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Abstract
We present a class of fast subspace algorithms based on orthogonal iterations for struc-
tured matrices/pencils that can be expressed as small rank perturbations of unitary matrices.
The representation of the matrix by means of a new data-sparse factorization—named LFR
factorization—using orthogonal Hessenberg matrices is at the core of these algorithms. The
factorization can be computed at the cost of O(nk2) arithmetic operations, where n and k are
the sizes of the matrix and the small rank perturbation, respectively. At the same cost from
the LFR format we can easily obtain suitable QR and RQ factorizations where the orthogonal
factor Q is a product of orthogonal Hessenberg matrices and the upper triangular factor R is
again given into the LFR format. The orthogonal iteration reduces to a hopping game where
Givens plane rotations are moved from one side to the other side of these two factors. The
resulting new algorithms approximate an invariant subspace of size s associated with a set of
s leading or trailing eigenvalues using only O(nks) operations per iteration. The number of
iterations required to reach an invariant subspace depends linearly on the ratio |λs+1|/|λs |.
Numerical experiments confirm the effectiveness of our adaptations.
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1 Introduction

Subspace methods are an important tool in modern adaptive systems [33]. The goal is the
iterative estimation of the s largest or smallest eigenvalues and the associated eigenvectors
of a possibly time-varying matrix/pencil. In this paper, we are concerned with the design of
fast subspace algorithms for a class of structured matrices (pencils) representable as small
rank perturbations of unitary matrices. The paramount example is (block) companion matri-
ces/pencils arising from the linearization of polynomial eigenvalue problems. The companion
form linearization of a matrix polynomial P(λ) = ∑d

i=0 Piλ
i , Pi ∈ C

k×k , is given by

A =

⎡

⎢
⎢
⎢
⎣

−Pd−1 . . . . . . −P0
Ik

. . .

Ik

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

Pd
Ik

. . .

Ik

⎤

⎥
⎥
⎥
⎦

, (1.1)

with A, B ∈ C
n×n , n = dk. It is well known that the eigenvalues of A − λB are identical

with the eigenvalues of P(λ). Also, observe that A, B ∈ Uk , the set of unitary-plus-rank-k
matrices.

The computation of selected eigenspaces of large companion pencils has several applica-
tions.

1. Subspace tracking is often required in system and signal processing analysis because
the characteristics of the possibly time-varying system (signal) can be retrieved from
the eigenvalues of some associated parameter-dependent matrix polynomial [22, 23, 30,
34]. Subspace methods are ideally suited for these computations since they can use the
approximate eigenspace computed in the previous step as starting guess for the new
iteration.

2. Adaptations of the block power method as well as its orthogonal generalizations are
used to compute the solvents and spectral factors of a matrix polynomial (see [37] for
a review and applications of the matrix solvent theory). The unilateral matrix equation∑d

i=0 Pi X
i = 0 is equivalent to

A
[
XT d−1

. . . XT Ik
]T = B

[
XT d−1

. . . XT Ik
]T

X .

Thematrix X is called the solvent and its computation reduces to approximate an invariant
subspace of (A, B).

3. Nonlinear eigenvalue problems of the form T (z)v = 0, v �= 0, where T : � → C
k×k

is a holomorphic matrix-valued function and � ⊆ C is a connected and open set, can be
addressed using interpolation techniques [20, 24]. The approach consists first of interpo-
lating T (z) with a matrix polynomial Pd(z) at certain nodes inside a subset � ⊂ �, and
then of computing the eigenvalues of Pd(z) to provide numerical approximations of the
eigenvalues of T (z) in�. Since in general we are interested only in the few eigenvalues of
T (z) laying inside the target region�, it is convenient to approximate only the eigenvalues
of interest rather than approximate the full spectrum of Pd(z).

Subspace methods based on orthogonal iterations can be numerically accurate and back-
ward stable. Themethod of orthogonal iteration goes back toBauer (see [32] and the reference
given therein). A fast eigenvalue algorithm for n × n scalar companion matrices based on
orthogonal iteration first appeared in [36]. Essentially, that algorithm is a game of orthonor-
mal Givens plane rotations moved from one side to the other side of orthogonal factors at
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the cost of O(ns) flops, where s is the dimension of the subspace we want to approximate.
More recently such schemes have been termed core-chasing algorithms [5].

In this paper we extend the game to more general matrices A ∈ C
n×n which are unitary

plus some low rank-k correction term, k ≥ 1. This class includes block companion matrices
together with some generalizations for matrix polynomial expressed w.r.t. certain interpola-
tion bases [1, 15]. The development follows by exploiting the properties of a suitable LFR
factorization [11, 12] of some bordered extension Â of A, that is, Â = LFR, where L (R)
is a unitary k-lower (k-upper) Hessenberg matrix and F = U + EZ is a unitary plus rank-k

matrix where U is a block diagonal unitary matrix of the form

[
Ik

Û

]

and E = [Ik, 0]T .
The unitary matrix Û can be expressed as product of � < n− k unitary Hessenberg matrices.

It is shown that the shape of Û determines the shape of Â. In particular Â and, a fortiori,
A is upper triangular if and only if Û is upper triangular and hence, because of the unitary
structure ofU , diagonal. This key property makes it possible to design a fast implementation
of both direct and inverse orthogonal iteration on A. Specifically, from the LFR format of Â,
we can easily get suitableQRandRQ factorizations of Â at the cost ofO(nk�)flops,where the
orthogonal factor Q is a product of orthogonal Hessenberg matrices and the upper triangular
factor R is again given into the LFR format. It turns out that for the matrices of interest � ≤ k.
Direct and inverse orthogonal iterations applied to A can be carried out stably and efficiently
by using these factorizations. Specifically, we show that both iterations can be implemented
by moving the Givens plane rotations which specify the current approximation from one side
to the other side of the factorizations. Due to the representation of the two factors R and
Q in terms of orthogonal Hessenberg matrices the movement of one single rotation reduces
to hop from one Hessenberg matrix to the successive in a chain of k matrices. The overall
movement is therefore completed at each step with a cost per iteration of only O(nsk) flops.

The resulting algorithm is backward stable since it involves operations among orthogo-
nal matrices only. The corresponding unstructured implementation performed without any
preliminary reduction of A into Hessenberg form would require a quadratic complexity in
both s and k per iteration. The linear dependence of our estimate from these two quantities
makes the proposed algorithm maximally fast w.r.t. the size of the correction term and the
invariant eigenspace. Moreover, it can be easily generalized to deal with both the orthogonal
and the inverse orthogonal iteration method for structured pencils (A, B) where A and/or B
are perturbed unitary matrices.

The paper is organized as follows. In Sect. 2 we recall the theoretical background con-
cerning the orthogonal iteration methods and the properties of modified unitary matrices.
Section 3 presents the derivation of our fast adaptations of the orthogonal iteration methods
for modified unitary matrices. In Sect. 4 we show the results of numerical experiments that
lend support to the theoretical findings. Finally, Sect. 5 summarizes conclusions and future
work.

2 Preliminaries

In this section we recall some preliminary results concerning the formulation of both direct
and inverse orthogonal iterations for matrix pencils and the structural properties and data-
sparse representations of modified unitary matrices.
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2.1 TheMethod of Orthogonal Iteration for Matrix Pencils

The method of orthogonal iteration (sometimes called subspace iteration or simultaneous
iteration) can be easily generalized for matrix pencils. Let A − λB, A, B ∈ C

n×n , be a
regular matrix pencil with A or B invertible. The orthogonal iteration method can be applied
for approximating the largest or smallest magnitude eigenvalues of the matrix pencil by
working on the matrices B−1A or A−1B.

If B is nonsingular then a generalization of the orthogonal iteration method to compute
the s-largest (in magnitude) generalized eigenvalues and corresponding eigenvectors of the
matrix pencil A − λB proceeds as follows:

{
AQi = BZi+1 i = 1, 2 . . .

Qi+1Ri+1 = Zi+1 economy size QR factorization of Zi+1.
(2.1)

where Q1 ∈ C
n×s is a starting orthonormal matrix comprising the initial approximations

of the desired eigenvectors. A detailed convergence analysis of this iteration can be found
in Chapter 8 of [2]. It is found that the convergence is properly understood in terms of
invariant subspaces. Specifically, under mild assumptions it is proved that the angle between
the subspace generated by the columns of Qi and the invariant subspace associated with the
s largest-magnitude generalized eigenvalues λ1, λ2, . . . , λs ∈ C, with |λ1| ≥ . . . ≥ |λs | >

|λs+1| ≥ . . . ≥ |λn |, tends to zero as O((|λs+1|/|λs |)i ) for i going to infinity. The number of
iterations required to reach an invariant subspace depends linearly on the ratio |λs+1|/|λs |.
Once the subspace has been approximated projection techniques can be employed to find
single eigenvalues and corresponding eigenvectors. An effective stopping criterion is the
following

‖Ei‖2 = ‖(I − Qi−1Q
∗
i−1)Qi‖2 < τ, (2.2)

where τ is a desired tolerance. Observe that this quantity measures the distance between the
subspaces Si−1 = span{Qi−1} and Si = span{Qi }, in fact (I − Qi−1Q∗

i−1))Qi can be taken
as a measure of the angle between Si−1 and Si . Note moreover that

E∗
i Ei = Q∗

i (I − Qi−1Q
∗
i−1)(I − Qi−1Q

∗
i−1)Qi = Q∗

i (I − Qi−1Q
∗
i−1)Qi = Is − W ∗W ,

where W = Q∗
i−1Qi . Then ‖Ei‖22 = 1 − σ 2

min(W ). At convergence Si−1 ≈ Si then Qi ≈
Qi−1U for an s × s unitary matrix U , then σi (W ) ≈ σi (U ) = 1 for i = 1, . . . , s.

Assume now we are given a pencil A − λB with A invertible and that we would like to
compute the s smallest-magnitude generalized eigenvalues λ1, λ2, . . . , λs ∈ C with |λ1| ≤
|λ2| ≤ · · · ≤ |λs | < |λs+1| ≤ . . . ≤ |λn |. Inverse orthogonal iterations can be used to
approximate the desired eigenvalues. Starting with a set of s orthogonal vectors stored in the
matrix Q0 ∈ C

n×s , we compute the sequences
{
AZi = BQi−1 i = 1, 2 . . .

Qi Ri = Zi economy size QR factorization of Zi .
(2.3)

The direct and inverse orthogonal iterations (2.1), (2.3) can be carried out by solving the
associated linear systems, but such an approach is prone to numerical instabilities due to
the conditioning of the resulting coefficient matrices. A more stable way to perform these
schemes is using the QR/RQ factorization of the matrices involved. In particular for the
inverse iteration (2.3) one may proceed at each step as:

1. Compute the full QR factorization of QRRR := BQi−1;
2. Compute the full RQ factorization of RLQL := Q∗

R A;
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3. Determine Qi such that Zi = Qi Ri solves RLQL Zi = RR . The set of orthogonal vectors
satisfying the linear system is such that Q∗

i = QL(1 : s, :).
In the next subsection we introduce a suitable factorization of modified unitary matrices

which makes possible to realize this QR-based process in an efficient way. Since (2.1) can
be implemented similarly by interchanging the role of the matrices A and B, in the sequel
we refer to orthogonal iteration as the scheme (2.3).

2.2 Fast Compressed Representations of Modified Unitary Matrices

In this sectionwe introduce a suitable compressed factorizationof unitary plus rank-kmatrices
which can be exploited for the design of fast orthogonal iterations according to the QR-based
process described above. See [11, 12] for additional theoretical results.

We denote byUk the set of unitary-plus-rank-k matrices, that is, A ∈ Uk if and only if there
exists a unitary matrix V and two skinny matrices X , Y ∈ C

n×k such that A = V + XY ∗. A
key role is played by generalized Hessenberg factors.

Definition 2.1 Amatrix R ∈ C
m×m is called k-upper Hessenberg if ri j = 0 when i > j + k.

Similarly, L is called k-lower Hessenberg if li j = 0 when j > i + k. In addition, when R is
k-upper Hessenberg (L is k-lower Hessenberg) and the outermost entries are non-zero, that
is, r j+k, j �= 0 (l j, j+k �= 0), 1 ≤ j ≤ m− k, then the matrix is called proper. A matrix which
is simultaneously k-lower and k-upper Hessenberg is called k-banded.

Note that for k = 1 a Hessenberg matrix is proper if and only if it is unreduced. Also, a k-
upperHessenbergmatrix R ∈ C

m×m is proper if and only if det(R(k+1 : m, 1 : m−k)) �= 0.
Similarly a k-lower Hessenberg matrix L is proper if and only if det(L(1 : m − k, k + 1 :
m)) �= 0. To make the presentation easier when possible, we use the letter R to denote
unitary generalized upper Hessenberg matrices, and the letter L for unitary generalized lower
Hessenberg matrices.

Note that k-lower (upper)Hessenbergmatrices can be obtained as the product of kmatrices
with the lower (upper) Hessenberg structure, and that unitary blockHessenbergmatrices with
blocks of size k are (non-proper) k-Hessenberg matrices.

In the following we will work with Givens rotations acting on two consecutive rows and
columns. In particular we will denote by Gi = Ii−1 ⊕ Gi ⊕ In−i−1 the n × n unitary matrix

where Gi is a 2 × 2 complex Givens rotation of the form

[
c −s
s c̄

]

such that |c|2 + s2 = 1,

with s ∈ R, s ≥ 0. The subscript index i indicates the active part of the matrix Gi . In the case
Gi = I2 we say that Gi is a trivial rotation.

Definition 2.2 Given a unitary matrix U ∈ C
n×n , we say that U has a data-sparse represen-

tation if it can be expressed as the product of O(n) Givens matrices of the form Gi described
before, possibly multiplied by a diagonal unitary matrix.

Note that the Definition 2.2 includes unitary (generalized) Hessenberg defined in 2.1, CMV-
matrices [17], and other zig–zag patterns [38], as well as the product of a constant number
of these structures.

Next lemma shows how the product between data-sparse unitary terms can be factorized
swapping the role of the two factors.

Lemma 2.3 Let R ∈ C
n×n be a unitary k-upper Hessenberg matrix and let U be a unitary

matrix. Then there exist two unitary matrices V and S such that RU = V S where S is
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k-upper Hessenberg and V =
[
Ik

V̂ .

]

Similarly, let L be a unitary k-lower Hessenberg

matrix and let U be a unitary matrix. Then there exist two unitary matrices V and M such

that LU = V M where M is k-lower Hessenberg and V =
[
V̂

Ik .

]

Proof Let us partition R and U as follows

R =
[
R11 R12

R21 R22,

]

U =
[
U11 U12

U21 U22

]

where R21 is an upper triangular matrix of size n − k, and U11 is square of size n − k.
Multiplying R and U and imposing the conditions on the blocks of the product V S we
get S11 = R11U11 + R12U21, S12 = R11U12 + R12U22. Moreover, since S should be a
k-upper Hessenberg matrix, we have that S21 should be triangular. Hence V̂ and S21 can be
computed as the Q and R factors of the QR factorization of R21U11 + R22U21. Finally we
set S22 = V̂ ∗(R21U12 + R22U22). Using the same technique we prove that there exist V and
M such that LU = V M . 
�

Definition 2.4 The (lower) staircase of a matrix A = (ai, j ) ∈ C
n×n is the sequence

m j (A), 1 ≤ j ≤ n, defined as follows

m0(A) = 0, m j (A) = max{m j−1(A),max
i> j

{i : ai, j �= 0}}.

The sequencem j (A) allows to represent the zero pattern of a matrix, in particular to identify
zero sub-blocks in thematrix, in fact for each 1 ≤ j ≤ n, it holds A(m j (A)+1 : n, 1 : j) = 0.
We note that proper k-upper Hessenberg matrices havem j (A) = j +k for j = 1, . . . , n−k,
and m j (A) = n, for j = n − k + 1, . . . , n.

Lemma 2.5 Let A ∈ C
n×n be a matrix with staircase described by the sequence {m j (A)},

for 1 ≤ j ≤ n and let T ∈ C
n×n be a non singular upper triangular matrix, we have

m j (T A) = m j (AT ) = m j (A) for 1 ≤ j ≤ n.

Proof Let B = T A. We have bi j = ∑n
s=i tisas j . Because of the staircase profile of

A we have as j = 0, for s > m j (A), hence bi j = 0 for i > m j (A), implying that
m j (B) ≤ m j (A). To prove the equality of the staircase profile of B and A consider the
entry bm j (A), j = tm j (A),m j (A)am j (A), j . If am j (A), j �= 0 we conclude that m j (B) = m j (A),
however it may happen that am j (A), j = 0, but from the definition of staircase profile we
know that there exists an index s, s < j such that am j (A),s �= 0, andms(A) = m j (A). Hence
bm j (A),s = rm j (A),m j (A)am j (A),s �= 0, implying that m j (B) = ms(A) = m j (A). The proof
that m j (AT ) = m j (A) can be carried on with a similar technique. 
�

Any unitary matrix of size n can be factorized as the product of at most n−1 unitary upper
Hessenberg matrices,1 that isU = Rn−1Rn−2 . . . R1 D, where each Ri = ∏n−1

j=i G j and D is
a diagonal unitary matrix. To describe the representation and the algorithm we use a pictorial
representation already introduced in several papers (compare with [5] and the references
given therein). Specifically, the action of a Givens rotation acting on two consecutive rows

1 The argument still holds if we take lower unitary Hessenberg in place of the upper Hessenberg matrices.
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of the matrix is depicted as �� . Then a chain of ascending two-pointed arrows as below

��
��

��
��

��
��

��

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × × × × ×
× × × × × × × ×

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= G1G2 · · ·G7

represents a unitary upper Hessenberg matrix (in the case of size 8). Some of the rotations
may be identities (trivial rotations), and we might omit them in the picture. For example,
in the above definition of Hi we only have non-trivial rotations G j for j ≥ i , while the
representation of H3 is

.

.

��
��

��
��

��

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= G3G4 · · ·G7

Givens transformations can also interact with each other by means of the fusion or
the turnover operations (see [39], pp. 112–115). The fusion operation will be depicted as

�↪→��� and consists of the concatenation of two Givens transformations acting on the same

rows. The result is a Givens rotation multiplied by a 2 × 2 phase matrix. The turnover
operation allows to rearrange the order of Givens transformations (see [39]).

Graphically we will depict this rearrangement of Givens transformations as:

� � ��
�

�
� → �

�
�

�� � or
�

�
�

��

�

� → � ��
�

�
� .

� ���
�

�
� → �

�
�

�� � or
�

�
�

��

�

� → � ��
�

�
� .

Note that if the Givens transformations involved in turnover operations are all non-trivial
also the resulting three new matrices are non trivial (see [4]).

In this paper we are interested in the computation of a few eigenvalues of matrices belong-
ing toUk bymeans of the orthogonal iteration schemes outlined in Sect. 2.1.Wewill represent
these matrices in the so-called LFR format, a factorization introduced in [11, 12].

Definition 2.6 We say that a matrix A ∈ C
n×n, A ∈ Uk is represented in the LFR format if

(L, F, R) are matrices such that:

1. A = LFR;
2. L ∈ C

n×n is a unitary k-lower Hessenberg matrix;
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3. R ∈ C
n×n is a unitary k-upper Hessenberg matrix;

4. F = U + E Z∗ ∈ C
n×n is a unitary plus rank-k matrix, where U =

[
Ik

Û

]

, with Û

unitary, E = [Ik, 0]T and Z ∈ C
n×k .

Any matrix in Uk can be brought in the LFR format as follows. Let A ∈ Uk , such that

A = V + XY ∗ , then L is a k-lower unitary Hessenberg such that L∗X =
[
Tk
0

]

, where

Tk is upper triangular. Then A = L(L∗V +
[
Tk
0

]

Y ∗). Using Lemma 2.3 we can rewrite

L∗V = UR, where R is unitary k-upper Hessenberg and U =
[
Ik

Û

]

with Û unitary.

Bringing R on the right we get our factorization, where F = U + EZ∗ and Z = R Y T ∗
k .

The LFR format of modified unitary matrices is the key tool to develop fast and accurate
adaptations of the orthogonal iterations as we will see in the next section.

3 Fast Adaptations of the Orthogonal Iterations

As underlined in Sect. 2.1, to compute the next orthogonal vectors approximating a basis
of the invariant subspace we need to compute the QR decomposition of BQi and the RQ
decomposition of Q∗

R A.

3.1 RQ and QR Factorization of Unitary Plus Low RankMatrices

To recognize the triangular factors from the LFR decomposition of A and B it is useful to
embed the matrices of the pencil into larger matrices obtained edging the matrices with k
additional rows and columns. Next theorem explains how we can get such a larger matrices
still maintaining the unitary plus rank-k structure.

Theorem 3.1 Let A ∈ C
n×n, A ∈ Uk , then it is always possible to construct a matrix of size

m = n + k, Â ∈ Uk of size m = n + k such that

Â =
[
A CA

0kn 0kk

]

for a suitable CA. (3.1)

The unitary part of Â can be described with additional nk Givens rotations with respect to
the representation of the unitary part of A.

Proof Let A = V +XY ∗, with V unitary.We assume that Y ∈ C
n×n has orthogonal columns,

otherwise we compute the economy size QR factorization of Y and then we set Y = Q and
X = XR∗. Set CA = VY , and consider the matrices

V̂ =
[
V − VYY ∗ CA

Y ∗ 0k

]

, X̂ =
[
X + CA

−Ik

]

, Ŷ =
[
Y
0k

]

. (3.2)

We can prove that V̂ is unitary by direct substitution. The last k rows of Â = V̂ + X̂ Ŷ ∗ are
zero. The matrix V can be factorized as product of unitary factors which are related to the
original players of A, namely V , X and Y . In particular

V̂ =
[
V

Ik

]

S

[−Ik
In

]

S∗,
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where S is a k-lower Hessenberg matrix such that

S∗
[

Y
−Ik

]

=
[√

2Ik
0

]

.

Such a S always exists and is proper (see Lemma 3 in [12]). 
�
Note that the LFR format of Â is such that L is proper, since X̂ has the last k rows equal

to −Ik (see [12] Lemma 3).

Theorem 3.2 Let L, R ∈ C
m×m, m = n + k, be two unitary matrices, where L is a proper

unitary k-lower Hessenberg matrix and R is a proper unitary k-upper Hessenberg matrix.

Let U be a block diagonal unitary matrix of the form U =
[
Ik

Û

]

, with Û n × n unitary.

Let F be the unitary plus rank−k matrix defined as F = U + E Z∗ with Z ∈ C
m×k . Suppose

that the matrix Â = LFR satisfies the block structure in (3.1). Then A = Â(1 : n, 1 : n) is
nonsingular and has the staircase profile of Û .

Proof Since L is unitary, we have L∗ Â = FR. Let partition L and R as follows: L =[
L11 L12

L21 L22

]

, with L12 a n×n lower triangular matrix, and similarly partition R in such a way

that R21 is n×n upper triangular. Then we get L∗
12A = Û R21. For Lemma 2.5 we know that

L∗
12A has the same staircase profile as A, and Û R21 has the same staircase profile as Û . 
�

Next lemma helps us to recognize triangular matrices in the LFR format.

Lemma 3.3 If Â = L(I + E Z∗)R satisfies the block structure in (3.1), then Â is upper
triangular.

Proof We have L∗
21A = R21. Because L is proper, the triangular block L∗

12 is nonsingular
and A = (L∗

12)
−1R21. Hence A is upper triangular because is the product of upper triangular

factors. Â is upper triangular as well because is obtained padding with zeros (3.1). 
�
We now give an algorithmic interpretation of Lemma 2.3. A pictorial interpretation of the

lemma is given in Fig. 1, where we omit the diagonal unitary factors that are possibly present
in the general case.

Starting from Fig. 1 we can describe an algorithm for the “swap” of two unitary terms. In
fact, we can obtain the newGivens rotations in the factors V and S simply applying repeatedly
fusion and turnover operations as described by the algorithm in Fig. 2. We formalize the
algorithm as if the Givens rotations involved in the swap were all non-trivial. The algorithm
has a cost O(nk) onlywhenU admits a data-sparse representation.MatrixU can be generally
factorized as the product of at most � ≤ n − 1 unitary upper or lower Hessenberg matrices.
In this case the overall cost is O(nk�). In procedure SwapRU we choose to factorize U as
the product of lower Hessenberg factors, but we can obtain a similar algorithm expressingU
in terms of upper Hessenberg factors, and consider the worst case � = n − 1. At step i − 1
we have removed the first i −1 chains of ascending Givens rotations fromU , so the situation
is the following

RU = V (1)V (2) · · · V (i−1) 	i L
(i) · · · L(n−1),

where 	i is an intermediate k-upper Hessenberg which is transformed by the turnover and
fusion operations. In particular 	1 = R and 	n−1 = S.
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Fig. 1 An example of the swap Lemma 2.3. Here R is a unitary 2-upper Hessenberg matrix factorized as the
product of two descending sequence of Givens rotations. The unitary matrix U is represented in terms of a
sparse set of rotations. When applying the rotations of U to R only the rotations in the blue triangle pop out
(transformed by the turnover operations) on the left, while the remaining Givens transformations of U are
fused with the bottom transformations of R. In the picture we omit to represent a diagonal phase matrix which
can be produced by the fusion operations (Color figure online)

Fig. 2 Procedure to swap an upper and a lower generalized Hessenberg matrices

At the step i we pass the rotations in L(i), from right to left. The bottom k Givens of each
L(i) are fused with the Givens in the last rows of 	i , so that the shape of V̂ reproduces the
shape of the Givens rotations in the blue top triangle of U .

Similarly to the procedure SwapRU we can design a procedure SwapLU to factorize the
product between a unitary k-lower Hessenbergmatrix L and a unitarymatrixU as the product

of a unitary factor V =
[
V̂

Ik

]

and a unitary k-lower Hessenberg matrix M . Note that from

these two swapping procedures we can obtain also new factorizations when multiplying on
the left a k-lower or a k-upper Hessenberg unitarymatrix, that isU∗R∗ = (RU )∗ = (V S)∗ =
S∗V ∗, and U∗L∗ = (LU )∗ = (V M)∗ = M∗V ∗. We will denote the analogue procedures
as SwapUL and SwapUR keeping in mind that the matrices involved are unitary, and that
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we denote generalized lower Hessenberg matrices using the letter L and generalized upper
Hessenberg matrices using the letter R.

From the LFR format of Â we can easily get the QR and RQ factorization of Â. This
procedure requires O(nk�) flops where � is the number of Hessenberg unitary factors in U .
Let Â = L(U + E Z∗)R as in Definition 2.6. Swapping L andU according with Lemma 2.3,
i.e LU = QL̃ , we have that L̃(I + E Z∗)R is upper triangular for Lemma 3.3. Since Q is
unitary, we have a QR decomposition of A. Similarly swapping U and R in such a way that
UR = R̂ Q we get an RQ decomposition of A where the triangular factor is L(I + E Ẑ∗)R̂,
with Ẑ = UZ , and the unitary factor is Q. The proof is straightforward since, again from
Lemma 3.3, we have that L(I + E Ẑ∗)R̂ is upper triangular.

3.2 The Algorithm

In this section we describe the orthogonal iterations on a pencil (A, B) where A and B are
unitary-plus-low-rank matrices. For the sake of readability we assume A, B ∈ Uk , even if
situation where the low-rank part of A and B do not have the same rank is possible: in that
case we assume that k is the maximum between the values of the low rank parts in A and B.

We will assume that A and B have been embedded in a larger pencil ( Â, B̂) as described
in Theorem 3.1. Since det( Â − λB̂) = 0 for all λ, the pencil is singular and the k new
eigenvalues introduced with the embedding are indeterminate: MATLAB returns “NaN” as
eigenvalues in these cases. However, thanks to the block triangular structure of Â and B̂ the
other eigenvalues coincidewith those of the original pencil (A, B). The LFR formats of Â and
B̂ implicitly reveal these block triangular profiles and although we use the representation of
the largermatrices the proposed iterative schemebasicallyworks on the original pencil (A, B)

so that its convergence is not affected by indeterminate eigenvalues. In order to understand
this crucial point the following properties play a role.

1. To guarantee that the orthogonal iterations on ( Â, B̂) do not converge to an invariant
subspace corresponding to an indeterminate eigenvalue it is necessary to start with a

bunch of orthogonal vectors of the kind Q̂0 =
[
Q0

0k,s

]

. The representation of the initial Q̂0

by means of Givens rotations has then trivial rotations (i.e. I2) acting on the last k rows.

The swap procedures do not destroy this structure, meaning that Q̂i =
[
Qi

0k,s

]

, i ≥ 0.

2. Among the infinitely many QR and RQ factorizations of Â and B̂ the procedure described
at the end of the previous section computes block triangular factorizations bymanipulating
the LFR formats of Â and B̂. To see this let Â = L(U + E Z∗)R as in Definition 2.6
with L unitary k-lower Hessenberg and U unitary k-upper Hessenberg. Swapping L and
U according with Lemma 2.3, i.e LU = QL̃ , consists of moving Givens plane rotations
which specify U from the right to the left of L . This process creates bulges in positions
(i, j) with i < n which can be removed by applying rotations on the left acting on the
i-th and i + 1-st rows. This means that the factor Q is block triangular and hence block

diagonal, i.e. Q =
[
Q̃R 0
0 Ik

]

. Since Â is also block triangular the same holds for the upper

triangular factor implicitly represented by its LFR format as L̃(I + E Z∗)R, where L
and R are proper unitary k-Hessenberg matrices. Similar results are still valid for the RQ
factorization and B̂.

3. In the swap procedures Givens plane rotations pass through the QR factorization of Â.
Suppose we apply such a rotation on the right of Â working on its j, j +1 columns. From
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the structure of Q̂i we find j < n. Due to the opposite profiles of L and R the bulge into
the upper triangular factor can be removed on the left by a Givens plane rotation acting
on the j, j + 1 rows. In other words, insensitively of the composite form of the upper
triangular factor the overall scheme is mathematically equivalent with the one working
on the input matrix A.

We are now in position to describe how we can carry out an orthogonal iteration using
only the turnover and fusion operations. The key ingredient for the algorithm is the SwapUR
procedure and its variants as described in Sect. 3.1. In fact, working with the pencil and with
the LFR factorization, the orthogonal iterations can be reformulated as follows. Let

Â = L A(UA + E Z∗
A)RA, B̂ = LB(UB + E Z∗

B)RB

be the LFR decomposition of Â and B̂. The s starting orthogonal vectors in Q̂0 ∈ C
N×s, N =

n+k, as well as all the intermediate orthogonal vectors Q̂i , can be represented as the product
of s sequences of ascending Givens rotations. In fact, the columns of Q̂0 can be always be
completed to an orthogonal basis {q0, q1, . . . , qN } such that [q0, q1, . . . , qN ] is a k-lower
Hessenberg matrix (see [12]). In the description of the algorithm, since we are working with
the representation of Q̂i in terms of Givens rotations we will identify with Q̂i either the full
square matrix or its first s columns.

As we see in the algorithm in Fig. 3, the procedure starts computing the RQ factor-
ization of Â and the QR factorizarion of B̂ by means of SwapUR and SwapLU. This
is a preprocessing step which simplifies the iterations of the algorithm. Then we have
Â = (L A(I + E Ẑ∗

A)R̂A)QA, and B̂ = QB(L̃ B(I + E Z∗
B)RB). The factors QA and QB

obtained with the swap procedures are block diagonal with the tailing diagonal block equal
to Ik . In terms of Givens rotations this correspond to have trivial rotations at the bottom of
each Givens chain. Note that we do not have actually to update either ZA or ZB which are
not needed for the the computation of the Q̂i .

The iterations then boil down to the application of the two procedures MoveSe-
quencesLeft and MoveSequencesRight that can be described in terms of the LFR
representation. Note that QR and QL returned by the procedures MoveSequenceRight
and MoveSequenceLeft have the block diagonal structure with a tailing identity block.

MoveSequencesLeft(B̂, Q̂)

Input: B̂ = QB L̃ B(I + E Ẑ∗
B)RB), Q̂

[Q0,RB]=SwapRU(RB , Q̂)

[P,LB ]=SwapLU(L̃ B ,Q0)

[U ,QB]=SwapUL(QB ,P)

Output: U

MoveSequencesRight(Q̂, Â)

Input: Q̂, Â = (L A(I + E Ẑ∗
A)R̂A)QA,

[LA,Q∗
L ]=SwapRU(Q̂∗, L A)

[RA,P∗
L ]=SwapUR(Q∗

L , R̂A)

[QA,U∗]= SwapRU(P∗
L , QA)

Output: U .

3.3 Computational Complexity

Analyzing the cost of theOrthogonal Iterations for companion-like pencilswe have
to consider the inizialization phase where the LFR decompositions are computed and the
initial swaps for the computation of the RQ and QR factorizations of Â and B̂ are performed.
The computation of the initial LFR form of Â and B̂ requires in general O(n2k) turnover or
fusion operations but reduces to O(nk2) when the unitary factors in A and B have a data-
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Fig. 3 Inverse orthogonal iterations described in terms of the LFR representation of the pencil

sparse representation such as in the block-companion-like case (see [12] for more details).
The computation of the LFR format does not require a pre-processing step to transform the
matrix into scalar Hessenberg form but can directly be applied to the two matrices Â and B̂.

The cost of the swap procedure depends on the number of chains in which the factors
to be swapped are decomposed, as explained in detail in Sect. 2. In the case of interest
the cost is O(nks). In fact the representation of the initial Q̂0 requires ns rotations and
therefore it can be decomposed into the product of s unitary Hessenberg matrices. The cost
for each iteration is given by the cost of the two procedures MoveSequenceRight and
MoveSequenceLeft each one performing three swaps between k and s chains of rotations.
Hence each step requires O(nks) operations.

The number of iterations to reach the invariant subspace depends linearly on the ratio
|λs+1|/|λs |, as described in [2], Chapter 8. Denoting by it the number of iterations needed
to reach an invariant subspace, the total cost is O(nk2 + it nks) floating point operations.

3.4 A Posteriori Measure of Backward Error

The backward stability of the iterative algorithm in Fig. 3 follows from the observation that
it involves operations between unitary factors only. A formal proof using the properties of
LFR formats can be obtained as in [12] by relying upon the estimates in [5] for the arithmetic
among Givens plane rotations. In this section we are interested to devise some a posteriori
computable measure of the backward error which will be used in the next section to illustrate
the global behaviour of our proposed algorithm.
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Suppose that the orthogonal iterations method has reached a numerically invariant sub-
space spanned by the s orthogonal columns of the matrix Q. We expect that for the computed
Q̃, σs+1([AQ̃, BQ̃]) is small since in exact arithmetic we should have AQ = BQ 
, with

 ∈ C

s×s . To evaluate the stability we analyze then the quantity

backs =
√
2σs+1([AQ̃, BQ̃])

‖[A, B]‖2 .

The following theorem proves that under mild assumptions we can use backs to estimate the
backward stability of the method.

Theorem 3.4 Let A be invertible and let Q̃ ∈ C
n×s such that Q̃∗ Q̃ = Is . Moreover, suppose

that B Q̃ has full rank s and σs+1([AQ̃, BQ̃]) < σs(BQ̃). Then, there exist matrices �A,
�B and 
̃ satisfying

(A + �A)Q̃ = (B + �B)Q̃ 
̃

with
‖[�A,�B ]‖2

‖[A, B]‖2 < backs.

Proof Let us consider the SVD decomposition of [AQ̃, BQ̃].We have

[AQ̃, BQ̃] = [U1,U2]
[
	1

	2

] [
V ∗
11 V ∗

21
V ∗
12 V ∗

22

]

, 	1 ∈ R
s×s, 	2 ∈ R

(n−s)×s .

We find AQ̃ = U1	1V ∗
11 +U2	2V ∗

12 and BQ̃ = U1	1V ∗
21 +U2	2V ∗

22. Moreover the s × s
matrix Q̃∗B∗BQ̃ = V21	2

1V
∗
21 + V22	2

2V
∗
22 is invertible since BQ̃ is full rank. Then, we

have

V21	
2
1V

∗
21 = Q∗B∗BQ(I − (Q∗(B∗B)Q)−1V22	

2
2V

∗
22).

Consider now the matrix I − (Q̃∗(B∗B)Q̃)−1V22	2
2V

∗
22, which is invertible since

‖(Q̃∗(B∗B)Q̃)−1V22	
2
2V

∗
22‖2 ≤ ‖(Q̃∗(B∗B)Q̃)−1‖2‖V22	2

2V
∗
22‖2

and

‖(Q̃∗(B∗B)Q̃)−1‖2‖V22	2
2V

∗
22‖2 ≤ σs+1([AQ̃, BQ̃])2

σs(BQ)2
≤ 1.

This shows that under this assumption V21 is invertible as well.
Now we are looking for matrices �A, �B and 
̃ such that the equality

�A Q̃ − �B Q̃
̃ = −AQ̃ + BQ̃
̃

is fulfilled. Rewriting the relation in terms of the SVD factors we get

�A Q̃ − �B Q̃ 
̃ = U1	1(−V ∗
11 + V ∗

21
) +U2	2(−V ∗
12 + V ∗

22
̃).

Since V21 is invertible, we can choose 
̃ = V−∗
21 V ∗

11, so that

�A Q̃ − �B Q̃
̃ = −U2	2V
∗
12 +U2	2V

∗
22
̃.

We can then set �A = −U2	2V ∗
12 Q̃

∗ and �B = U2	2V ∗
22 Q̃

∗, and it holds ‖�A‖2 ≤
σs+1([AQ̃, BQ̃]) and ‖�B‖2 ≤ σs+1([AQ̃, BQ̃]). Finally, we conclude that

‖[�A,�B ]‖22 = ‖�∗
A�A + �∗

B�B‖2 ≤ (‖�A‖22 + ‖�B‖22) ≤ 2(σs+1([AQ̃, BQ̃]))2.

�
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4 Numerical Results

In this section we provide a few numerical illustrations of the properties of convergence
and stability of the proposed methods. We perform several tests using nonlinear matrix
functions T (λ) ∈ C

k×k . For matrix polynomials T (λ) = P(λ) = ∑d
i=0 Piλ

i we consider
the companion linearization (1.1) with A, B ∈ Uk . For non-polynomial matrix functions we
first approximate by interpolation the matrix function with polynomials of different degrees,
then we linearize the polynomials as companion pencils (A, B), with A, B ∈ Uk .

We focus on the problem of computing a selected eigenspace of (A, B). When building
the pencil, our method performs the inverse orthogonal iterations as defined in the algorithm
Orthogonal Iterations in Fig. 3, until an invariant subspace is revealed. Then the
corresponding eigenvalues λ̃i are computed applying the MATLAB eig function to the
s × s pencil (As, Bs) determined as the restriction of A and B to the subspace spanned by
the columns of Qi , i.e. the generalized Rayleigh quotients of A and B.

As an error measure for individual eigenvalues, we consider

errT (i) = ‖T (λ̃i )v‖2
‖T (λ̃i )‖2‖v‖2

,

where v is the k-th right singular vector of T (λ̃i ). In practice we compute errT (i) = σk
σ1

where σ1 ≥ σ2 ≥ · · · ≥ σk are the singular values of T (λ̃i ). Following [24] it can be shown
that errT (i) is an upper bound on the backward error for the approximate eigenvalue λ̃i of
T (λ). According to the customary rule of thumb, this also measures the forward error for
well-conditioned problems.

As a measure of convergence of the orthogonal iterations we consider

averrP = 1

s

s∑

i=1

|λ̃i − μi |,

whereμi are the “exact” eigenvalues of the pencil (A, B) obtained with MATLAB eig. The
subscript P specifies that this quantity is calculated for polynomial matrix functions T (λ) =
P(λ) only. If 	s = {λ̃1, . . . , λ̃s} and 	 = {μ1, . . . , μs} are the computed eigenvalues of
(As, Bs) and (A, B), respectively, then these eigenvalues are paired bymeans of the following
rule:

averrP = 0; while (	s is not empty); [λ̃i , μi , τi ]=dist(	s, 	); 	s = 	s − {λ̃i };
	 = 	 − {μi }; averrP = averrP+τi ; end; averrP = averrP/s.

Note that in the genuinely (nonpolynomial) nonlinear case, where P(λ) is a polynomial
approximation of T (λ), averrP refers to the average error with respect to the eigenvalues of
the approximating polynomial while errT (i) also depends on the quality of the approximation
of the nonlinear function with the matrix polynomial.

4.1 Matrix Polynomials

We tested our method on some matrix polynomials of small and large degrees. The first test
suite consists of matrix polynomials of degree 3 and 4 from the NLEVP collection [9] using
the companion linearization. Table 1 summarizes the results.We see that all the test give good
results in terms of the backward error with respect to the pencil. For the plasma_drift
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Table 1 Matrix polynomials of degree 3 and 4 from the NLEVP collection

Name n s |λs ||λs+1| errP�
(1) averrp it backs

butterfly 256 4 9.53e−01 1.37e−14 4.45e−14 660 5.45e−15

orr_sommerfeld 256 2 9.95e−01 8.27e−04 7.85e−06 35 2.18e−18

plasma_drift
(tol=1.e−04)

384 19 9.98e−01 7.79e−09 7.49e−02 6 8.12e−06

plasma_drift
(it =250)

384 19 9.98e−01 9.42e−17 1.80e−03 250 2.07e−07

relative_pose_5pt 30 4 3.20e−01 1.66e−16 5.51e−14 33 1.13e−15

polynomial, the backward errors on the pencil reflect the termination of the algorithm with
the adopted criteria, and the invariant subspace is found with an adequate accuracy. The
plasma_drift is a very challenging problem for any eigensolver [26], due to several
eigenvalues of high multiplicity and/or clustered around zero. In [26] the authors proposed a
variation of the Jacobi–Davidson method for computing several eigenpairs of the polynomial
eigenvalue problem. For this problem, they ran their algorithm with a residual threshold of
1.0e−2 and within 200 iterations they were able to compute the approximations of the 19
eigenvalues closer to the origin. To compare with those results we repeated the experiment
on plasma_drift twice, once by setting the stopping criteria in (2.2) to a tolerance of
1.0e−04, and then performing 250 iterations. With only 6 iterations we get a backward error
of 8.12e−06 while the error respect to the eigenvalues is approximately of order 1.0e−09.
Performing 250 iterations the error on the eigenvalues reaches machine precision.

Regarding the other experiments, we ran the tests setting the tolerance for the stop-
ping criteria to tol = 1.0e−14 and the maximum number of iterations to 1000. For the
orr_sommerfeld problem, we observe that the condition ‖Ei‖2 < tol is not sufficient
to guarantee also a sufficiently small error on the eigenvalues. In fact, the method requires
only six iterations to stop because the approximating subspaces spanned by the columns of
Qi are converging very slowly, so that ‖Ei‖2 is small despite the invariant subspace has not
been reached yet. For this problem also with the MATLAB command polyeig or with
methods which do not use scaling and balancing of the coefficients of the polynomial (see
Table 1 in [19]) we have similar bounds on errP . However, scaling the orr_sommerfeld
polynomial as described in [8, 19], the error on the coefficients of the polynomial reaches
O(10−14) and the number of iterations increases. The result is better than some of the results
reported in [19] where a balanced version of the Sakurai–Sugiuramethodwith Rayleigh–Ritz
projection is presented. Then, by comparison of our result with that reported in [6], where a
structured version of the QZ method is employed, we see that for the orr_sommerfeld
problem we get a slightly better backward error on the pencil. However, we are estimating
only 2 or 4 eigenvalues while the QZ allows us to approximate the full spectrum and, more-
over, differently from [6] our error analysis assumes a uniform bound for the norm of the
perturbation of A and B. The accuracy of the computed eigenvalues is in accordance with
the conditioning estimates.

For thebutterfly problemourmethod performs similarly to the results reported in [18]
and the number of iterations in relative_pose_5pt agrees with the separation ratio of
the eigenvalues. For the other tests there are remarkable differences in the number of iterations
depending on the sensibility of our stopping criterion (2.2) used in Algorithm Orthogonal
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Table 2 Solvent problem from M/G/1 type Markov chains from [16]

n deg s
|λs |

|λs+1| errP(1) errP(s) averrp it backs

180 9 20 1.69e−02 1.04e−17 2.30e−13 1.55e−13 16 1.14e−14

220 11 20 1.77e−01 2.78e−17 3.67e−13 1.69e−13 27 9.89e−15

260 13 20 8.66e−01 1.18e−18 6.13e−13 3.96e−13 184 7.62e−14

1180 118 10 8.39e−01 2.66e−14 7.14e−11 1.51e−12 259 3.41e−13

1600 160 10 9.24e−01 1.14e−13 1.11e−10 2.08e−12 444 5.53e−12

1790 179 10 9.50e−01 1.14e−13 1.32e−10 2.51e−12 624 1.36e−11

Fig. 4 This plot shows that each step of the Orthogonal Iterations algorithm requires a time that is
linear in s. We ran tests on a matrix from Markov Chain theory of size 80, with k = 20, for odd values of s
ranging from 3 to k − 1 plus the value 20. For each s, we draw a point reporting the time per iteration. The
blue line is the linear fit of the data points (Color figure online)

Iterations w.r.t. specific features of the considered eigenproblem. Comparisons with
other stopping criteria introduced in the literature are ongoing work.

Concerning large degree polynomials, we have considered applications arising in Markov
chain theory that require the computation of solvents. It is well known that the computation
of the steady-state vector of an M/G/1-type Markov chain can be related to the solution of
a certain unilateral matrix equation (see [14] and the references given therein). In particu-
lar, we are interested in the computation of the minimal nonnegative solution of the matrix
equation. As already pointed out in the introduction, the nonlinear problem can be refor-
mulated in a matrix setting as the computation of a certain invariant subspace of a matrix
pencil (A, B) corresponding with the generalized eigenvalues of minimum modulus. In our
experiments, we have tested several cases of M/G/1-type Markov chains introduced in [16].
We do not describe in detail the construction, as it would take some space, but refer the reader
to [16, Sections 7.1]. The construction of the Markov chain depends on two probability dis-
tributions and a parameter ρ which makes it possible to tune the separation ratio |λs ||λs+1| . In
Table 2 we show our results in two settings. In each setting, we have fixed the probability
distributions by varying ρ = 0.5, 0.7, 0.9. The stopping criterion was set to tol = 10−13.
We see that the backward errors slightly deteriorate as the parameter ρ approaches 1 and the
number of iterations increases. This is the same behaviour usually observed in the unshifted
QR eigenvalue method.

We used large degree polynomials associated with Markov chains to assess the time
complexity of the proposed algorithm. Figure 4 shows the linear dependence on the dimension
of the invariant subspace s. For a matrix of size n = 80 drawn from the M/G/1 type Markov
chain model described in [16], we applied our algorithm with increasing values of s. Then,
the time-per-iteration required by the method is plotted in correspondence with the values
of s used. In Fig. 5, for some 10 × 10 matrix polynomials with degree ranging from 590
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Fig. 5 This plot shows that the time required by Orthogonal Iterations is linear in n and ks. For
each experiment, characterized by a particular value of n, k and s, we draw a dot in correspondence of the
coordinates (n, T /(ks)) where T is the time in seconds for one iteration. The blue line is the linear fit of the
data points (Color figure online)

to 2016 (constructed with the technique described in [16]), corresponding to pencils of size
n = 5190 up to n = 20,160, and with s = 2, we draw a dot corresponding to the coordinates
(n, T /(k s)), where T is the time for an iteration without accounting for computing the LFR
factorization. In both the figures, the solid line is the linear fit of these points.

4.2 Nonlinear Matrix Functions

Another set of experiments have dealt with matrix polynomials generated in the process
of solving nonlinear matrix equations det T (z) = 0 with T (λ) ∈ C

k×k a nonlinear matrix
function. Our test suite includes:

1. Shifted Time-delay equation [13]. Applying the transformation z → 6z − 1, the matrix
function in [13] becomes T (z) = 6I2 z + T̃0 + T1 exp(−6z + 1) with

T̃0 =
[

4 −1
−2 5

]

; T1 =
[−2 1

4 −1

]

.

This function has three eigenvalues inside the unit circle.
2. Model of cancer growth [7]. The matrix function is T (z) = z I3 − A0 − A1 exp(−r z),

where

A0 =
⎡

⎣
−μ1 0 0
2b1 −μ2 bQ
0 μQ −(bQ + μG)

⎤

⎦ , A1 = exp(−μ2r)

⎡

⎣
2b1 0 bQ

−2b1 0 −bQ
0 0 0

⎤

⎦ .

The parameters are chosen as suggested in [7] by setting r = 5; b1 = 0.13; bQ =
0.2;μ1 = 0.28;μ0 = 0.11;μQ = 0.02;μG = 0.0001, μ2 = μ0 + μQ . We refer to
[7] for the physical meaning of the constants and for the description of the model. This
function has three eigenvalues inside the unit circle.

3. Neutral functional differential equation [21]. The function is scalar t(z) = 1+0.5z+z2+
hz2 exp(−τ z). The case h = −0.82465048736655, τ = 6.74469732735569 is analyzed
in [28] corresponding to a Hopf bifurcation point. This function has three eigenvalues
inside the unit circle.

4. Spectral abscissa optimization [29]. The function is T (z) = z I3 − A− B exp(−zτ) with
τ = 5, B = bqT and

A =
⎡

⎣
−0.08 −0.03 0.2
0.2 −0.04 −0.005

−0.06 0.2 −0.07

⎤

⎦ , b =
⎡

⎣
−0.1
−0.2
0.1

⎤

⎦ , q =
⎡

⎣
0.47121273
0.50372106
0.60231834

⎤

⎦ .
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The choice of q leads to an eigenvalue problem with multiple eigenvalues that are often
defective. This function has 4 eigenvalues inside the unit circle.

5. Hadeler problem [9]. The matrix function is T (z) = (exp(z)−1)A2+ z2A1−αA0 where
A0, A1, A2 ∈ R

k×k , and V = ones(k, 1) ∗ [1 : k] A0 = α Ik, A1 = k ∗ Ik + 1./(V +
V ′), A2 = (k + 1 − max(V , V ′)). ∗ ([1 : k] ∗ [1 : k]′). In our experiments we set k = 8
and α = 100. Ruhe [31] proved that the problem has k real and positive eigenvalues, in
particular two of them are in the open interval (0, 1), and hence lie inside the unit circle.

6. Vibrating string [9, 35]. The model refers to a string of unit length clamped at one end,
while the other one is free but is loaded with a mass m attached by an elastic spring of
stiffness kp . Assuming m = 1, and discretizing the differential equation one gets the
nonlinear eigenvalue problem F(z)v = 0, where F(z) = A− Bz + kpC

z
z−kp

is rational,

A, B,C ∈ R
k×k , kp = 0.01, h = 1/k,

A = 1

h

⎡

⎢
⎢
⎢
⎢
⎣

2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

⎤

⎥
⎥
⎥
⎥
⎦

, B = h

6

⎡

⎢
⎢
⎢
⎢
⎣

4 1

1
. . .

. . .

. . . 4 1
1 2

⎤

⎥
⎥
⎥
⎥
⎦

, C = ekeTk .

7. The function F(z) : � → C
3×3 from [3] is defined as follows:

F(z) =
⎡

⎣
2ez + cos(z) − 14 (z2 − 1) sin(z) + (2ez + 14) cos(z) 2ez − 14
(z + 3)(ez − 7) sin(z) + (z + 3)(ez − 7) cos(z) (z + 3)(ez − 7)

ez − 7 (ez − 7) cos(z) ez − 7

⎤

⎦ .

(4.1)
The function F(z) was transformed using elementary transformations from diag(cos(z),
sin(z), ez−7).Hence, it has seven real knowneigenvalues givenby {±π,±π/2, 0, log(7),
3π/2}. We applied the transformation z → 4z + 1 to bring six of the seven eigenval-
ues inside the unit disk. With this transformation we do not get an approximation of the
eigenvalue −π which after the translation is not inside the unit disk.

For all these functions we compute the interpolating polynomial Pd(z) over the roots of
unity for different degrees d ranging from 16 to 128. With this choice of the interpolation
nodes we have theoretical results [10, 20] about the uniform convergence of the interpolating
polynomials to the nonlinear function inside the unit disk which prevents the occurrence of
spurious eigenvalues. Furthermore, the coefficients of the interpolating polynomial in the
monomial basis are computed by means of an FFT which is very stable. In Table 3 are
summarized some results for the nonlinear functions considered. In Table 4 are reported the
complete results for the test 7 where we know the exact eigenvalues.

In general, for sufficiently large values of the degree we get a very good approximation
of the eigenvalues inside the unit disk. Comparing the results in Table 4 with those reported
in paper [3] we see that using the same degree (d = 64) as in [3] we get a results with 5 more
digits of precision respect to the results reported in [3].

The error results in Table 3 are also comparable with those reported in [10], where a
structured QR method was employed to compute all the eigenvalues of the matrix/pencil. In
general the number of iterations i t does not depend on the size of the problem, but only on
the ratio |λs |/|λs+1|, so the cost of the orthogonal iterations can be asymptotically cheaper.
In addition, the computation of all eigenvalues of Pd(λ) is wasteful since only s of them
are reliable because the polynomial is a good approximation of the nonlinear function only
inside the unit disk.
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Table 3 Numerical results for the nonlinear non-polynomial matrix functions 1–6

Name m(deg) s |λs ||λs+1| errT(1) errT(s) averrp it backs

Time-delay 32 3 5.25e−01 1.15e−13 1.18e−12 6.32e−13 45 3.30e−15

Time-delay 64 3 5.25e−01 1.98e−15 7.40e−14 2.75e−13 43 2.26e−15

Cancer 32 2 5.18e−01 9.40e−16 2.28e−15 3.16e−15 44 1.81e−15

Cancer 64 2 5.18e−01 5.11e−16 9.25e−15 1.04e−14 48 1.85e−15

Neutral 32 3 4.93e−01 5.13e−09 5.39e−09 4.20e−14 46 2.70e−15

Neutral 64 3 4.93e−01 2.59e−14 4.24e−14 1.35e−14 48 3.28e−15

Spec.-abs 32 4 9.42e−02 5.39e−15 5.41e−15 3.66e−09 23 6.97e−16

Spec.-abs 64 4 9.42e−02 6.82e−15 6.88e−15 2.00e−09 24 8.57e−16

Hadeler 32 2 6.35e−01 1.24e−14 2.26e−12 6.69e−15 79 4.62e−15

Hadeler 64 2 6.35e−01 9.61e−15 5.96e−12 1.28e−14 97 4.35e−15

Vib-str 16 1 3.74e−01 1.71e−12 – 4.45e−13 36 4.19e−15

Vib-str 32 1 5.10e−01 5.24e−15 – 2.00e−12 64 5.43e−16

Table 4 Function F(z) in (4.1)

deg |λs ||λs+1| errT(1) errT(2) errT(3) averrp it back6

32 8.96e−01 5.94e−16 1.22e−15 4.32e−15 3.40e−11 251 5.93e−15

64 8.96e−01 3.81e−17 1.84e−16 4.87e−16 1.39e−11 258 5.71e−15

128 8.96e−01 1.40e−17 2.71e−16 2.82e−16 3.86e−11 271 5.78e−15

For the inverse orthogonal iterations we used s = 6, but we show the results only for the first three eigenvalues
(corresponding to the value π/2, log(7) and 0). The other remaining two eigenvalues are approximated just
as well

5 Conclusions and FutureWork

In this paper we have presented a fast and backward stable subspace algorithm for block
companion forms using orthogonal iterations. The proposedmethod exploits the properties of
a suitable data-sparse factorization of thematrix involving unitary factors. Themethod can be
extended to more generally perturbed unitary matrices and it can incorporate the acceleration
techniques based on the updated computation of Ritz eigenvalues and eigenvectors [2]. The
design of fast adaptations using adaptive shifting techniques such as the ones proposed
in [27] is an ongoing research project. Another very interesting topic for future work is
the comparison of orthogonal subspace iteration algorithms and Krylov subspace methods.
A refined implementation of these latter for nonlinear eigenvalue problems can be found
in [25]. Our approach would be regarded as a robust alternative once complemented with
efficient techniques for choosing the size of the polynomial approximation and of the invariant
subspace.

Code availability The code can be requested to the corresponding author.
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