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Abstract
We classify normal stable surfaces with K 2

X = 1, pg = 2 and q = 0 with a unique sin-
gular point which is a non-canonical T-singularity, thus exhibiting two divisors in the main
component and a new irreducible component of the moduli space of stable surfacesM1,3.
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1 Introduction

The investigation of (minimal) surfaces of general type with low invariants and their moduli
spaces startedwith theworkofCastelnuovo andEnriques (cf. [11]) at the beginningof the 20th
century and has remained an active topic ever since. It is fair to say, that Fabrizio Catanese,
to whom the present special issue is dedicated, was one the most influential contributors
to this topic over the last decades both through his work, e.g., [2,3,5–9], and by passing
on his enthusiasm to his students and collaborators. Nowadays Gieseker’s moduli space of
canonical models MK 2,χ [13] is known to admit a modular compactification MK 2,χ , the
KSBA moduli space of stable surfaces, see Sect. 2.1.

In this article, we continue the investigation of (the moduli space of) stable I-surfaces1

begun in [12]. These are stable surfaces with K 2
X = 1, pg = 2, and q = 0. TheGiesekermod-

uli spaceM1,3 ⊂ M1,3 is an irreducible and rational variety of dimension 28 parametrising
double covers of the quadric cone Q2 ⊂ P

3 branched over a quintic section and the vertex,

a fact that was attributed to Kodaira in [15, §3] and extended to the moduli spaceM
(Gor)
1,3 of

Gorenstein stable surface in [12].
Another important class of singularities on stable surfaces are T-singularities, which are

exactly the quotient singularities that can occur in stable surfaces in the closure of the main
component (see Sect. 2.2). Here we study what we call T-singular I-surfaces, that is, stable
I-surfaces with a unique singular point which is a non-canonical T-singularity. Our main
result is:

Theorem 1.1 Let X be an I-surface with unique singular point a non-canonical T-singularity.
Then only the following cases can occur:

Cartier index T-singularity Construction

2 1
4d (1, 2d − 1) (d ≤ 32) Example 3.1

3 1
18 (1, 5) Example 3.9

5 1
25 (1, 14) Example 3.16

If all deformations are unobstructed, then the dimension of theQ-Gorenstein deformation
space of the T-singularity gives the codimension of the corresponding stratum in the moduli
space. This is especially interesting for Wahl singularities, which are expected to give rise
to divisors. This expectation is only partially met (see Proposition 3.4) in our cases. For
T-singular I-surfaces we obtain the following

Corollary 1.2 The T-singular I-surfaces of type 1
4 (1, 1) and

1
18 (1, 5) form divisors in the main

component ofM1,3, that is, the closure of the Gieseker moduli space. The T-singular surfaces
of type 1

25 (1, 14) form an open subset of another irreducible component ofM1,3 of dimension
28.

Schematically one might depict the situation as follows, where we include a conjectural
connection between the two components:

1 The name was coined by Green, Griffiths, Laza, and Robles in their investigation of Hodge-theoretic strati-
fications of the moduli space.

123



I-surfaces with one T-singularity

type 1
4 (1, 1)

type 1
18 (1, 5)

conjecturally:

type 1
25 (1, 14), cuspidal

M1,3 type 1
25 (1, 14)

Notation and conventions We work over the complex numbers. ∼ denotes linear equiva-
lence. For n a positive integer, a (−n)-curve C on a smooth surface Y is a smooth rational
curve with C2 = −n. For a Hirzebruch surface Fn , we denote by σ∞ the infinity section
and by Γ the class of a ruling, so that a section σ0 disjoint from σ∞ is linearly equivalent to
nΓ + σ∞; we denote by Qn the cone in P

n+1 over the rational normal curve of degree n in
P
n , which is the image of Fn via the map given by |σ0|.

2 Preliminaries

2.1 Normal stable surfaces

Stable surfaces were first defined to give a geometric compactification of the moduli space
of surfaces of general type (see [19–21] and references therein). In the construction of the
moduli space, one of the main insights was that one cannot allow all flat families of stable
surfaces, but only so-called Q-Gorenstein deformations, that is, flat families π : X → B of
stable surfaces with fixed invariants such that for allm the reflexive powers ω

[m]
X are flat over

B and commute with base change.
Here we will consider normal stable surfaces only. Recall that a normal surface X is called

stable if it has log-canonical singularities, and KX isQ-Cartier and ample. The smallestm > 0
such that mKX is Cartier is called the (Cartier) index of X .

For a normal stable surface X , we let f : ˜Y → X be the minimal desingularization and
η : ˜Y → Y be the morphism to a minimal model:

˜Y

Y X

fη

Remark 2.1 If X has only rational singularities (for instance cyclic quotient singularities),
the Leray spectral sequence gives q(Y ) = q(˜Y ) = q(X) and pg(Y ) = pg(˜Y ) = pg(X). The
normal stable surfaces considered in this paper have rational singularities and pg(X) = 2,
so the Kodaira dimension of ˜Y is ≥ 1 and the minimal model Y is unique.

Let X be a normal stable surface with log-terminal singularities. It is possible to generalize
the plurigenus formula for smooth minimal surfaces as follows. Let ˜Y → X be the minimal
desingularization and write

f ∗KX = K
˜Y + Δ = K

˜Y +
∑

i

ai Ei
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where−ai is the log discrepancy of the exceptional curve Ei . Then by Prop. 5.2 and Thm. 5.3
in [4], one has:

h0(mKX ) = χ(OX ) + m(m − 1)

2
K 2

X + 1

2
{mΔ} ({mΔ} − {Δ}) , (2.2)

where {D}, as customary, denotes the fractional part of a Q-divisor D.

2.2 T-singularities and T-singular surfaces

A T-singularity is either a rational double point or a quotient 2-dimensional singularity of
type 1

dn2
(1, dna − 1), where n > 1 and d, a > 0 are integers with a and n are coprime.

These are precisely the quotient singularities that admit a Q-Gorenstein smoothing, that is,
that can occur on smoothable stable surfaces (cf. [21, § 3]).

The exceptional divisor of the minimal resolution of a T-singularity 1
dn2

(1, dna − 1)
is a so-called T-string, a string of rational curves A1, A2, . . . , Ar with self-intersec-
tions −b1,−b2, . . . ,−br given by the Hirzebruch-Jung continued fraction expansion

[b1, b2, . . . , br ] of dn2
dna−1 (see, e.g., [10, Chapter 10]). Following popular convention, we

will refer to the expansion [b1, b2, . . . , br ] corresponding to a T-singularity as a T-string.
The index 2 T-singularity with d = 1 has T-string [4]. Those of index 2 and d > 1 have

T-string [3, 2, . . . , 2, 3], where 2 occurs d − 2 times. It is immediate to check that all the log
discrepancies are equal to− 1

2 .More generally, if [b1, . . . , br ] is the T-string of a T-singularity
1

dn2
(1, dna − 1) for some n > 2, then b1 = 2 (or br = 2) and [b2, . . . , br − 1] (respectively,

[b1 − 1, . . . , br−1]) is also the T-string of a T-singularity of type 1
dn′2 (1, dn

′a − 1) for some
n′ < n. In particular, we obtain all possible T-strings of T-singularities of fixed d by beginning
with the corresponding T-string of index 2 listed above and iterating as described [21, § 3].
The T-singularities of index 3 are those obtained from those of index 2 by a single iteration
step.

A T-singular surface of type 1
dn2

(1, dna − 1) is a normal surface with a singular point of

type 1
dn2

(1, dna−1) and smooth elsewhere. The index of X is equal to n. Using the notation
of Sect. 2.1 we have ( [22, Prop. 20]):

K 2
˜Y

= K 2
X − (r − d + 1). (2.3)

If, in addition, Y is not a rational surface, then by [23, Prop. 2.3]:

K 2
Y < K 2

X (2.4)

Remark 2.5 Let ˜Y be a smooth surface containing a T-string. Then by [18, Prop. 4.10] there
is a map f : ˜Y → X that contracts the T-string to a T-singularity; the surface X is projective
andQ-factorial, so it is a T-singular surface. If the class of f ∗KX is nef and big and the only
curves with zero intersection with it are the components of the T-string, then X is also stable.

2.3 I-surfaces

An I-surface X is a stable surface with K 2
X = 1, pg(X) = 2 and q(X) = 0. In [12] it was

shown that the classical description of smooth surfaces of general type with K 2
X = 1 and

χ(X) = 3 extends to the Gorenstein case, i.e.:

– a Gorenstein I-surface X is canonically embedded as a hypersurface of degree 10 in (the
smooth locus of) P(1, 1, 2, 5);
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I-surfaces with one T-singularity

– the moduli space M
(Gor)
1,3 of Gorenstein stable surfaces with K 2 = 1 and χ = 3 is

irreducible and rational of dimension 28.
– for a Gorenstein I-surface X , the bicanonical map is a degree 2 morphism ϕ2 : X →

Q2 ⊂ P
3, where Q2 is the quadric cone, branched on the vertex o and on a quintic

section D of Q2 not containing o.
– conversely, if D is a quintic section of Q2 not containing o and (Q2,

1
2D) is a log-

canonical pair, then the double cover of Q2 branched on D and o is a stable Gorenstein
I-surface.

2.4 Extending automorphisms of stable surfaces

Let X be a stable surface and let g : X → B be a 1-parameter Q-Gorenstein smoothing of
X ; denote by 0 ∈ B the point such that g−1(0) = X , write B∗ := B\{0} and X ∗ := X|B∗ .

Let Aut(X/B) be the relative automorphism scheme. The following result is certainlywell
known to experts; we thank V. Alexeev for explaining it to us. Note as a starting point, that
the automorphim group of a stable surface is finite by [17, Thm. 11.12], or more generally
by [14].

Proposition 2.6 Let σ be a section of Aut(X ∗/B∗). Then, up to a finite base change, σ

extends to a section of Aut(X/B).

Proof The claim follows from the fact that the family X is the canonical model of any
extension of X ∗, and the canonical model is unique. Indeed, choose an extension X ′ of X ∗
such that σ induces a morphism X ′ → X ; up to a base change we may assume that both X
and X ′ admit a semi-stable resolution. Now taking canonical models of both X ′ and X one
gets a regular map σ̄ : X → X that restricts to σ on X ∗. Since σm is the identity for some
m, we have that σ̄m is also the identity, and therefore σ̄ is an automorphism. ��

As a result, we obtain the following necessary condition for smoothability of I-surfaces:

Corollary 2.7 Let X be a stable I-surface. If X has a Q-Gorenstein smoothing then it admits
an involution.

Proof Let X → B be a 1-parameter Q-Gorenstein smoothing of X . By [12, Prop. 3.6] (see
Sect. 2.3) the bicanonical map of a Gorenstein I-surface is of degree 2, hence the correspond-
ing involution defines a section of Aut(X ∗/B∗), that, possibly up to a base change, extends
to a section σ of Aut(X/B) by Proposition2.6.

The map Aut(X/B) → B is quasi-finite and étale (cf. [1, Thm. 3.29]), so the restriction
of σ to the central fibre X has indeed order 2. ��

3 The examples

3.1 The case of index n = 2

We start by describing a construction of stable T-singular I-surfaces of index 2.

Example 3.1 LetQ2 ⊂ P
3 be the quadric cone and let ε : F2 → Q2 be theminimal resolution;

as usual, we denote by σ∞ the infinity section of F2, by Γ the class of a ruling and write
σ0 = σ∞ + 2Γ . Let D ⊂ F2 be an effective divisor linearly equivalent to 4σ0 + 2Γ and
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assume that D does not contain σ∞ and is smooth away from σ∞, so that D is either smooth
or has a double point p on σ∞.

We let π : Y → F2 be the double cover branched on D. The surface Y is smooth when
D is, and has a singular point q of type Ak lying over p ∈ σ∞ otherwise. The linear system
π∗|Γ | is a pencil of elliptic curves and coincides with the canonical system of Y . We denote
by ˜Y → Y the minimal desingularization; since the singularities of Y are canonical, ˜Y is
minimal elliptic with pg(˜Y ) = 2 and again the canonical system coincides with the elliptic
pencil. There are the following possibilities for the preimage C of σ∞ in ˜Y :

(1) if D meets σ∞ at two distinct points, then ˜Y = Y and C is a (−4)-curve;
(2) if D is smooth but meets σ∞ at only one point, then ˜Y = Y and C is a string of type

[3, 3];
(3) if D has a double point p ∈ σ∞ then the point q ∈ Y lying over p is an Ak point for

some k > 0. The preimage of σ∞ in Y splits as C1 +C2, with C1 and C2 smooth rational
curves meeting at q , and C is a string of type [3, 2, . . . , 2, 3] with 2 occurring k times.

Let ν : ˜Y → X be the first step in the Stein factorization of the map ˜Y → Y → Q2: ν

contracts C to a point r lying over the vertex ofQ2 and is an isomorphism elsewhere. So r is
a singularity of type 1

4d (1, 2d−1) (see Sect. 2.2): in case (1) above one has d = 1, in case (2)
one has d = 2, and in case (3) one has d = k + 2 > 2. So we have C2 = −4, K

˜YC = 2 and
ν∗KX = K

˜Y + 1
2C (see Sect. 2.2) and therefore K 2

X = (K
˜Y + 1

2C)2 = 1. Finally, it is easy
to check that ν∗KX is nef and that the only irreducible curves A with ν∗KX A = 0 are the
components of C , and therefore KX is ample. Finally, pg(X) = pg(˜Y ) = 2 by Remark 2.1,
since T-singularities are rational. Summing up, X is a T-singular I-surface of type 1

4d (2d−1),
where d = 1 in case (1), d = 2 in case (2), and d = k + 2 > 2 in case (3).

Remark 3.2 Let X be an I-surface as in Example 3.1. Then the induced map ε : X → Q2 is
a finite double cover, flat away from the vertex of Q2, with branch locus D̄ = ε(D) cut out
on Q2 by a quintic hypersurface passing through the vertex of Q2. By the Hurwitz formula
we have 2KX = ε∗H , where H is the class of a hyperplane section of Q2 ⊂ P

3. Since
the canonical system |2KX | is 3-dimensional by (2.2), it coincides with ε∗|H |. So the map
ε : X → Q2 is the bicanonical map of X . In particular, the branch divisor D is determined
by X up to automorphisms of Q2.

In fact, our conditions on D guarantee that (Q2,
1
2 D̄) is a log-terminal pair and thus X

is an I-surface by [12, Prop. 4.1]. Deforming D̄ to a general quintic section of Q2 gives a
smoothing of X as a hypersurface of degree 10 inside P(1, 1, 2, 5).

We record this fact for later reference.

Corollary 3.3 The I-surfaces constructed in Example 3.1 are smoothable.

To construct surfaces as in Example 3.1 one needs to find a branch divisor D with the
required singularity at a point p ∈ σ∞ and smooth everywhere else. This is a non trivial
question, as shown by the following partial answer to it.

Proposition 3.4 Consider T-singular I-surfaces of type 1
4d (1, 2d−1) as constructed in Exam-

ple 3.1. Then

(i) we have d ≤ 32;
(ii) for d = 1, 2, 3 the T-singular I-surfaces of type 1

4d (1, 2d − 1) obtained as in Exam-
ple3.1 give an irreducible subvariety of codimension d inside the main component of
the moduli space of stable I-surfaces. In particular, for d = 1 one has a divisor.
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(iii) There are irreducible families of T-singular I-surfaces of type 1
4d (1, 2d−1) depending

on μ moduli for the following values of (d, μ):

(9, 19), (21, 7), (25, 4).

Proof We use freely the notation of Example3.1. (i) Let X be as in Example3.1 with a
singularity of type 1

4d (1, 2d − 1), with d > 2. Then the branch locus D ⊂ F2 of the
corresponding double cover has exactly a double point p ∈ σ∞ of type Ad−2 and is smooth
elsewhere.

Assume first that D is irreducible and let ˜D → D be the normalization. Since D ∼
4σ0 + 2Γ , we have pa(D) = 15 and pa(˜D) = pa(D) −  d−1

2 �, and therefore d ≤ 32.
Assume now that D = D1+D2 is reducible. If D1 does not intersect σ∞, then D1 and D2

have to intersect away from σ∞, contradicting our assumption that D is smooth away from
the section at infinity. Thus D1 and D2 are smooth divisors not containing σ∞ meeting only
at the point p ∈ σ∞. Write m = D1D2: the singular point p is of type A2m−1, so we have
d = 2m + 1. Up to exchanging D1 and D2, there are exactly the following possibilities:

(R1) D1 ∼ Γ , D2 ∼ 4σ0 + Γ , m = 4, d = 9;
(R2) D1 ∼ σ0 + Γ , D2 ∼ 3σ0 + Γ , m = 10, d = 21;
(R3) D1 ∼ 2σ0 + Γ , D2 ∼ 2σ0 + Γ , m = 12, d = 25.

(ii) The surface X is determined by the choice of D ∈ |4σ0 + 2Γ | up to the action of the
automorphism group of F2 (equivalently, of Q2), which has dimension 7. The case d = 1
corresponds to a general choice of D, so the number of moduli is dim |4σ0 + 2Γ | − 7 = 27.
The case d = 2 correspond to D smooth but tangent to σ∞ at a point and the case d = 3
corresponds to D with an ordinary double point on σ∞. In both cases simple arguments based
on Bertini’s theorem show that D can be chosen in an irreducible and locally closed subset
of codimension d − 1 of |4σ0 + 2Γ |.

(iii) The three families correspond to the cases (R1), (R2) and (R3) above.
We discuss case (R3) first. Let D1 ∈ |2σ0 + Γ | a smooth curve such that the point

p := D ∩ σ∞ is a Weierstrass point of D1. By Lemma 3.7 there is a 3-dimensional family
of such curves, up to the action of the automorphisms of F2.

Consider the following exact sequence:

0 → OF2 → OF2(D1) → OD1(12p) → 0.

Passing to cohomology, we have a surjection H0(OF2(D1)) � H0(OD1(12p)); so there is
a curve D′

1 ∈ |2σ0 + Γ | that meets D1 only at p. If we take a general element D2 of the
pencil spanned by D1 and D′

1 we obtain an example of case (R3). The curve D1 depends on
three moduli up to automorphisms of F2 and for each choice of D1 we have a 1-dimensional
family of possible D2, so case (R3) gives an irreducible subvariety of dimension 4 of the
main component of the moduli space of I-surfaces.

Consider now case (R2). Because h1(F2, 2σ0) = 0, we have a short exact sequence:

0 → H0(2σ0) → H0(3σ0 + Γ ) → H0(OD1(10p)) → 0.

So the curves in |3σ0 + Γ | that cut out the divisor 10p on D1 are a linear subsystem |M |
of dimension 9 = h0(2σ0); p is the only base point of |M | and for general R ∈ |2σ0| the
curve D1 + R is smooth at p. So by Bertini’s Theorem, we can pick D2 in a non empty open
subset of |M |, and we in total have h0(σ0 +Γ )−1+9 = 14 parameters for the construction.
Taking into account the action of the automorphism group of F2, which is 7-dimensional, we
see that we have 7 moduli.
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Case (R1) can be analysed in the same way: one gets 25 + 1 = 26 parameters for the
construction and therefore 19 moduli. ��
Remark 3.5 As explained in the introduction of [23], the log Bomolov-Miyaoka-Yau inequal-
ity gives d ≤ 34 for a stable I-surface with a T-singularity of type 1

4d (1, 2d − 1), a weaker
bound than Proposition 3.4 (i).

Remark 3.6 Proposition 3.4 shows that the expectation that T-singular surfaces of type
1
4d (1, 2d − 1) give a codimension d subset in the moduli space (see Sect. 2.2) is true for
d = 1, 2, 3 but not for all possible d . In fact, for d = 25 one has a family depending on 4
moduli while the expected number is 28 − 25 = 3.

Lemma 3.7 Let C be a smooth genus 2 curve and let p ∈ C be a Weierstrass point. Then
there is an embedding j : C → F2 such that j(C) ∼ 2σ0 + Γ and j(C) intersects σ∞ at
j(p).

Proof The canonical double coverC → P
1 gives a natural embedding ofC in the total space

V of the line bundle OP1(−3). In turn, there is an open immersion V ↪→ F3 that identifies
V with the complement of the infinity section σ∞. Composing these two inclusions one gets
an inclusion of C in F3 as a bisection disjoint from σ∞. Blowing up F3 at the Weierstrass
point p and contracting the strict transform of the ruling of F3 containing p, one obtains the
desired inclusion j : C → F2. ��

3.2 The case of index n = 3

Here we construct T-singular I-surfaces of type 1
18 (1, 5). We start by proving an auxiliary

result on elliptic surfaces.

Lemma 3.8 Let Y be a minimal elliptic surface with pg(Y ) = 2 and q(Y ) = 0. If Y contains
a (−3)-curve B then:

(i) Y is the minimal resolution of a double cover π : Ȳ → F6 branched on a divisor D ∈
|σ∞ + 3σ0| with at most negligible singularities and σ∞ pulls back to 2B on Y ;

(ii) Y has no multiple fibers; the reducible fibers of the elliptic fibration Y → P
1 are the

preimages of the rulings of F6 containing a singular point of D.

Conversely, the minimal resolution Y of a double cover Ȳ → F6 as in (i) is a minimal elliptic
surface with pg(Y ) = 2, q(Y ) = 0 and the pull-back of σ∞ to Y is equal to 2B for a
(−3)-curve B.

Proof (i)+(ii) Denote by F a general fiber of the elliptic fibration Y → P
1. By the canon-

ical bundle formula for elliptic surfaces we have |KY | = |aF | + ∑

(mi − 1)Fi , where
m1F1, . . .mkFk are the multiple fibers. Since pg(Y ) = 2 we have a = 1; since KY B = 1,
we conclude that B is a section of the elliptic fibration and that there are no multiple
fibers. Set L := 2B + 7F ; one has LB = 1 and L2 = 16, KY L = 2. We write
L = KY + (6F + 2B); since 6F + 2B is nef and big, Kawamata-Viehweg vanishing
applies and h0(L) = χ(L) = 10. A similar argument shows that H1(7F + B) = 0 and
therefore the restriction map H0(L) → H0(OB(1)) is surjective and the linear system |L|
is base point free. Let ϕ : Y → P

9 be the morphism defined by L and let Σ be the image
of ϕ. The morphism ϕ maps a general F 2-to-1 onto a line and it maps B to a line r that
meets the images of the elliptic fibers of Y at distinct points. So the degree m of ϕ is equal
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to 2 and degΣ = L2/2 = 8. By the classification of surfaces of minimal degree in P
N the

surface is either a cone over the rational normal curve of degree 8 or a smooth linear scroll
over P1. Since Σ contains the line r that meets each ruling at a distinct point, we conclude
that Σ ∼= F6 and the line r corresponds to the infinity section σ∞ of F6. In addition, it is not
hard to see that B is contained in the ramification locus of ϕ.

Let Y → Ȳ
π→ F6 be the Stein factorization of f : the map Y → Ȳ contracts precisely

the (−2)-curves of Y that do not meet B, so Ȳ has canonical singularities. The map π is a
flat double cover; we write D := σ∞ + D1. Since the preimage of a general ruling Γ of F6

is an elliptic curve and D is divisible by 2 in Pic(F6), we may write D1 = 3σ∞ + 2aΓ . The
usual formulae for double covers give

KȲ = π∗(KF6 + 2σ∞ + aΓ ) = π∗((a − 8)Γ ).

Since pg(Ȳ ) = pg(Y ) = 2, we obtain a = 9 and D1 ∈ |3σ0|. The singularities of Y
occur above the singularities of D, which are therefore negligible because Y has canonical
singularities.

Conversely, given a cover as in (i), Ȳ has canonical singularities and is smooth above
σ∞. If we write π∗σ∞ = 2B we get −12 = 2σ 2∞ = 4B2, namely B2 = −3 and B is a
(−3)-curve. As noted above, the ruling of F6 pulls back to a pencil |F | of elliptic curves and
the curve B is a section of |F |, therefore |F | has no multiple fibers. Denote by Ȳ → Y the
minimal desingularization. Then the same computations as before give pg(Y ) = pg(Ȳ ) = 2.
Since σ∞ and D1 are disjoint, the restriction of D to a ruling of Γ cannot be divisible by 2.
So the strict transform in Y of a ruling of F6 is always irreducible and the components of a
reducible fiber that do not meet B are precisely the exceptional curves of Ȳ → Y . ��
Example 3.9 Let Y be an elliptic surface with pg(Y ) = 2, q(Y ) = 0 such that:

– Y has a (−3)-section B
– Y has an I2 fiber F2, and all the remaining fibers are irreducible.

By Lemma 3.8, the surface Y is the minimal resolution of a surface Ȳ which is a double cover
π : Ȳ → F6 branched on a divisor D ∈ |σ∞ + 3σ0| with an ordinary double point p2 and no
other singularity. The I2 fiber arises as the pull-back of the ruling of F6 through p2 and B is
the preimage of σ∞.

Consider an irreducible singular fiber F1, of type either I1 or I I , and let q ∈ F1 be the
singular point. Let ˜Y → Y be the blow-up at the singular point q , denote by A the strict
transform of F1 and by C (the strict transform of) the component of F2 that meets B (see
Fig. 1). Then A, B,C is a string of type [4, 3, 2] that can be blown down to obtain a surface
X with a singularity of type 1

18 (1, 5), K
2
X = 1, pg(X) = 2 and q(X) = 0 (see Remarks 2.1

and 2.5). The pull-back of KX to ˜Y is equal to K
˜Y + 2

3 A+ 2
3 B + 1

3C . It is not hard to check
that it is a nef divisor and that A, B and C are the only curves that have zero intersection with
it. So KX is ample and X is a stable T-singular surface of type 1

18 (1, 5).

Remark 3.10 The construction of Example 3.9 depends on 27moduli. Indeed, the pair (Y , B)

determines X up to a finite number of possibilities, so it is enough to count parameters for the
pairs (Y , B)with an I2 fiber. These are determined by the branch locus D of π : Ȳ → F6, that
has a double point. The linear system |3σ0| has dimension 39, and the curves with a double
point give a codimension 1 subvariety. Since the automorphism group of F6 has dimension
11, we are left with 38 − 11 = 27 parameters.

In order to show that the surfaces constructed in Example 3.9 are smoothable, we give an
alternative description by computing their canonical ring:
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Y

fcontract A + B + C

X

B

CC

A

−4

E
η

blow up

Y

−3

−2

double cover + resolution
ϑ

F6

σ∞

D1

p1 p2

Fig. 1 Construction of an I-surface of type 1
18 (1, 5), using a nodal fibre

Proposition 3.11 Let X be as in Example 3.9. Then there exist sections x1, x2 ∈ H0(X , KX ),
y ∈ H0(X , 2KX ), u ∈ H0(X , 3KX ) and z ∈ H0(X , 5KX ) such that the canonical ring of
X is

R(X , KX ) = C[x1, x2, y, u, z]/(x31 − x2y, z
2 − f10(x1, x2, y, u))

for a weighted homogeneous polynomial f10 of degree 10.
In particular, X is embedded into P(1, 1, 2, 3, 5) as a complete intersection of degree

(3, 10).

Proof Recall that pg(X) = 2; in addition, one can check that the correction term
1
2 {mΔ} ({mΔ} − {Δ}) vanishes for all values of m ≥ 2, so that (2.2) gives:

h0(X ,mKX ) = 3 + m(m − 1)

2
(m ≥ 2). (3.12)

We want to compute the canonical ring using the identification H0(X ,mKX ) = H0(˜Y ,

π∗mKX�). We want to relate these to linear systems on F6 as in the diagram, where we
already added some information on the 3-canonical map explained below:

˜Y Y Ȳ F6 Q6 P
7

X Q4 P
5

η

f

ϑ

resolution
π |σ0|

projection from line

|3KX |
(3.13)
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For later reference we compute the relevant divisors on ˜Y . As above we denote by Γ a ruling
on F6 and by C ′ the −2-curve such that C + C ′ is a fiber of the elliptic fibration of ˜Y . The
configuration is depicted in Fig. 1.

f ∗KX = ϑ∗Γ + E + 1

3
(2A + 2B + C) ,

f ∗2KX = ϑ∗3Γ + B + 1

3
(A + B + 2C) ,

f ∗3KX = ϑ∗(6Γ + σ∞) − E − C ′

= ϑ∗σ0 − E − C ′,

f ∗4KX = ϑ∗(7Γ + σ∞) − C ′ + 1

3
(2A + 2B + C) ,

f ∗5KX = ϑ∗(9Γ + σ∞) − E − C ′ + B + 1

3
(A + B + 2C) .

Note that by construction the branch divisor D of ϑ is equal to σ∞ + D1, with D1 ∈ |3σ0| ⊂
|4σ∞ + 18Γ |, so that

H0(˜Y , ϑ∗(aΓ + bσ∞)) ∼= H0(F6, aΓ + bσ∞) ⊕ H0(F6, (a − 9)Γ + (b − 2)σ∞),

which is the decomposition into the invariant and anti-invariant part. We are ready to com-
pute the relevant pluricanonical systems on Y , but for the ring structure we also need the
multiplication maps. Considering these on ˜Y we need to account for correction terms, for
example,

H0( f ∗KX�) × H0( f ∗KX�) H0(2 f ∗KX�) H0(2 f ∗KX�)+A+B
.

We now compute the pullback of the canonical ring to ˜Y . Let us denote the section of a
line bundle associated to a curve by the corresponding lower case letter. Then H0(X , KX ) =
H0(˜Y , ϑ∗Γ + E) = e · H0(˜Y , ϑ∗Γ ), where the second equality is most easily confirmed
by dimension reasons. Thus the canonical pencil is spanned by

x1 = cc′e and x2 = (ae2)e

Taking the correction into account, the image of the multiplication map is spanned by 〈x21 =
(cc′)2ae2b, x1x2 = cc′(ae2)2b, x22 = (ae2)3b〉, which together with

y = (cc′)3b

forms a basis of H0(˜Y , 2 f ∗KX�) = H0(˜Y , ϑ∗3Γ + B) = b · ϑ∗H0(F6, 3Γ ). Looking at
the next multiplication map

H0( f ∗KX�) × H0(2 f ∗KX�) H0( f ∗KX� + 2 f ∗KX�)

H0(3 f ∗KX )

+A+B+C .

we find the claimed relation x31 = x2y. Because of this relation, the image of the multiplica-
tion map is of dimension 5 and we need a further generator u ∈ H0(X , 3KX ), not contained
in the image.
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Remark 3.14 It is now instructive to look at the 3-canonical map, as alluded to in Dia-
gram 3.13. On ˜Y we have

H0(˜Y , 3 f ∗KX ) = H0(˜Y , ϑ∗σ0 − E − C ′) ⊂ ϑ∗H0(F6, σ0).

Note that ϑ maps E andC ′ to points p1, p2 ∈ F6 such that D1 is tangent to a ruling in p1 and
D1 has a node at p2, necessarily on a different ruling, see Fig. 1. Thus the 3-canonical system
is precisely ϑ∗H0(F6, I{p1,p2}(σ0)). Since |σ0| maps F6 to the cone Q6 over the rational
normal curve of degree 6 in P7, the image of the 3-canonical map of X is the projection ofQ6

from a line through two general points of Q6, which is the cone Q4 ⊂ P
5 over the rational

normal curve of degree 4.
In this description, u is the preimage of any hyperplane section of Q6 containing p1, p2

and not containing the vertex.

We have thus found the subring S generated by elements of degree at most 3 in the
canonical ring:

R := R(X , KX ) ⊃ C
[

H0(mKX ) : m ≤ 3
] = C[x1, x2, y, u]/(x31 − x2y) =: S

To ease computations later, recall that the Hilbert series of a weighted polynomial ring

C[w1, . . . , wr ] with weights d1, . . . , dr is given by
∏r

i=1

(

1 − tdi
)−1

and by the additivity
of Hilbert series we get the Hilbert functions for complete intersections. In particular,

hS(t) = 1

(1 − t)2(1 − t2)
= (1 − t3)

(1 − t)2(1 − t2)(1 − t3)
,

hR(t) = (1 − t10)

(1 − t)2(1 − t2)(1 − t5)
= (1 − t3)(1 − t10)

(1 − t)2(1 − t2)(1 − t3)(1 − t5)
,

because by (3.12) theHilbert function of R coincideswith theHilbert function of the canonical
ring of a smooth I-surface,which in turn is a complete intersection of degree 10 inP(1, 1, 2, 5)
(cf. Sect. 2.3).

Note that the surface X carries an involution ι, which acts on the canonical ring and that
birationally ι is the covering involution from the double cover of π : Ȳ → F6. Thus the whole
subring S is invariant under the involution.

A dimension computation gives S4 = R4, so we now want to analyse the 5-canonical
system, which is of dimension 13, while S5 is of dimension 12. Since all sections in S2 are
divisible by b, we see that

S5 = S2 · S3 ⊂ H0(˜Y , 5 f ∗KX� − B) ∼= H0(F6, I{p1,p2}(9Γ + σ∞)),

and in fact equality holds as both sides are of dimension 12. We claim that this is indeed the
ι-invariant part of the linear system | f ∗5KX�|, in which it is clearly contained.

For this it is enough to find an anti-invariant section of  f ∗5KX�. So consider the singular
double cover π : Ȳ → F6 branched over D1 + σ∞ occuring in the Stein factorisation of ϑ

and write π∗(D1 + σ∞) = 2R1 + 2B. If ρ is the anti-invariant section defining the divisor
(R1 + B) we have

H0(Ȳ , π∗(9Γ + 2σ∞)) = π∗H0(F6, 9Γ + 2σ∞) ⊕ 〈ρ〉
as a decomposition into ι-eigenspaces. By construction the pull back η∗ρ to ˜Y vanishes along
B, E , and C ′, thus it defines a section in

ϑ∗(9Γ + 2σ∞) − B − E − C ′ = ϑ∗(9Γ + σ∞) + B − E − C ′ = 5 f ∗KX�.
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I-surfaces with one T-singularity

Wedenote this anti-invariant section by z. By the restriction sequence, z restricts to a non-zero
constant section on B.

We claim that R10 = S10 ⊕ z · S5. Computing the dimensions, e.g., using the Hilbert
functions, we see that the dimensions match on both sides. The intersection of the two
subspaces is zero, since by our choice of z, one is invariant and one is anti-invariant under
the action of the involution.

So since z2 is an invariant section there is a relation of the form z2 − f10(x1, x2, y, u) in
R10. We conclude that we have an injection

S[z]/(z2 − f10) ↪→ R

which has to be an isomorphism because both rings have the same Hilbert function. In total,
the canonical ring of X has the claimed format. ��
Corollary 3.15 A surface X as in Example 3.9 is smoothable.

Proof Write the canonical ring of X as in Proposition 3.11. Now consider the family X ⊂
P(1, 1, 2, 3, 5) × A

1
t → A

1 = B cut out by the equations.

tu − x31 + x2y, z
2 − f10(x1, x2, y, u) + tg10

where g is a general homogenous polynomial of degree 10.
Note that the general fibre is a smooth I-surface, as if t �= 0 we can eliminate the variable

u to get a hypersurface of degree 10 in P(1, 1, 2, 5). When we set t = 0 we find the equations
of our surface X = X0.

Clearly the family is flat over the curve B, because every fibre is a surface, i.e., every
component ofX dominatesB. It is also aQ-Gorenstein smoothing becauseKollár’s condition

OX (m)|X0 = ω
[m]
X /B|X0

∼=→ ω
[m]
X0

= OX0(m)

is met; this is equivalent to OX (m) being flat over B by [19]. ��

3.3 The case of index n = 5

An example of a T-singular I-surface of type 1
25 (1, 14) can be found in [23] right after the

proof of Thm. 3.2. For the reader’s convenience we recall here its description, visualized in
Figs. 2 and 3.

Example 3.16 Let Y be an elliptic surface with pg(Y ) = 2, q(Y ) = 0 such that:

– Y has a (−3)-section A
– all the elliptic fibers are irreducible.

By Lemma 3.8, the surface Y is a double cover π : Y → F6 branched on a smooth divisor
D ∈ |σ∞ + 3σ0|.

Let F1 be a singular fiber and let q be its singular point: blow up F1 at q and then at a point
q1 infinitely near to q and lying on the strict transform of F1 to get a surface ˜Y . The strict
transform of F1 is a (−5) curve B, the strict transform of A (that we still denote by A) is a
(−3)-curve, the strict transform of the curve of the first blow up is a (−2)-curve, which we
call C , so that A, B,C is a string of type [3, 5, 2] (note that this is true both for F1 nodal and
for F1 cuspidal). Then the string A, B,C can be blown down to obtain a T-singular surface
X of type 1

25 (1, 14) with K 2
X = 1, pg(X) = 2, q(X) = 0. The pull-back of KX to ˜Y is equal

to K
˜Y + 3

5 A + 4
5 B + 2

5C . It is not hard to check that it is a nef divisor and that A, B and C

123



M. Franciosi et al.
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Y
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1

Fig. 2 Construction of an RU surface ( 1
25 (1, 14) singularity), nodal case

Y

−1

E−2

C

−5
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−3
A

η

two blow ups

f contract A + B + C

X

Y

−3

min. elliptic

P
1

Fig. 3 Construction of an RU surface ( 1
25 (1, 14) singularity), cuspidal case

are the only curves that have zero intersection with it. So KX is ample and X is a T-singular
surface of type 1

25 (1, 14).

Remark 3.17 Counting parameters as in Remark 3.10, we obtain 28 moduli for the construc-
tion in Example 3.9. Since the closure of the locus of smooth I-surfaces is irreducible of
dimension 28, we conclude that the general surface obtained via this construction is not
smoothable. This confirms the infinitesimal computations of [23], where it is shown that the
obstruction space for Q-Gorenstein deformations is non-zero for these surfaces.

The above remark can be made more precise as follows:

Proposition 3.18 Let X be a T-singular surface obtained as in Example 3.16 taking as F1 an
irreducible fiber of type I1. Then X is not Q-Gorenstein smoothable and such surfaces give
a dense open subset of an irreducible component ofM1,3 of dimension 28.

Proof Assume by contradiction that X admits a Q-Gorenstein smoothing. Then by Corol-
lary2.7, X has an involution that lifts to an involution τ of ˜Y preserving the exceptional
curves A, B and C . In addition, τ maps to itself the exceptional curve E of the second blow
up of Y , since E is the only irreducible (−1)-curve of ˜Y . So τ maps B to itself and fixes the
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three distinct points B ∩ A, B ∩C and B ∩ E . Since B is a smooth rational curve, τ restricts
to the identity on B and therefore the induced involution τ̄ of Y fixes the singular fiber F1
pointwise. This is impossible since the divisorial part of the fixed locus of an involution on
a smooth surface is a smooth curve.

To show that these surfaces give an open subset of an irreducible component of the moduli
space it is enough to show that every small Q-Gorenstein deformation of such a surface is
equisingular, that is, also contains a T-singularity of the same type. Assume for contradiction
that we have a non locally trivialQ-Gorenstein deformation of such an X . Then, since every
non-trivialQ-Gorenstein deformation of the singularity 1

25 (1, 14) has canonical singularities
[16, Prop. 2.3], X would deform to a canonical surface and hence admit a Q-Gorenstein
smoothing—a contradiction. ��
Remark 3.19 Clearly, the construction from Example 3.16 using a nodal fibre degenerates to
the one constructed with a cuspidal fibre. Preliminary computations suggest that the latter
surfaces might be smoothable.

4 The classification: proof of Theorem 1.1 and Corollary 1.2

Throughout this section X is a T-singular I-surface with a singularity of type 1
dn2

(1, dna−1);
we use freely the notation of Sect. 2.1.

Lemma 4.1 The surface Y is properly elliptic with pg(Y ) = 2, q(Y ) = 0 and there are the
following cases to consider:

r − d n K 2
˜Y

T-singularity T-string

0 2 0 1
4d (1, 2d − 1) [4] or [3, 3] or [3, 2 . . . , 3]

1 3 −1 1
18 (1, 5) [4, 3, 2]

2 5 −2 1
25 (1, 14) [2, 5, 3]

Proof Since T-singularities are rational, pg(Y ) = pg(˜Y ) = pg(X) = 2 and q(Y ) = q(˜Y ) =
q(X) = 0 (Remark 2.1) and K 2

˜Y
= d − r by (2.3). In addition we have K 2

Y < K 2
X = 1 by

(2.4), hence K 2
Y = 0 and Y is properly elliptic.

By [23, Theorem 1.1] we have r − d ≤ 2 and if r − d = 2, then by [23, Theorem 3.2],
the singularity must be of type 1

25 (1, 14), giving the third row of the table.
If r−d = 1, then n = 3, K 2

˜Y
= −1 and the T-string is either [5, 2] (the 1

9 (1, 2) singularity)
or [4, 2, . . . , 2, 3, 2], where there are d−2 curves of self-intersection (−2) between the (−3)-
curve and (−4)-curve (the 1

9d (1, 3d−1) singularities).We show that the former cannot occur,
and the latter is possible only if d = 2, i.e. the chain is [4, 3, 2] and the singularity is 1

18 (1, 5).
Notice that because K 2

˜Y
= −1 and Y is a minimal elliptic surface, the surface ˜Y contains

exactly one (−1)-curve E that we contract to obtain Y . By ampleness of X , the curve E
must intersect the T-string at least twice, and by nefness of KY the curve E cannot intersect
a (−2)-curve.

Let us suppose that the T-string is [5, 2]. Denote by A the (−5)-curve, and by abuse of
notation its image in Y . Then as we have just argued, we have E A ≥ 2. On the other hand,
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E A ≤ 3, because otherwise we would have AKY < 0. If AE = 3, then the curve A in Y has
a triple point. On the other hand, we have by adjunction that AKY = 0, so A must also be
contained in a fiber of the elliptic fibration, a contradiction. If instead AE = 2, then A has a
double point and by adjunction AKY = 1. This means A is a section of the fibration with a
double point, which is impossible.

Now suppose that the T-string is [4, 2, . . . , 2, 3, 2]. Then E cannot intersect the T-string
more than three times, since otherwise one of the curves in the T-string would become KY -
negative. Denote by A and B the curves in the T-string of self-intersections (−4) and (−3),
respectively, and by abuse of notation, their images in Y . Notice that E A ≤ 2 and EB ≤ 1
because otherwise A or B becomes KY -negative.

Then we have three possibilities:

1. E A = EB = 1, or
2. E A = 2, EB = 1, or
3. E A = 2, EB = 0.

In case (1), upon contracting E , we see that A becomes a (−3)-curve onY , so by adjunction
we have KY A = 1. On the other hand, the (−2)-curves in the T-chain and the curve B become
parts of a fiber on Y , so A also intersects an Ik fiber twice for some k ≥ 1. This forces A to
be a multisection. But the canonical bundle formula together with pg = 2 implies that this
is impossible.

In cases (2) and (3), contracting E gives us A2 = 0, so that A is a fiber of type I1 or I I .
In case (2), B is a (−2)-curve passing through the singularity of A, which is impossible. In
case (3) if r ≥ 4 the curve A intersects a (−2) curve, which is not possible.

Finally, for r − d = 0 one has n = 2 and we have listed all the possibilities. ��
Remark 4.2 Note that we have shown in the course of the proof that in the case n = 3 the
minimal elliptic surface Y contains a (−3)-curve.

Lemma 4.3 If X has index n = 2, then:

(i) the surface ˜Y = Y is minimal;
(ii) the canonical system |KY | is equal to the pencil |F |, where F is an elliptic fibre.

Proof (i) This was part of Lemma 4.1.

(ii) Since pg(Y ) = 2, the canonical bundle formula for elliptic surfaces gives |KY | =
|F | + ∑

(mi − 1)Fi , where m1F1, . . .mkFk are the multiple fibers. The exceptional divisor
of the desingularization map Y → X contains a (−n)-curve B for n = 3 or 4. So we have

1 ≤ KY B = B(F +
∑

(mi − 1)Fi ) = n − 2 ≤ 2.

But if there is at least one multiple fibre F0 of multiplicity m0 then B(F + ∑

(mi − 1)Fi ) ≥
B(m0F0 + (m0 − 1)F0) ≥ 3BF0 ≥ 3—a contradiction. We conclude that there are no
multiple fibers and |KY | = |F |. ��
Proposition 4.4 If X has index n = 2, then it is obtained as in Example 3.1.

Proof Denote by Δ the exceptional divisor of Y → X ; recall that Δ is a string of type
[4], [3, 3], or [3, 2 . . . , 3] (with 2 occurring k times), according to whether d = 1, 2 or
d = k + 2 > 2. Since (KY + 1

2Δ)Δ = 0 and KY = F (cf. Lemma 4.3), we have FΔ = 2.
Set L := 3F + Δ; one has L2 = 8, LKY = 2 and so χ(L) = 6. We can write L =

KY + (2F+Δ), and 2F+Δ is nef and big since it is the pull-back of 2KX , so by Kawamata-
Viehweg vanishing h0(L) = χ(L) = 6. Restricting to Δ and taking cohomology we see that
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the image of the map H0(3F + Δ) → H0(OΔ(2)) has dimension 2. We are going to use
this fact to show that |L| has no fixed components. Note that any fixed component of L must
be a component of Δ, since |3F | is free. If Δ is irreducible, then it is not a fixed component
since the map H0(L) → H0(L|Δ) is non-zero. If Δ is reducible, denote by A1 and A2 the
(−3)-curves of Δ and suppose that A1 is in the base locus of |L|: then all the (−2)-curves
of Δ are also in the base locus of |L|, since LΓ = 0 for a (−2)-curve Γ of Δ, and |L| has a
base point on A2, so |L|Δ has dimension ≤ 0, a contradiction. Assume now that d > 2 and
a (−2)-curve of Δ is a fixed component of |L|: then, as above, all the (−2)-curves of Δ are
fixed components of |L| and h0(3F + A1 + A2) = h0(L) = 6. Set M = 3F + A1 + A2:
we have χ(M) = 5, so h1(M) = 1. On the other hand, M = KY + 2F + A1 + A2 and we
can write 2F + A1 + A2 = (2F + 2

3 A1 + 2
3 A2) + 1

3 A1 + 1
3 A2. Since 2F + 2

3 A1 + 2
3 A2

is nef and big, we have h1(M) = 0 by Kawamata-Viehweg’s vanishing, a contradiction. We
conclude that |L| has no fixed component.

Now one can argue precisely as in the proof of Lemma 3.8 and prove the following:

– |L| is base point free and defines a 2-to-1 map ϕ : Y → P
5, so the image Σ of ϕ is either

a smooth rational scroll of degree 4 or a cone over the rational normal curve of degree 4;
– ϕ maps the elliptic fibers 2-to-1 to rulings of Σ and maps Δ to a line meeting all the

rulings, so Σ is isomorphic to F2;
– the curves contracted by ϕ are exactly the (−2)-curves contained in Δ (if any).

So X is obtained as in Example 3.1. ��
Proof of Theorem 1.1 We have restricted the number of possible singularities in Lemma 4.1.
The fact that the cases of index n = 2 are constructed as in Example 3.1 is proved in
Proposition 4.4 which gives the bound d ≤ 32 from Proposition 3.4.

It remains to show that if X has a singularity of type 1
18 (1, 5), then X is constructed as

in Example 3.9, and if X has a singularity of type 1
25 (1, 14), then X is constructed as in

Example 3.16. As explained in Lemma 4.1 the corresponding T-strings in ˜Y contain a (−3)-
curve and we claim that this maps indeed to a (−3)-curve B in Y . In the former case, this
follows from Remark 4.2, while in the latter case this is [23, Theorem 3.2 (A1)]. We know
explicitly the possible such pairs (Y , B) by Lemma 3.8 and thus the T-singularities arise as
in the Examples3.9 and 3.16 . ��
Proof of Corollary 1.2 Recall that the main component of the moduli space of I-surfaces is
irreducible of dimension 28. We have shown in Remark 3.2 that every T-singular surface of
index 2 is smoothable and in Proposition 3.4 that those of type 1

4 (1, 1) depend on 27 parame-
ters, hence give a divisor in the main component. For type 1

18 (1, 5) we argue similarly using
Corollary 3.15 and Remark 3.10. The case of type 1

25 (1, 14) was treated in Proposition 3.18.��
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