)u2
∞ dHd−1,
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10 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

where in order to pass to the limit we used that the sequence un1Ωn converges strongly
in L2

loc(A) to u∞1Ω∞ , as a consequence of the fact that it converges pointwise a.e. and
is bounded by h. Now, taking the supremum over ξ, we get (2.4). �

3. A family of approximating problems

We use the notations D,β,E, v, E ,V from Section 1. Moreover, we fix a constant

ε ∈ [0,m),

where m is the lower bound of the function v, and we consider the auxiliary problem

(3.1) min
{
Jβ(Ω, u) : Ω ∈ E , u ∈ V, u > ε in Rd

}
.

Proposition 3.1 (Existence of a solution). — Let E and V be as above. Then, for
every 0 < ε < m, there is a solution to the problem (3.1).

Proof. — Let (un,Ωn) be a minimizing sequence for (3.1). Since∫
D

|∇un|2 dx+

∫
∂∗Ωn

u2
n dHd−1 = Jβ(un,Ωn) 6 Jβ(v,E),

for every n ∈ N, we have∫
D

|∇un|2 dx 6 Jβ(v,E) and Per(Ωn) 6
1

βε2
Jβ(v,E).

Thus, there are subsequences un and Ωn such that:
– un converges strongly in L2(D), weakly in H1(D) and pointwise almost-

everywhere to a function u∞ ∈ H1(D);
– 1Ωn converges to 1Ω∞ strongly in L1(D) and pointwise almost-everywhere.

Moreover, we can assume that un 6 h on D, where h is the harmonic function:

∆h = 0 in D, h− v ∈ H1
0 (D).

Indeed, we have∫
D

|∇un|2 dx =

∫
D

|∇(un ∧ h)|2 +

∫
D

|∇(un ∨ h)|2 −
∫
D

|∇h|2

>
∫
D

|∇(un ∧ h)|2 dx,∫
∂∗Ω

u2
n dHd−1 >

∫
∂∗Ω

(un ∧ h)2 dHd−1,and

which gives that
Jβ(un ∧ h,Ωn) 6 Jβ(un,Ωn).

On the other hand, we have that

Jβ(un ∨ 0,Ωn) 6 Jβ(un,Ωn).
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A two-phase problem with Robin conditions on the free boundary 11

Thus, we can assume that 0 6 un 6 h, for every n ∈ N, and so the hypotheses of
Lemma 2.4 are satisfied, which means that (2.4) holds. Moreover, by the semiconti-
nuity of the H1 norm we have∫

D

|∇u∞|2 dx 6 lim inf
n→∞

∫
D

|∇un|2 dx,

which finally implies that

Jβ(u∞,Ω∞) 6 lim inf
n→∞

Jβ(un,Ωn). �

Lemma 3.2 (Subharmonicity of the solutions). — Let m > 0, β > 0 and ε ∈ [0,m) be
fixed. Let the function uε ∈ H1(D) and the set of finite perimeter Ωε be such that the
pairs (uε,Ωε) is a solution to the problem (3.1). Then uε is subharmonic in D and
there is a positive Radon measure µε such that

−
∫
D

∇uε · ∇ϕdx =

∫
D

ϕdµε for every ϕ ∈ H1
0 (D).

Remark 3.3. — µε is the distributional Laplacian of uε. We will use the notation
µε = ∆uε.

Proof. — Let ϕ 6 uε be a function in H1(D) such that ϕ = uε on ∂D. Then, testing
the optimality of (uε,Ωε) with (ϕ ∨ ε,Ωε) and using the fact that uε > ϕ ∨ ε, we get∫
D

|∇ϕ|2 dx >
∫
D

|∇(ϕ ∨ ε)|2 dx

>
∫
D

|∇uε|2 dx+

∫
∂∗Ωε

u2
ε dHd−1 −

∫
∂∗Ωε

(ϕ ∨ ε)2 dHd−1 >
∫
D

|∇uε|2 dx,

which concludes the proof. �

We will next show that the family of solutions
{
uε
}
ε∈(0,m)

is uniformly Hölder
continuous. We will use the following lemma, which can be proved in several different
ways. Here, we give a short proof based on the mean-value formula for subharmonic
functions. Similar argument was used to prove the Lipschitz continuity of the solutions
to some free boundary problems (see for instance [9] and the references therein).

Lemma 3.4 (A general condition for the Hölder continuity). — Let D be a bounded
open set in Rd and let h ∈ L∞loc(D). Suppose that u ∈ H1(D) is such that

(a) 0 6 u 6 h in D;
(b) u is subharmonic in D;
(c) there are constants K > 0 and α ∈ [0, 1) such that

(3.2) ∆u
(
Br(x0)

)
6 K rd−1−α for every x0 ∈ Dδ and every r ∈ (0, δ/2),

where δ > 0 and

(3.3) Dδ :=
{
x ∈ D : dist(x, ∂D) > δ

}
.

Then, there is a constant C depending on δ, h, α and K such that

|u(x)− u(y)| 6 C|x− y|(1−α)/(2−α) for every x, y ∈ Dδ.
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12 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

Proof. — We first notice that the following formula is true for every subharmonic
function u ∈ H1(D) and for every x0 ∈ D and 0 < s < t < dist(x0, ∂D).

−
∫
∂Bt(x0)

u dHd−1 − −
∫
∂Bs(x0)

u dHd−1 =
1

dωd

∫ t

s

r1−d∆u
(
Br(x0)

)
dr.

In particular, the function

r 7−→ −
∫
∂Br(x0)

u dHd−1,

is monotone and we can define the function u pointwise everywhere as

u(x0) := lim
r→0
−
∫
∂Br(x0)

u dHd−1.

As a consequence, for every R < dist(x0, ∂D), we have

−
∫
∂BR(x0)

u dHd−1 − u(x0) =
1

dωd

∫ R

0

r1−d∆u
(
Br(x0)

)
dr.

Now, applying (3.2), and integrating in r, we get that if x0 ∈ Dδ and R < δ/2, then

(3.4) 0 6 −
∫
∂BR(x0)

u dHd−1 − u(x0) 6 C R1−α, where C :=
K

dωd(1− α)
,

which, by the subharmonicity of u, implies

(3.5) 0 6 −
∫
BR(x0)

u dx− u(x0) 6 C R1−α.

Let now x0, y0 ∈ Dδ be such that

|x0 − y0| 6 1 and R := |x0 − y0|γ 6
δ

4
,

where γ ∈ (0, 1) will be chosen later.
Now, since BR(x0) ⊂ BR+|x0−y0|(y0) ⊂ B2R(y0) ⊂ D, we can estimate

u(x0)− u(y0) 6 −
∫
BR(x0)

u(x) dx− u(y0)

6

(
R+ |x0 − y0|

)d
Rd

−
∫
BR+|x0−y0|(y0)

u(x) dx− u(y0)

=
(
1 + |x0 − y0|1−γ

)d −∫
BR+|x0−y0|(y0)

u(x) dx− u(y0)

6
(
1 + d2d−1|x0 − y0|1−γ

)
−
∫
BR+|x0−y0|(y0)

u(x) dx− u(y0),

where in the last inequality we used that |x0 − y0|1−γ 6 1. Now, using (3.5), we get

u(x0)− u(y0) 6
(
−
∫
BR+|x0−y0|(y0)

u(x) dx− u(y0)
)

+ d2d−1|x0 − y0|1−γ‖u‖L∞(B2R(y0))

6 C
(
R+ |x0 − y0|

)1−α
+ d2d−1|x0 − y0|1−γ‖h‖L∞(B2R(y0))

6
(
2C + d2d−1Mδ/2

)
|x0 − y0|1−γ ,
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A two-phase problem with Robin conditions on the free boundary 13

whereMδ/2 is the maximum of h on the set Dδ/2 and where we choose γ = 1/(2− α),
which implies that γ(1− α) = 1− γ and 1− γ = (1− α)/(2− α). �

Proposition 3.5 (Hölder continuity of the solution). — Let m>0, β>0 and ε∈ [0,m)

be fixed. Let the function uε ∈ H1(D) and the set of finite perimeter Ωε be such that
the pairs (uε,Ωε) is a solution to the problem (3.1) with some v ∈ H1(D) and E ⊂ Rd.
Then, for every δ > 0, there is a constant C depending on D, δ and v (but not on ε)
such that

|uε(x)− uε(y)| 6 C|x− y|1/3 for every x, y ∈ Dδ.

Proof. — By Lemma 3.2, we have that uε is subharmonic and, in particular, 06uε6h
in D, where h is the harmonic extension of v in D. Thus, it is sufficient to prove
that (3.2) holds. Let x0 ∈ Dδ and R 6 δ/2. Let ϕ ∈ C∞c (B3R/2(x0)) be such that

ϕ = 1 on BR(x0), |∇ϕ| 6 3

R
in B3R/2(x0).

Now, we test the optimality of (uε,Ωε) with (ũε, Ω̃ε), where

ũε = uε +R1/2ϕ and Ω̃ε = Ωε ∪B3R/2(x0).

Thus, we get∫
D

|∇uε|2 dx+ β

∫
∂∗Ωε

u2
ε dHd−1 6

∫
D

|∇ũε|2 dx+ β

∫
∂∗Ω̃ε

ũ2
ε dHd−1∫

∂∗Ω̃ε

ũ2
ε dHd−1 6

∫
∂∗ΩεrB3R/2(x0)

u2
ε dHd−1 +

∫
∂B3R/2(x0)

u2
ε dHd−1and

6
∫
∂∗Ωε

u2
ε dHd−1 + CdR

d−1M2
δ/4,

where Mρ := sup
{
h(x) : x ∈ Dρ

}
. Thus, we obtain

2R1/2

∫
B3R/2(x0)

−∇uε · ∇ϕdx 6 R
∫
B3R/2(x0)

|∇ϕ|2 dx+ βCdR
d−1M2

δ/4

6 Cd
(
1 + βM2

δ/4

)
R d−1,

which implies that

∆uε
(
BR(x0)

)
6 Cd

(
1 + βM2

δ/4

)
R d−3/2,

which concludes the proof of (3.2) with α = 1/2. �

4. Existence of an optimal set

4.1. Definition of (u0,Ω0). — Now, for any ε ∈ (0,m), we consider the solution
(uε,Ωε) of (3.1). As a consequence of Proposition (3.5), we can find a sequence εn → 0

and a function u0 ∈ H1(D) ∩ C0,1/3(D) such that:
– uεn converges to u0 uniformly on every set Dδ, δ>0, where Dδ is defined in (3.3);
– uεn converges to u0 strongly in L2(D);
– uεn converges to u0 weakly in H1(D).

Our aim in this section is to show that u0 is a solution to (1.1).
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14 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

The construction of Ω0 is more delicate. First, we fix t > 0 and δ > 0 and we
notice that the perimeter of Ωεn is bounded on the open set {u0 > t} ∩Dδ. Indeed,
the uniform convergence of uεn to u0 implies that, for n large enough (n > Nt,δ, for
some fixed Nt,δ ∈ N),

uεn >
t

2
on Dδ ∩ {u0 > t}.

Thus, we have

Jβ(v,E) > β
∫
Dδ∩{u0>t}∩∂∗Ωεn

u2
εn dH

d−1 >
βt2

2
Per
(
Ωεn ;Dδ ∩ {u0 > t}

)
.

Now, if we choose t such that Per({u0 > t}) < ∞ (which, by the co-area formula,
is true for almost-every t > 0), then we have that

Per
(
Ωεn ∩ {u0 > t} ∩Dδ

)
6 Ct,δ for every n > Nt,δ,

for some constant Ct,δ > 0. Now, since all the sets Ωεn ∩ {u0 > t} ∩Dδ are contained
in D and have uniformly bounded perimeter, we can find a set Ω0 and a subsequence
for which

1Ωεn∩{u0>t}∩Dδ(x) −→ 1Ω0∩{u0>t}∩Dδ(x) for almost-every x ∈ D.

Thus, by a diagonal sequence argument, we can extract a subsequence of εn (still
denoted by εn) and we can define the set Ω0 ⊂ Rd as the pointwise limit

1Ω0
(x) = lim

n→∞
1Ωεn∩{u0>0}(x) for almost-every x ∈ {u0 > 0},

and we notice that, by construction, Ω0 ⊂ {u0 > 0}. Notice that, we do not know a
priori that Ω0 has finite perimeter. We only know that

Per (Ω0 ∩ {u0 > t} ∩Dδ) <∞ for every δ > 0 and almost-every t > 0.

which means that Ω0 ∩ {u0 > t} has locally finite perimeter in D for a.e. t > 0.

4.2. An optimality condition. — As pointed out above, we do not know if the pairs
(u0,Ω0) is even an admissible competitor for (1.1) (we need to show that Ω0 ∈ E).
Nevertheless, we can still prove that it satisfies a suitable optimality condition.

Lemma 4.1 (The optimality condition at the limit). — Let u0 and Ω0 be as in Sec-
tion 4.1. Then, for almost-every t > 0, we have

(4.1)
∫
{u0<t}

|∇u0|2 dx 6 β t2 Per
(
{u0 < t}

)
.

Proof. — Let now t > 0 be fixed and such that the set {u0 < t} has finite perimeter.
Then, for n large enough, we can use the pairs (u0 ∨ t,Ω0 ∪ {u0 < t}) to test the
optimality of (uεn ,Ωεn). Notice that the set Ω0 ∪ {u0 < t} has finite perimeter for
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A two-phase problem with Robin conditions on the free boundary 15

a.e. t ∈ (0,m), as observed in the previous section. For the sake of simplicity, we write
uεn = un, Ωεn = Ωn, u0 = u and Ω0 = Ω. Thus, we have∫

D

|∇un|2 dx+β

∫
{u>t}∩∂∗Ωn

u2
n dHd−1

6
∫
D

|∇un|2 dx+ β

∫
∂∗Ωn

u2
n dHd−1

6
∫
D

|∇(u ∨ t)|2 dx+ β

∫
∂∗(Ω∪{u<t})

u2 dHd−1(4.2)

6
∫
D

|∇(u ∨ t)|2 dx+ βt2 Per({u < t}) + β

∫
{u>t}∩∂∗Ω

u2 dHd−1.

Now, by the weak convergence of un to u, we get that∫
D

|∇u|2 dx 6 lim inf
n→∞

∫
D

|∇un|2 dx.

On the other hand, setting Ut,δ to be the open set

Ut,δ = Rd r
(
Dδ ∩ {u 6 t}

)
,

for some fixed δ > 0, and applying Lemma 2.4, we have that∫
Ut,δ∩∂∗Ω

u2 dHd−1 6 lim inf
n→∞

∫
Ut,δ∩∂∗Ωn

u2
n dHd−1 6 lim inf

n→∞

∫
{u>t}∩∂∗Ωn

u2
n dHd−1.

Taking the limit as δ → 0, by the monotone convergence theorem, we get that

lim
δ→0

∫
Ut,δ∩∂∗Ω

u2 dHd−1 =

∫(
Rdr(D∩{u6t})

)
∩∂∗Ω

u2 dHd−1

Now, since

u(x) = h(x) for quasi-every x ∈ Rd rD and for Hd−1-almost-every x ∈ Rd rD,

and since h > m > t on ∂D, we have that

(4.3)
∫(

Rdr(D∩{u6t})
)
∩∂∗Ω

u2 dHd−1 =

∫
{u>t}∩∂∗Ω

u2 dHd−1.

Thus, we get that

(4.4)
∫
{u>t}∩∂∗Ω

u2 dHd−1 6 lim inf
n→∞

∫
D∩{u>t}∩∂∗Ωn

u2
n dHd−1.

Now, using (4.4) and (4.2), we obtain∫
D

|∇u|2 dx+β

∫
{u>t}∩∂∗Ω

u2 dHd−1

6 lim inf
n→∞

∫
D

|∇un|2 dx+ β

∫
{u>t}∩∂∗Ωn

u2
n dHd−1

6
∫
D

|∇(u ∨ t)|2 dx+ βt2 Per({u < t}) + β

∫
{u>t}∩∂∗Ω

u2 dHd−1,

which gives (4.1). �
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4.3. Non-degeneracy. — The crucial observation in this section is that the func-
tions u satisfying the optimality condition (4.1) are non-degenerate in the sense of
the following proposition.

Proposition 4.2 (Non-degeneracy). — Let β > 0, m > 0, D be a bounded open set
of Rd and u ∈ H1(D) be a non-negative function in D such that u > m on ∂D. Let
Ω ⊂ D be a set of finite perimeter in D. Suppose that u and Ω satisfy the optimality
condition

(4.5)
∫

Ωt

|∇u|2 dx 6 β t2 Per(Ωt) where Ωt = {u 6 t},

for almost-every t ∈ (0,m). Then, |Ωt| = 0 for some t > 0.

Proof. — By contradiction, suppose that

|Ωt| > 0 for every t > 0.

Let t ∈ (0,m) be fixed. By the co-area formula, the Cauchy-Schwartz inequality and
the optimality condition (4.5), we get

(4.6)
∫

Ωt

|∇u| =
∫ t

0

Per(Ωs) ds 6

(∫
Ωt

|∇u|2
)1/2

|Ωt|1/2 6 tβ1/2Per(Ωt)
1/2|Ωt|1/2.

We now set
f(t) :=

∫ t

0

Per(Ωs) ds =

∫
Ωt

|∇u| dx.

Using (4.6), we will estimate f(t) from below.

Step 1. Non-degeneracy of f . — By the isoperimetric inequality and the estimate (4.6),
there is a dimensional constant Cd such that∫ t

0

Per(Ωs) ds 6 tβ
1/2Cd Per(Ωt)

(2d−1)/(2d−2).

Using the definition of f , we can re-write this inequality as

f(t)(2d−2)/(2d−1) 6 t(2d−2)/(2d−1)
(
β1/2Cd

)(2d−2)/(2d−1)
f ′(t).

After rearranging the terms and integrating from 0 to t, we obtain

f(t)1/(2d−1) − f(0)1/(2d−1) >
t1/(2d−1)(

β1/2Cd
)(2d−2)/(2d−1)

.

Now, since u is non-negative in D, we have that f(0) = 0. Thus

f(t) >
t(

β1/2Cd
)2d−2

.

Setting

(4.7) C =
(
βCd

)1−d
,

we obtain the lower bound
f(t) > Ct.
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A two-phase problem with Robin conditions on the free boundary 17

In particular, as a consequence of (4.6), we get that

(4.8) C 6 β1/2Per(Ωt)
1/2|Ωt|1/2.

Step 2. Non-degeneracy of |Ωt|. — Let α ∈ (0, 1) be fixed. Then, we have that∫ t

0

Per(Ωs)
α |Ωs|1−αds 6

(∫ t

0

Per(Ωs) ds

)α(∫ t

0

|Ωs| ds
)1−α

6
(
tβ1/2Per(Ωt)

1/2|Ωt|1/2
)α (

t|Ωt|
)1−α

= tβα/2Per(Ωt)
α/2|Ωt|1−α/2.

Thus, we obtain that for fixed T ∈ (0,m) and C > 0, the following implication holds:

(4.9)
{
If C 6 Per(Ωt)

α|Ωt|1−α for every t ∈ (0, T ),
then C 6 βα/2Per(Ωt)

α/2|Ωt|1−α/2 for every t ∈ (0, T ).

We claim that, for every n > 1 and every t ∈ (0,m), we have the inequality

(4.10) C 6 β1−1/2nPer(Ωt)
1/2n |Ωt|1−1/2n .

In order to prove (4.10), we argue by induction on n. When n = 1, (4.10) is pre-
cisely (4.8). In order to prove that the claim (4.10) for n ∈ N implies the same claim
for n+ 1, we apply (4.9) for α = 2−n, n ∈ N, which gives precisely (4.10) with n+ 1.
This concludes the proof of (4.10). Next, passing to the limit as n → ∞, we obtain
that

C 6 β|Ωt| for every t ∈ (0, T ),

where C is given by (4.7). Thus, there is a dimensional constant Cd > 0 such that

(4.11) β−dCd 6 |Ωt| for every t ∈ [0,m).

Step 3. Conclusion. — We now notice that

lim
t→0
|Ωt| = |Ω0| > 0.

Thus, for every ε > 0, there is Tε such that for all t ∈ (0, Tε) we have∫
Ωt

|∇u| =
∫ t

0

Per(Ωs) ds 6

(∫
Ωt

|∇u|2
)1/2

|Ωt r Ω0|1/2

6 tε1/2Per(Ωt)
1/2|Ωt|1/2.

(4.12)

Now, repeating the argument fro Step 1 and Step 2, we get that (4.11) should hold
with ε in place of β. Since ε > 0 is arbitrary, this is a contradiction. �
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4.4. Existence of a solution. — We are now in position to prove that the pairs
(u0,Ω0), constructed in Section 4.1, is a solution to (1.1).

Proposition 4.3 (Existence of a solution). — There is a dimensional constant Cd > 0

such that if D is a bounded open set of Rd and β > 0 is a given positive constant, then
the following holds. For every set E ⊂ Rd of finite perimeter and every v ∈ H1(Rd)
satisfying

v > m on D for some constant m > 0,

there is a solution (u,Ω) of the problem (1.1).

Proof. — Let (u0,Ω0) be as in Section 4.1. Then, by Lemma 4.1, (u0,Ω0) satisfies
the optimality condition (4.5). Now, by Proposition 4.2 we get that u0 > t in D, for
some t > 0. In particular, Ω0 has finite perimeter in D. Precisely, for every δ > 0, we
have

Per(Ω0;Dδ) 6 lim inf
n→∞

Per(Ωεn ;Dδ) 6
4

t2
lim inf
n→∞

∫
Dδ∩∂∗Ωεn

u2
εn dH

d−1

6
4

βt2
lim inf
n→∞

Jβ
(
uεn ,Ωεn

)
6

4

βt2
Jβ(v,E).

Passing to the limit as δ → 0, we get

Per(Ω0;D) 6
4

βt2
Jβ(v,E).

In particular, this implies that Ω0 is a set of finite perimeter in Rd. Indeed,

Per(Ω0) 6 Per(Ω0;D) + 2Per(D) + Per(Ω0;Rd rD)

6
4

βt2
Jβ(v,E) + 2Per(D) + Per(E;Rd rD).

Thus, the pairs (u0,Ω0) is admissible in (1.1); it now remains to prove that it is
optimal. Let ũ ∈ H1(D) be non-negative on D and such that u − v ∈ H1

0 (D). Let
Ω̃ ⊂ Rd be a set of finite perimeter such that Ω̃ = E on Rd r D. It is sufficient to
prove that

Jβ(u0,Ω0) 6 Jβ(ũ, Ω̃).

Let ε > 0 be fixed. We now use the pairs (ũ∨ε, Ω̃) to test the optimality of
(
uεn ,Ωεn

)
:

Jβ
(
uεn ,Ωεn

)
6 Jβ(ũ ∨ ε, Ω̃).

Passing to the limit as ε→ 0, we get

Jβ
(
uεn ,Ωεn

)
6 Jβ(ũ, Ω̃).

Now, Lemma 2.4 and the semicontinuity of the H1 norm gives that Jβ(u0,Ω0) 6
Jβ(ũ, Ω̃), which concludes the proof. �
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5. Regularity of the free boundary

In this section, we prove the regularity of the free boundary. In Theorem 5.1, we
prove that the solutions of (1.1) are almost-minimizers for the perimeter in D. As a
consequence, ∂Ω can be decomposed into a regular and a singular part and that the
regular part is C1,α manifold. Then, in Theorem 5.2, we prove that the regular part
of the free boundary is C∞ smooth.

Theorem 5.1. — Let (u,Ω) be a solution to (1.1). there is a constant C > 0 such
that Ω is an almost-minimizer of the perimeter in the following sense:

Per
(
Ω ;Br(x0)

)
6
(
1 + Cr1/3

)
Per

(
Ω′;Br(x0)

)
,

for every ball Br(x0) ⊂ D and every set Ω′ ⊂ Rd such that Ω = Ω′ outside Br(x0).
In particular, the free boundary ∂Ω∩D can be decomposed as the disjoint union of

a regular part Reg(∂Ω) and a singular part Sing(∂Ω), where
(i) Reg(∂Ω) is a relatively open subset of ∂Ω and is a C1,α smooth manifold;
(ii) Sing(∂Ω) is a closed set, which is empty if d 6 7, discrete if d = 8, and of

Hausdorff dimension d− 8, if d > 8.

Proof. — We first notice that by Lemma 3.4, u ∈ C0,1/3(D). Let δ > 0, x0 ∈ Dδ and
r < δ/2. We consider a set Ω′ ⊂ Rd such that Ω′∆Ω b Br(x0). Testing the optimality
of (u,Ω) against (u,Ω′) we get that∫

Br(x0)∩∂∗Ω
u2dHn−1 6

∫
Br(x0)∩∂∗Ω′

u2dHn−1,

which implies that(
min
Br(x0)

u2
)

Per
(
Ω ;Br(x0)

)
6
(

max
Br(x0)

u2
)

Per
(
Ω′;Br(x0)

)
.

By regularity of u, we have that

max
Br(x0)

u2 6 min
Br(x0)

u2 + Cr1/3 6
(

min
Br(x0)

u2
)(

1 +
C

t
r1/3

)
,

where in the second inequality, we used that u > t > 0. Thus, we obtain

Per
(
Ω ;Br(x0)

)
6
(

1 +
C

t
r1/3

)
Per
(
Ω′;Br(x0)

)
,

which proves that Ω is an almost-minimizer of the perimeter in D. �

We next prove that regular part the free boundary Reg(∂Ω) is C∞.

Theorem 5.2. — Let (u,Ω) be a solution to (1.1). Let

D ∩ ∂Ω = Reg(∂Ω) ∪ Sing(∂Ω)

be the decomposition of the free boundary from Theorem 5.1. Then, in a neighborhood
of any point x0 ∈ Reg(∂Ω), ∂Ω is C∞-regular and the function u is C∞ on ∂Ω.

Proof. — We fix a point x0 ∈ Reg(∂Ω). Without loss of generality, we assume x0 = 0.

J.É.P. — M., 2021, tome 8



20 S. Guarino Lo Bianco, D. A. La Manna & B. Velichkov

Step 1. Notation. — For any x ∈ Rd, we use the notation x = (x′, xd), where x′ ∈ Rd−1

and xd ∈ R. By the C1,α regularity of Reg(∂Ω), in B′ × (−ε, ε) ⊂ Rd−1 × R, ∂Ω is
the graph of a C1,α regular function η : B′ → R, where B′ is a ball in Rd−1; the set Ω

coincides with the subgraph of η in a neighborhood of the origin:

B′ × (−ε, ε) ∩ Ω =
{

(x′, xd) ∈ B′ × (−ε; ε) : xd < η(x′)
}
.

and the exterior normal νΩ is given by

(5.1) νΩ =
(−∇x′η, 1)√
1 + |∇x′η|2

,

where ∇x′η is the gradient of η in the first d − 1 variables. Let u+ and u− be the
restrictions of u on the sets Ω and D r Ω; since u is continuous across ∂Ω, we have
u+ = u− on ∂Ω. Moreover, we write the gradients of u+ and u− as

∇u± =
(
∇x′u±, ∂xdu±

)
∈ Rd−1 × R.

Step 2. Transmission condition andC1,α regularity of u. — In Lemma 5.3, we keep fixed
the free boundary ∂Ω and we use vertical perturbations of the function u to obtain
a Robin-type transmission condition on ∂Ω. We notice that the recent results [4, 5]
imply the C1,α-regularity of u+ and u−, up to the boundary ∂Ω. Thus, the gradient
is well-defined and the transmission conditions (5.2) hold in the classical sense.

Step 3. Optimality condition and C2,α regularity of Reg(∂Ω). — In Lemma 5.5 we per-
form variations of the optimal set to find the geometric equation solved by ∂Ω. Pre-
cisely, we find that the curvature of the optimal set solves an equation of the form

“Mean curvature of ∂Ω" = F (∇u+,∇u−, u±) on ∂Ω.

In particular, this implies that if u is Ck,α, for some k > 1, then ∂Ω is Ck+1,α.

Step 4. Bootstrap. — In Lemma 5.4 we use the recent results of [5] to show that if
the boundary ∂Ω is Ck,α for some k > 2, then the solutions u+ and u− are also Ck,α
regular up to the boundary ∂Ω. Finally, applying this result (Lemma 5.4) and the
result from the previous step (Lemma 5.5), we get that ∂Ω is C∞. �

Lemma 5.3 (Robin and continuity conditions on ∂Ω). — Suppose that ∂Ω is C1,α

regular in the neighborhood of the origin. Let η : B′ → R, u+ and u− be as above.
Then, for every x′ ∈ B′ we have

(5.2)
{
∇x′η · ∇x′u+ −∇x′η · ∇x′u− = −

(
∂xdu+ − ∂xdu−

)
|∇x′η|2√

1 + |∇x′η|2
(
∂xdu+ − ∂xdu−

)
+ βu = 0,

where u+, u− and their partial derivatives are calculated in (x′, η(x′)) ∈ ∂Ω.
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Proof. — Let φ ∈ C∞c (D) be a smooth function supported in B′× (−ε, ε). Then, the
optimality of u gives that

0 =
∂

∂t

∣∣∣
t=0

Jβ(u+ tφ,Ω) =

∫
Dr∂Ω

2∇u · ∇φdx+ β

∫
∂Ω

2uφ dHd−1

=

∫
∂Ω

2
(
νΩ · ∇u+ − νΩ · ∇u− + βu

)
φdHd−1,

where in the last inequality we integrated by parts u+ in Ω and u− in DrΩ. Since φ
is arbitrary we get that u satisfies the Robin-type condition on ∂Ω

(5.3) νΩ · ∇u+ − νΩ · ∇u− + βu on ∂Ω.

Now, using (5.1), we can re-write this as

(5.4)
(
−∇x′η · ∇x′u+ + ∂xdu+

)
−
(
−∇x′η · ∇x′u− + ∂xdu−

)
+ βu

√
1 + |∇x′η|2 = 0.

On the other hand u is continuous across ∂Ω. This means that

∇x′u+(x′, η(x′)) + ∂xdu+(x′, η(x′))∇x′η = ∇x′u−(x′, η(x′)) + ∂xdu−(x′, η(x′))∇x′η.

Multiplying by ∇x′η, we get

(5.5) ∇x′η · ∇x′u+ + ∂xdu+|∇x′η|2 = ∇x′η · ∇x′u− + ∂xdu−|∇x′η|2,

where u+, u− and their partial derivatives are calculated in (x′, η(x′)). Putting to-
gether (5.4) and (5.5), we get (5.2). �

Lemma 5.4 (Smooth boundary ⇒ smooth function). — Let (u,Ω) be a solution
of (1.1). Suppose that, in a neighborhood of zero, ∂Ω is Ck,α-regular for some k > 1.
Then, in a neighborhood of the origin, the functions u+ and u− are Ck,α up to the
boundary ∂Ω.

Proof. — We argue by induction. The case k = 1 follows by [5]. We suppose that
k > 2 and that the claim holds for k−1. Suppose that ∂Ω is the graph of η : B′ → R,
η ∈ Ck,α(B′), and consider the functions

v+(x′, xd) := u+(x′, xd + η(x′)) and v−(x′, xd) := u−(x′, xd + η(x′)),

defined on the half-space {xd > 0}. We set

Aη =

(
Nd−1 −(∇x′η)t

−∇x′η |∇x′η|2

)
,

where Nd−1 is the null (d − 1) × (d − 1) matrix and we notice that Aη has Ck−1,α

regular coefficients. Now, since u+ and u− are harmonic in Ω and D r Ω, we have
that v+ and v− are solutions to the transmission problem

−div((Id +Aη)∇v+) = 0 in {xd > 0}
−div((Id +Aη)∇v−) = 0 in {xd < 0}

v+ = v− on {xd = 0}

∂xdv+ − ∂xdv− +
β

2
√

1 + |∇x′η|2
(v+ + v−) = 0 on {xd = 0}.
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We now fix k − 1 directions i1, . . . , ik−1, ij 6= d for every j, and we consider the
functions

w+ := ∂i1∂i2 . . . ∂ik−1
v+ and w− := ∂i1∂i2 . . . ∂ik−1

v−.

We notice that, in {xd > 0} and {xd < 0} the functions w+ and w− are solutions to

−div
(
(Id +Aη)∇w±

)
+
∑
I,J

div
(
∂IAη∂J∇u±

)
= 0,

where the sum is over all multiindices I and J such that the sets I and J are disjoint
subsets of {i1, i2, . . . , ik−1}, I∪J = {i1, i2, . . . , ik−1} and I is non-empty. In particular,
using that Aη ∈ Ck−1,α and ∇u ∈ Ck−2,α (since by hypothesis u± ∈ Ck−1,α), we get
that w± solve

−div
(
(Id +Aη

)
∇w±) + div(F±) = 0 in {±xd > 0},

where F+ and F− are C0,α continuous functions (depending on i1, . . . , ik). On the
other hand, on the boundary {xd = 0} we have that w+ = w− and

∂xdw+ − ∂xdw− + ∂i1∂i2 . . . ∂ik−1

(
β(u+ + u−)

2
√

1 + |∇x′η|2

)
= 0 on {xd = 0}.

Reasoning as above, we notice that this condition can be written as

∂xdw+ − ∂xdw− = g on {xd = 0},

where g is a C0,α function. Now, applying [5, Th. 1.2], we get that w+ and w− are
C1,α regular up to the boundary {xd = 0}. Thus, the trace u+ = u− is Ck,α smooth
on {xd = 0}. Finally, the classical Schauder estimates give that u+ and u− are Ck,α
on {xd > 0} and {xd 6 0}, respectively. �

Lemma 5.5 (Smooth function ⇒ smooth boundary). — Let (u,Ω) be a solution
of (1.1). Suppose that, in a neighborhood of zero, ∂Ω is C1,α-regular and that the
functions u+ and u− are Ck,α up to the boundary ∂Ω, for some k > 1. Then, ∂Ω is
Ck+1,α-regular in a neighborhood of zero.

Proof. — Let ξ ∈ C∞c (D;Rd) be a given vector field with compact support in D and
let Ψt be the function

Ψt(x) = x+ tξ(x) for every x ∈ D.

Then, for t small enough, Ψt : D → D is a diffeomorphism and setting Φt := Ψ−1
t ,

the function ut := u ◦ Φt is well-defined and belongs to H1(D); the function

t 7−→
∫
D

|∇ut|2 dx

is differentiable at t = 0 and
∂

∂t

∣∣∣
t=0

∫
D

|∇ut|2 dx =

∫
D

(
−2∇uDξ · ∇u+ |∇u|2 div ξ

)
dx.

It is immediate to check that

−2∇uDξ · ∇u+ |∇u|2 div ξ = div
(
|∇u|2ξ − 2(ξ · ∇u)∇u

)
in D r ∂Ω.
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We now take ξ to be smooth outside ∂Ω and such that

ξ = φνΩ on ∂Ω,

where νΩ is the exterior normal to ∂Ω and φ : ∂Ω→ R is continuous and with compact
support. Integrating by parts, we get

∂

∂t

∣∣∣
t=0

∫
D

|∇ut|2 dx =

∫
∂Ω

(
|∇u+|2(ξ · νΩ)− 2(ξ · ∇u+)(νΩ · ∇u+)

)
dHd−1

−
∫
∂Ω

(
|∇u−|2(ξ · νΩ)− 2(ξ · ∇u−)(νΩ · ∇u−)

)
dHd−1,

where u+ := u on Ω, and u− := u on D r Ω. Now, if

ξ = φed and νΩ =
(−∇x′η, 1)√
1 + |∇x′η|2

,

then√
1 + |∇x′η|2

(
|∇u+|2(ξ · νΩ)− 2(ξ · ∇u+)(νΩ · ∇u+)

)
−
√

1 + |∇x′η|2
(
|∇u−|2(ξ · νΩ)− 2(ξ · ∇u−)(νΩ · ∇u−)

)
= φ

(
|∇u+|2 − |∇u−|2

)
− 2φ

(
∂xdu+

(
−∇x′η · ∇x′u+ + ∂xdu+

)
− ∂xdu−

(
−∇x′η · ∇x′u− + ∂xdu−

))
.

We now suppose that x0 ∈ Reg(∂Ω) and that ∂Ω is the graph of the (C1,α) function
η : B′ → R, where B′ is a ball in Rd−1. Taking ξ = edφ and Ωt = Φt(Ω), we have
∂

∂t

∣∣∣
t=0

∫
∂Ωt

u2
t dHd−1 =

∂

∂t

∣∣∣
t=0

∫
B′
u2
(
x′, η(x′)

)√
1 + |∇x′η + t∇x′φ|2 dx′

=

∫
B′

u2
(
x′, η(x′)

)√
1 + |∇x′η|2

∇x′η · ∇x′φdx′

=

∫
B′
u2
(
x′, η(x′)

)
H
(
x′, η(x′)

)
φ(x′) dx′

− 2

∫
B′
φ(x′)u

(
x′, η(x′)

)(∇x′u+ ∂xdu∇x′η
)
· ∇x′η√

1 + |∇x′η|2
dx′.

In particular, combining these two computations and using the optimality of (u,Ω),
we get

0 =
∂

∂t

∣∣∣
t=0

Jβ(ut,Ωt) =

∫
B′
βu2H(x′)φ(x′) dx′ +

∫
B′

(
|∇u+|2 − |∇u−|2

)
φ(x′) dx′

−
∫
B′

2
(
1 + |∇x′η|2

) (
(∂xdu+)2 − (∂xdu−)2

)
φ(x′) dx′

Since φ is arbitrary, we obtain that η is a solution of the problem

−divx′
(

∇x′η√
1 + |∇x′η|2

)
= f(x′) in B′,
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where

f(x′) =
1

βu2
(
x′, η(x′)

)[(|∇u+|2−|∇u−|2
)
− 2
(
1 + |∇x′η|2

)(
(∂xdu+)2−(∂xdu−)2

)]
,

and all the derivatives of u+ and u− are calculated at
(
x′, η(x′)

)
. Since the right-hand

side f is Ck−1,α regular, we get that η is Ck+1,α regular. �

Appendix. Examples of minimizers

In this section, we use a calibration argument to prove that if E = {xd > 0} and
v ≡ 1, then in any Steiner symmetric set D ⊂ Rd, the solution (Ω, u) is unique, u is
even with respect to the hyperplane {xd = 0} and Ω is precisely the half-space E.
Our main result is the following.

Proposition A.1. — Let D be an open set, Steiner symmetric with respect to the
hyperplane {xd = 0}. Let E be the half-ball E = B ∩ {xd > 0}, for some large ball B
containing D, and let v ≡ 1. Then there is a unique solution (u,Ω) to (1.1), where
Ω = E, u is positive and even with respect to {xd = 0} and solves the equation

(A.1) ∆u = 0 in {xd > 0} ∩D, ∂xdu =
1

2
βu on D ∩ {xd = 0}.

Proof. — Let ũ ∈ V and Ω̃ ∈ E be given. We will prove that

Jβ(u,Ω) 6 Jβ(ũ, Ω̃),

with an equality, if and only if, (u,Ω) = (ũ, Ω̃). First, we notice that, since

Jβ(1 ∧ ũ ∨ 0, Ω̃) 6 Jβ(ũ, Ω̃),

we can suppose that 0 6 ũ 6 1. We then write ũ as ũ = 1 − ϕ for some ϕ ∈ H1
0 (D)

such that 0 6 ϕ 6 1 and we define the function ũ∗ = 1 − ϕ∗, where ϕ∗ ∈ H1
0 (D) is

the Steiner symmetrization of ϕ. We will show that

(A.2) Jβ(ũ∗,Ω) 6 Jβ(ũ, Ω̃).

Indeed, the Steiner symmetrization decreases the Dirichlet energy:∫
D

|∇ũ∗|2 dx =

∫
D

|∇ϕ∗|2 dx 6
∫
D

|∇ϕ|2 dx =

∫
D

|∇ũ|2 dx.

In order to estimate also the second term of the energy Jβ , we use a calibration-
type argument. We first notice that, by construction, along every line orthogonal to
{xd = 0}, the symmetrized function achieves its maximum in zero. Precisely

ϕ(x′, xd) 6 sup
xd

ϕ(x′, xd) = ϕ∗(x
′, 0).

Thus, by the definition of ũ∗, we have∫
B∩∂Ω̃

ũ2(x′, xd) dHd−1 >
∫
B∩∂Ω̃

ũ2
∗(x
′, 0) dHd−1 >

∫
B∩∂Ω̃

ũ2
∗(x
′, 0) νΩ̃ · ed dH

d−1

=

∫
B∩∂Ω

ũ2
∗(x
′, 0) νΩ · (−ed) dHd−1 +

∫
Ω∆Ω̃

div(ũ2
∗(x
′, 0)ed) dx,
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where in order to get the last equality we used the divergence theorem in Ω∆Ω̃. Now,
we notice that div(ũ2

∗(x
′, 0)ed) = 0 and that νΩ = −ed. Thus, we get∫

B∩∂Ω̃

ũ2(x′, xd) dHd−1 >
∫
B∩∂Ω

ũ2
∗ dHd−1,

which concludes the proof of (A.2). Finally, we notice that the problem

min
{
Jβ(u,Ω) : u ∈ H1(D ∩ {xd > 0}), u = 1 on ∂D ∩ {xd > 0}

}
,

has a unique solution u, which is Steiner symmetric, nonnegative and solves (A.1). �
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