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Abstract We prove a regularity theorem for the free boundary of minimizers
of the two-phase Bernoulli problem, completing the analysis started by Alt,
Caffarelli and Friedman in the 80s. As a consequence, we also show regularity
ofminimizers of themultiphase spectral optimization problem for the principal
eigenvalue of the Dirichlet Laplacian.
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348 G. De Philippis et al.

1 Introduction

We consider the two-phase functional Jtp defined, for every open set D ⊂ R
d

and every function u : D → R, as

Jtp(u, D) :=
ˆ

D
|∇u|2 dx + λ2+|�+

u ∩ D| + λ2−|�−
u ∩ D|, (TP)

where the constants λ+ > 0 and λ− > 0 are given and fixed, and the two
phases

�+
u = {u > 0} and �−

u = {u < 0}
are the positivity sets of the functions u+ :=max{u, 0} and u− :=max{−u, 0}.

We say that a function u : D → R is a local minimizer of Jtp in D if

Jtp
(
u, �

) ≤ Jtp
(
v, �

)

for all open sets � and functions v : D → R such that � ⊂ D and v = u on
D \ �.
In this paper we aim to study the regularity of the free boundary ∂�+

u ∪
∂�−

u ∩ D for local minimizers of Jtp in D. Our main result is a full description
of ∂�+

u and ∂�−
u around two-phase points:

�tp := ∂�+
u ∩ ∂�−

u ∩ D.

More precisely, we prove that, in a neighborhood of a two-phase point, the
sets �+

u and �−
u are C1,η-regular domains touching along the closed set �tp.

Theorem 1.1 (Regularity around two-phase points). Let u : D → R be a
local minimizer of Jtp in the open set D ⊂ R

d . Then, for every two-phase
point x0 ∈ �tp ∩ D, there exists a radius r0 > 0 (depending on x0) such that
∂�±

u ∩ Br0(x0) are C1,η graphs for some η > 0.

Combining Theorem 1.1 with the known regularity theory for one-phase
problem, one obtains the following result, which provides a full description of
the free boundary of local minimizers of Jtp.

Corollary 1.2 (Regularity of the free boundary). Let u : D → R be a local
minimizer of Jtp in the open set D ⊂ R

d . Then, each of the sets ∂�+
u ∩ D and

∂�−
u ∩ D can be decomposed as a disjoint union of a regular and a (possibly

empty) singular part

∂�±
u ∩ D = Reg(∂�±

u ) ∪ Sing(∂�±
u ),
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Regularity of the two-phase free boundaries 349

with the following properties:

(i) The regular part Reg(∂�±
u ) is a relatively open subset of ∂�±

u ∩ D and is
locally the graph of a C1,η-regular function, for some η > 0. Moreover,
the two-phase free boundary is regular, that is,

�tp ∩ D ⊂ Reg(∂�±
u ).

(ii) The singular set Sing(∂�±
u ) is a closed subset of ∂�±

u ∩ D of Hausdorff
dimension at most d−5. Precisely, there is a critical dimension1 d∗ ∈ [5, 7]
such that
– if d < d∗, then Sing(∂�±

u ) = ∅;
– if d = d∗, then Sing(∂�±

u ) is locally finite in D;
– if d > d∗, then Sing(∂�±

u ) is a closed (d − d∗)-rectifiable subset of
∂�±

u ∩ D with locally finite Hd−d∗
measure.

As a second corollary of our analysis, by applying the same type of argu-
ments as in [43] we obtain a complete regularity results for the following
shape optimization problem, studied in [6,8,45], where the optimal sets have
the same qualitative behavior as the sets�+

u and�−
u in Corollary 1.2, contrary

to the classical optimal partition problem studied in [13,14,19–21] (which
corresponds to the case of zero weights mi = 0, for every i).

Corollary 1.3 (Regularity for a multiphase shape optimization problem). Let
D be a C1,γ -regular bounded open domain in R

d , for some γ > 0 and d ≥ 2.
Let n ≥ 2 and mi > 0, i = 1, . . . , n be given. Let (�1, . . . , �n) be a solution
of the following optimization problem:

min
{ n∑

i=1

(
λ1(�i ) + mi |�i |

) : �i ⊂ D (SOP)

open ; �i ∩ � j = ∅ for i �= j
}
.

where λ1(�i ) is the first eigenvalue for the Dirichlet Laplacian in �i .
Then, the free boundary ∂�i of each of the sets �i , i = 1, . . . , n, can be

decomposed as the disjoint union of a regular part Reg(∂�i ) and a (possibly
empty) singular part Sing(∂�i ), where:

(i) The regular part Reg(∂�i ) is a relatively open subset of ∂�i and is locally
the graph of a C1,η-regular function, for some η > 0. Moreover, both the

1 The critical dimension d∗ is the first dimension, for which there exists a one-homogeneous
non-negative local minimizer of the one-phase functional with a singular free boundary. Cur-
rently, it is only known that 5 ≤ d∗ ≤ 7, [12,30,34].
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350 G. De Philippis et al.

contact set with the boundary of the box and the two-phase free boundaries
are regular, that is,

∂�i ∩ ∂ D ⊂ Reg(∂�i ) and ∂�i ∩∂� j ⊂ Reg(∂�i )

for every j ∈ {1, . . . , n} \ {i}.

(ii) The singular set Sing(∂�i ) is a closed subset of ∂�i of Hausdorff dimen-
sion at most d − 5. Precisely,
– if d < d∗, then Sing(∂�i ) = ∅,
– if d = d∗, then Sing(∂�i ) is locally finite in D,
– if d > d∗, then Sing(∂�i ) is a closed (d −d∗)-rectifiable subset of ∂�i

with locally finite Hd−d∗
measure,

where d∗ ∈ {5, 6, 7} is the critical dimension from Corollary 1.2.

1.1 Regularity of local minimizers of the Bernoulli functional

The study of the regularity of minimizers of Jtp started in the seminal paper of
Alt and Caffarelli [1], which was dedicated to the one-phase case, in which u is
non-negative. In this case, it is sufficient to work with the one-phase functional

Jop(u, D) :=
ˆ

D
|∇u|2 dx + λ2+|�+

u ∩ D|, (OP)

as the negative phase �−
u is empty. In [1] it was proved that for a local mini-

mizer u of Jop, the free boundary ∂�+
u ∩ D decomposes into a C1,η-regular

set Reg(∂�+
u ) and a closed singular set Sing(∂�+

u ) of zero Hd−1-Hausdorff
measure. A precise estimate on the Hausdorff dimension of Sing(∂�+

u ) was
then given byWeiss [46] as a consequence of his monotonicity formula and its
rectifiability was established by Edelen and Engelstein [31]. In fact, the results
in Corollary 1.2 are an immediate consequence of Theorem 1.1 and the known
regularity for the one-phase parts

�+
op := (

∂�+
u \ ∂�−

u

) ∩ D and �−
op := (

∂�−
u \ ∂�+

u

) ∩ D.

Indeed:

• the regularity of Reg(∂�±
u ) (Corollary 1.2 (i)) follows by Theorem 1.1 and

[1, Theorem 8.1];
• the estimates on the dimension of the singular set Sing(∂�±

u ) (Corollary 1.2
(ii)) are again a consequence ofTheorem1.1 (which shows that singularities
can appear only on the one-phase parts of the free boundary) and the results
in [31,46].
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Regularity of the two-phase free boundaries 351

The regularity of localminimizerswith two-phases (that is, localminimizers
of Jtp which change sign) was first addressed by Alt, Caffarelli and Freed-
man [2], where the authors consider free boundary functionals that weight
also the zero level set of u:

Jac f (u, D) :=
ˆ

D
|∇u|2 dx + λ2+

∣
∣�+

u ∩ D
∣
∣ (ACF)

+ λ2−
∣∣�−

u ∩ D
∣∣ + λ20

∣∣{u = 0} ∩ D
∣∣,

where λ+ ≥ λ0 ≥ 0 and λ− ≥ λ0 ≥ 0. When D ⊂ R
2 is a planar domain,

and under the additional assumptions

λ+ �= λ− and λ0 = λ+ or λ−,

they showed that the free boundaries ∂�+
u ∩ D and ∂�−

u ∩ D are C1-regular
curves. The key observation here is that the additional assumption

λ0 = λ+ or λ0 = λ− , (1.1)

forces the level set {u = 0} to have zero Lebesgue measure. Thus, the two
boundaries ∂�+

u ∩ D and ∂�−
u ∩ D coincide and the solution u satisfies the

transmission condition

|∇u+|2 − |∇u−|2 = λ2+ − λ2− on ∂�+
u = ∂�−

u . (1.2)

The free boundary regularity for local minimizers of Jac f in the case (1.1) is
already known in any dimension. Indeed, the regularity of the free boundary
∂�+

u = ∂�−
u , for functions which are harmonic (or solve an elliptic PDE) in

�+
u ∪�−

u and satisfy the transmission condition (1.2), is todaywell-understood,
after the seminal work of Caffarelli [9–11] (see also the book [15]) and the
more recent results of De Silva, Ferrari and Salsa [27–29], which are based on
the techniques introduced by De Silva [26] and which are central also in the
present paper.

On the other hand, in the general case,

λ+ > λ0 and λ− > λ0 , (1.3)

one can easily construct solutions of (ACF) for which the zero set {u = 0}
has positive measure, preventing the application of the existing results and
techniques about two-phase free boundary problems, as for instance [9–11,27–
29], which rely on the transmission condition (1.2).

To the best of our knowledge, the only known regularity result for minimiz-
ers of (ACF) under the condition (1.3) is due to the second and third authors in
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352 G. De Philippis et al.

[42], where it is proved that, in dimension d = 2, the free boundaries ∂�+
u and

∂�−
u are C1,η regular. The proof relies on a novel epiperimetric type inequal-

ity which applies only in dimension two and it was recently extended (still in
dimension two) to almost-minimizers by the same two authors and Trey [43].

In this paper, we complete the analysis started by Alt, Caffarelli and
Freedman [2], by proving a regularity result for the free boundaries of local
minimizers of (ACF), in the general case (1.3) and in any dimension d ≥ 2.
Indeed, Theorem 1.1 and Corollary 1.2 apply directly to (ACF) as the local
minimizers of (ACF), corresponding to the parameters λ0, λ+ and λ−, are
local minimizers of (TP) with parameters

λ′+ =
√

λ2+ − λ20 and λ′− =
√

λ2− − λ20 .

1.2 One-phase, two-phase and branching points on the free boundary

Let u : B1 → R be a (local) minimizer of Jtp in B1 and let, as above,
�±

u = {±u > 0}. Notice that, the zero level set {u = 0} might have positive
Lebesguemeasure in B1 and also non-empty interior, contrary towhat happens
with the minimizers of (ACF) with λ+ = λ0. This introduces a new element
in the analysis of the free boundary, which can now switch from one-phase to
two-phase at the so-called branching points, at which the zero level set looks
like a cusp. Precisely, this means that the free boundary ∂�+

u ∩ B1 (the same
holds for the negative phase ∂�−

u ∩ B1) can be decomposed into:

• a set of one-phase points �+
op := ∂�+

u \ ∂�−
u ∩ B1, and

• a set of two-phase points �tp := ∂�+
u ∩ ∂�−

u ∩ B1.

By definition the set of one-phase points �+
op is relatively open in ∂�+

u .
Precisely, if x0 ∈ �+

op, then there is a ball Br (x0) which does not contain
points from the negative phase, Br (x0) ∩ �−

u = ∅. Thus, u is a minimizer of
the one-phase functional Jop in Br (x0) and the regularity of ∂�+

u ∩ Br (x0)
follows from the results in [1,46].

For what concerns the two-phase points, we can further divide them into
interior and branching points:

• we say that x0 is an interior two-phase point, x0 ∈ �int
tp , if x0 ∈ �tp and

∣
∣Br (x0) ∩ {u = 0}∣∣ = 0 for some r > 0 ;

• conversely, we say that x0 is a branching point, x0 ∈ �br
tp, if x0 ∈ �tp and

∣
∣Br (x0) ∩ {u = 0}∣∣ > 0 for every r > 0 .
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Regularity of the two-phase free boundaries 353

By definition,�int
tp is an open subset of ∂�+

u ∩B1. In particular, u is aminimizer
of the Alt–Caffarelli–Friedman functional (ACF) with λ+ = λ0 in a small ball
Br (x0) and the regularity of �int

tp is a consequence of the results in [2,9–
11,15,27–29].

In order to complete the study of the regularity of the free boundaries one
has then to focus on the branching points. Note that by the previous discussion
|∇u+| is a Hölder continuous function on �+

op ∪�int
tp . By relying on the results

of [26], to prove Theorem 1.1 one has to show that |∇u+| : ∂�+
u ∩ B1 → R

is Hölder continuous across the branching points

�br
tp = (

∂�+
u ∩ B1

) \
(
�+

op ∪ �int
tp

)
.

By following [42,43] this will be consequence of

uniform “flatness” decay at the two-phase points x0 ∈ �tp,

which is the main result of our paper.

1.3 Flatness decay at the two-phase points

By the Weiss’ monotonicity formula (see [46]), at every two-phase point x0 ∈
�tp, the limits of blow-up sequences

ux0,rk (y) = u(x0 + rk y)

rk

are two-plane solutions of the form

Hα,e(x) = α(x · e)+ − β(x · e)−,where

e ∈ S
d−1, α2 − β2 = λ2+ − λ2−, and α ≥ λ+, β ≥ λ−.

(TpS)

However, a priori the limiting profile might depend on the chosen sequence.
As it is usual in this type of problems, uniqueness of the blow-up profile (and
thus regularity of u) is a consequence of a uniform flatness (or excess) decay.

Given u, its flatness in Br (x0) with respect to H = Hα,e is defined as

flatBr (x0) (u, H) = 1

r
‖u − H‖L∞(Br (x0)).

In particular, we can assume that the flatness becomes small at a uniform scale
in a neighborhood of any x0 ∈ �tp. Precisely, for every ε > 0 and x0 ∈ �tp,
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354 G. De Philippis et al.

there is r > 0 and a neighborhood U of x0, such that

flatBr (y0) (u, H) ≤ ε for every y0 ∈ U ∩ �tp.

Our aim is to prove that there is a universal threshold ε > 0 such that

flatBr (x0) (u, H) ≤ ε for some two-plane solution H = Hα,e,

then it improves in the ball Br/2(x0), which means that there exists another
two-plane solution H̃ = Hα̃,ẽ such that

flatBr/2(x0) (u, H̃) ≤ 2−γ flatBr (x0) (u, H), (1.4)

for some small, but universal, γ > 0.
In order to prove (1.4), we argue by contradiction. That is, there is a sequence

of minimizers uk and a sequence of two-plane solutions Hk , such that

εk := ‖uk − Hk‖L∞(B1) → 0 but inf
H̃

‖uk − H̃‖L∞(B1/2) ≥ 2−γ εk ,

where the infimum is taken over all H̃ of the form (TpS).
Now, the two key points of the argument are to show that the sequence

vk := uk − Hk

εk

is (pre-)compact in a suitable topology and that any limit point v∞ is a solution
of a suitable “linearized” problem (that turns out to be a non-linear one); then
the regularity theory for the limiting problem allows to obtain the desired
contradiction.

While the linearized problem can be guessed by formal computations, in
order to transfer back regularity estimates for v∞ to vk , it is crucial to establish
the uniform convergence of vk (which is a priori only bounded in L∞) to v∞.
In our case, as well as for other variational problems, this is not just a tech-
nical issue but is where the proof of ε-regularity-type theorems may actually
fail, even if the “formal” linearized problem enjoys all the desired estimates.
Instances of this phenomena are well known in literature. For example, while
an ε-regularity theorem for minimizers of quasi-convex functions holds true
(as proved by Evans [32]), a similar result is false for critical points, as shown
byMuller andSverak [36], eventhough the twoproblems share the same formal
linearization. A similar issue happens for harmonic maps: an ε-regularity the-
orem is true for minimizers but it is false for critical points as it was proved by
Rivière [37]; also in this case the formal linearized problem is the same namely
the Laplace equation. In general, in many variational problems which exhibit
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Regularity of the two-phase free boundaries 355

singular behavior (as in our situation), the linearization is well-understood, but
the compactness is still out of reach.

Let us now briefly analyze these two main steps of the proof.
The “linearized” problem. The nature of the limiting problem depends on
the type of free boundary point one is considering. At branching points (the
ones that we are most interested in), v∞ turns out be the the solution of a
two-membrane problem, (3.10). At interior two-phase points �int

tp , we instead
recover a transmission problem as in [27].

Note that in the first case, the “linearized” problem is actually non-linear.
Similar phenomena have been already observed in a number of related sit-
uation: in this same context, a derivation of the limiting problem was done
in [4], while for Bernoulli type problems a similar fact appears in studying
regularity close to the boundary of the container, [18]. See also [33,41] for
similar issues in studying the singular set of obstacle type problems. Heuristi-
cally linearizing to an “obstacle” type problem is due to the fact that there is a
natural “ordering” between the negative and the positive phases of any possi-
ble competitor. Note instead if one linearizes the plain one phase problem, the
natural linearized problem is the Neumann one, this was observed in [3] (in
the parabolic case) and fully exploited in [26], see also [16,17] where other
non-local type problems appear as linearization.
Compactness of the linearizing sequence vk . We follow the approach intro-
duced by De Silva [26], which is based on a partial Harnack type inequality,
introduced in different context by Savin [39,40]. This is a weaker form of the
flatness decay estimate (1.4) that does not take into account the scaling of the
functional (which means that it cannot be used to obtain the regularity of the
free boundary in a direct way). The rough idea is that if ‖u − H‖L∞(Br (x0))
falls below a certain (universal) threshold, then u is closer to H in the ball
Br/2(x0), precisely:

‖u − H‖L∞(Br/2(x0)) ≤ 2−δ‖u − H‖L∞(Br (x0)), (1.5)

for some δ > 0. This estimate implies the compactness of the sequence vk by
a classical (Ascoli-Arzelà type) argument.

For local minimizers of the one-phase functional (OP) or the two-phase
functional (ACF) with coefficients satisfying the condition (1.1), the functions
H can be chosen in the respective class of blow-up limits. In fact, for the one-
phase problem, it is sufficient to take H to be the (possibly translated and
rotated) one-homogeneous global one-phase solution H(x) = λ+x+

d (as in
[26]); for the two-phase problem in the case (1.1), it is sufficient to take H in
the class of two-plane solutions (TpS), precisely as in [27]. However, in our
case, it turns out that the class of two-plane solutions is not large enough. The
reason is that there exist solutions which are arbitrarily close to a two-plane
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tp

Fig. 1 In a neighborhood of a branching point x0 the solution u might get closer to the solution
of the form(1.6)

solution of the form Hλ+,ed but which are not a smooth perturbation of it. For
instance the function,

H(x) = λ+(xd + ε1)
+ − λ−(xd − ε2)

−, (1.6)

is max{ε1, ε2}-close to the two-plane solution Hλ+,ed , but (1.5) fails for it.
This is not just a technical difficulty. In fact, in order to get the compactness

of the linearizing sequence, the partial improvement of flatness (1.5) is not
needed just at one two-phase point x0, but in all the points in a neighborhood
of x0. Now, since at a branching point, the behavior of the free boundary
switches from two-phase (which roughly speaking corresponds to the case
when the two free boundaries ∂�+

u and ∂�−
u coincide) to one-phase (in which

the two free boundaries ∂�+
u and ∂�−

u are close to each other but separate, as
on Fig. 1 below), the class of reference functions H has to contain both the
two-plane solutions (TpS) and the solutions of the form (1.6).

Structure of the paper. This paper is organized as follows: in Sect. 2 we recall
some basic properties of minimizers and we fix the notation; in Sect. 3 we
establish the excess decay lemma; in Sect. 4 we prove our main results; in
“Appendices A and B” we collect the proofs of some technical facts.

At the final stage of the preparation of this work, the authors have been
informed by personal communication that two other groups are working on
similar problems, namely in [4] the authors aim to establish a result analogous
to the ours via variational techniques, while in [24] the goal is to prove the same
result for almost minimizers in the spirit of [22,23,25]. At our knowledge, at
this date, none of these works has appeared in a journal or on arxiv.

2 Basic properties of minimizers

In this section we recall (mostly without proof) some basic properties of local
minimizers of Jtp. In particular, in Sect. 2.1 we recall Lipschitz-regularity and
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Regularity of the two-phase free boundaries 357

non-degeneracy property of u; Sect. 2.2 is dedicated to the study of blow-up
limits of u at two-phase points and in Sect. 2.3 we show that u satisfies an
optimality condition in viscosity sense.

2.1 Regularity of minimizers

Let u be a local minimizer of Jtp. Then, it is well-known that u is locally
Lipschitz continuous and non-degenerate.

Throughout this paper, we will assume that the weights in (TP) are ordered
as follows:

λ+ ≥ λ− > 0. (2.1)

Notice that this is not restrictive as one can always replace u by −u in Jtp.

Proposition 2.1 (Lipschitz regularity and non-degeneracy of local minimiz-
ers). Let D ⊂ R

d be an open set, λ+ ≥ λ− > 0, and u be a local minimizer
of Jtp. Then the following properties hold:

(i) Lipschitz continuity. u ∈ C0,1
loc (D).

(ii) Non-degeneracy. There is constant α = α(d, λ±) > 0 such that

 
∂ Br (x0)

u± ≥ α r for every x0 ∈ �±
u ∩ D and every 0 < r < dist(x0, ∂ D).

Proof The second claimwas first proved in [2, Theorem 3.1] and depends only
on the fact that each of the two phases �+

u and �−
u is optimal with respect

to one-sided inwards perturbations (see for instance [8] and [44, Section 4]).
The Lipschitz continuity of u is more involved and requires the use of the Alt–
Caffarelli–Friedman monotonicity formula and the non-degeneracy of u+ and
u−. It was first proved in [2, Theorem 5.3], see also the recent paper [23] for
quasi-minimizers. ��

2.2 Blow-up sequences and blow-up limits

Let u be a local minimizer of Jtp in the open set D ⊂ R
d . For every x0 ∈

∂�u ∩ D and every 0 < r < dist(x0, ∂ D), we consider the function

ux0,r (x) := u(x0 + r x)

r
,

which is well-defined for |x | < 1
r dist(x0, ∂ D) and vanishes at the origin.

Given a sequence rk > 0 such that rk → 0, we say that the sequence of
functions ux0,rk is a blow-up sequence. Note that, for every R > 0, and k � 1,
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358 G. De Philippis et al.

the functions ux0,rk are defined on the ball BR , vanish at zero and are uniformly
Lipschitz in BR . Hence, there is a Lipschitz continuous function v : Rd → R

and a (non-relabeled) subsequence of ux0,rk such that ux0,rk converges to v

uniformly on every ball BR ⊂ R
d . We say that v is a blow-up limit of u at x0.

Notice that v might depend not only on x0 and u but also on the (sub-)sequence
rk . We will denote by BU(x0) the collection of all possible blow-up limits of
u at x0.

The following lemma classifies all the possible elements of BU(x0) when
x0 ∈ �tp.The result is well-known and we only sketch the proof for the sake
of completeness.

Lemma 2.2 (Classification of the blow-up limits). Let u be a local minimizer
of Jtp in the open set D ⊂ R

d , and let v be a blow-up limit of u at the two-phase
point x0 ∈ �tp. Then, v is of the form

v(x) = Hα,e(x) = α(x · e)+ − β(x · e)−,

where e ∈ S
d−1, and α, β are such that

α2 − β2 = λ2+ − λ2− and α ≥ λ+, β ≥ λ−.

Proof Let v be a blow-up limit of u at x0 and let ux0,rk be a blow-up sequence
converging to v (locally uniformly inRd). First, notice that the non-degeneracy
of u, Lemma 2.1 (ii), implies that v is non trivial and changes sign: v+ �≡ 0
and v− �≡ 0. Moreover, since every ux0,rk is a local minimizer of Jtp ( it is
standard to infer that v is also a local minimizer of Jtp in Rd (see for instance
[44, Section 6]). Thus, v is harmonic on �+

v and �−
v . On the other hand,

by the Weiss monotonicity formula, [46], v is one-homogeneous, in polar
coordinates:

v(ρ, θ) = ρV (θ).

In particular V is an eigenfunction of the spherical Laplacian�S on the spher-
ical sets �±

v ∩ S
d−1:

− �SV ± = (d − 1)V ± in �±
v ∩ S

d−1. (2.2)

We now choose c > 0 such that

ˆ
Sd−1

(V + − cV −)dHd−1 = 0.
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Using (2.2) and integrating by parts, we get that
ˆ
Sd−1

|∇θ (V + − cV −)|2 dHd−1 = (d − 1)
ˆ

∂ B1

|V + − cV −|2 dHd−1.

This means that V + − cV − is an eigenfunction of the spherical Laplacian on
S

d−1, corresponding to the eigenvalue (d − 1). Since the (d − 1)-eigenspace
contains only linear functions one easily deduce that v is of the form (TpS).

Conditions (2.2) can be obtained by a smooth variation of the free boundary
{v = 0}. Indeed, if considering competitors of the form vt (x) = v(x + tξ(x))

for smooth compactly vector fields ξ , and taking the derivative of Jtp(vt , B1)

at t → 0, we get that
ˆ

{v=0}∩B1

(e · ξ)
(
|∇v+|2 − |∇v−|2 − (

λ2+ − λ2−
))

dHd−1 = 0,

which by the arbitrariness of ξ is precisely the first part of (2.2). The second
part of (2.2) is analogous and follows by considering competitors of the form
vt (x) = v+(x) − v−(x + tξ(x)) for vector fields with ξ · e ≤ 0 so that it
moves negative phase only inwards, that is, {vt < 0} ⊂ {v < 0}. Taking the
derivative of the energy at t > 0, we get

ˆ
{v=0}∩B1

(ξ · e)(|∇v−|2 − λ2−
)

dHd−1 ≤ 0,

which gives β ≥ λ−. The estimate on α is analogous. ��
The following consequence of Lemma 2.2 says that the “flatness” can be

chosen uniformly small in a neighborhood of a two-phase point.

Corollary 2.3 Let u be a local minimizer of Jtp in the open set D ⊂ R
d , and

let x0 be a two-phase point x0 ∈ �tp. Then, for every ε > 0 there are r > 0
and ρ > 0, and a function Hα,e of the form (TpS) such that

‖uy0,r − Hα,e‖L∞(B1) ≤ ε for every y0 ∈ Bρ(x0).

Proof By Lemma 2.2, there exists r > 0 and a function H of the form (TpS)
such that ‖ux0,r − H‖L∞(B1) ≤ ε/2. On the other hand, by the Lipschitz conti-
nuity of u

‖ux0,r − uy0,r‖L∞(B1) ≤ L

r
|x0 − y0|.

Choosing ρ small enough (such that Lρ
r ≤ ε/2), we get the claim. ��
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2.3 Optimality conditions at the free boundary

Let u : D → R be a local minimizer of Jtp. In this section, we will show
that u satisfies the following optimality conditions at two-phase free boundary
points:

|∇u+|2 − |∇u−|2 = λ2+ − λ2− and |∇u±| ≥ λ± on �tp. (2.3)

We notice that if u was differentiable at x0 ∈ �tp, that is,

{
u+(x) = (x − x0) · ∇u+(x0) + o(|x − x0|) for every x ∈ �+

u ,

u−(x) = (x − x0) · ∇u−(x0) + o(|x − x0|) for every x ∈ �−
u ,

(2.4)

then (2.3) would be an immediate consequence of Lemma 2.2. Of course,
differentiability of u+ and u− (and the uniqueness of the blow-up limits)2

is not a priori known, so we will use the optimality condition in some weak
(viscosity) sense, based on comparison with (more regular) test functions.

Definition 2.4 Let D be an open set.

(i) We say that a function Q : D → R touches a function w : D → R from
below (resp. from above) at a point x0 ∈ D if Q(x0) = w(x0) and

Q(x) − w(x) ≤ 0
(
resp. Q(x) − w(x) ≥ 0

)

for every x in a neighborhood of x0. We will say that Q touches w strictly
from below (resp. above), if the above inequalities are strict for x �= x0.

(ii) A function Q is an admissible comparison function in D if
(a) Q ∈ C1

({Q > 0} ∩ D
) ∩ C1

({Q < 0} ∩ D
)
;

(b) Q ∈ C2
({Q > 0} ∩ D

) ∩ C2
({Q < 0} ∩ D

)
;

(c) ∂{Q > 0} and ∂{Q < 0} are smooth manifolds in D.

The optimality conditions on u are given in the next lemma. Before we give
the precise statement, we recall that ∂�u ∩ D = �+

op ∪ �−
op ∪ �tp, where

�+
op := ∂�+

u \ ∂�−
u ∩ D, �−

op := ∂�−
u \ ∂�+

u ∩ D

and �tp := ∂�−
u ∩ ∂�+

u ∩ D.

2 It is immediate to check that, if the blow-up is unique at x0 ∈ �tp , that is,

lim
r→0

‖ux0,r − H‖L∞(B1) = 0 for some H as in (TpS),

then α = |∇u+|(x0), β = |∇u−|(x0) and (2.4) does hold.
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Lemma 2.5 (The local minimizers are viscosity solutions). Let u be a local
minimizer of Jtp in the open set D ⊂ R

d . Then, u in harmonic in �+
u ∪�−

u and
satisfies the following optimality conditions on the free boundary ∂�u ∩ D.

(A) Suppose that Q is a comparison function that touches u from below at x0.
(A.1) If x0 ∈ �+

op, then |∇Q+(x0)| ≤ λ+;
(A.2) if x0 ∈ �−

op, then Q+ ≡ 0 in a neighborhood of x0 and
|∇Q−(x0)| ≥ λ−;

(A.3) if x0 ∈ �tp, then |∇Q−(x0)| ≥ λ− and

|∇Q+(x0)|2 − |∇Q−(x0)|2 ≤ λ2+ − λ2−.

(B) Suppose that Q is a comparison function that touches u from above at x0.
(B.1) If x0 ∈ �+

op, then Q− ≡ 0 in a neighborhood of x0 and
|∇Q+(x0)| ≥ λ+;

(B.2) if x0 ∈ �−
op, then |∇Q−(x0)| ≤ λ−;

(B.3) if x0 ∈ �tp, then |∇Q+(x0)| ≥ λ+ and

|∇Q+(x0)|2 − |∇Q−(x0)|2 ≥ λ2+ − λ2−.

Proof If x0 is a one-phase point, then the gradient bounds in (A.1), (A.2), (B.1)
and (B.2) follow by [44, Proposition 7.1], the claims Q+ ≡ 0 in (A.2) and
Q− ≡ 0 in (B.2) being trivially true. Suppose now that x0 ∈ �tp and that Q
touches u from below at x0. Let ux0,rk and Qx0,rk be blow-up sequences of u
and Q at x0. Then, up to extracting a subsequence, we can assume that ux0,rk

converges uniformly to a blow-up limit Hu ∈ BU(x0) of the form

Hu(x) = α(x · e)+ − β(x · e)−.

On the other hand, since Q+ and Q− are differentiable at x0 (respectively in
�

+
Q and �

−
Q), we get that Qx0,rk converges to the function

HQ(x) = |∇Q+(x0)|(x · e′)+ − |∇Q−(x0)|(x · e′)−,

where e′ = |∇Q+(x0)|−1∇Q+(x0) = −|∇Q−(x0)|−1∇Q−(x0). Now since,
HQ touches Hu from below (and since α �= 0 and β �= 0), we have that e′ = e,

|∇Q+(x0)|2 − |∇Q−(x0)|2 ≤ α2 − β2

and |∇Q+(x0)| ≤ α, |∇Q−(x0)| ≥ β.

Combined with (2.2), this gives (A.3). The proof of (B.3) is analogous. ��
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In particular, if u : D → R is a continuous function such that the claims (A)
and (B) hold for every comparison function Q, then we say that u satisfies the
following overdetermined condition on the free boundary in viscosity sense:

⎧
⎪⎨

⎪⎩

|∇u+|2 − |∇u−|2 = λ2+ − λ2−, |∇u+| ≥ λ+ and |∇u−| ≥ λ− on �+
u ∩ �−

u ∩ D ;
|∇u+| = λ+ on D ∩ �+

u \ �−
u ;

|∇u−| = λ− on D ∩ �−
u \ �+

u .

(2.5)

Thus, Lemma 2.5 can be restated as follows: If u is a local minimizer of Jtp
in D, then it satisfies (2.5) in viscosity sense.

We conclude this section by recording the following straightforward con-
sequence of definition of viscosity solution, where we consider what happens
when a function is touching only one of the two phases (note that in the sec-
ond item we are restricting the touching points only to the one-phase free
boundaries).

Lemma 2.6 Let u : D → R be a continuous function which satisfies (2.5).

(i) Assume that Q is a comparison function touching u+ from above at the
point x0 ∈ ∂�+

u (resp. −u− from below at x0 ∈ ∂�−
u ) , then

|∇Q+|(x0) ≥ λ+
(

resp. |∇Q−|(x0) ≥ λ−
)
.

(ii) Assume that Q is a comparison function touching u+ from below at the
point x0 ∈ �+

op (resp. −u− from above at x0 ∈ �−
op) , then

|∇Q+|(x0) ≤ λ+
(

resp. |∇Q−|(x0) ≤ λ−
)
.

Proof The claim (i) simply follows by, for instance, noticing that the assump-
tion implies that Q ≥ u+ ≥ 0 so that Q touching u from above and thus one
can apply B.1 and the first part of B.3 in the definition of viscosity solution
and that a symmetric argument holds for u−.

Concerning claim (ii), we note that since x0 ∈ �+
op, u ≥ 0 in a neighborhood

of x0. In particular, the function Q+ is touching u from below at x0 and thus
the conclusion follows by (B.2) in the definition of viscosity solution. ��

3 Flatness decay

In this section we prove that, at two-phase points, the flatness decays from one
scale to the next. Our main result is the following theorem, which applies to
any viscosity solution of the two-phase problem.
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Theorem 3.1 (Flatness decay for viscosity solutions). For every
L ≥ λ+ ≥ λ− > 0 and γ ∈ (0, 1/2), there exist ε0 > 0, C > 0 and ρ ∈ (0, 1/4)

such that the following holds. Suppose that the function u : B1 → R satisfies:

(a) u is L-Lipschitz continuous;
(b) zero is on the two-phase free boundary, 0 ∈ �tp = ∂�+

u ∩ ∂�−
u ;

(c) u is harmonic in �+
u ∪ �−

u ;
(d) u satisfies the optimality condition (2.5) in viscosity sense;
(e) u is ε0-flat in B1, that is,

‖u − Hα,ed ‖L∞(B1) ≤ ε0 for some L ≥ α ≥ λ+ . (3.1)

Then, there are e ∈ S
d−1 and α̃ ≥ λ+ such that

|e − ed | + |α̃ − α| ≤ C ‖u − Hα,ed ‖L∞(B1), (3.2)

and
‖uρ − Hα̃,e‖L∞(B1) ≤ ργ ‖u − Hα,ed ‖L∞(B1). (3.3)

Proof of Theorem 3.1 follows easily combining the two upcoming lemmas.
In the first one we deal with the situation where the two-plane solution is,
roughly, Hλ+ . Note that this is the situation where one might expect the pres-
ence of branching points and it is indeed in this setting that we will obtain
the two membrane problem as “linearization”. In the second lemma, we deal
with the case when the closest half-plane solution has a gradient much larger
than λ+. We will later show that in this case the origin is an interior two-phase
point.

Lemma 3.2 (Improvement of flatness: branching points). For every
L ≥ λ+ ≥ λ− > 0, γ ∈ (0, 1/2), and M > 0, there exist ε1 = ε1(γ, d, L , M),
C1 = C1(γ, d, L , M) and ρ = ρ(γ, d, L , M) such that the following holds.
For every function u : B1 → R satisfying (a)–(d) of Theorem 3.1 and such
that

‖u − Hα,ed ‖L∞(B1) ≤ ε1 , with 0 ≤ α − λ+ ≤ M‖u − Hα,ed ‖L∞(B1),

there exist e ∈ S
d−1 and α̃ ≥ λ+, for which (3.2) and (3.3) hold.

Lemma 3.3 (Improvement of flatness: non-branching points). For every
L ≥ λ+ ≥ λ− > 0 and γ ∈ (0, 1), there exist ε2 = ε2(γ, d, L),
M = M(γ, d, L) and ρ = ρ(γ, d, L) C2 = C2(γ, d, L) such that the follow-
ing holds. For every function u : B1 → R satisfying (a)–(d) of Theorem 3.1
and such that

‖u − Hα,ed ‖L∞(B1) ≤ ε2 , with α − λ+ ≥ M‖u − Hα,ed ‖L∞(B1),
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there exist e ∈ S
d−1 and α̃ ≥ λ+, for which (3.2) and (3.3) hold.

Let us first show that Theorem 3.1 follows from Lemmas 3.2 and 3.3.

Proof of Theorem 3.1 Fix γ ∈ (0, 1/2) and notice that α < 2L , where L is
the Lipschitz constant of u. Next choose M = 2M in Lemma 3.2, where M
is as in Lemma 3.3. Let ε0 = min

{
ε2(2M), ε1/2

}
. Then, we can apply either

Lemmas 3.2 or 3.3. ��
In order to prove Lemmas 3.2 and 3.3, wewill argue by contradiction. Hence

in the following we consider a sequence uk of minimizers such that

εk := ‖uk − Hαk ,ed ‖L∞(B1) → 0 and λ+ ≤ αk ≤ L , (3.4)

where

‖∇uk‖L∞(B1) ≤ L for every k ≥ 1.

We also set

� := λ2+ lim
k→∞

α2
k − λ2+
2α2

k εk
= λ2− lim

k→∞
β2

k − λ2−
2β2

k εk
(3.5)

which we can assume to exists up to extracting a subsequence. It might be
useful to keep in mind that � = ∞ will correspond to Lemma 3.3 while
0 ≤ � ≤ M < ∞ to Lemma 3.2.

In order to prove Lemmas 3.3 and 3.2, we will first show that the sequence

vk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

v+,k(x) := uk(x) − αk x+
d

αkεk
x ∈ �+

uk
∩ B1

v−,k(x) := uk(x) + βk x−
d

βkεk
x ∈ �−

uk
∩ B1

(3.6)

is compact in some suitable sense; we give the precise statement in Corol-
lary 3.4 below and we postpone the proof to Sect. 3.1. We then establish in
Lemma 3.5 the limiting problem solved by its limit v. Note that this problem
depends on the value of � which is distinguishing whether we are or not at
branching points.

Finally, in Sect. 3.3 we show how to deduce Lemmas 3.3 and 3.2 from
Corollary 3.4 and Lemma 3.5. In the rest of the paper we will use the notation

B±
r := Br ∩ {x±

d > 0} for every r > 0 .

Lemma 3.4 (Compactness of the linearizing sequence vk). Let uk be a
sequence of functions satisfying (a), (b), (c) and (d) of Theorem 3.1 uniformly
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in k and let εk and αk be as in (3.4) and let vk be defined by (3.6). Then there
are Hölder continuous functions

v+ : B+
1/2 → R and v− : B−

1/2 → R,

with

v+ ≤ v− on B1/2 ∩ {xd = 0}, v+(0) = v−(0) = 0,

and such that the sequences of closed graphs

�±
k :=

{
(x, v±,k(x)) : x ∈ �±

uk ∩ B1/2

}
,

converge, up to a (non-relabeled) subsequence, in the Hausdorff distance to
the closed graphs

�± =
{
(x, v±(x)) : x ∈ B±

1/2

}
.

In particular, the following claims hold:

(i) For every δ > 0, v±,k converges uniformly to v± on B1/2 ∩ {±xd > δ}.
(ii) For every sequence xk ∈ �±

uk ∩ B1 converging to x ∈ B±
1/2, we have

v±(x) = lim
k→∞ v±,k(xk).

(iii) For every x ∈ {xd = 0} ∩ B1/2 , we have

v±(x) = ∓ lim
k→∞

xk · ed

αkεk
for any sequence ∂�±

uk
� xk → x .

In particular, {xd = 0} ∩ B1/2 decomposes into a open jump set

J = {v+ < v−} ∩ {xd = 0} ∩ B1/2,

and its complementary contact set

C = {v+ = v−} ∩ {xd = 0} ∩ B1/2.

Furthermore, if x ∈ J , then

lim inf
k→∞ dist

(
x, ∂�+

uk
∩ ∂�−

uk

)
> 0. (3.7)
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In particular for all x ∈ J , there exists two sequences x±
k ∈ �±

k,op such that

x±
k → x.

In the next lemmawe determine the limiting problem solved by the function
v defined as

v(x) =
{

v+(x) for x ∈ B+
1/2,

v−(x) for x ∈ B−
1/2,

(3.8)

where v+ and v− are as in Corollary 3.4.

Lemma 3.5 (The “linearized” problem). Let uk, εk and αk be as in (3.4), vk
be defined by (3.6) and � as in (3.5). Let also v± be as in Corollary 3.4:
� = ∞ : Then J = ∅ and v± are viscosity solutions of the transmission
problem: {

�v± = 0 in B±
1/2

α2∞∂dv+ = β2∞∂dv− on B±
1/2 ∩ {xd = 0} (3.9)

where α∞ = limk αk and β∞ = limk βk , which we can assume to exist up to
extracting a further subsequence.
0 ≤ � < ∞ : Then v is a viscosity solution of the two membrane problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�v± = 0 in B±
1/2,

λ2±∂dv± + � ≥ 0 in B1/2 ∩ {xd = 0},
λ2±∂dv± + � = 0 in J ,

λ2+∂dv+ = λ2−∂dv− in C,

v+ ≤ v− in B1/2 ∩ {xd = 0}.

. (3.10)

Remark 3.6 Here by viscosity solution of (3.9) and (3.10) we mean a function

v as in (3.8) such that v± are continuous in B±
1/2, �v± = 0 in B±

1/2 and such that
the following holds:

– If we are in case (3.9), let p, q ∈ R and let P̃ be a smooth function such
that ∂d P̃ = 0. Suppose that P̃ is subharmonic (superharmonic) and that
the function

P := px+
d − qx−

d + P̃

touches v strictly from below (above) at x0 ∈ B1/2 ∩ {xd = 0}, then

α2∞ p ≤ β2∞q
(
α2∞ p ≥ β2∞q

)
.

– If we are in case (3.10) then
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(1) if P± is a smooth superharmonic function in B±
1/2 touching v± strictly

from above at x0 ∈ B1/2 ∩ {xd = 0}, then λ2±∂d P± ≥ 0;
(2) if P± is a smooth subharmonic function in B±

1/2 touching v± strictly

from below at x0 ∈ J , then λ2±∂d P± ≤ 0;
(3) if p, q ∈ R and P̃ is a smooth subharmonic (superharmonic) function

such that ∂d P̃ = 0 and such that the function

P := px+
d − qx−

d + P̃

touches v strictly from below (above) at x0 ∈ B1/2 ∩ {xd = 0}, then

λ2+ p ≤ λ2−q
(
λ2+ p ≥ λ2−q

)
.

3.1 Compactness of the linearizing sequence: Proof of Corollary 3.4

The key point in establishing a suitable compactness for vk is a “partial Har-
nack” inequality, in the spirit of [26,27]. As explained in the introduction, in
dealing with branching points one needs to work separately on the positive
and negative part. An additional difficulties arise also at pure two-phase points
since we want also to deal with the case λ− = λ+. Let us briefly explain the
ideas of the proof.

If u is close in B1 to a global solution of the form Hα,ed with α > λ+, then
we expect that in a small neighborhood Bρ of the origin the level set {u = 0}
has zero Lebesgue measure and that all the free boundary points in Bρ are
“interior” two-phase points (indeed, at the end, thiswill be a consequence of the
C1 regularity of u and of the free boundary). In this case one expects to be able
to do the same argument as in [27]. This is true except for the following caveat,
if one wants to deal with the case λ− = λ+ then the sliding arguments used
in [26,27] (see also [9,10]) does not yield the desired contradiction since the
positive term might actually be zero. For this reason one has first to “increase”
the slope of the trapping solution, so that the sliding argument would give
the desired contradiction. Namely if u is trapped between two translation of a
two-plane solution:

Hα,ed (x + b) ≤ u ≤ Hα,ed (x + a)

in say B1 and at the point P = (0, . . . , 0, 1/2) u is closer to Hα,ed (· + a) then
to Hα,ed (· + b), we can increase in a quantitative way the slope of the positive
part of the lower two-plane solution in half ball, i.e.

u ≥ α′(x + b)+ − β(x + b)+, α′ > α,
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see Lemma 3.7. The sliding argument of [26,27] then allows to translate this
to a a (quantitative) increase of b, yielding the partial decay of flatness of the
free boundary. This is the situation studied in Lemma 3.9.

If instead u is close to Hλ+,ed then the free boundary can behave in several
differentways. Indeed, in this case the origin can be either an interior two-phase
point, a branching two-phase point but it might also happen that

u(x) ≈ λ+(xd + ε1)+ − λ−(xd − ε2)− with 0 < ε1, ε2 � 1.

Since as explained in the introduction we have to deal with all the of the above
situations we have to prove a decay in this situation is to improve separately
the positive and the negative parts of u. More precisely if in B1

λ+
(
xd + b+

)+ ≤ u+(x) ≤ λ+
(
xd + a+

)+
,

−λ−
(
xd + b−

)− ≤ −u−(x) ≤ −λ−
(
xd + a−

)−
,

for suitable a±, b±, one wants to find new constants ā±, b̄± ∈ with

(b̄− − ā−) < (b− − a−), (b̄+ − ā+) < (b+ − a+),

and for which, in half the ball,

λ+
(
xd + b̄+

)+ ≤ u+(x) ≤ λ+
(
xd + ā+

)+
,

−λ−
(
xd + b̄−

)− ≤ −u−(x) ≤ −λ−
(
xd + ā−

)−
.

Here one has to distinguishes the case in which, say, the lower function

λ+
(
xd + b̄+

)+ − λ−
(
xd + b̄−

)−

looks like a two plane solution, i.e b+−b− � 1, or not and to perform different
comparisons according to the situation. This dealt in Lemma 3.8.

We start with the following simple lemma which allows to “increase” the
slope of the comparison functions.

Lemma 3.7 There is a dimensional constants τ = τ(d) > 0 such that the
following hold. Assume that v : B1 → R is a continuous function with �v = 0
on {v > 0} and such that

λ
(
xd + b

)+ ≤ v ≤ λ
(
xd + a

)+
,

for some a, b ∈ ( − 1/100, 1/100
)
. Let P = (0, . . . , 0, 1/2), then for all ε ∈ (0, 1

2 )

v(P) ≤ λ(1 − ε)
(1
2

+ a
)+ �⇒ v ≤ λ(1 − τε)

(
xd + a

)+
in B1/4(0) ,
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and

v(P) ≥ λ(1 + ε)
(1
2

+ b
)+ �⇒ v ≥ λ(1 + τε)

(
xd + b

)+
in B1/4(0).

Proof Weprove only the first implication, since the second one can be obtained
by the same arguments. First, we notice that, since b ≤ 1/100, both v and
λ(xd + a)+ are positive and harmonic in B1/4(P). Thus,

λ(xd + a)+ − v ≥ 0 in B1/4(P)

and

λ
(1
2

+ a
)+ − v(P) ≥ λε

(1
2

+ a
)+ ≥ 49

100
λε.

Hence, by Harnack inequality and the bound |a| ≤ 1/100 there are dimensional
constants c̄ and c such that

v(x) ≤ λ
(
xd + a

)+ − λc̄ε ≤ λ(1 − cε)
(
xd + a

)+ for all x ∈ B1/8(P).

We now let w be the solution of the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w = 0 in B1(0) \ B1/8(P) ∩ {xd > −a},
w = 0 on B1 ∩ {xd = −a},
w = λ

(
xd + a

)+ on ∂ B1(0) ∩ {xd > −a},
w = λ(1 − cε

)(
xd + a

)+ on ∂ B1/8(P) ∩ {xd > −a}.
By the Hopf Boundary Lemma,

w(x) ≤ (1 − τε)(xd + a)+ for every x in B1/4 ∩ {xd > −a},
for a suitable constant τ = τ(d). Since, by the comparison principle, u ≤ w,
this concludes the proof. ��

We next prove the two partial Harnack inequalities.
The proof is based on comparison with suitable test functions. In order to

build these “barriers”, we will often use the following function ϕ. Let Q =
(0, . . . , 0, 1/5) and we let ϕ : B1 → R be defined by:

ϕ(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ B1/100(Q),

κd

(
|x − Q|−d − (

3/4
)−d

)
if x ∈ B3/4(Q) \ B1/100(Q),

0 otherwise,

(3.11)
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where the dimensional constant κd is chosen in such away thatϕ is continuous.
It is immediate to check that ϕ has the following properties:

(ϕ.1) 0 ≤ ϕ ≤ 1 in Rd , and ϕ = 0 on ∂ B1;
(ϕ.2) �ϕ ≥ cd > 0 in {ϕ > 0} \ B1/100(Q);
(ϕ.3) ∂dϕ > 0 in {ϕ > 0} ∩ {|xd | ≤ 1/100};
(ϕ.4) ϕ ≥ cd > 0 in B1/6.

where cd is a dimensional constant. We distinguish two cases.

Lemma 3.8 (Partial Boundary Harnack I). Given λ+ ≥ λ− > 0 there exist
constants ε̄ = ε̄(d, λ±) > 0 and c̄ = c̄(d, λ±) ∈ (0, 1) such that, for every
function u : B4 → R satisfying (a), (c) and (d) in Theorem 3.1, the following
property holds true.

Let a±, b± ∈ (−1/100, 1/100
)

be such that

b− ≤ a−, b+ ≤ a+, b− ≤ b+, a− ≤ a+,

and

(a− − b−) + (a+ − b+) ≤ ε̄.

Assume that for x ∈ B4:

λ+
(
xd + b+

)+ ≤ u+(x) ≤ λ+
(
xd + a+

)+

and

−λ−
(
xd + b−

)− ≤ −u−(x) ≤ −λ−
(
xd + a−

)−
.

Then, one can find new constants ā±, b̄± ∈ (−1/100, 1/100
)
, with

b̄− ≤ ā−, b̄+ ≤ ā+, b̄− ≤ b̄+, ā− ≤ ā+,

and

ā− − b̄− ≤ c̄(a− − b−) ā+ − b̄+ ≤ c̄(a+ − b+)

such that for x ∈ B1/6:

λ+
(
xd + b̄+

)+ ≤ u+(x) ≤ λ+
(
xd + ā+

)+

and

−λ−
(
xd + b̄−

)− ≤ −u−(x) ≤ −λ−
(
xd + ā−

)−
.
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Proof Let us show how to improve the positive part. More precisely we show
how given a+, a−, b+, b− as in the statement we can find ā+ and b̄+. The
proof for b̄− and ā− works in the same way and is left to the reader.

We set

P = (0, . . . , 0, 2)

and we distinguish two cases:
• Case 1. Improvement from above. Assume that, at the point P , u+ is closer
to λ+(2 + b+)+ than to the upper barrier λ+(2 + a+)+. Precisely that

u+(P) ≤ λ+(2 + a+)+ − λ+(a+ − b+)

2
.

In this case, we will show that u is below λ+(x + ā+)+ in a smaller ball
centered at the origin for ā+ strictly smaller than a+.

We start by setting

ε := a+ − b+ ≤ ε̄.

Then

u+(P) ≤ λ+(2 + a+)+ − λε

2
≤ λ+(1 − cε)(2 + a+)+

for a suitable (universal) constant c. We can thus apply (the scaled version of)
Lemma 3.7 to u+, to infer the existence of a dimensional constant τ such that

u+ ≤ λ+(1 − τε)
(
xd + a+

)+ in B1. (3.12)

For ϕ as in (3.11) and t ∈ [0, 1] we set

ft = λ+(1 − τε/2)
(
xd + a+ − tcεϕ

)+
,

where c = c(d) is a small constant chosen such that for all x ∈ B1/100(Q) and
t ∈ [0, 1),

u(x) ≤ λ+(1 − τε)
(
xd + a+

)+

≤ λ+(1 − τε/2)
(
xd + a+ − cε

)+
< ft (x), (3.13)

where we used that (xd + a+) is within two universal constants for x ∈
B1/100(Q).
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We now let t̄ ∈ (0, 1] the largest t such that ft ≥ u in B1 and we claim that
t̄ = 1. Indeed assume that t̄ < 1, then there exists x̄ ∈ B1 such that

u(x) − ft̄ (x) ≤ u(x̄) − ft̄ (x̄) = 0 for all x ∈ B1. (3.14)

Note that by (3.13), x̄ /∈ B1/100(Q), while, by (ϕ.1) and (3.12), x̄ ∈ {ϕ > 0}.
Moreover x̄ ∈ { ft̄ = 0}. In fact, if this was not the case, then, by (ϕ.2),
� ft̄ (x̄) < 0 and �u(x̄) = 0, a contradiction with (3.14). Assume now x̄ ∈
{ ft̄ = 0}, since u is a viscosity solution we get that, by (ϕ.3),

λ2+ ≤ |∇ ft̄ (x̄)|2 = λ2+(1 − τε/2)2 − 2cεt̄λ+∂dϕ(x̄) + O(ε2) < λ2+

provided ε ≤ ε̄(d, λ+) � 1 (note that necessarily u(x̄) = 0 which gives that
x̄ ∈ {|xd | ≤ 1/100}). This contradiction implies that t̄ = 1. Hence, by (ϕ.4), we
get for all x ∈ B1/6.

u(x) ≤ λ+(1 − τε/2)
(
xd + a+ − cεϕ

)+ ≤ λ+
(
xd + a+ − c̄ε

)+

for a suitable dimensional constant c̄. Setting

ā+ = a+ − c̄ε, b̄+ = b+

and recalling that ε = (b+ − a+) allows to conclude the proof in this case.
• Case 2. Improvement from below. We now assume that, at the point P , u+
is closer to λ+(2 + a+)+ than to λ+(2 + b+)+. Hence, we have

u+(P) ≥ λ+(2 + b+)+ + λ+(a+ − b+)

2

and we set again

ε := a+ − b+ ≤ ε̄.

Arguing as in Case 1, by Lemma 3.7, there exists a dimensional constant τ

such that
u+ ≥ λ+(1 + τε)

(
xd + b+

)+ in B1. (3.15)

We need now to distinguish two further sub-cases:
• Case 2.1: Suppose that

0 ≤ b+ − b− ≤ ηε
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where η � τ is a small universal constant which we will choose at the end of
the proof. In this case, for x ∈ B1,

u ≥ λ+(1 + τε)
(
xd + b+

)+ − λ−(xd + b−
)−

≥ λ+(1 + τε)
(
xd + b+

)+ − λ−(1 − c1ηε)
(
xd + b+

)− (3.16)

for a suitable universal constant c1. We now take ϕ as in (3.11) and we set, for
t ∈ [0, 1],
ft (x) = λ+(1 + τε/2)

(
xd + b+ + c2tϕ

)+ − λ−(1 − c1ηε)
(
xd + b+ + c2tϕ

)−

for a suitably small universal constant 0 < c2 � τ , chosen so that for all
x ∈ B1/100(Q):

(
1 + τε

)(
xd + b+

)+ ≥ (
1 + τε/2

)(
xd + b+ + c2ε

)+
.

This together with (3.15) implies that

u(x) ≥ λ+(1 + τε)
(
xd + b+

)+ ≥ λ+(1 + τε/2)
(
xd + b+ + c2

)+

≥ f1(x) ≥ ft (x) (3.17)

for all x ∈ B1/100(Q), t ∈ [0, 1]. Furthermore u ≥ f0 in B1 thanks to (3.16).
As in Case 1 we let t̄ the biggest t such that ft ≤ u in B1 and x̄ the first

contact point, so that

u(x) − ft̄ (x) ≥ u(x̄) − ft̄ (x̄) = 0 for all x ∈ B1.

Since � ft̄ > 0 on { ft �= 0} ∩ B1/100(Q), as in Case 1, x̄ is a free boundary
point. Moreover, since ft̄ changes sign in a neighborhood of x̄ :

either x̄ ∈ �+
op = ∂�+

u \ ∂�−
u ,

or x̄ ∈ �tp = ∂�+
u ∩ ∂�−

u .

In the first case, by definition of viscosity solution and (ϕ.3),

λ2+ ≥ |∇ f +
t̄ (x̄)|2 = λ2+(1 + τε/2)2 + 2cεt̄λ+∂dϕ(x̄) + O(ε2) > λ2+,

a contradiction for ε � 1. In the second case we have a contradiction as well,
provided η � τ , since (recall also that λ+ ≥ λ−, (2.1)):

λ2+ − λ2− ≥ |∇ f +
t̄ |2 − |∇ f −

t̄ |2
= λ2+(1 + τε/2)2 − λ2−(1 − c1ηε)2
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+ 2c2εt̄(λ+ − λ−)∂dϕ(x̄) + O(ε2)

> λ2+ − λ2−

provided η = η(d) � τ and ε � 1 (only depending on d and λ+). Hence,
t̄ = 1, u ≥ f1 which implies the desired conclusion by setting

ā+ = a+, b̄+ = b+ + c̄2ε

and by recalling that ε = (a+ − b+).
• Case 2.2: Assume instead that

b+ − b− ≥ ηε,

where η = η(d) has been chosen according to Case 2.1. In this case we
consider the family of functions

ft (x) = λ+(1 + τε/2)
(
xd + b+ + ηtϕ

)+ − λ−
(
xd + b−)−.

Being ϕ ≤ 1, this is well defined since b+ ≥ b− + η. Moreover u ≥ f0 and,
thanks, to (3.15) and by possibly choosing η smaller depending only on the
dimension,

u(x) ≥ f1(x) ≥ ft (x) for all x ∈ B1/100(Q), t ∈ [0, 1].

We consider again the first touching time t̄ and the first touching point x̄ . Note
that this can not happen where u �= 0. Moreover, by the very definition of
ft̄ , x̄ ∈ ∂�+

u \ ∂�−
u . However, again by arguing as in Case 2.1, this is in

contradiction with u being a viscosity solution. We now conclude as in the
previous cases.

Since either the assumption of Case 1 or the one of Case 2 is always satisfied,
this concludes the proof. ��

The next lemma deals with the case in which the origin is not a branching
point.

Lemma 3.9 (Partial Boundary Harnack II). Given L ≥ λ+ ≥ λ− > 0
there exist constants ε̄ = ε̄(d, λ±, L) > 0, M = M(d, λ±, L) and c =
c(d, λ±, L) ∈ (0, 1) such that for every function u : B4 → R satisfying
(a), (c) and (d) in Theorem 3.1 the following property holds true. If there are
constants a, b ∈ (−1/100, 1/100

)
with

0 ≤ a − b ≤ ε̄
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such that for x ∈ B4

Hα,ed (x + bed) ≤ u(x) ≤ Hα,ed (x + aed)

and

λ+ + Mε ≤ α ≤ 2L ,

then there are constants ā, b̄ ∈ (−1/100, 1/100
)

with

0 ≤ b̄ − ā ≤ c(b − a)

such that for x ∈ B1/6

Hα,ed (x + b̄ed) ≤ u(x) ≤ Hα,ed (x + āed).

Proof We consider the point P = (0, . . . , 0, 2) and we distinguish the two
cases (note that one of the two is always satisfied):

either Hα,ed

(
P + bed

)
+ α(a − b)

2
≤ u(P),

or Hα,ed

(
P + aed

)
− α(a − b)

2
≥ u(P).

Since the argument in both cases is completely symmetric we only consider
the second one. If we set

ε = (a − b),

by Lemma 3.7 and by arguing as in Lemma 3.8 we deduce the existence of a
dimensional constant τ such that

u ≤ α(1 − τε)
(
xd + a

)+ − β
(
xd + a

)−

in B1. We let ϕ as in (3.11) and we set

ft (x) = α(1 − τε/2)
(
xd + a − ctϕ

)+ − β
(
xd + a − ctϕ

)−

where c is a dimensional constant chosen such that

u(x) ≤ f1(x) ≤ ft (x) for all x ∈ B1/100(Q), t ∈ [0, 1].
where, again, Q = (0, . . . , 0, 1/5). As in Lemma 3.8 we let t̄ and x̄ be the first
contact time and the first contact point and we aim to show that t̄ = 1. For, we
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note that, by the same arguments as in Lemma 3.8, necessarily x̄ ∈ {u = 0}.
We claim that

x̄ ∈ �tp = ∂�+
u ∩ ∂�−

u .

Indeed otherwise x̄ ∈ ∂�−
u \ ∂�+

u , the case x̄ ∈ ∂�+
u \ ∂�−

u being impossible
since ft̄ is negative in a neighborhood of x̄ . By definition of viscosity solution
this would imply

λ2− ≥ |∇ f −
t̄ (x̄)|2 = β2 − O(ε) ≥ λ2− + 2Mλ+ε − O(ε), (3.18)

where the implicit constants in O(ε) depends on λ±, L and d and we exploited
that, since α ≥ λ+ + Mε,

β2 = α2 − λ2+ + λ2− ≥ λ2− + 2Mλ+ε.

Inequality (3.18) is impossible if M is chosen sufficiently large. Hence x̄ ∈
�−

u ∩ ∂�+
u . This however implies:

λ2+ − λ2− ≤ |∇ f +
t̄ (x̄)|2 − |∇ f −

t̄ (x̄)|2
= α2(1 − τε/2)2 − β2 − 2ct̄ε(α − β)∂dϕ(x̄) + O(ε2)

≤ λ2+ − λ2− − α2τε + O(ε2),

where we have used (ϕ.3), the equality

λ2+ − λ2− = α2 − β2

and that since λ+ ≥ λ−, α ≥ β. This is a contradiction provided ε̄ is chosen
small enough. Hence t̄ = 1 and , as in Lemma 3.8, this concludes the proof. ��

With Lemmas 3.9 and 3.8 at hand we can use the same arguments as in
[26,27] to prove Corollary 3.4.

Proof of Corollary 3.4 We distinguish two cases:
0 ≤ � < +∞ : By triangular inequality we have

‖uk − Hλ+,ed‖L∞(B1) ≤ (2� + 1)εk

for k sufficiently large. In particular we can repeatedly apply Lemma 3.8 as
in [26], see also [44, Lemma 7.14 and Lemma 7.15] for a detailed proof, to

123



Regularity of the two-phase free boundaries 377

deduce that if we define the sequence (wk)k by

wk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

w+,k(x) := uk(x) − λ+x+
d

αkεk
x ∈ �+

uk
∩ B1,

w−,k(x) := uk(x) + λ−x−
d

βkεk
x ∈ �−

uk
∩ B1,

then the sets

�̃±
k :=

{
(x, w±,k(x)) : x ∈ �±

uk ∩ B1/2

}

converge, up to a not relabeled subsequence, in the Hausdorff distance to the
closed graphs

�̃± =
{
(x, w±(x)) : x ∈ B±

1/2

}
,

where w ∈ C0,α for a suitable α. Since

hk(x) := Hαk ,ed − Hλ+,ed

εk
→

{
λ−1+ �xd if xd > 0,

λ−1− �xd if xd < 0,

the original sequence vk satisfies that their graphs,

�̃± =
{
(x, v±(x)) : x ∈ B±

1/2

}
,

converges to the graph of a limiting function v as we wanted, this in particular
proves (i), (ii) and (iii).

Since 0 ∈ ∂�+
uk

∩ ∂�−
uk

then 0 is in the domain of v±,k and

v±,k(0) = 0,

which implies that v±(0) = 0. To show that v+(x) ≤ v−(x) for x = (x ′, 0) ∈
{xd = 0} ∩ B1/2 we simply exploit (iii) at the points x±

k = (x ′, t±k ) where

t+k = sup
{
t : (x ′, t) ∈ ∂�+

uk

}
and t−k = inf

{
t : (x ′, t) ∈ ∂�−

uk

}

and by noticing that −t+k ≤ −t−k . Finally to show the last claim it is enough
to note that if xk ∈ ∂�+

uk
∩ ∂�−

uk
is converging to x then v+,k(xk) = v−,k(xk)

and thus v+(x) = v−(x), yielding x ∈ C.
� = ∞: In this case the conclusion follows exactly as in [27] by using
Lemma 3.9 and noticing that its assumptions are satisfied since � = ∞. ��
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3.2 The linearized problem: Proof of Lemma 3.5

The following technical lemma is instrumental to the proof of Lemma 3.5. We
defer its proof to “Appendix A” below.

Lemma 3.10 Let uk, εk and αk be as in the statement of Corollary 3.4, vk be
defined by (3.6) and v± be as in Corollary 3.4. Then:

(1) Let P+ a strictly subharmonic (superharmonic) function on B+
1/2 touching

v+ strictly from below (above) at a point x0 ∈ {xd = 0} ∩ B1/2. Then,
there exists a sequence of points ∂�+

uk
� xk → x0 and a sequence of

comparison functions Qk such that Qk touches from below (above) u+
k at

xk, and such that

∇Q+
k (xk) = αked + αkεk∇ P+(x0) + o(εk). (3.19)

(2) Let P− be a strictly subharmonic (superharmonic) function on B−
1/2 and

touching v− strictly from below (above) at a point x0 ∈ {xd = 0} ∩ B1/2.
Then, there exists a sequence of points ∂�−

uk
� xk → x0 and a sequence of

comparison functions Qk such that Qk touches from below (above) −u−
k

at xk, and such that

∇Q−
k (xk) = −βked + βkεk∇ P−(x0) + o(εk). (3.20)

(3) Let p, q ∈ R and P̃ be a function on B1/2 such that ∂d P̃ = 0. Suppose that
P̃ is subharmonic (superharmonic) and that the function

P := px+
d − qx−

d + P̃

touches v strictly from below (above) at a point x0 ∈ C. Then, there exists
a sequence of points xk → x0 and a sequence of comparison functions Qk
such that Qk touches from below (above) the function uk at xk ∈ ∂�uk ,
and such that

∇Q+
k (xk) = αked + αkεk p + o(εk)

∇Q−
k (xk) = −βked + βkεkq + o(εk). (3.21)

In particular, if p > 0 and Qk touches uk from below then xk /∈ ∂�−
uk

\
∂�+

uk
, while if q < 0 and Qk touches uk from above then xk /∈ ∂�+

uk
\∂�−

uk
.

Proof of Lemma 3.5 We note that v±
k converge uniformly to v± on every com-

pact subset of {±xd > 0} ∩ B1/2. Since these functions are harmonic there,
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by elliptic estimates the convergence is smooth and in particular v± are har-
monic on the (open) half balls B±

1/2. Hence we only have to check the boundary
conditions on {xd = 0}. We distinguish two cases.
� = ∞. In this case we first want to show that J = ∅. Assume not, since the
set {v− > v+} is open in {xd = 0}, it contains a (d − 1)-dimensional ball

B ′
ε(y′) := Bε((y′, 0)) ∩ {xd = 0} ⊂ J .

Next let P be the polynomial

P(x) = A
(
(d − 1/2)x2d − |x ′ − y′|2) − Bxd , where x = (x ′, xd) ,

for some constants A, B. We first choose A � 1 large enough so that

P < v+ on {|x ′ − y′| = ε} ∩ {xd = 0}
and then we choose B � A so that

P < v+ on Bε((y′, 0)).

Now we can translate P first down and then up to find that there exists C such
that P + C is touching v+ from below at a point x0 ∈ Bε((y′, 0)) ∩ {xd ≥ 0}.
Since �P > 0, the touching point can not be in the interior of the (half) ball
and thus x0 ∈ B ′

ε(y′) ⊂ J .
By using Lemma 3.10, there exists a sequence of points ∂�+

uk
� xk → x0

and of functions Qk touching u+
k from below at xk and such that

∇Q+
k (xk) = αked + αkεk∇ P(x0) + o(εk).

Since x0 ∈ J , by (3.7) in Lemma 3.10, xk ∈ ∂�+
uk

\ ∂�−
uk
. Hence, by (ii) in

Lemma 2.6

λ2+ ≥ |∇Q+
k (xk)|2 ≥ α2

k + 2α2
k εk∂d P(x0) + o(εk)

Hence, recalling the definition of �,

−B = ∂d P(x0) ≤ λ2+ − α2
k

2α2
k εk

+ o(1) → −∞.

This contradiction proves that J = ∅.
We next prove the transmission condition in (3.9). Let us show that

α2∞∂dv+ − β2∞∂dv− ≤ 0,
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the opposite inequality can then be proved by the very same argument. Suppose
that there exist p and q with α2∞ p > β2∞q and a strictly sub-harmonic function
P̃ with ∂d P̃ = 0 such that

P = px+
d − qx−

d + P̃

touches v strictly from below at a point x0 ∈ {xd = 0} ∩ B1/2 (note that the
last set coincide with C by the previous step). By Lemma 3.10 there exists a
sequence of points ∂�uk � xk → x0 and a sequence of comparison functions
Qk touching uk from below at xk and satisfying (3.21). In particular xk /∈
∂�−

uk
\ ∂�+

uk
. We claim that xk ∈ ∂�+

uk
∩ ∂�−

uk
. Indeed, if this was not the

case, then by (A.1) in Lemma 2.5,

λ2+ ≥ |∇Q+
k (xk)|2.

Arguing as above, this contradicts � = +∞. Hence, by Lemma 2.5 (A.3)

λ2+ − λ2− ≥ |∇Q+
k (xk)|2 − |∇Q−

k (xk)|2
= α2

k − β2
k + 2εk(α

2
k p − β2

k q) + o(εk)

= λ2+ − λ2− + 2εk(α
2
k p − β2

k q) + o(εk).

Dividing by εk and letting k → ∞, we obtain the desired contradiction.
0 ≤ � < ∞. We start by showing that λ2±∂dv± ≥ −� on B1/2 ∩ {xd = 0}. We
focus on v− since the argument is symmetric. Let us assume that there exists
q ∈ R with λ2−q < −� and a strictly subharmonic function P̃ with ∂d P̃ = 0
such that function

P = qxd + P̃

touches v− strictly from below at a point x0 ∈ {xd = 0}∩ B1/2. Let now xk and
Qk be as in Lemma 3.10 (2). By the optimality conditions

λ2− ≤ |∇Q−
k (xk)|2 = β2

k + 2εkβ
2
k q + o(εk).

Since � < ∞, we have βk = λ− + O(εk) and so the above inequality leads to

− �

λ2−
= lim

k→∞
λ2− − β2

k

2εkβ
2
k

≤ q < − �

λ2−
,

which is a contradiction.
We now show that λ2±∂dv± = −� on J and again we focus on v−. By the

previous step it is enough to show that if there exists a strictly superharmonic
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polynomial P̃ with ∂d P̃ = 0 such

P = qxd + P̃

touches v− strictly from above at a point x0 ∈ J , then λ2−q ≤ −�. Again,
by Lemma 3.10, we find points xk → x0 and functions Qk satisfying (3.20)
and touching −u−

k from below at xk . Since x0 ∈ J , by (3.7) in Corollary 3.4,
xk ∈ ∂�−

uk
\ ∂�+

uk
. Hence, by Lemma 2.5,

λ2− ≥ |∇Q−
k (xk)|2 = β2

k + 2β2
k εkq + o(εk),

which by arguing as above implies that λ2−q ≤ −�.
It then remain to show the transmission condition in (3.10) at points in C.

Again by symmetry of the arguments we will only show that

λ2+∂dv+ − λ2−∂dv− ≤ 0 on C.

Let us hence assume that there exist p and q with λ2+ p > λ2−q and a strictly
subharmonic polynomial P̃ with ∂d P̃ = 0 such that

P = px+
d − qx−

d + P̃

touches v+ and v− strictly from below at x0 ∈ C. By Lemma 3.10, we find
points xk → x0 and functions Qk satisfying (3.21). In particular xk /∈ ∂�−

uk
\

∂�+
uk
. By the previous step we know that λ2−q ≥ −� and thus λ2+ p > −�,

since we are assuming λ2+ p+ > λ2−q ≥ 0. We now distinguish two cases:

(1) xk are one-phase points, namely xk ∈ ∂�+
uk

\ ∂�−
uk
. In this case

λ2+ ≥ |∇Q+
k (xk)|2 = α2

k + 2α2
k εk p + o(εk),

which implies that

λ2+ p + � = λ2+ lim
k→∞

(
p + α2

k − λ2+
2α2

k εk

)
≤ 0

in contradiction with λ2+ p > −�.
(2) xk are two-phase points, namely xk ∈ ∂�+

uk
∩ ∂�−

uk
. Arguing as in Case

1, we have that, by Lemma 2.5,

λ2+ − λ2− ≥ |∇Q+
k (xk)|2 − |∇Q−

k (xk)|2
= α2

k − β2
k + 2εk(α

2
k p − β2

k q) + o(εk)
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= λ2+ − λ2− + 2εk(λ
2+ p − λ2−q) + o(εk),

which gives a contradiction with λ2+ p > λ2−q as εk → 0.

��

3.3 Proof of Lemmas 3.3 and 3.2

We recall the following regularity results for the limiting problems.

Lemma 3.11 (Regularity for the transmission problem). There exists a uni-
versal constant C = C(α∞, β∞, d) > 0 such that if v ∈ C0(B1/2) is a viscosity
solution of (3.9) with ‖v‖L∞(B1/2) ≤ 1 then there exists v ∈ R

d−1, p, q ∈ R

with α2∞ p = β2∞ q such that

sup
x∈Br

∣∣v(x) − v(0) − (v · x ′ + p x+
d − q x−

d )
∣∣

r2
≤ C. (3.22)

The proof of this fact can be found in [27, Theorem 3.2]. A similar result
holds for the linearized problem (3.10).

Lemma 3.12 (Regularity for the two-membrane problem). There exists a uni-
versal constant C = C(λ±, d) > 0 such that if v ∈ C0(B1/2) is a viscosity
solution of (3.10) with ‖v‖L∞(B1/2) ≤ 1 then there exists v ∈ R

d−1, p, q ∈ R

satisfying λ2+ p = λ2− q ≥ −� such that

sup
x∈Br

∣∣v(x) − v(0) − (v · x ′ + p x+
d − q x−

d )
∣∣

r 3/2
≤ C(1 + �). (3.23)

The proof of the above lemma reduces easily to the one of the thin obsta-
cle problem, since we were not able to find the statement of this fact in the
literature, we sketch its proof in “Appendix B”.

It is by now well known that the regularity theory fo the limiting problems
and a classical compactness argument prove Lemmas 3.3 and 3.2. We sketch
their arguments here:

Proof of Lemma 3.2 We argue by contradiction and we assume that for fixed
γ ∈ (0, 1/2) and M we can find a sequences of functions uk and numbers αk
such that

εk = ‖uk − Hαk ,ed ‖L∞(B1) → 0 and 0 ≤ αk − λ+ ≤ Mεk,
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but for which (3.2) and (3.3) for any choice of ρ andC . Note that by the second
assumption above

� <
M

λ+
.

We let (vk)k be the sequence of functions defined in (3.6) and we assume that
they converge to a function v as in Corollary 3.4, note that ‖v‖L∞(B1/2) ≤ 1. By
Lemma 3.5, v solves (3.10) and thus by Lemma 3.12 there exists v ∈ R

d−1,
p, q ∈ R satisfying λ2+ p = λ2− q ≥ −� such that for all r ∈ (0, 1/4)

sup
x∈Bρ

∣
∣v(x) − v(0) − (v · x ′ + p x+

d − q x−
d )

∣
∣

rγ
≤ r

3/2−γ C(1 + M). (3.24)

Hence we can fix ρ = ρ(λ±, γ, M) such that

sup
x∈Bρ

∣
∣v(x) − v(0) − (v · x ′ + p x+

d − q x−
d )

∣
∣ ≤ ργ

2
. (3.25)

We now set

α̃k := αk(1 + εk p) + δkεk and ek := ed + εkv√
1 + ε2k |v|2

,

where δk → 0 is chosen so that α̃k ≥ αk , note that the existence of such a
sequence is due to the condition λ2+ p ≥ −� since

αk(1 + εk p) =
(
λ+ + �

λ+
εk + o(εk)

)
(1 + εk p) ≥ λ+ + o(εk).

We let Hk := Hα̃k ,ek and we note that

|αk − α| + |ek − ed | ≤ C εk

for a universal constant C > 0, hence the proof will be concluded if we can
show that

sup
Bρ

|uk(x) − Hk(x)| ≤ ργ εk,

where ρ is defined so that (3.25) holds. This however easily follows from the
convergence of vk to v in the sense of Corollary 3.4 since the sequence of
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functions defined by

{ Hk(x)−Hαk ,ed
αkεk

xd > 0
Hk(x)−Hαk ,ed

βkεk
xd < 0

converges (again in the sense of Corollary 3.4) to the function

v · x ′ + px+
d − qx−

d . ��

Proof of Lemma 3.3 Arguing by contradiction one assume for fixed γ ∈ (0, 1)
the existence of a sequence of of functions uk and numbers αk , Mk → ∞ such
that

εk = ‖uk − Hαk ,ed ‖L∞(B1) → 0 and
αk − λ+

εk
≥ Mk → ∞,

but forwhich (3.2) and (3.3) for any choice ofρ andC . This implies that � = ∞
and that the limiting functions v obtained inCorollary 3.4 are solutions of (3.9).
One then concludes the proof as above by using (3.11). ��

4 Proof of the main results

4.1 Proof of Theorem 1.1 and Corollary 1.2

The final step to obtain the desired regularity result is to show that |∇u±|
are Cη for a suitable η > 0 up to the boundary. This indeed implies that u±
are solutions of the classical one-phase free boundary problem in its viscosity
formulation and the regularity will follows form [26]. The argument is similar
to the one in [42], therefore we only sketch the main steps and refer the reader
to that paper for more details.

Lemma 4.1 Suppose that u is a local minimizer of Jtp in D. Then at every
point of �tp there is a unique blow-up, that is,

BU (x0) = {Hα(x0),e(x0)}.
Moreover there exists η > 0 such that for every open set D′ � D there is a
constant C(D′, λ±, d) > 0 such that, for every x0, y0 ∈ �tp ∩ D′, we have

|α(x0) − α(y0)| ≤ C |x0 − y0|η and |e(x0) − e(y0)| ≤ C0|x0 − y0|η,
(4.1)

where He(x0),α(x0) and He(x0),α(x0) are the blow-ups at x0 and y0 respectively.
In particular, �tp ∩ D′ is locally a closed subset of the graph of a C1,η function.
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Proof We first notice that by Corollary 2.3 and the definition of BU(x0), given
ε0 > 0 as in Theorem 3.1 we can find r0 > 0 and ρ0 such that (3.1) is satisfied
by uy0,r0 for some Hα,e ∈ BU(x0) and for all y0 ∈ Bρ0(x0).

We can thus repeatedly applyTheorem3.1 togetherwith standard arguments
to infer that for all y0 ∈ Bρ0(x0) there exists a unique He(y0),α(y0) such that

‖ur,x0 − He(y0),α(y0)‖L∞(Br (y0)) ≤ C0rγ (4.2)

where γ ∈ (0, 1/2). A covering argument implies the validity of the above
estimate for all x0 ∈ �tp ∩ D′. Next, for x0, y0 ∈ �tp ∩ D′ set r := |x0− y0|1−η

and η := γ /(1 + γ ), and recall that u is L-Lipschitz (with constant depending
on D′) to get

‖He(x0),α(x0) − He(y0),α(y0)‖L∞(B1)

≤ ‖ur,x0 − He(x0),α(x0)‖L∞(B1)

+ ‖ur,x0 − ur,y0‖L∞(B1) + ‖ur,y0 − He(y0),α(y0)‖L∞(B1)

≤
(

C0rγ + L

r
|x0 − y0| + C0rγ

)
= (L + 2C0) |x0 − y0|η .

The conclusion now follows easily from this inequality. ��
Lemma 4.2 Under the same assumptions of Lemma 4.1, there are C0,η con-
tinuous functions α : ∂�+

u → R, β : ∂�−
u → R such that α ≥ λ+ , β ≥ λ−,

and u± are viscosity solutions of the one-phase problem

�u+ = 0 in �+
u , |∇u+| = α on ∂�+

u

and
�u− = 0 in �−

u , |∇u−| = β on ∂�−
u .

Proof Wewill sketch the argument for u+, u− being the same. Clearly�u+ =
0 in �+

u . By (4.2) we have that, if x0 ∈ �tp ∩ D′, then
∣∣u+(x) − α(x0)(x − x0) · e(x0)

∣∣ ≤ C0|x − x0|1+γ (4.3)

for every x ∈ Br0(x0)∩�+
u , where r0 andC0 depends only on D′. In particular,

u+ is differentiable on�+
u up to x0 and |∇u+(x0)| = α(x0). On the other hand

if x0 ∈ �+
op := �+

u \ ∂�−
u , then |∇u+(x0)| = λ+ is constant, in the viscosity

sense.
To conclude we only need to prove that α ∈ C0,η(∂�+). Since α is ηHölder

continuous on �tp by Lemma 4.1 and constant on �+
op, we just need to show

that if x0 ∈ �tp is such that there is a sequence xk ∈ �+
op converging to x0,
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then α(x0) = λ+. To this end, let yk ∈ �tp be such that

dist(xk, �tp) = |xk − yk | .
Let us set

rk = |xk − yk | and uk(x) = 1

rk
u+(xk + rk x),

and note that uk is a viscosity solution of the free boundary problem

�uk = 0 in �+
uk

∩ B1 , |∇uk | = λ+ on ∂{uk > 0} ∩ B1 .

Since uk are uniformly Lipschitz they converge to a function u∞ which is also
a viscosity solution of the same problem, [26]. On the other hand, by (4.3), we
have that

u∞(x) = α(x0)(x · e(x0))
+,

which gives that α(x0) = λ+. ��
Proof of Theorem 1.1 Let x0 ∈ �tp = ∂�+

u ∩ ∂�−
u and let ε̄ be the constant

in [26, Theorem 1.1]. Thanks to the classification of blow-ups at points of �tp,
we can choose r0 > 0, depending on x0, such that

‖ux0,r0 − Hα,e‖L∞(B1) < ε̄

so that thanks to Lemma 4.2, we can apply [26, Theorem 1.1] to conclude
that locally at x0 ∈ �tp the free boundaries ∂�±

u are C1,η graphs. By the
arbitrariness of x0 this concludes the proof. ��
Proof of Corollary 1.2 The proof of the corollary is straightforward. Indeed
by Theorem 1.1 there exits an open neighborhood W of the two-phase free
boundary �tp such that ∂�±

u ∩ W ⊂ Reg(∂�±
u ). Outside W , u± are (local)

minimizers of the one-phase problem and thus the desired decomposition and
the stated properties follows by the results in [1,31,46]. ��

4.2 Proof of Theorem 1.3

In this sectionwe prove the regularity of the solutions to the shape optimization
problem (SOP). The proof is a consequence of Theorem 1.1 and the analysis
in [43]. Indeed, the existence of an optimal (open) partition (�1, . . . , �n) was
proved in [8] and (in dimension two) in [6]. Moreover, in [8,45], it has been
shown that each of the eigenfunctions ui on �i is Lipschitz continuous as a
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function defined on R
d (extended as zero outside �i ). Furthermore, there are

no triple points inside the box D and no two-phase points on the boundary
∂ D, that is,

• ∂�i ∩ ∂� j ∩ ∂�k = ∅ for every set {i, j, k} ⊂ {1, . . . , n} of different
coefficients;

• ∂�i ∩ ∂� j ∩ ∂ D = ∅ for every i �= j ∈ {1, . . . , n}.
The regularity of ∂�i can then be obtained as follows.

• By [43, Lemma 7.3], the function u = ui − u j is a almost of (OP) with
λ2+ = mi and λ2− = m j , in the sense that

Jtp(u, Br ) ≤ Jtp(v, Br ) + Crd+2 for all v = u on ∂ Br ,

provided r is sufficiently small.
• By the classification of the blow up limits in [43, Proposition 4.3] and the
arguments in Sect. 2.3, u is a viscosity solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u = −λ1(�i )ui + λ1(� j )u j on {u �= 0},
|∇u+|2 − |∇u−|2 = mi − m j , |∇u+| ≥ √

mi and |∇u−| ≥ √
m j on ∂�+

u ∩ ∂�−
u ;

|∇u+| = √
mi on ∂�+

u \ ∂�−
u ;

|∇u−| = √
m j on ∂�−

u \ ∂�+
u .

• C∞ regularity of the one-phase part ∂�i \ (
∂ D ∪ (⋃

i �= j ∂� j
))

follows by
techniques in [1], see [7];

• C1,η-regularity of ∂�i in a neighborhood of ∂�i ∩ ∂ D was proved in [38];
the main argument boils down to the regularity result from [18];

• C1,η-regularity of ∂�i in a neighborhood of ∂�i ∩ ∂� j follows by using
the same arguments3 in the proof of Theorem 1.1, using Theorem 4.3 in
place of Theorem 3.1.

Theorem 4.3 Let 0 ≤ λ+ ≤ λ− ≤ L, f ∈ C0(B1) and let u : B1 → R be a
L-Lipschitz viscosity solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u = f on {u �= 0}
|∇u+|2 − |∇u−|2 = λ2+ − λ2−, |∇u+| ≥ λ+ and |∇u−| ≥ λ− on ∂�+

u ∩ ∂�−
u ;

|∇u+| = λ+ on ∂�+
u \ ∂�−

u ;
|∇u−| = λ− on ∂�−

u \ ∂�+
u .

Then for every γ ∈ (0, 1/2), there exist ε0 > 0, C > 0 and ρ ∈ (0, 1/4)

depending only on λ±, L and γ such that if

‖u − Hα,ed ‖L∞(B1) ≤ ε0 for some L ≥ α ≥ λ+ .

3 Note that �ur (x) = r�u(r x). Hence, since �u is uniformly bounded in L∞, ‖�ur ‖L∞ =
O(r) and thus this does not interfere with the iteration argument.
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then, there are e ∈ S
d−1 and α̃ ≥ λ+ such that

|e − ed | + |α̃ − α| ≤ C
(‖u − Hα,ed ‖L∞(B1) + ‖ f ‖L∞(B1)

)
(4.4)

and
‖uρ − Hα̃,e‖L∞(B1) ≤ ργ ‖u − Hα,ed ‖L∞(B1) + C‖ f ‖L∞(B1)

Proof Note that (4.3) is satisfied with α̃ = α and e = ed , ρ = 1/4 and
C = C(ε) if

‖ f ‖L∞(B1) ≥ ε‖u − Hα,ed ‖L∞(B1).

Hence it is enough to show that there exists ε0 universal such that the conclusion
of the theorem holds provided

‖u − Hα,ed ‖L∞(B1) ≤ ε0 for some L ≥ α ≥ λ+

and
‖ f ‖L∞(B1) ≤ ε0‖u − Hα,ed ‖L∞(B1). (4.5)

We can then argue by contradiction as in the proof of Theorem 3.1 by noticing
that, thanks to (4.5) the contradicting sequence satisfies

�uk = o(εk).

This allows to almost verbatim repeat the proofs in Sect. 3, see for instance
[26,27]. ��
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Appendix A. Proof of Lemma 3.10

Here we prove Lemma 3.10. The idea to construct the comparison functions is
to perform (the inverse of) the changed of variable used in [35] (and attributed
to Friedrichs) which maps, for smooth solutions, the free boundary problem,
to a (non linear) problem on a fixed domain, see [35, Section 3].

Proof of Lemma 3.10 We divide the proof into several steps:

• Step 1: Given α > 0 function P ∈ C1(B+
1/2) ∩ C2(B+

1/2) there exist ε̄ � 1,

depending only on the C1 norm of P such that for all ε ≤ ε̄ there exists a
function Q ∈ C1({Q > 0}) ∩ C2({Q > 0}) such that

Qε(y′, yd − εαP(y′, yd))) = αyd for all y = (y′, yd) ∈ {Q > 0} (A.1)

To this end we define the following map T ε : B+
1/2 → R

d :

T ε(x ′, xd) = (x ′, xd − εαP(x ′, xd)) x = (x ′, xd) ∈ B+
1/2.

Note that if ε � ‖P‖−1
C1 , Tε induces a bijection between the sets B+

1/2 and

Uε := T ε(B+
1/2) ⊂ B1. We let Qε be its inverse and we define Qε as its d-th

component times α, namely

Qε := α(Qε · ed) : U → (0, 1/2),

and we extend it to zero on B1/2 \ {Q > 0}. It is now immediate to verify that
(A.1) is satisfied. Furthermore, with the notation yε = Tε(x),

∇Qε(yε) = αed + αε∇ P(x) + O(ε2) (A.2)

and
�Q(yε) = α2ε�P(x) + O(ε2). (A.3)

• Step 2: Let us now prove item (i) of the statement, item (ii) can be obtained
by a symmetric argument. Let αk , εk a be as in the statement. Let us assume
that P+ is a strictly subharmonic function touching v+ strictly form below
at x0. By assumption, for all δ � 1 the function v+ − P− + δ has a strictly
positive minimum at x0 as δ → 0. Let Qδ

k be the functions constructed in Step
1 with ε = εk , α = αk and P = P− − δ. Let us define

Pδ
k (x) = Qδ

k − αk x+
d

αkεk

123



390 G. De Philippis et al.

and

�̃k = {
(x, Pδ

k (x)) x ∈ {Qδ
k > 0} ∩ B1/2

}
.

One easily checks that they converge in the Hausdorff distance to

�̃ = {
(x, P+(x) − δ), x ∈ B+

1/2

}
.

Byusing that the graphs�+
k defined inCorollary 3.4 converges in theHausdorff

distance to

�̃ = {
(x, v+(x)), x ∈ B+

1/2

}
.

We claim that

{Qδ
k > 0} ∩ B1/2 � {uk > 0} ∩ B1/2.

Indeed otherwise one would find a sequence of points xk such that Qδ
k(xk) > 0

and u+(xk) = 0 which implies that

Pδ
k (xk) ≥ v+,k(xk),

where v+,k is define in Corollary 3.4. Assuming that xk → x̄ we get P+(x̄)−
δ ≥ v+(x̄) in contradiction with P − δ < v+.

In particular there exists σ = O(δ) such that Qδ
k(· − σ ed) touches u+ from

below at some point xδ
k . Note also that, arguing as above) xδ

k → x0 as k goes
to infinity. By (A.3) and the strict subharmonicity of P one has that

�Qδ
k > 0 on Qδ

k > 0.

Hence the touching point lies on the free boundary ∂�+
uk
. Furthermore by (A.2)

∇Qδ
ε(xδ

k ) = αed + αε∇ P+(Qεk
(xk

δ )) + O(ε2)

= αed + αε∇ P+(x0) + εk O(|xk
δ − x0|) + O(ε2).

Choosing a sequence δk → 0 we obtain the desired conclusion.
• Step 3: We now prove item (iii). The proof goes exactly as above, more
precisely we let P be as in the statement and we define P± as P restricted
to B±

1/2. We let also T± : B±
1/2 be the corresponding transformations as in Step

1(with T− defined in the obvious way on B−
1/2). The key point is to note that

T+(B+
1/2) ∩ T−(B−

1/2) = ∅.
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Hence, with obvious notation, the function4

Q = Q+ + Q−

is a well defined comparison function. Arguing as in Step 2 gives the desired
sequence. ��

Appendix B. Proof of Lemma 3.12

Give a solution v we define w

w±(x) = v±(x) − �

λ2±
xd , x ∈ B±

1/2.

It is straightforward to check it is a viscosity solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�w± = 0 in B±
1/2,

∂dw± ≥ 0 in B1/2 ∩ {xd = 0},
∂dw± = 0 in J ,

λ2+∂dw+ = λ2−∂dw− in C,

w+ ≤ w− in B1/2 ∩ {xd = 0}.

Furthermore one can easily check that

w±(x ′, xd) = 1

λ2±
wN (x ′, ∓xd) − wS(x ′, ∓xd) ,

where wN solves the Neumann problem

{
�wN = 0 on B−

1/2,

∂dwN = 0 on B−
1/2 ∩ {xd = 0},

and wS is a solution of the thin obstacle problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�wS = 0 on B1/2−,

wS ≥ 0 on B−
1/2 ∩ {xd = 0},

∂dwS ≥ 0 on B−
1/2 ∩ {xd = 0},

wS ∂dwS = 0 on B−
1/2 ∩ {xd = 0}.

4 Note that if Q− is the d-th component of the inverse of T− then it is negative!
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Clearly wN ∈ C∞(B+
1/4) with

‖wN ‖Ck(B1/4)
≤ Ck‖wN ‖L∞(B1/2).

On the other hand, by [5, Corollary pg. 58], wS ∈ C1,1/2(B+
1/4) with

‖wS‖C1,1/2(B1/4)
≤ C‖wS‖L∞(B1/2).

From the last two estimates and the definition of w it is easy to deduce the
conclusion of the Lemma. ��
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