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orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition (CD)

to handle unperturbed as well as perturbed two-electron integrals. We investigate the accu-

racy of the CD for the derivatives of the two-electron integrals with respect to an external

magnetic field as well as for the computed NMR shieldings, before we illustrate the ap-

plicability of our CD based GIAO-MP2 scheme in calculations involving up to about one
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I. INTRODUCTION

The computation of NMR chemical shifts is an important application of quantum chemistry.1

For the accurate computation of NMR shieldings it has been amply shown that the consideration of

electron-correlation effects is essential.2–9 In this respect, second-order Møller-Plesset (MP2) per-

turbation theory10,11 has been shown to be very useful,2,12–14 even though highly accurate predic-

tions of NMR shieldings, in particular when aiming at absolute shieldings,15–19 require coupled-

cluster (CC) treatments.20 Nevertheless, as the calculation of relative NMR chemical shifts bene-

fits from some error cancellation, MP2 computations can provide a very useful and reliable tool.

However, MP2 computations of NMR shieldings are quite costly in comparison to corresponding

Hartree-Fock (HF) and density-functional theory (DFT) treatments and thus DFT computations

are currently the first choice for NMR shielding computations, despite certain deficiencies of stan-

dard DFT in treating magnetic properties.8 Efforts to speed up MP2 computations of NMR shield-

ings and thus to increase the applicability of MP2 have a long history. Integral-direct schemes

together with an efficient exploitation of point-group symmetry and coarse-grain parallelization

have significantly extended the applicability of MP2.21,22 The use of local-correlation treatments

has further enhanced the applicability of MP2, as shown by the work of Loibl and Schütz.23

These authors also use density fitting24–26 to avoid the computation of the perturbed two-electron

integrals when using gauge-including atomic orbitals (GIAOs).27–31 Maurer and Ochsenfeld32 re-

ported on a Laplace-based GIAO-MP2 formulation and implementation for the computation of

NMR chemical shifts. This scheme, together with an efficient implementation, should in princi-

ple allow to achieve linear scaling. Stoychev et al.33 recently described the implementation of a

scheme to compute GIAO-MP2 NMR chemical shifts within the domain-based local pair natural

orbital (DLPNO) framework. The applications reported by these authors involved cases with up to

4700 basis functions and convincingly demonstrate the efficiency of this implementation which is

part of the ORCA package.34 While the work by Stoychev et al. achieves computational efficiency

by the use of a local-correlation treatment, of pair natural orbitals,35 and of density fitting,36,37 to-

gether with an efficient exploitation of sparsity,38 there are more possibilities to reduce the overall

cost of the calculation. One option is here to apply a Cholesky decomposition (CD) to the two-

electron integrals.39,40 This option has in particular proven useful for medium-sized systems,41,42

as CD alone does not have the potential to reach linear scaling. The advantage of CD over den-

sity fitting is that no auxiliary basis sets are required and that the error can be controlled in a
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rigorous manner. While there is an extensive literature40,41,43–48 on the use of CD within energy

computations, less work has been reported for property computations. Recently, CD has been ap-

plied to accelerate the computation of nuclear gradients,49,50 but nothing has been so far reported

concerning the use of CD for the computation of magnetic properties.

In this paper, we describe how CD can be used for the perturbed two-electron integrals that ap-

pear in GIAO computations of NMR shieldings and demonstrate the efficiency of a corresponding

CD treatment for GIAO-MP2 computations on medium-sized systems with more than one thou-

sand basis functions. In the following, after a brief review of standard GIAO-MP2 theory and CD,

we discuss how CD is applied to the perturbed two-electron integrals and describe how CD can

be exploited in GIAO-MP2 computations. The theory section is followed by a description of our

implementation within the CFOUR program package.51,52 We then discuss the accuracy of CD

in GIAO-MP2 computations, before demonstrating the computational efficiency of our CD based

GIAO-MP2 scheme in calculations.

II. THEORY

A. Standard GIAO-MP2 theory

We start by recapitulating the standard theory for the computations of NMR shieldings at the

MP2 level when using GIAOs. We follow here closely Ref. 21 in which spin-adapted expressions

have been given.

The NMR shielding tensor σN of the Nth nucleus in a molecule is defined as the second deriva-

tive of the energy with respect to the external magnetic field B and the magnetic moment mN of the

Nth nucleus and most conveniently evaluated using the following density-matrix based expression:

σ
N
ji = ∑

µν

Dµν

∂ 2hµν

∂Bi ∂mN j
+∑

µν

∂Dµν

∂Bi

∂hµν

∂mN j
. (1)

In Eq. (1), Dµν refers to the one-particle density matrix, with the Greek indices µ and ν label-

ing atomic orbitals (AOs), and hµν denotes the matrix elements of the one-electron Hamiltonian.

Expression for the derivatives of hµν with respect to Bi and/or mN j can be, for example, found in

Ref. 13. The MP2 contribution to the density matrix Dµν is usually defined in the corresponding

molecular-orbital (MO) representation

Dµν = ∑
pq

c∗µ p Dpqcνq, (2)
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with cµ p specifying the MO coefficients obtained by solving the HF self-consistent-field (HF-SCF)

equations. Indices i, j, . . . label in the following occupied spatial orbitals, indices a,b, . . . denote

virtual spatial orbitals, and indices p,q, . . . generic MOs that are either occupied or unoccupied. In

the MO representation, the occupied-occupied and virtual-virtual block of the MP2 density matrix

are given by

Di j =−2∑
m

∑
e f

t̃e f
im te f

jm
∗

(3)

and

Dab = 2∑
mn

∑
e

t̃ae
mn
∗ tbe

mn. (4)

Note that the given expression for the occupied-occupied block does not include the HF contribu-

tion to the density matrix. The MP2 amplitudes in Eqs. (3) and (4) are defined as

tab
i j =

(ai|b j)
εi + ε j− εa− εb

(5)

with (pq|rs) as the MO two-electron integrals in Mulliken notation, εp as the orbital energy of the

pth orbital, and t̃ab
i j as the corresponding “spin-adapted” amplitudes

t̃ab
i j = 2tab

i j − tab
ji . (6)

The virtual-occupied block of the MP2 density matrix is obtained by solving the Z-vector

equations53

∑
m

∑
e

Dem[4(em|ia)− (ea|im)− (ma|ie)

+δimδae(εa− εi)] =−2Xai (7)

with the intermediate Xai given by

Xai = ∑
m

∑
e f
(ea| f m)t̃e f

im
∗−∑

mn
∑
e
(im|en)t̃ae

mn
∗+∑

mn
Dmn

{
(mn|ia)

−1
2
(ma|in)

}
+∑

e f
De f

{
(e f |ia)− 1

2
(ea|i f )

}
. (8)

Expressions for the perturbed MP2 density matrix can be obtained by straightforward differ-

entiation of Eqs. (3), (4), (7), and (8) with respect to the components Bi of the external magnetic

field. The corresponding expressions for the occupied-occupied and virtual-virtual block of the

perturbed MP2 density matrix are

∂Di j

∂Bi
=−2∑

m
∑
e f

{
∂ te f

im
∂Bi

t̃e f
jm
∗ +

∂ te f
jm
∗

∂Bi
t̃e f
im

}
(9)
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and

∂Dab

∂Bi
= 2∑

mn
∑
e

{
∂ tae

mn
∗

∂Bi
t̃be
mn + t̃ae

mn
∗∂ tbe

mn
∂Bi

}
, (10)

while the perturbed virtual-occupied block is obtained as the solution to the perturbed Z-vector

equation

∑
m

∑
e

∂Dem

∂Bi
{(ma|ie)− (ea|im)+δimδea(εa− εi)}

=−2
∂Xai

∂Bi
−∑

m
∑
e

Dem

{
2

∂ (em|ia)
∂Bi

+2
∂ (me|ia)

∂Bi

−∂ (ea|im)

∂Bi
− ∂ (ma|ie)

∂Bi
+δim

∂ fea

∂Bi
−δea

∂ fim

∂Bi

}
(11)

with ∂Xai/∂Bi defined by

∂Xai

∂Bi
= ∑

m
∑
e f

{
∂ t̃e f

im
∗

∂Bi
(ea| f m)+ t̃e f

im
∗∂ (ea| f m)

∂Bi

}

−∑
mn

∑
e

{
∂ t̃ae

mn
∗

∂Bi
(im|en)+ t̃ae

mn
∗∂ (im|en)

∂Bi

}
+∑

mn

{
∂Dmn

∂Bi

[
(mn|ia)− 1

2
(ma|in)]

]
+Dmn

[
∂ (mn|ia)

∂Bi
− 1

2
∂ (ma|in)

∂Bi

]}
+∑

e f

{
∂De f

∂Bi

[
(e f |ia)− 1

2
(ea|i f )

]
+De f

[
∂ (e f |ia)

∂Bi
− 1

2
∂ (ea|i f )

∂Bi

]}
. (12)

In the given equations ∂ fpq
∂Bi

denotes the perturbed Fock matrix, ∂ (pq|rs)
∂Bi

the perturbed integrals

∂ (pq|rs)
∂Bi

=+ ∑
µνρσ

∂cµ p
∗

∂Bi
cνqcσr

∗cρs(µν |σρ)

+ ∑
µνρσ

cµ p
∗∂cνq

∂Bi
cσr
∗cρs(µν |σρ)

+ ∑
µνρσ

cµ p
∗cνq

∂cσr
∗

∂Bi
cρs(µν |σρ)

+ ∑
µνρσ

cµ p
∗cνqcσr

∗∂cρs

∂Bi
(µν |σρ)

+ ∑
µνρσ

cµ p
∗cνqcσr

∗cρs
∂ (µν |σρ)

∂Bi
, (13)

5

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
59

63
3



∂ tab
i j

∂Bi
the perturbed amplitudes

∂ tab
i j

∂Bi
=

{
∂ (ai|b j)

∂Bi
+∑

e

[
∂ fae

∂Bi
teb
i j +

∂ fbe

∂Bi
tae
i j

]
−∑

m

[
tab
m j

∂ fmi

∂Bi
+ tab

im
∂ fm j

∂Bi

]}
/(εi + ε j− εa− εb),

(14)

and ∂cµ p
∂Bi

the derivatives of the MO coefficients cµ p with respect to the components of the magnetic

field. The latter are determined via the coupled-perturbed HF (CPHF) equations.54,55

Note that the non-vanishing HF contribution to the density matrix is given by

DHF
i j = 2δi j (15)

and that there is no HF contribution to the perturbed density matrix in the MO representation.

The AO representation of the perturbed density matrix is finally obtained as

∂Dµν

∂Bi
= ∑

pq

{
c∗µ p

∂Dpq

∂Bi
cνq +

∂c∗µ p

∂Bi
Dpqcνq + c∗µ pDpq

∂cνq

∂Bi

}
.

(16)

B. Cholesky decomposition of two-electron integrals

To reduce computational cost and in particular the memory requirements for handling the two-

electron integrals, a Cholesky decomposition (CD)39,40 can be applied to the positive semi-definite

two-electron integral matrix56

(σρ|νµ)≈
M

∑
P=1

LP
σρLP

µν

∗
(17)

with M as the rank of the decomposition and the Cholesky vectors (CVs) LP
µν determined via

LP
σρ = ˜(µν |νµ)

− 1
2

{
(σρ|νµ)−

P−1

∑
R=1

LR
σρLR

µν

∗
}

(18)

with the updated diagonal elements of the two-electron integral matrix given by

˜(µν |νµ) = (µν |νµ)−
P−1

∑
R=1

LR
µνLR

µν

∗
. (19)

Note that the CD follows a (partial) pivotal procedure40 in which in each iteration a new CD vec-

tor (with index P) is assigned to the largest of all updated diagonal elements of the two-electron
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integral matrix with indices µ and ν . The decomposition is continued until the largest updated

diagonal element is smaller than a predefined Cholesky threshold 10−δ . This threshold also deter-

mines the accuracy of the decomposition, as it can be shown via the Cauchy-Schwarz inequality

that the error of the two-electron integrals, approximated via Eq. (17), is in absolute terms always

smaller than 10−δ .

It has been amply shown41,42 that the storage requirements for the CVs are substantially lower

than for the two-electron integrals so that even for quite large calculations (with more than one

thousand basis functions) the whole set of CVs can be kept in core memory unlike the two-electron

integrals which either have to be stored on disk or handled using integral-direct algorithms.

For the two-electron integrals in the MO representation, the CVs are transformed from the AO

into the MO representation

LP
pq = ∑

σρ

c∗σ pLP
σρcρq (20)

such that the MO two-electron integrals are given by

(pq|rs)≈
M

∑
P=1

LP
pqLP

sr
∗
. (21)

As for the AO CVs, it is also for the MO CVs usually possible to keep all of them in memory.

Note also that due to the eightfold permutational symmetry of the two-electron integrals the

CVs are symmetric with respect an interchange of the two AO or MO indices.

C. Cholesky decomposition of the magnetic two-electron integral derivatives

For derivatives of the two-electron integrals, a CD scheme can be derived by differentiating

Eqs. (17) and (18) with respect to the corresponding perturbation.50 In the case of a magnetic field

B as perturbation, this yields

∂ (σρ|νµ)

∂Bi
≈

M

∑
P=1

{
∂LP

σρ

∂Bi
LP

µν −LP
σρ

∂LP
µν

∂Bi

}
(22)

and

∂LP
σρ

∂Bi
= ˜(µν |νµ)

− 1
2
{

∂ (σρ|νµ)

∂Bi

−
P−1

∑
R=1

(
∂LR

σρ

∂Bi
LR

µν −LR
σρ

∂LR
µν

∂Bi

)}
. (23)
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Note that there are some differences to the corresponding equations given in Ref. 50 for nuclear

coordinates as perturbation. For a magnetic field the derivative two-electron integrals (and so the

derivatives of the CVs) are purely imaginary. As a consequence, the derivatives of the updated

diagonal element of the two-electron integral matrix vanishes and Eq. (22) consists of the differ-

ence instead of the sum of two terms. A similar observation holds for the the correction term to

the integral derivative in Eq. (23).

Furthermore, the perturbed two-electron integrals no longer exhibit the full eightfold permuta-

tional symmetry. However, one can split the perturbed two-electron integrals according to21

∂ (σρ|νµ)

∂Bi
= (

∂σρ

∂Bi
|νµ)+(σρ|∂νµ

∂Bi
) (24)

and equate the first (second) term on the right hand side of Eq. (24) with the first (second) term

on the right hand side of Eq. (22). As these partial derivatives in Eq. (24) exhibit the full permu-

tational symmetry albeit with an additional consideration of a sign change, one can choose the

corresponding perturbed CVs antisymmetric with respect to an AO index change. Eq. (23) can be

then recast in the following form

∂LP
σρ

∂Bi
= ˜(µν |νµ)

− 1
2

{
1
2

[
∂ (σρ|νµ)

∂Bi
+

∂ (σρ|µν)

∂Bi

]

−
P−1

∑
R=1

∂LR
σρ

∂Bi
LR

µν

}
. (25)

We emphasize that Eq. (25) is not an independent CD of the perturbed integrals, as the Cholesky

basis, which is completely determined by the unperturbed two-electron integral matrix, is already

defined. In other words, with Eq. (25) we are building a representation of the perturbed integrals

in a given Cholesky basis.

The perturbed MO two-electron integrals comprise not only the contribution due to the per-

turbed AO two-electron integrals, but also contributions due to the perturbed MO coefficients (see

Eq. (13). It is thus advantageous to define the perturbed CVs in the MO representation as

∂LP
pq

∂Bi
= ∑

σρ

{
cσ p

∂Lσρ

∂Bi
cρq−

∂cσ p

∂Bi
Lσρcρq + cσ pLσρ

∂cρq

∂Bi

}
(26)
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such that the perturbed MO two-electron integrals can be approximated by

∂ (pq|rs)
∂Bi

≈
M

∑
P=1

{
∂LP

pq

∂Bi
LP

sr−LP
pq

∂LP
sr

∂Bi

}

≈
M

∑
P=1

{
∂LP

pq

∂Bi
LP

rs +LP
pq

∂LP
rs

∂Bi

}
. (27)

D. GIAO-MP2 theory with Cholesky-decomposed two-electron integrals

A CD based implementation of GIAO-MP2 can be carried out by replacing all the two-electron

integrals in the expressions given in section II A by their CD equivalents. In the following, we give

the corresponding equations by explicitly replacing the (derivative) integrals with their CD only

when this allows for an alternative evaluation of the term; otherwise we will just use (pq|rs)CD

and ∂ (pq|rs)CD/∂Bi to indicate that the term is evaluated with (derivative) two-electron integrals

reconstructed from the CD. For the terms in which we explicitly insert the CD, we indicate a

possible way for their evaluation by setting appropriate parentheses.

Before giving the detailed equations, we note that we decided to use in the case of the (i j|ka)

as well in most cases for the (ai|b j) integrals (and as well also for the corresponding derivative

integrals) the reconstructed integrals. These integrals can be computed from the (derivative) CVs

directly after the transformation of the CVs from the AO into the MO representation. From the

(ai|b j)CD integrals or from the corresponding derivative integrals ∂ (ai|b j)CD/∂Bi, it is possible

to obtain the (perturbed) MP2 amplitudes

CDtab
i j =

(ai|b j)CD

εi + ε j− εa− εb
(28)

and

∂ CDtab
i j

∂Bi
=

{
∂ (ai|b j)CD

∂Bi
+∑

e

[
∂ fae

∂Bi

CDteb
i j +

∂ fbe

∂Bi

CDtae
i j

]
−∑

m

[
CDtab

m j
∂ fmi

∂Bi
+ CDtab

im
∂ fm j

∂Bi

]}
/(εi + ε j− εa− εb).

(29)

Using these amplitudes, one can compute the occupied-occupied and virtual-virtual blocks of the

(perturbed) MP2 density matrix according to Eqs. (3), (4), (9), and (10). For the virtual-occupied
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block of the (perturbed) density matrix, insertion of the CD yields

4∑
P

LP
ia

{
∑
m

∑
e

DemLP
em

}
−∑

P
∑
m

LP
ma

{
∑
e

DemLP
ie

}
−∑

P
∑
m

LP
im

{
∑
e

DemLP
ea

}
+Dai(εa− εi) =−2 CDXai,

(30)

with

CDXai = ∑
P

∑
e

LP
ea

{
∑
m

∑
f

LP
f m

CDt̃e f
im
∗
}

−∑
mn

∑
e
(im|en)CD CDt̃ae

mn
∗

+∑
mn

Dmn

{
(mn|ia)CD− 1

2
(ma|in)CD

}
+∑

P
LP

ia

{
∑
e f

De f LP
e f

}
− 1

2 ∑
P

∑
e

Lp
ea

{
∑

f
LP

i f De f

}
(31)

and

∑
P

∑
m

LP
ma

{
∑
e

∂Dem

∂Bi
LP

ie

}
−∑

P
∑
m

LP
im

{
∑
e

∂Dem

∂Bi
LP

ea

}
+

∂Dai

∂Bi
(εa− εi)]

=−2
∂ CDXai

∂Bi
+2∑

P

∂LP
ia

∂Bi

{
∑
m

∑
e

DemLP
me

}
+2∑

P

∂LP
ia

∂Bi

{
∑
m

∑
e

DemLP
em

}
−∑

P
∑
m

∂LP
im

∂Bi

{
∑
e

LP
eaDem

}
−∑

P
∑
m

LP
im

{
∑
e

∂LP
ea

∂Bi
Dem

}
−∑

P
∑
m

∂LP
ma

∂Bi

{
∑
e

LP
ieDem

}
−∑

P
∑
m

LP
ma

{
∑
e

∂LP
ie

∂Bi
Dem

}
−∑

m
∑
e

Dem

{
δim

∂ fea

∂Bi
−δea

∂ fim

∂Bi

}
(32)
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with

∂ CDXai

∂Bi
= ∑

P
∑
e

LP
ea

{
∑
m

∑
f

∂LP
f m

∂Bi

CDt̃e f
im
∗
}

+∑
P

∑
e

∂LP
ea

∂Bi

{
∑
m

∑
f

LP
f m

CDt̃e f
im
∗
}

+∑
P

∑
e

LP
ea

{
∑
m

∑
f

LP
f m

∂ CDt̃e f
im
∗

∂Bi

}

−∑
mn

∑
e

∂ (im|en)CD

∂Bi

CDt̃ae
mn
∗

−∑
mn

∑
e
(im|en)CD ∂ CDt̃ae

mn
∗

∂Bi

+∑
mn

∂Dmn

∂Bi

{
(mn|ia)CD− 1

2
(ma|in)CD

}
+∑

mn
Dmn

{
∂ (mn|ia)CD

∂Bi
− 1

2
∂ (ma|in)CD

∂Bi

}
+∑

P
LP

ia

{
∑
e f

∂De f

∂Bi
LP

e f

}
− 1

2 ∑
P

∑
e

Lp
ea

{
∑

f
LP

i f
∂De f

∂Bi

}

+∑
P

∂LP
ia

∂Bi

{
∑
e f

De f LP
e f

}
− 1

2 ∑
P

∑
e

∂Lp
ea

∂Bi

{
∑

f
LP

i f De f

}

+∑
P

LP
ia

{
∑
e f

De f
∂LP

e f

∂Bi

}
− 1

2 ∑
P

∑
e

Lp
ea

{
∑

f

∂LP
i f

∂Bi
De f

}
∆

(33)

III. IMPLEMENTATION

The outlined CD-based GIAO-MP2 approach has been implemented within the CFOUR pro-

gram package.51,52 The implementation has been carried out with computational efficiency in

mind. Thus, we decided to adopt the following guidelines:

• The CVs are kept in memory; to be more specific we keep the whole set of unperturbed CVs

and one set of perturbed CVs (i.e., the set for one perturbation) in memory simultaneously.

At the CD step of the unperturbed and perturbed two-electron integrals, we assume that the

CVs for all three perturbations can be kept in memory at the same time.

• Furthermore, both in memory and on disk we keep at most two vectors of length n2
occN2

virt

11

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
59

63
3



where nocc is the numbers of occupied and Nvirt is the number of virtual orbitals. To be

more specific, we keep the amplitudes tab
i j and one set of perturbed amplitudes ∂ tab

i j /∂Bi in

memory. The integrals (ai|b j) and ∂ (ai|b j)/∂Bi are also stored, but they are overwritten by

the corresponding amplitudes as soon as the latter are formed.

• To ensure computational efficiency, all terms to be computed have been written, whenever

possible, as matrix-matrix products such that they can be handled via calls to the level 3

BLAS matrix-matrix multiplication routine (DGEMM). This also facilitates shared-memory

parallelization via Open MP57 by simply using a threaded BLAS library.

These guidelines suggest that, as in previous GIAO-MP2 implementations,12,21 the outer loop in

the part where the perturbed density matrices are constructed runs over the components of the

external magnetic field. The CD of the unperturbed and perturbed two-electron integrals have

been implemented within the Mainz INTegral (MINT) package58 of the CFOUR program package

which uses the McMurchie-Davidson scheme59 for computing integrals. Our implementation of

the CD follows more or less the prescriptions given in Ref. 40 and 41.

Our CD-GIAO-MP2 algorithm is sketched in the flowchart given in Figure 1. Note that after

the transformation of the (perturbed) CVs from the AO into the MO representation the (perturbed)

integrals (i j|ka)CD and (ai|b j)CD are explicitly formed. All other terms are computed as indicated

in section II D. Furthermore, both the HF and CPHF equations are solved using unperturbed and

perturbed CVs. Note also, that at present our code does not make use of molecular point-group

symmetry.

IV. RESULTS

In the following we will demonstrate the accuracy as well as the applicability of our CD based

GIAO-MP2 code. We start by investigating the accuracy of the CD for the two-electron integral

derivatives (section IV A), compare then the accuracy of NMR shieldings computed with CD-

GIAO-MP2 with those obtained at the standard GIAO-MP2 level (section IV B), and conclude

with a few representative examples that are intended to illustrate the applicability of CD-GIAO-

MP2 in large-scale computations that otherwise are only feasible in rather costly integral-direct

GIAO-MP2 treatments (section IV C).
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solution of CPHF equations for Bi with i=x,y,z

solution of Z-vector equations and calculation
of vrt.-occ. block of density matrix

calculation of perturbed intermediate 𝜕Xai/𝜕Bi

CD of two-electron integrals

solution of HF-SCF equations

transformation of CVs from
AO to MO representation

generation of integrals
(ij|ka)CD and (ai|bj)CD

construction of t-amplitudes
and evaluation of MP2 energy

construction of occ.-occ.- and vrt.-
vrt. block of density matrix

calculation of intermediate Xai

CD of perturbed two-electron integrals;
computation of perturbed 1el integrals and
evaluation of diamagnetic part of shielding

loop over perturbation Bi with i=x, y, and z

end of loop over perturbation Bi

transformation of perturbed CVs from
AO to MO representation

generation of integrals
𝜕(ij|ka)CD/𝜕Bi and 𝜕(ai|bj)CD/𝜕Bi

construction of perturbed t-amplitudes

construction of occ.-occ.- and vrt.-vrt. 
block of perturbed density matrix

solution of perturbed Z-vector equations
and calculation of vrt.-occ. block of

perturbed density matrix

evaluation of paramagnetic part of shielding

FIG. 1. Flowchart of a CD based GIAO-MP2 computation.

A. Accuracy of the Cholesky decomposition of the derivatives of the two-electron integrals

with respect to the components of an external magnetic field

In Table I, we compare the accuracy of the CD of the unperturbed and perturbed two-electron

integrals for different Cholesky thresholds 10−δ . The computations have been carried out for water

(H2O, r(OH)=1.0 Å, 〈(HOH)= 100.0◦) and hydrogen peroxide (H2O2, r(OO) = 1.5 Å, r(OH)= 1.0

Å, 〈(OOH)= 100.0◦, τ(HOOH) = 120.0◦) using Dunning’s cc-pVXZ basis sets60 with X = D,

T, and Q. While for the unperturbed integrals the Cholesky threshold provides a rigorous upper

bound for the error in the CD, this is not the case for the perturbed integrals. It is seen that the

errors in the perturbed integrals are somewhat larger (by a factor of about 10 to 200) than for the

unperturbed integrals and that the error is somewhat larger for calculations with larger basis sets.

The error due to the CD is furthermore found to be of similar magnitude in the case of H2O and

H2O2, thus indicating that the Cholesky threshold will be useful for judging the accuracy of the

unperturbed and perturbed integrals.
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TABLE I. Maximum errors (in a.u.) in the computed unperturbed and perturbed two-electron integrals

for different CD thresholds 10−δ in calculations for water (H2O) and hydrogen peroxide (H2O2) using the

cc-pVXZ basis sets with X = D, T, and Q.

basis set two-electron Cholesky threshold δ

integrals 4 5 6 7 8 9

a) H2O

cc-pVDZ
unperturbed 8.1·10−5 9.5·10−6 1.0·10−6 9.4·10−8 6.4·10−9 8.7·10−10

perturbed 3.4·10−4 1.0·10−4 8.6·10−6 2.3·10−6 8.1·10−7 7.4·10−8

cc-pVTZ
unperturbed 9.5·10−5 9.8·10−6 8.9·10−7 8.4·10−8 8.7·10−9 1.0·10−9

perturbed 3.4·10−4 6.3·10−5 8.4·10−6 1.9·10−6 3.1·10−7 9.1·10−8

cc-pVQZ
unperturbed 9.6·10−5 9.5·10−6 9.6·10−7 9.9·10−8 9.9·10−9 9.6·10−10

perturbed 4.9·10−4 4.7·10−5 1.7·10−5 3.3·10−6 9.2·10−7 2.0·10−7

b) H2O2

cc-pVDZ
unperturbed 9.4·10−5 9.5·10−6 9.3·10−7 7.9·10−8 8.0·10−9 8.8·10−10

perturbed 5.6·10−4 4.4·10−4 6.8·10−6 8.9·10−7 2.9·10−7 5.9·10−8

cc-pVTZ
unperturbed 9.4·10−5 9.8·10−6 9.9·10−7 9.9·10−8 9.4·10−9 9.8·10−10

perturbed 4.9·10−4 4.5·10−5 5.6·10−6 1.9·10−6 4.4·10−7 9.5·10−8

cc-pVQZ
unperturbed 9.5·10−5 9.9·10−6 9.4·10−7 9.5·10−8 9.9·10−9 9.9·10−10

perturbed 5.0·10−4 9.7·10−5 2.2·10−5 6.6·10−6 1.1·10−6 2.3·10−7

B. Accuracy of NMR shieldings computed at the GIAO-MP2 level with

Cholesky-decomposed two-electron integrals

For the three organic molecules acetaldehyde (H3C-CHO), vinyl alcohol (H2C=CHOH), and

ethylene oxide (C2H4O) we compare in Table II the results from CD-based GIAO-HF and GIAO-

MP2 computations with those from standard GIAO-HF and GIAO-MP2 treatments, again for dif-

ferent Cholesky thresholds δ and for different basis sets from Dunning’s cc-pVXZ hierarchy with

X = D, T, and Q. The geometries of these molecules have been determined at the same level as the

NMR shieldings and are given for completeness in the supplementary material. Table II reports

the corresponding maximum absolute errors in the isotropic shieldings obtained in the CD based

computations. One can conclude from the data in Table II that the corresponding errors are for
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TABLE II. Maximum absolute errors (given in ppm) in the computed isotropic shieldings (with respect

to a standard GIAO-HF and GIAO-MP2 computation) for acetaldehyde, ethylene oxide, and vinyl alcohol

obtained in CD based GIAO-HF and GIAO-MP2 computations for different Cholesky thresholds δ using

the cc-pVXZ basis sets with X = D, T, and Q.

nucleus δ=4 δ=5

cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

a) HF treatment

13C 0.013 0.002 0.008 0.002 0.001 0.001

17O 0.063 0.007 0.021 0.001 0.004 0.001

1H 0.001 0.001 0.001 0.000 0.000 0.001

b) MP2 treatment

13C 0.013 0.002 0.081 0.001 0.002 0.002

17O 0.049 0.015 0.037 0.003 0.002 0.003

1H 0.001 0.001 0.001 0.001 0.001 0.000

all Cholesky thresholds small and of no relevance for actual computations. The error amounts

to several hundredths ppm in the case of δ=4, to about a few thousandths ppm in the case of

δ=5, and to less than a thousandth ppm in the case of δ = 6 (not reported in Table II). The com-

parison suggests that a Cholesky threshold of δ = 5 is sufficient to guarantee converged values

for the shieldings, though the results obtained with δ=4 already exhibit an accuracy that is fully

acceptable for chemical applications.

Additional evidence of the accuracy of our CD-GIAO-MP2 scheme also stems from the com-

parison of the results for coronene (see next section) with those obtained using the standard GIAO-

MP2 approach without CD. The differences there amount to at most 0.02 to 0.03 ppm for the 13C

shieldings and to about 0.001 to 0.002 ppm for the 1H shieldings when using a Cholesky thresh-

old of 5, while for a threshold of 4 the corresponding errors are less than 0.08 ppm for the 13C

shieldings and 0.002 to 0.003 ppm for the 1H shieldings. These findings indicate that the accuracy

of the CD slightly deteriorates for larger molecules, though the somewhat larger discrepancies are

still of no chemical relevance.

We also note that, so far, we have not seen any systematics in the errors due to the use of

CD (i.e., we see deviations of both signs), so that the computation cannot benefit from some
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error cancellation. Again, we emphasize that the CD errors with the thresholds we use are of no

relevance so that it is not necessary to rely on some fortuitous error cancellation.

At this point, it is interesting to compare the accuracy of the present CD based scheme with the

accuracy of corresponding schemes employing density fitting. According to Ref. 36 the maximum

absolute error due to density fitting in GIAO-MP2 computations with the pcSseg3 basis61 amounts

in chemical shift computations to about 0.035 ppm (carbon shieldings), 0.055 ppm (nitrogen,

oxygen, fluorine, phosphorus shieldings), and 0.002 ppm (hydrogen shieldings) which roughly

corresponds to the accuracy obtained with δ = 4. However, the advantage of the present CD

scheme is that the error can be easily controlled via the choice of the Cholesky threshold δ , while

this is not the case when using density fitting. The error is there due to the choice of the auxiliary

basis and it is hard to improve the results in a systematic manner.

One might also consider a mixed scheme that combines a rigorous HF treatment (without CD)

with a CD based MP2 part. In this way, one may hope to reduce the error when using a rather loose

Cholesky threshold (i.e., δ=4). However, based on results from some exploratory calculations, it

is concluded that such a scheme offers no significant improvement for the computation of NMR

shieldings when using Cholesky thresholds of 4 or 5.

C. Representative Applications

To illustrate the applicability of our CD based GIAO-MP2 computations, we report in the fol-

lowing results from corresponding calculations for several large molecules with up to close to 100

atoms and more than 1000 basis functions. The chosen examples comprise coronene (C24H12),

hexabenzocoronene (C42H18), tetrakis(t-butyl)tetraborane(4) (B4C16H36), tetrameric cyclopenta-

dienyl aluminum(I) (Al4C20H20), the buckminsterfullerene (C60), and a tweezer host-guest com-

plex (C54N2H36). The structures of these molecules are depicted in Figure 2 with the correspond-

ing Cartesian coordinates given in the supplementary material. The geometries for the calculations

have been taken from Ref. 33 in the case of coronene and the tweezer host-guest complex, from

Ref. 62 in the case of hexabenzocoronene, from Ref. 22 in the case of B4t-Bu4 as well as Al4Cp4,

and from Ref. 63 in the case of C60. For a detailed account why NMR chemical-shift computa-

tions for these molecules are important, we refer in the case of hexabenzocoronene to Ref. 62, in

the case of the tetrahedral boron compound to Ref. 2, in the case of the tetrameric aluminum(I)

compound to Ref. 64, and for the tweezer host-guest complex to Ref. 65.
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a) coronene

b) hexabenzocoronene

c) C60

d) tweezer host-guest complex

e) B4tBu4

f) Al4Cp4

FIG. 2. Structures of the molecules for which representative CD based GIAO-MP2 computations have been

carried out. In the ball-and-stick representations, grey balls represent carbon, white balls hydrogen, blue

balls nitrogen, pink balls boron, and violet balls aluminum.

The calculations have been performed with the dzp (11s7p1d/6s4p1d for Al, 8s4p1d/4s2p1d for

B, C, O as well as N, and 4s1p/2s1p for H) and tz2p (12s9p2d/7s5p2d for Al, 9s5p2d/5s3p2d for

B, C, O, as well as N, and 5s2p/3s2p for H) versions of the Karlsruhe basis set66 and polarization

functions from Ref. 13; only for the rather large tweezer host-guest complex the larger calculation

had to be restricted to tzp (9s5p1d/5s3p1d for C as well as N and 5s1p/3s1p for H) instead of

tz2p. For completeness, the basis sets as well as the results of the calculations, i.e., the obtained

shieldings are given in the supplementary material, while the focus in the following is on the size

of these computations and the computational resources required to perform the computations.

In Table III we report the number of basis functions (Nbf), the number of CVs (NCV), and the

CD compression rate (ratio of maximum number and actual number of CVs) for the computations
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with two different Cholesky thresholds (δ = 4 and δ = 5). We also report the timings of the calcu-

lations together with the memory requirements. As seen from the table, the required resources are

still rather modest for calculations with a couple of hundred basis functions, while they are quite

demanding for the computations with more than 1000 basis functions. This finding indicates that

the application range of our CD-GIAO-MP2 approach comprises cases with several hundred up to

one thousand basis functions, while calculations with significantly more than 1000 basis function

require additional means to exploit sparsity and the local nature of electron correlation and thus are

better treated using, for example, the recently reported DLPNO-MP2 approach33 for computing

NMR shieldings.

A closer look at Table III reveals that the CD very effectively reduces the memory requirements

for the two-electron integrals. The CD compression rates are in all cases high (i.e., above 28) and

reach for the most demanding computations on C60 and the tweezer host-guest complex in the case

of δ=5 values of 94 and 98, respectively. The actual number of CVs is in nearly all cases merely

several thousand. Only for C60, when using the tz2p basis and a threshold of 5, they reach a value

above 10000. For a threshold of 4, the number of CVs is typically by about 20 to 25 % lower and

the compression rates are higher by the same percentage. For C60, this means that for δ = 4 only

8776 CVs are required instead of the 11022 CVs for δ = 5.

For the calculation on C60 with the tz2p basis and δ = 5, the memory that is required to keep

the whole set of CVs in core is about 86 GB for the unperturbed two-electron integrals and about

256 GB for the perturbed two-electron integrals, i.e., amounts of memory that are nowadays easily

affordable. In the case of δ = 4, these values reduce to about 68 GB for the unperturbed and to

about 204 GB for the perturbed integrals. Loosening the Cholesky threshold does not only reduce

the memory requirements but also speeds up the calculation (at least those steps whose cost scales

with the number of CVs). For the large calculation on C60 with the tz2p basis, this means that the

memory requirement is reduced from 1089 GB (δ = 5) to 1023 GB (δ = 4) and the calculation

only required 3 days, 9 hours, and 49 minutes instead of 4 days, 11 hours, and 31 minutes (see

table III). The computational results differed by at most 0.02 ppm which is negligible for chemical

applications.

The limiting factor of GIAO-MP2 computations using the currently implemented CD based

scheme is the necessity to store for the MP2 treatment two vectors of length N2
virtn

2
occ in memory

(one vector requires about 384 GB in the case of C60 and the tz2p basis). For that reason the largest

computations (on the tweezer host-guest complex and C60, both with more than 1000 basis func-
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tions) needed 814 or even 1089 GB core memory, respectively. However, the actual computational

times (we report wall-clock times) are in all cases acceptable with only the largest computations

requiring more than a day. The tz2p computation for C60 required about 4 days and 12 hours

when using 20 cores with δ = 5 and 3 days and 10 hours with δ = 4, while the tzp calculation

for the tweezer host-guest complex has been completed, again using 20 cores, in slightly less than

2 days and 10 hours. We note that parallelization is essential for ensuring reasonable wall-clock

timings, even though the parallelization efficiency is unfortunately not very high. For example, the

dzp computation on the tweezer host-guest complex required about 5 days when running on one

CPU and only 1 day and 5 hours when running on 20 CPUs. The speed up of about 4.1 is not too

convincing, but we note that at this stage no specific effort was put into achieving an efficient par-

allelization, as we only used threaded matrix-matrix multiplication routines from an appropriate

BLAS library. We are convinced that with additional effort a higher parallelization speed up can be

reached, but this is an issue beyond the scope of the present paper. We also note that exploitation

of point-group symmetry might significantly decrease the computational cost in the future. We

expect a reduction in the memory requirements by roughly the order of the molecular point group

and a reduction in the CPU timings for the SCF and MP2 parts of the calculation by approximately

the square of the order.

In Table IV, we present a detailed analysis of the computational cost for the dzp and tzp com-

putations on the tweezer host-guest complex. As it is seen, the cost is dominated by the following

steps: (a) the CD of the (perturbed) two-electron integrals, all SCF related steps (solution of the

HF-SCF, CPHF, as well as unperturbed and perturbed Z-vector equations), the construction of un-

perturbed and perturbed (ai|b j) integrals, and the unperturbed and perturbed (ab|ci) contributions

to the unperturbed and perturbed Xai intermediate. These findings are expected, as the costs of

these steps are those that in a formal analysis appear the most costly. The cost for the CD scales

as N2
CVN2

bf, the SCF related steps exhibit a scaling of N2
bfnoccNCV (SCF) or N2

virtnoccNCV (CPHF,

Z-vector equations), respectively, due to the exchange contributions, the formation of the (ai|b j)

integrals scales as NCVN2
virtn

2
occ, and the cost for the (ab|ci) contributions to the Xai intermediates

are of the same order. The efficiency of a CD based calculation thus depends in a rather crucial

manner on the number of Cholesky vectors used for the representation of the unperturbed and

perturbed two-electron integrals.

Finally, we note that in case of coronene and the dzp basis (420 basis functions) the CD based

GIAO-MP2 scheme outperforms the standard GIAO-MP2 approach based on the regular two-
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TABLE III. Computational requirements for the CD based GIAO-MP2 computations (with Cholesky thresh-

olds δ=4 and δ=5) for the molecules given in Fig. 2. The number of basis functions is denoted by Nbf, Nel

is the number of electrons, NCPU specifies the number of CPUs used, and NCV the number of Cholesky

vectors in the corresponding calculation. The compression is defined as the ratio of the theoretically maxi-

mum number of Cholesky vectors and the actual number NCV. The required memory is given in GB and the

wall-clock time twall in terms of days, hours, and minutes. If not otherwise noted, calculations have been

carried out on an Intel Xeon(R) E5-2643 node running at 3.4 GHz

molecule basis Nbf Nel NCPU

δ=4 δ=5

NCV compression memory twall NCV compression memory twall

[GB] [d:h:min] [GB] [d:h:min]

coronene
dzp 420 156 8 2493 35.46 17 1:05 3097 28.55 19 1:20

tz2p 684 156 8 3917 59.81 60 3:50 4959 47.24 67 4:50

hexabenzocoronene
dzp 720 270 8 4310 60.22 124 5:38 5331 48.69 132 8:28

tz2p 1170 270 8 6710 102.09 422 1:01:28 8546 80.16 457 1:07:35

B4tBu4
dzp 480 152 8 2627 43.94 23 1:15 3402 33.93 25 1:22

tz2p 804 152 8 4281 75.59 86 4:51 5511 58.72 97 5:57

Al4Cp4
dzp 492 192 8 2738 44.29 31 1:35 3494 34.71 34 1:58

tz2p 788 192 8 4414 70.43 105 5:37 5524 56.28 115 6:56

C60
dzp 900 360 8 5502 73.69 312 19:07 6722 60.32 325 23:20

tz2p 1440 360 20 8776 118.22 1023 3:09:49a 11022 94.13 1089 4:11:31a

tweezer host- dzp 1020 374 20 7400 70.37 649 1:06:11a

guest complex tzp 1280 374 20 8344 98.26 814 2:09:26a

a calculation has been carried out on an Intel Xeon(R) Gold 5215M node running at 2.5 GHz.

electron integrals. The CD based calculation (with δ=4) runs in 2 hours and 5 minutes, while the

standard GIAO-MP2 calculations requires 9 hours and 42 minutes (both calculations have been

carried out on 1 CPU of an Intel Xeon(R) Gold 5215M node running at 2.5 GHz). This clearly

shows that CD based GIAO-MP2 computations with several hundred basis functions are already

beyond the break-even point at which the CD based schemes surpasses the standard approach in

terms of computational efficiency.

V. CONCLUSIONS AND OUTLOOK

In this paper, we report on an MP2 scheme for the computation of NMR shieldings that uses a

Cholesky decomposition for the handling of the unperturbed and perturbed two-electron integrals.

The latter arise when using GIAOs for ensuring gauge-origin independence. The storage and han-

dling of these integrals is the main bottleneck21 of traditional electron-correlated NMR chemical-
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TABLE IV. Breakup of the computational timings (in minutes) for the CD based GIAO-MP2 computations

(with δ=5) for the tweezer host-guest complex using a dzp and tzp basis, respectively. Calculations have

been carried out on an Intel Xeon(R) Gold 5215M node running at 2.5 GHz

computational step dzp basisa dzp basisb tzp basisb

CD of two-electron integrals 163 33 60

solution of HF-SCF equations 221 57 208

transformation of unperturbed CVs into MO basis 33 7 19

construction of integrals (i j|ka) 34 4 6

construction of integrals (ai|b j) 261 35 67

construction of t amplitudes 11 1 1

computation of occ.-occ. block of density matrix 11 1 2

computation of vrt.-vrt. block of density matrix 51 5 12

evaluation of the contribution due to (i j|ka) to Xai 35 4 8

evaluation of the contribution due to (ab|ci) to Xai 268 51 99

solution of Z-vector equation 52 17 37

CD of perturbed two-electron integrals 805 125 230

solution of CPHF equations 101 24 46

transformation of perturbed CVs with unperturbed MOs 3 x 33 3 x 7 3 x 21

transformation of unperturbed CVs with perturbed MOs 3 x 64 3 x 12 3 x 32

construction of integrals ∂ (i j|ka)/∂Bi 3 x 91 3 x 12 3 x 18

construction of integrals ∂ (ai|b j)/∂Bi 3 x 514 3 x 69 3 x 134

evaluation of the contribution due to ∂ (i j|ka)/∂Bi to ∂Xai/∂Bi 3 x 25 3 x 4 3 x 8.3

evaluation of the contribution due to ∂ (ab|ci)/∂Bi to ∂Xai/∂Bi 3 x 523 3 x 98 3 x 191

construction of perturbed t amplitudes 3 x 68 3 x 7 3 x 15

computation of occ.-occ.block of perturbed density matrix 3 x 12 3 x 1 3 x 3

computation of vrt.-vrt. block of perturbed density matrix 3 x 55 3 x 10 3 x 25

evaluation of the contribution due to (i j|ka) to ∂Xai/∂Bi 3 x 58 3 x 4 3 x 8

evaluation of the contribution due to (ab|ci) to ∂Xai/∂Bi 3 x 264 3 x 49 3 x 97

solution of perturbed Z-vector equations 3 x 27 3 x 2 3 x 17

total wall-clock time 7215 1740 3446

a calculation has been performed using 1 CPU

b calculation has been performed using 20 CPUs; CPU time is given per node
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shift computations and has significantly limited their applicability in the past. As shown, the CD

for the derivatives of the two-electron integrals with respect to the components of an external mag-

netic field can be achieved by using a recipe obtained by straightforward differentiation of the rel-

evant equations for the Cholesky decomposition of the corresponding unperturbed integrals. Such

a scheme has already been successfully applied for geometrical derivatives50 of the two-electron

integrals and is used here for the first time for an external magnetic field as perturbation. As

shown, the CD of the perturbed two-electron integrals leads to a very compact representation that

allows to maintain the whole set of unperturbed and perturbed Cholesky vectors in core memory,

even for very large calculations. We have derived the required formulae for a CD-based GIAO-

MP2 approach and have reported on its first implementation. Calculations on systems consisting

of close to one hundred atoms and with more than one thousand basis functions demonstrate the

applicability of our scheme. However, for even larger systems it becomes mandatory to couple the

present CD based scheme with techniques that enable a local treatment of correlation23,33,67 and

that allow to exploit sparsity.

The present paper represents a first step along the lines of formulating and implementing

electron-correlated approaches for the computation of magnetic properties for large molecules.

Further work can be envisioned and is planned in two directions. The first is to move to a multi-

scale description for computing NMR chemical shifts68–74 in which the present CD based GIAO-

MP2 scheme provides the engine for the treatment of the QM region. MP2 fails in the accurate

prediction of absolute shieldings (it has a strong tendency to overshoot17) and its performance dete-

riorates in cases where electron-correlation effects are large (see, for example, Ref. 4). Therefore,

the second direction is an extension of the present scheme towards coupled-cluster methods,15–17

as it has been amply shown that highly accurate results are only achieved using these methods.5

VI. DATA AVAILABLITY STATEMENT

The data that supports the findings of this study are available within the article and its supple-

mentary material.
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VII. SUPPLEMENTARY MATERIAL

See supplementary material for the details of the reported calculations (geometries in Cartesian

Coordinates and basis sets) as well the CD based GIAO-MP2 results.
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solution of CPHF equations for Bi with i=x,y,z

solution of Z-vector equations and calculation
of vrt.-occ. block of density matrix

calculation of perturbed intermediate 𝜕Xai/𝜕Bi

CD of two-electron integrals

solution of HF-SCF equations

transformation of CVs from
AO to MO representation

generation of integrals
(ij|ka)CD and (ai|bj)CD

construction of t-amplitudes
and evaluation of MP2 energy

construction of occ.-occ.- and vrt.-
vrt. block of density matrix

calculation of intermediate Xai

CD of perturbed two-electron integrals;
computation of perturbed 1el integrals and
evaluation of diamagnetic part of shielding

loop over perturbation Bi with i=x, y, and z

end of loop over perturbation Bi

transformation of perturbed CVs from
AO to MO representation

generation of integrals
𝜕(ij|ka)CD/𝜕Bi and 𝜕(ai|bj)CD/𝜕Bi

construction of perturbed t-amplitudes

construction of occ.-occ.- and vrt.-vrt. 
block of perturbed density matrix

solution of perturbed Z-vector equations
and calculation of vrt.-occ. block of

perturbed density matrix

evaluation of paramagnetic part of shielding



a) coronene

b) hexabenzocoronene

c) C60

d) tweezer host-guest complex

e) B4tBu4

f) Al4Cp4
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