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Abstract: Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a
suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging
with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an
increase in the accuracy of exam interpretation and to the extraction of prognostic information useful
in the decision-making process. Considering the ever expanding imaging data generated amid this
pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease.
In this context, many recent studies have explored the role of AI in each of the presumed applications
for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest
imaging can be a great asset for fast and precise disease screening, identification and characterization.
However, various biases should be overcome in the development of further ML-based algorithms to
give them sufficient robustness and reproducibility for their integration into clinical practice. As a
result, in this literature review, we will focus on the application of AI in chest imaging, in particular,
deep learning, radiomics and advanced imaging as quantitative CT.

Keywords: artificial intelligence; chest CT; chest X-ray; computed-aided diagnosis; COVID-19

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, named
COVID-19 (coronavirus disease 2019), caused a global healthcare and economic crisis. The
first cases were observed in Wuhan, China, in December 2019, and it rapidly spread across
the world so that in early March 2020, the WHO decided to classify COVID-19 a pandemic.

Diagnostic imaging has a fundamental role in the clinical work-up of patients with
suspected or confirmed COVID-19 infection, granting disease identification, screening
and stratification based on the severity of lung involvement as well as in predicting
the risk of complications and the need of intensive care unit (ICU) admission. Imaging
helps, nonetheless, in the differential diagnosis of COVID-19 from other kinds of lung
infections and diseases. However, due to the rapid diffusion of COVID-19 pandemic, a
lot of hospitals and primary and secondary care structures found themselves unprepared,
having trouble getting personal protective equipment (PPE) [1], thus making diagnostic
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imaging procedures difficult and risky to perform, [2] also considering the difficultly to
fully and promptly clean the CT scanners between each examination.

In fact, imaging should be reserved to the following precise cases, as suggested in the
advice guide for the diagnosis and management of COVID-19 by the WHO [3]:

• For the diagnostic workup of COVID-19 when RT-PCR testing is not available; when
RT-PCR testing is available, but results are delayed; and when initial RT-PCR testing
is negative, but with high clinical suspicion of COVID-19. In addition to clinical and
laboratory data for patients with suspected or confirmed COVID-19, not currently
hospitalized and with mild symptoms in order to decide on hospital admission/home
discharge or on regular ward admission/intensive care unit admission.

• In addition to clinical and laboratory data for therapeutic management of patients
with suspected or confirmed COVID-19, currently hospitalized and with moderate to
severe symptoms.

Due to its high availability, portability and cost-effectiveness, chest X-ray (CXR) is
the most widely used diagnostic imaging modality against COVID-19, contributing to the
first assessment of patients with respiratory symptoms. Patients affected by COVID-19 can
present with a pattern varying from normal lung to bilateral interstitial involvement, to
opacification, based on the stage of the disease and the clinical presentation [4].

Chest computed tomography (CT) is usually performed in critically ill patients, in
which there could also be the need to rule out pulmonary thromboembolism which can be
a fatal complication of COVID-19 infection. CT imaging is more accurate than CXR, and
is also used in cases of dubious finding at the radiographs: CT patterns are represented
by peribronchial and peripheral ground-glass opacities (GGO), mostly basal and bilateral,
with involvement of two or more lung lobes, with an increase in severity and consolidation
and/or crazy paving pattern as the disease advances in the middle and late stages. How-
ever is important to outline that CT patterns of COVID-10 pneumonia are not specific, and
superimposable to many other infectious and non-infectious pneumonia [5–7].

Lung ultrasound (US) does not have a clear role in the diagnostic approach to a
suspected or confirmed COVID-19 case. Due to its great availability and mobility, it can
be of great use for bedside evaluation of subpleural consolidations, pneumothorax and
alveolar damage, even though its diagnostic accuracy greatly depends on the operator ex-
perience [8–10]. Recent progress has been made in diagnostic imaging with the integration
of artificial intelligence (AI) with computer-aided design (CAD) softwares [11], leading
to an increase in the accuracy of exams’ interpretation and to the extraction of prognostic
information useful in the decision-making process [12–15].

Specifically, COVID-19 has catalyzed the rapid expansion in the application of AI to
combat disease. As a result, previous authors made a summary of the work performed and
the discriminatory ability of AI in its various diagnostic imaging applications.

Ghaderzadeh et al. in their systematic review analyzed papers published between
1 November 2019, and 20 July 2020 regarding the application of deep learning (DL) in
chest X-ray and CT. In this review, they suggested that DL-based models share high
accuracy in the detection and diagnosis of COVID-19 and that the application of DL reduces
false-positive and negative errors compared to radiological examination performed by a
radiologist [16].

Another review article by Shi et al. focused on the role of AI in chest CT and CXR in
COVID-19 affected patients. They gave an overview of the whole pipeline regarding the
implementation of DL in chest imaging, from image acquisition, segmentation to diagnosis,
giving also insights regarding the follow-up and the public datasets available [17].

In this review, we explore the role of AI/ML in the diagnostic imaging of patients
with COVID-19, including deep learning integration, radiomics features and quantitative
CT imaging algorithms. We discuss its wide-range applications on the following domains:

Identification and screening of COVID-19 pneumonia,
For setting the differential diagnosis between COVID-19 pneumonia and other types

of infectious pneumonia.
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In the stratification and definition of severity and complications of COVID-19 pneu-
monia.

2. Search Strategy

Before setting up our search strategy we aimed at answering the following questions:

(1) What are the main indications for COVID-19 imaging?
(2) What is the workflow followed in image elaboration for AI solutions?
(3) Does DL improve the diagnostic abilities of radiologists in COVID-19 patients?
(4) What are the other applications of AI in COVID-19 patients (apart from the identifica-

tion of the lesions?
(5) Are there any limitations for AI in this field?

After defining the aforementioned research question, we searched using the PubMed
database by inserting the following keywords: “COVID-19,” “diagnosis,” “artificial intel-
ligence,” “detection,” “chest x-ray,” “chest CT,” “deep learning,” “stratification,” “prog-
nosis,” “differential diagnosis,” eventually, the related published studies were extracted
and reviewed. We set inclusion criteria to refine the selection of manuscripts based on our
subjective assessment of their relevance, novelty and being in English language.

3. Workflow of Images Segmentation, Annotation and Elaboration

Development of AI-based COVID-19 classification/segmentation models starts from
their training with various images sources, usually represented by normal and abnormal
(COVID-19, non-COVID-19) chest images. Data collection is, therefore, considered mandatory.

The whole workflow of image annotation, segmentation, and elaboration is shown in
Figure 1.

Figure 1. Workflow of image annotation, segmentation, and elaboration. The diagram illustrates the
steps to follow when building a ML model using the radiological images.
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Patients’ data must be downloaded, queried, correctly de-identified and safely stored
after ethical consent. The best approach to de-identification is pseudonymitazion; when
the DICOM images are pseudonymized, the information that can point to the identity of a
subject is replaced by “pseudonyms” or identifiers [18].

Manual selection of similar images according to basic criteria (age, technique, imaging
findings) is always performed by expert radiologists to have the best training dataset.
Image segmentation is a fundamental part of image processing and analysis for assessment
of pathologic examinations. Segmentation is based on delineation of regions of interest
(ROIs), as lung lobes, airways, focal or diffuse pathologies in the images [19–23]. A robust
training model needs sufficient labeled images, which usually lack in case of COVID-19,
mostly due to the time-consuming nature of this task in a pandemic setting; in these cases,
the radiologist can be asked to interact with the segmentation network to supervise the
machine learning methods [24]. An appropriate segmentation may help in monitoring the
progression of COVID-19 pneumonia and the assessment of severity. AI models can be
trained using available datasets or with the “transfer learning” method, making the most
of already available models which also avoid mixing training and test data [25]. Features
obtained from different convolutional neural network models can be classified with a
support vector machine (SVM) classifier using images [26]. After training and testing, one
or more other sets of images can be used for external validation of the model.

4. Artificial Intelligence in Chest X-ray

Several studies focused on the automatic classification of COVID-19 from CXR im-
ages [27–35], considering how useful it could be in emergency departments, urgent care,
and resource-limited settings. Moreover, by matching CXR findings to clinical data prog-
nostic models can be developed, to predict disease gravity, and stratify patients on the
basis of their risk of developing severe disease and or complications.

4.1. AI in the Identification of COVID-19 Pneumonia at Chest X-ray

CXR can help in identify signs of pneumonia, also in case of negative RT-PCR test:
sensitivity of CXR greatly depends on the stage of the lung infection and on the extent of
the disease, as well as on the technical quality of the exam (usually performed bedside
in critically ill patients), ranging from 50% to 84% [36–38]. Specificity is low, attested at
33% [36]. However, the COVID-19 pandemic kickstarted the development of AI-based
models worldwide, for the automatic detection of pneumonia signgs on CXR images,
which yielded great results: using automated machine learning algorithms and deep
convolutional neural networks (DCNN), as well as deep transfer learning techniques,
various Authors presented results in COVID-19 detection in which obtained a sensitivity
ranging from 97.9% to 100%, a specificity between 95% and 98.8%, an accuracy ranging
from 83.5% to 98%, and precision of up to 97.95% [27,35,39–42].

Accuracy can be improved by up to 99.41% when using support vector machines
(SVM), which are supervised learning methods based on statistical learning theory [43] that
work by dividing the dataset in training and test subsets [44,45], and up to 100% when using
twice transfer learning (also known as transfer learning in three steps), and output neuron
keeping (keeping output neurons that classify similar classes between the second and
third step of the twice transfer learning), which improves training speed or performances
particularly in the first phases of the training process [46]. Other approaches in COVID-19
pneumonia identification were performed using several convolutional layers and applying
filters to each layer [33], as well as introducing stochastic pooling in DCNN [47], or
using multiresolution approaches with improved results when compared to deep learning
methods [48,49].

Moreover, Sahlol et al. used an efficient hybrid classification which adopted a combina-
tion of CNN and an improved swarm-based feature selection algorithm. This combination
should achieve two main targets; high performance and resource consumption, storage
capacity. In addition, they also proposed a novel robust optimizer called Fractional-order
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Marine Predators Algorithm (FO-MPA) to efficiently select the huge feature vector pro-
duced from the CNN. Then, they tested and evaluated the proposed approach by perform-
ing extensive comparisons to several state-of-art feature selection algorithms, most recent
CNN architectures and most recent relevant works and existing classification methods of
COVID-19 images [50].

Table 1 provides a summary of the papers included in the review, focused on AI in the
identification of COVID-19 pneumonia signs at CXR. Figure 2 shows the distribution of
subjects included considering those studies where it was clearly stated.

Table 1. AI in the identification of COVID-19 pneumonia at Chest X-ray.

Authors Year Population (No. of Patients) ML Model Results

Apostolopoulos et al. 2020
First dataset: 224 Covid+, 1204
covid-. plus a second dataset
with 224 Covid+, 1218 Covid-

different CNNs (VGG19,
MobileNet v2, Inception,

Xception, Inception ResNet v2)

acc 96.78%, sen 98.66%, spe
96.46% (for binary class), acc

93.48% (for multi-class)

Ozturk et al. 2020 127 Covid+ DarkNet

acc 98.08%, sen 95.13%, spe
95.3%, (for binary class) acc

87.02%, sen 85.35%, spe
92.18%, (for multi-class)

Wang et al. 2020 358 Covid+, 13,604 Covid- covid-net acc 95%, sen 93%, spe 96% (for
multi-class)

Borkowski et al. 2020
training: 484 Covid+, 1000

Covid-; validation: 10 Covid+,
20 Covid-

Microsoft custom vision acc 97%, sen 100%, spe 95%
(for binary)

Chowdhury et al. 2020 219 Covid+, 2659 Covid- PDCOVID-net

acc 96.58%, pre 96.58%, rec
96.59%, F1 96.58% (for

multi-class: covid, normal,
viral pneumonia)

Toraman et al. 2020 231 Covid+ (1050 with data
augmentation), 2100 Covid- CapsNet

acc 89.48%, sen 84.22%, spe
92.11% (for multi-class: covid,

normal, pneumonia)

Ouchicha et al. 2020 219 Covid+, 2686 Covid- CVDNet
acc 97.79%, sen 96.83%, spe

98.02% (for multi-class: covid,
normal, pneumonia)

Togacar et al. 2020 295 Covid+, 163 Covid- MobileNet+squeezenet+SVM
acc 98.83%, sen 97.04%, spe

99.15% (for multi-class: covid,
normal, pneumonia)

Hassantabar et al. 2020 315 Covid+, 367 Covid- CNN and DNN
CNN: accuracy 93.2,

sensitivity 96.1, DNN:
accuracy 83.4, sensitivity 86

Mukherjee et al. 2021 Various datasets CNN Accuracy: 96.13

4.2. AI in the First Assessment of COVID-19 Pneumonia at Chest X-Ray

As CXR is often the first-line diagnostic imaging modality when facing a patient
suspected of COVID-19 infection, even if less sensitive than lung CT, it plays a great role
in the first assessment of patient. Even though the confirmation of COVID-19 infection
should always come from RT-PCR tests performed on naso-pharyngeal swabs [51], these
tests could not be readily available and may take time to give the result; therefore, a rapid
CXR assessment of patients with respiratory symptoms should be performed, and AI can
play an important role, especially when dealing with a large number of requests in the
emergency settings [52]. Most literature studies use AI in CXR to distinguish between
COVID-19 and other pneumonia and healthy patients [53–55]. Xia et al. described the
use of a rapid and economic classifier for screening of COVID-19 from influenza-A/B
pneumonia which combined CXR (or CT-localizer scanogram) data with clinical features,
with 91.5% sensitivity and 81.2% specificity and an AUC of 0.971 (95% CI 0.964–0.980) [56].

In Table 2, we provided a summary of the papers included in our review focused on
AI in the screening of COVID-19 pneumonia at Chest X-ray. Figure 3 shows the distribution
of subjects included considering those studies where it was clearly stated.
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Figure 2. Distribution of subjects included in the studies for the development of ML models for the diagnosis of COVID-19
pneumonia at CXR. The plot shows the distribution of the subjects included in the studies: in the legend in the right upper
corner of the figure, the red bar represents the COVID-19 pneumonia group of patients, the yellow bar represents the
non-COVID-19 pneumonia group of patients.

Table 2. AI in the screening of COVID-19 pneumonia at Chest X-ray.

Authors Year Population (No. of Patients) ML Model Results

Murphy et al. 2020 217 covid+, 237 covid- CAD4COVID-XRay AUC 0.81, specificity 85%

Wang et al. 2020 53 COVID+, 13,592 COVID- covid-net accuracy 92.4%

Narin et al. 2020 50 covid+, 50 covid-
ResNet-50, Inception V3,

Inception-ResNet V2,
ResNet101, ResNet152

accuracy 98% (ResNet-50)

Zhang et al. 2020 various datasets for internal
and external validation ResNet-18 sen 72.00%, spe 97.97%, AUC

95.18% (for binary class)

Xia et al. 2021 512 covid+, 106 covid- DNN

AUC 0.919 (when combining
cxr and clinical features:

AUC 0.952, sensitivity 91.5,
specificity 81.2)

Bassi et al. 2021 439 covid+, 1625 covid- DenseNet201 and
DenseNet121 accuracy 100
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Figure 3. Distribution of subjects included in the studies for the development of ML models for the screening of COVID-19
pneumonia at CXR. The plot shows the distribution of the subjects included in the studies: in the legend in the right upper
corner of the figure, the red bar represents the COVID-19 pneumonia group of patients, the yellow bar represents the
non-COVID-19 pneumonia group of patients.

4.3. AI in the Stratification and Definition of Severity and Complications of COVID-19 Pneumonia
at Chest X-ray

As diagnostic images in COVID-19 correlate with disease severity, AI can be used as a
prognostic tool, helping monitoring disease evolution and course, and identifying patients
at risk of ICU admission [57,58]. However, there is no standardized method in reporting
CXR findings in terms of disease severity. Li et al. used the pulmonary x-ray severity (PXS)
score, a DL-based algorithm providing quantitative measures of COVID-19 severity on
CXR, as an adjuvant tool to radiologists’ work—which, however, always decided on the
severity grading and definitive radiological report-, and noticed an improvement in the
assessment of the severity on a 4-point scale (normal/minimal, mild, moderate, severe)
and in the inter-reader agreement, with no need for radiologists’ training on the use of the
score [59,60]. Li et al. also found that the severity scores were significantly associated with
intubation/death within 3 days from the admission, in CXR rated moderate or severe [59].
Mushtaq et al. reported in their retrospective study that an AI-powered severity score
based on the percentage of pixels involved by opacity or consolidation for each lung at the
CXR, adjusted at the multivariate analysis for demographics and comorbidities, showed
that a value ≥30 at the hospital admission CXR was an independent predictor for mortality
and ICU admission for COVID19 (p < 0.001), and found a significant link with admission
pO2/FiO2 levels [61]. Zhu et al. compared the evaluation of an AI algorithm to the one
performed by independent expert radiologists on the results of CXR in patients suspected
for COVID19 in terms of disease severity using criteria based on the degree of lung opacity
and geographical extent of the opacity, finding a strong correlation between the two severity
scores [62].

Table 3 provides a summary of the papers included in our review focused on AI in the
stratification and definition of severity and complications of COVID-19 pneumonia at CXR.
Figure 4 shows the distribution of subjects included considering those studies where it was
clearly stated.
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Table 3. AI in the stratification and definition of severity and complications of COVID-19 pneumonia at CXR.

Authors Year Population (No. of Patients) ML Model Results

Li et al. 2020 various datasets convolutional siamese NN AUC 0.80

Mushtaq et al. 2021 697 covid+ qXR
Achieving a statistical significance
in predicting negative outcome in

ED patients.

Zhu et al. 2020 131 covid+ VGG16 AI-predicted scores were highly
correlated with radiologist scores

Figure 4. Distribution of subjects included in the studies for the development of ML models for the
stratification and definition of severity and complications of COVID-19 pneumonia at CXR. The plot
shows the distribution of the subjects included in the studies: in the legend in the right upper corner
of the figure, the red bar represents the COVID-19 pneumonia group of patients.

4.4. AI in the Differential Diagnosis of COVID-19 Pneumonia from Other Pneumonia at Chest
X-ray

Various authors also investigated the effectiveness of supervised AI learning models
in aiding medical professionals in the differential diagnosis between COVID-19 pneumonia
and other lung diseases, in particular the non-COVID-19 viral pneumonia, with a reported
accuracy of up to 87% [33,39,41,42,63,64]. Jin et al. proposed a three-step hybrid model,
incorporating a feature extractor, feature selector, and an SVM classifier, reporting an
overall accuracy rate of 98.6%, with a remarkable reduction of training time and of the
training sets size [65].

However, the differential diagnosis is impaired by the aspecific picture of COVID-19
pneumonia, similar to other viral and non-viral interstitial diseases. AI models should be
adequately trained to achieve state-of-the-art diagnostic efficacy in the external validation
process and in the real-life radiological workflow: CXR obtained in different views (postero-
anterior (PA), latero-lateral, as well as bedside ones) must be differentiated, and the same
goes for age groups, distinguishing pediatric patients from adults. Some authors chose
to train models only on PA views, as it is usually the most common view used in the
emergency department, even though bedside CXR are getting more and more important in
the first diagnosis and in monitoring critically ill patients [66,67].
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AI evolution could aim to help the diagnostic radiology in screening, diagnosing and
grading CXRs, even though there are serious concerns on the potential risk of this situation
happening [68].

Table 4 provides a summary of the papers included in the review focused on AI in the
differential diagnosis of COVID-19 pneumonia from other pneumonia at Chest X-ray.

Table 4. AI in the differential diagnosis of COVID-19 pneumonia from other pneumonia at Chest X-ray.

Authors Year Population (No. of Patients) ML Model Results

Varela-Santos et al. 2021 various datasets (Cohen,
Kermany) FFNN, CNN

Various AUC values depending
on the dataset/

population/network considered

Jin et al. 2021

various datasets (NIH chext
x ray database and others):
543 covid+, 600 covid-, 600

normal

hybrid ensemble model
(AlexNet with ReliefF
algorithm and SVM

classifier)

accuracy 98.642, specificity
98.644, sensitivity 98.643, AUC

0.9997

Sharma et al. 2020 various datasets CovidPred accuracy 93.8

Tsiknakis et al. 2020

various datasets (Cohen,
QUIBIM imagingcovid19):
137 covid+, 150 covid-, 150

normal

Inception-V3

sensibility 99, specificity 100,
accuracy 100, AUC 1 for binary

class (covid vs. other
pneumonia)

5. Artificial Intelligence in Chest CT

Machine learning approaches applied to CT images in COVID-19 pneumonia show
great potential for improving diagnostic accuracy as well as for the prediction of patient
outcomes and many studies have been focused on this topic.

Indeed, AI takes advantage of the large quantity of imaging data that can be used to
train algorithms, and if effective, it could bring to a revolution in the identification and
triage of patients with suspected COVID-19.

5.1. AI in the Identification of COVID-19 Pneumonia and Its Complications at Chest CT

From the beginning of the COVID-19 pandemic, the use of AI for detection of the
radiological signs of pneumonia on CT imaging has been investigated, also in cases of
false-negative results at RT-PCR [69], and augmented radiologists workload [70].

Considering the central role of imaging in the management of infected patients,
multiple deep-learning algorithms have been developed to face the increased needs, also
within just 10 days [71]. A pilot study by Yang et al., performed in the first two months of
2020, evaluated the performance of a DenseNet algorithm model—an improved CCN—for
COVID-19 detection on HRCT. It yielded an AUC of 0.98 and a sensitivity of 97%, but an
accuracy of 92% and specificity of 87% resulted slightly lower than those of an experienced
radiologist. The authors concluded that their DL model had a human-level performance
and allowed to save time due to a rapid diagnosis in about 30 s versus 5–10 min needed by a
radiologist. A limitation of this study was a restricted number of included patients (146 with
COVID-19 and 149 controls), further divided into training, validation and test sets [72].

To overcome this limit, multiple studies utilized datasets composed of thousands of
patients derived from public sources or as occurred in multicenter trials. Therefore, Harmon
et al. analyzed a heterogeneous multinational CT dataset composed of 2617 patients,
overcoming a limited applicability to different populations, demographics or geographies,
and maximizing the potential for generalizability. The 922 included cases of COVID-19
were from China, Italy and Japan, while the balanced control population was identified
either from 2 US institutions or from a publicly available dataset (LIDC). Their image
classification model used both hybrid 3D and full 3D models based on a Densnet-121
architecture, and they achieved a 0.949 AUC, resulting in 90.8% accuracy for COVID-19
identification on chest CT [73].
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In addition to public datasets, previously validated AI algorithms are available for
further confirmation of their performance or as assistant tools to clinicians and radiolo-
gists [74]. In this regard, Chen et al. created a cloud-based open access AI platform to
improve the diagnosis of COVID-19 pneumonia. They developed a UNet++-based model
with an accuracy of 96% for COVID-19 detection on HRCT in multiple testing datasets,
either internal (retrospective and prospective) and external ones. Furthermore, the use
of a similar deep-learning based model has the potential to reduce the number of missed
diagnosis, especially in early phases, because the lung infection foci could be mild and
need observation under 0.625-mm layer scanning [75].

Other authors focused not only on the pneumonia detection on a CT scan, but also
on a quantitative assessment [74]. In fact, Zhang et al. analyzed images from 2460 pa-
tients using the uAI Intelligent Assistant Analysis System (a modified 3D CNN and a
combined V-Net with bottle-neck structures) to segment anatomical lung structures and to
accurately localize infected regions, according to the specific lobes and segments. Their
findings were consistent with those of previous studies [76] that demonstrate a typical
bilateral involvement, mainly in the dorsal segments, with GGOs as the most common CT
feature [77].

These results have been confirmed also in other studies about the role of quantitative
CT [78]. Du et al. evaluated pre-discharge CT scans in asymptomatic patients with negative
RT-CR with an AI-assisted system (InferRead CT pneumonia software). Their quantitative
image analysis resulted in a prevalence of fibrosis as the second common manifestation
after GGOs, characterized by heterogeneous density and rigid reticulation [79].

To ease the evaluation of COVID-19 patients according to the findings on chest CT
scan, the standardized score CO-RADS has been introduced to grade the level of suspicion
from very low (1) up to very high (5), providing a higher performance in patients with
moderate and severe symptoms (average AUC 0.91 for predicting RT-PCR outcome and
0.95 for clinical diagnosis) and a higher interobserver agreement for categories 1 and 5 [80].
Lessmann et al. aimed to develop a CO-RADS AI system to obtain an automated assessment
of the suspicion value. CO-RADS AI included three deep-learning algorithms based on a
U-Net architecture that automatically performed lobe and lesion segmentation, prediction
of a CT severity score according to the percentage of affected parenchymal tissue per lobe
and, at last, the assignment of the CO-RADS value. The key result of this study was a high
diagnostic performance in the identification of COVID-19 patients with an AUC curve
of 0.95 in the internal test set and of 0.88 in the external cohort [81]. However, its use is
controversial because it does not take into consideration clinical and laboratory findings to
build a diagnosis of COVID-19, also AI-assisted.

In fact, a study by Liu et al. demonstrated that a combined clinical-radiological
model outperformed the CO-RADS and a clinical model in the COVID-19 diagnosis. Their
preliminary study investigated the performance of a combined radiomics model that
included 5 clinical features and a radiomic signature, after multivariate logistic regression
analysis: age, lesion distribution (central or peripheral), neutrophil ratio, lymphocyte count,
CT score and mean Radscore. The latter was calculated by 8 radiomic features, selected
after the application of a mRMR algorithm and LASSO logistic regression algorithm. The
result was an open-source constructed radiomics model with an AUC of 0.98, sensitivity of
0.94 and specificity of 0.93 [82]. Similar results have been achieved in another study that
confirmed a mixed model—presented as nomogram—as the highest predictor of COVID-19
with an AUC of 0.955 (versus an AUC of 0.626 of the clinical model). It included either CT
characteristics of the lesions (distribution, maximum lesion range, involvement of lymph
nodes and pleural effusions) and a RadScore based on a signature of 3 features selected by
LASSO regression [83].

Another use of radiomic models has been described in the non-invasive monitoring
of ARDS, a life-threatening COVID-19 complication. Indeed, Chen et al. compared the
performance of traditional quantitative and radiomics analysis of CT images. While the
former quantified the infected regions through the calculation of volume and percentage
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of infection, the latter included 30 radiomic features selected by regression analysis and
combined into a risk score. Results showed that the radiomics model was the most
promising one because of the highest accuracy and specificity, despite a similar AUC of
0.94. According to the authors, sensitivity is more important than specificity in an ARDS
screening due to the high risk related to delayed oxygen treatment in false-positivity
results [84].

Voulodimos et al. adopted a semantic segmentation approach, which can be imple-
mented in a two-step process: (i) feature extraction over an image patch and (ii) a training
process, using annotated datasets. Using this method, each pixel is described by feature
values, extracted locally, over a, typically, small area, denoted as “patch”. Deep learning
approaches do both steps for a given set of data [85].

The possibility of segmentation transferability in COVID-19 CT has been investigated
by Wang et al. They presented a set of experiments to better understand how different non-
COVID19 lung lesions influence the performance of COVID-19 infection segmentation and
their different transfer ability under different transfer learning strategies. They concluded
clear benefits of pre-training on non-COVID19 lung lesion datasets when public labeled
COVID-19 datasets are inadequate to train a robust deep learning model [86].

Saood et al. proposed a new fully automated deep learning framework for rapid
quantification and differentiation between lung lesions in COVID-19 pneumonia on both
contrast and non-contrast CT images using convolutional Long Short-Term Memory (Con-
vLSTM) networks. They showed a strong agreement between expert manual and auto-
matic segmentation for lung lesions; describing excellent correlations of 0.978 and 0.981 for
ground-glass opacity and high opacity volumes [87].

Akram et al. presented a novel entropy-based fitness optimizer function implementa-
tion, which selects the chromosomes with maximum information. The only chromosome
with maximum fitness value is selected to get the sub-optimal solution in the minimum
number of iterations. To conserve maximum information and to obliterate the redundant
features at the initial level, a preliminary selection process is initiated on each feature set
using the entropy-controlled fitness optimizer. To exploit the complementary strength of all
features, a feature fusion approach is utilized which combines all the competing features to
generate a resultant feature vector. The previously adopted methods of machine learning
utilize either sole or hybrid approaches for feature extraction. Though both methods have
their advantages and drawbacks, but the fused feature space has more capacity to retain
the dexterous features. Due to this flexibility, the hybrid approaches have gained much
popularity among the researchers. However, selection of the most appropriate feature ex-
traction technique is quite a sensitive task, which needs to be handled carefully, otherwise,
it may result in feature redundancy and, therefore, increased correlation. In this work,
they utilized four different techniques—belongs to two different categories, statistical and
texture. Two feature families were not considered, color and shape, because of their limited
impact and significance in this application. Using the proposed framework, the achieved
accuracy using the Naive Bayes classifier is 92.6%, 92.6%, whereas other classifiers (EBT,
L-SVM and F-KNN) behave significantly better to achieve an average accuracy of 92.2%,
92.1%, 92.2%, 92.1% and 92.0%, 92.0%, respectively. From the sensitivity and specificity
values, the proposed framework was successfully managed to achieve high true positive
and negative rates [88].

Mukherjee et al. developed a CNN-tailored DNN for COVID-19 diagnosis, integrating
either CT and CXR images. Their proposed DNN based on a mixed database of integrated
modalities reached an AUC of 0.9808, higher than those of other existing DNN (Inception,
MobileNet and ResNet). Moreover, the performances score using separate dataset appeared
to be higher for CXRs with an AUC of 0.9908 vs. 0.9731 for CT scan [89].

Table 5 provides a summary of the papers included in the review focused on AI in the
diagnosis of COVID-19 pneumonia at Chest CT. Figure 5 shows the distribution of subjects
included considering those studies where it was clearly stated.
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Table 5. AI in the identification of COVID-19 pneumonia and its complications at Chest CT.

Authors Year ML Model Population (No. of Patients) Results

Anastasopoulos et al. 2020 U-Net 197 COVID+, 141 COVID- Dice coefficient: 0.97

Yang et al. 2020 DenseNet 146 COVID+, 149 COVID- AUC: 0.98

Harmon et al. 2020
AH-Net(segmentation)

Densenet3D/2D+1
(classification)

922 COVID+, 1695 COVID-

AUC: 0.949—original
design,

0.941—independent
population

Ni et al. 2020 MVP-Net, 3D U-Net
14,435 (training): 2154 COVID+,

12,281 COVID- +
96 COVID+ (testing)

Accuracy: 82—per-lobe
lung level,

0.94—per-patient level

Chen et al. 2020 U-Net++ with a ResNet50
backbone

106 (training and retrospective
testing): 51 COVID+, 55 COVID-

+27 (internal prospective testing):
16 COVID+, 11 COVID- +100

(external prospective testing): 50
COVID+, 50 COVID-

27 (internal prospec-tive testing):
16 COVID+, 11 COVID- +

100 (external pro-spective testing):
50 COVID+, 50 COVID-

Accuracy:
95.24—retrospective

testing,
92.59—internal

prospective testing,
96—external

prospective testing

Zhang et al. 2020 QCT 2460 COVID+ Identification of lesions

Ma et al. 2020 QCT 18 COVID+ Identification of lesions
and dynamic changes

Du et al. 2020 QCT 125 COVID+ Identification of lesions
and dynamic changes

Lessmann et al. 2020

Two-stage U-Net (lobe
segmentation and labeling),

3D U-net with nnU-Net
framework (CT severity

score prediction), 3D-inflated
Inception (CO-RADS score

prediction)

476 (training)
105 (internal test): 58 COVID+, 47

COVID-
262 (external test): 179 COVID+,

83 COVID-

AUC: 0.95—internal
testing, 0.88—external

testing

Liu et al. 2021 Radiomics 115 COVID+, 435 COVID- AUC: 0.93

Fang et al. 2020 Radiomics

239 (training): 136 COVID+, 103
COVID-

90 (validation): 56 COVID+, 34
COVID-

AUC: 0.955

Chen et al. 2020 Radiomics 84 COVID+ AUC: 0.94

Voulodimos et al. 2020 FCN, U-net 10 COVID+

Unclear data: FCN
Accuracy: ~0.9

(validation); Accuracy
U-net: >0.9 (validation)

Sahood et al. 2021 U-net, SegNet 100—one slice CT scans Accuracy: SegNet:
0.954; U-Net: 0.949

Mukherjee et al. 2021 CNN 336 COVID+, 336 COVID—(CXR +
CT)

AUC CXR+CT: 0.9808
(AUC CT: 0.9731)
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Figure 5. Distribution of subjects included in the studies for the development of ML models for the diagnosis of COVID-19
pneumonia at Chest CT. The plot shows the distribution of the subjects included in the studies: the red bar represents the
COVID-19 pneumonia group of patients, the yellow bar represents the non-COVID-19 pneumonia group of patients, the
green bar represents the group of healthy patients, the blue bar represents the group of patients for which their health status
was unclear.

5.2. AI in the Screening of COVID-19 Pneumonia at Chest CT

The application of AI to CT images for the immediate triage of COVID-19 patients
may be of assistance due to delayed results of RT-PCR as definitive viral testing.

Javor et al. used an open-source data of 6868 CT images to train their CCN model
ResNet50 that achieved high accuracy with an AUC of 0.956, higher than those of radi-
ologists. They described the importance of the ML model in the patient triage for the
possibility to identify rule-in and rule-out thresholds for COVID-19 diagnosis, compared
to a dichotomous decision of radiologists. In case of high level of suspicion, the patient
should be isolated until the confirmation of rejection by an RT-PCR test [90]. However, CT
scan may have a low negative predictive value, especially in early phases of the disease. A
joint AI algorithm that integrated chest CT findings and clinical history enabled a rapid
diagnosis of COVID-19 with an AUC of 0.98 that might have a fundamental role in the
triaging, allowing rapid isolation of infected people and avoiding delayed treatments.
The evaluated model was first developed on a CNN to learn imaging characteristics on
initial CT scans and then on a MLP to classify patients according to the clinical informa-
tion (sex, age, exposure history, clinical symptoms—fever and cough—and laboratory
findings—WBCs). Finally, a neural network model combined radiological and clinical data
to predict COVID-19 status [91].
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Another study performed in an emergency department confirmed the positive per-
formance of a mixed predictive ML model in the triage. It was based on the CO-RADS
score from chest CT and additional data—laboratory findings (ferritin, leukocytes, CK),
diarrhea and number of days from onset of the disease. The added value of the predic-
tion model compared with CT alone was increased AUC (0.953 vs. 0.930) and accuracy
(93.1% vs. 90.4%), probably due to specific laboratory anomalies. Nevertheless, authors
concluded that 9% of the included patients with positive RT-PCR were false negative
according to the prediction model and the nasopharyngeal swab should be the primary
standard test [92].

In Table 6, we provided a summary of the papers included in our review focused on
AI in the screening of COVID-19 pneumonia at Chest CT. Figure 6 shows the distribution
of subjects included considering those studies where it was clearly stated.

Table 6. AI in the screening of COVID-19 pneumonia at Chest CT.

Authors Year ML Model Population (No. of Patients) Results

Javor et al. 2020 ResNet50 209 COVID+, 209 COVID- AUC: 0.956

Mei et al. 2020 LeNet, YOLO, DenseNet (pipeline
developed in previous work) 419 COVID+, 486 COVID- AUC: 0.92

Hermans et al. 2020 Logistic regression (no DL) 133 COVID+, 16 COVID- AUC: 0.953

Figure 6. Distribution of subjects included in the studies for the development of ML models for the screening of COVID-19
pneumonia at Chest CT. The plot shows the distribution of the subjects included in the studies: in the legend in the right
upper corner of the figure, the red bar represents the COVID-19 pneumonia group of patients, the yellow bar represents the
non-COVID-19 pneumonia group of patients.
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5.3. AI in the Stratification and Definition of Severity and Complications of COVID-19 Pneumonia
at Chest CT

Different studies have already demonstrated the correlation between conventional
CT scores and prognosis of COVID-19 patients, using semi-quantitative methods based on
visual scores [93–95]. As an attempt to avoid subjective and time-consuming evaluations,
multiple AI models have been developed and tested to accurately stratify patients into
severity stages and to improve the clinical decision-making process. According to the ATS,
the major criteria for the definition of severe pneumonia are respiratory failure in need for
mechanical ventilation (MV) or septic shock treated with vasopressors; other minor criteria
include increased respiratory rate (>30/min), P/F ratio < 250 or hypotension requiring
fluid resuscitation [96]. Therefore, these are the most common endpoints used to find
potential high-risk patients.

According to Chatzitofis et al., a VoI aware DNN could assess patients’ conditions
and prognosis even without results of laboratory tests, as occurred shortly after the ED
admission. They introduced a two-stage data-driven approach to classify patients into
three classes—moderate, severe and extreme, considering their risk to be discharged,
hospitalized or admitted to ICU, respectively. The proposed algorithm was trained with a
COVID-19_CHDSET Dataset, composed by CT images from Milan, an extensively involved
area during the first months of the COVID-19 pandemic. The DenseNet201-VoI model
reaches an AUC of 0.97, 0.92 and 1.00 for the three groups, respectively, and accuracy of
88.88%, specificity of 94.73% and sensitivity of 89.77% [93]. Xiao et al. developed and tested
a DL-based model using multiple instance learning and CNN (ResNet34) on CT imaging.
It resulted in an excellent performance for the prediction of disease severity (AUC of 0.892)
that is, in turn, positively correlated with area and density of lung lesions. Moreover,
the clinical significance of the model relied on the possibility to identify mild disease in
early stages that could progress to a more severe form, characterized by a lower survival
probability [97].

The idea of a possible rapid deterioration of mild cases has been further analyzed
by Zhu et al. whose joint regression and classification model was able to predict the
conversion time from a mild to a severe case in a unified framework with a sensitivity
of 76.97% and an average conversion time of 4.59 days [98]. Another fully automated
DL-model succeeded in diagnostic and prognostic analysis of COVID-19, after training in
a large dataset of 4106 patients. Authors defined the length of hospital stay as prognostic
end event, knowing that longer hospitalization might imply worse prognosis and longer
recovery time. COVID-19Net showed a good diagnostic and prognostic performance in the
stratification of low- and high-risk patients with significant differences in days of hospital
stay [99].

A DL prognostic model developed by Meng et al. predicted the probability of patients’
death within two weeks. This 3D-CNN De-COVID19-Net outperformed clinical, radiomics-
based and pure CNN models (without incorporation of the clinical model) with an AUC of
0.943 in the identification of high-risk patients, i.e., died within 14 days, that required more
intensive care [100].

Specific laboratory measurements can be combined with CT features to create AI-
based prediction models for the stratification of severe patients, as demonstrated by Li et al.
(AUROC of 0.93). They segmented CT imaging through a deep CNN to extract essential
features and selected 12 laboratory tests that showed the largest change in the two groups
of patients, mainly D-dimer, LDH and lymphocytes as predictors of higher mortality risk.
Moreover, lymphocytes, neutrophils, D-dimer and platelets-large cell ratio demonstrated a
significant correlation with selected CT features [101].

An additional DL model mixed an artificial neural network (ANN) for clinical and
laboratory data and a CNN for 3D CT imaging data to classify patients in high risk of severe
progression (event) or low risk (event-free). The considered events included respiratory
deterioration (high-flow nasal cannula, MV, ICU admission), septic shock, renal failure
or death. In the correlation heatmap of clinical and laboratory features, CRP and WBC
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had a strong positive correlation with the endpoint, age was described as significant risk
factor related to the endpoint; oxygen saturation and female sex were negatively correlated
with the endpoint. This mixed ACNN model obtained a high performance with an AUC of
0.916, accuracy of 93.9% and specificity of 96.9% [102].

An approach to estimate the prognostic utility of CT findings is based on a quantitative
image assessment, using computer-aided software for segmentation and quantification
of lung volumes according to different Hounsfield Unit (HU). Hu et al. performed a
pilot study in the first two months of 2020 to demonstrate the validity of quantitative CT
images in the evaluation of CT findings between mild and severe patients. They discovered
a prevalence of consolidative and progressive lesions (crazy paving and “white lung”),
mainly in lower lobes, in the severe group of patients, using a total lung and a per-lobe
severity score to estimate pulmonary involvement and a 2D UNet model for the automatic
lesion segmentation. However, this cross-sectional study lacked analysis of follow-up
images, considering that the analysis of dynamic CT images could be useful for prognostic
purposes [103].

Therefore, a Chinese retrospective study quantitatively evaluated lung involvement
on serial CT scan with a deep-learning model, tracking the modification of the percentage
of lung opacification (QTC-PLO) as a unique parameter. Authors divided the 126 included
patients into four categories (mild, moderate, severe and critical) according to clinical
features at baseline; they underwent at least two CT scans as inclusion criteria (median
interval between baseline and first follow-up: 4 days) and, eventually, a second follow-
up CT. The study results showed a significant difference in QTC-PLO among clinical
groups at baseline (0%, 2.2%, 28.9%, 49.6%, respectively) with a sustained progression of
imaging findings at first follow-up CT (median: 3.6% vs. 8.7%) and a plateau on second
follow-up CT [19].

Similarly, Li et al. developed a fully automated AI system using a U-Net structure
to assess disease severity and progression in severe and non-severe patients, considering
the portion of infection (POI) and the average infection HU (iHU) in longitudinal CT
scans. The two imaging biomarkers reached an AUC of 0.97 for POI and 0.69 for iHU
and significant difference in the two severity states; authors concluded that only POI can
be considered an effective indicator of COVID-19 severity taking into consideration high
specificity and sensitivity; iHU could be affected by respiratory status and reconstruction
slice thickness [104].

Zhang et al. analyzed temporal changes of quantitative lung lesion on CT scan
from the onset of symptoms in common and severe groups, according to percentages of
GGO-volume (PGV), consolidations (PCV) and total lesions (PTV). The used AI system
combined the CNN and thresholding methods for lung segmentation and detection of
patchy shadows, followed by automatic calculation of quantitative features by AI algo-
rithms. Severe patients exhibited greater PGV, PCV and PTV in all the 5 stages of the
diseases (0–30 days), a longer time to peak (17 vs. 12 days, respectively) and a higher peak
percentage (22–25% vs. 2.5–5%, respectively) and longer recovery time [105].

Similar results have been demonstrated by Pan et al. that predicted a faster peak
in moderate group compared to severe group (18 vs. 23 days, respectively, from onset
of symptoms) with faster lesions absorption. Moreover, their DL model COVID-Lesion
Net showed a good correlation with conventional CT scores (Spearman’s correlation
coefficient 0.920) [106].

Other authors focused on the correlation between quantitative CT data with clinical
features or laboratory values. Cheng et al. employed a uAI Discover-2019nCoV software
to quantify images and to report a positive correlation between quantitative parameters
(GGOs, consolidations and total lesions) and CRP, ESR and a negative correlation with
lymphocyte count. Then, the proportion of total lesions resulted positively correlated with
LDH [107].

An Italian retrospective study proved similar correlations, extending their results
to parameters related to respiratory function (PaO2, pH, HCO3−, P/F). In fact, all the
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108 included were in need for supplemental oxygen with NIV, CPAP or IV by ET. Their
semi-automatic software showed a strong negative correlation between P/F ratio or hyper-
capnia, expression of hypoxia, and analyzed CT volumes. [108] Moreover, the Dense-UNet
used by Mergen et al. further confirmed the previously described positive correlations
about CRP and leukocytes. Authors underlined the negative correlation between percent-
age of opacity (PO) or percentage of high opacity (PHO, consolidations) with SO2 as an
additional demonstration that patients in need for supplemental oxygen have a higher
proportion of involved lungs [109].

In this regard, multiple studies have examined the utility of radiographic findings for
the prediction of respiratory deterioration and consequent ICU admission by a quantitative
CT analysis. A single-center retrospective study by Lanza et al. explored the role of
quantitative computer-aided CT analysis as outcome predictor. The compromised lung
volume (%CL), sum of poorly aerated and non-aerated parenchyma (from −500 to 100 HU),
could predict oxygenation support, either low- and high-flow (%CL 6–23%, AUROC 0.83),
and intubation (%CL > 23%, AUROC 0.86); moreover, %CL shown a negative correlation
with P/F ratio, sign of deterioration of respiratory function, and was predictive of in-
hospital mortality (HR 1.02) [110].

Similar results have been obtained in a retrospective study that confirmed the AI-
calculated percentage of total opacity >51% as the main predictor for MV (AUC 0.87)
and all-cause mortality during hospitalization (AUC 0.88). Moreover, they proposed a
prognostic model that included biochemical variables (LDH level for mortality and troponin
I for MV) and imaging data (total opacity for mortality and CT severity score for MV) with a
good risk classification of hospitalized patients. [111] A multiparametric model of imaging-
derived features—affected lung volume—and inflammatory laboratory parameters—CRP
and IL-6—has been tested in a German Cohort to estimate the need for ICU treatment.
The multivariate random forest modelling showed an AUC of 0.79, sensitivity of 0.72,
specificity of 0.86 and accuracy of 0.80; affection of upper lung lobes could be considered
an important parameter in the risk estimation (mean importance 0.184) [112].

Liu et al. proved that the quantitative CT evaluation with radiographic changes in
the firsts 4 days after admission had excellent predictive capability (AUC 0.93) for severe
disease, outperforming APACHE-II, NLR and D-dimer. The AI algorithms calculated
percentages of GGOs (PGV), consolidation (PCV) and semi-consolidation (PSV) [113]. A
further retrospective study assessed the feasibility of an automated quantification process
of GGOs (−700–−501 HU), one of the most significant lesions of COVID-19 pneumonia,
and normally restricted parenchyma (−900—−701 HU). They affirmed that GGOs could be
an objective biomarker for lung injury due to a statistically significant correlation between
the measured volumes and a respiratory assessment severity score on 6 categories, from
absence of hospitalization and inability to resume normal activity (1) to death (7) [114].
On the other hand, a software-based quantitative CT assessment of the normal lung
parenchyma percentage (SQNLP) has proven to accurately predict ICU admission if <81.1%
(sensitivity 86.5% and specificity 86.7%). Furthermore, SQNLP <82.45% can show severe
pneumonia with a sensitivity 83.1% and specificity 84.2%, characterized by increased
presence of crazy-paving pattern (specificity 97.2%) [115]. Wang et al. focused on the risk
of ARDS, primary cause of ventilation in COVID-19 patients. Their retrospective study
used a Vb-Net model to segment lesions, discovering that the proportion of specific lesion
density in the range −549–−450 HU was at high-risk for ARDS. In fact, total volume and
average density of lung lesions were not statistically related to ARDS [116].

Radiomics analysis represents an additional approach to predict prognostic outcome
of COVID-19 patients. A first attempt has been made to quantitatively analyze pulmonary
lesions, dividing them in mild (Grade I) or moderate/severe (Grade II). After features
preselection with a LASSO algorithm, the radiomic signature was built with 9 features and
it achieved an AUC of 0.87 in the test set. The impact of the grading regards the subsequent
treatment strategies, because mild lesions usually need only supportive treatment, while
more severe ones need symptomatic treatment, up to invasive ventilation [117].
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In a similar way, a tested radiomic model can predict not only the extent of pulmonary
opacities (AUC 0.99), but also the type of lesions (0.77). In this case, skewness and small-
area low gray-level emphasis were the best indicators of GGOs, considering that the
category of pulmonary opacities has an important role in the pneumonia severity in
addition to the volume of affected parenchyma [118].

Fu et al. performed a retrospective study in a cohort of patients divided into stable and
progressive groups according to clinical manifestations, laboratory tests and CT imaging
findings (statistically significant number of lesions). They tested the discriminatory capacity
of a radiomic signature of 7 features, after application of mRMR and LASSO algorithms,
with significant differences in the RadScore of the 2 groups. Moreover, cough and abnormal
CRP values could improve the detection of patients in the progressive group [119].

In fact, other studies have reported an improved performance of their radiomic
nomogram in the prognosis prediction after the integration of clinical factors. An example
is those described in the retrospective analysis by Chen et al., composed of a Radscore of
15 features integrated with clinical information (age, gender, neutrophils count, % of NK
cells and CD3) [120].

Wu et al. demonstrated that the integration of a radiomic signature with clinical risk
factors (age, sex, type on admission, comorbidities) is more important in the early phases
of COVID-19 for its accurate prediction of poor outcome (death, MV, ICU admission) with
an AUC of 0.862 (vs. AUC of 0.816 of the RadScore alone) [121].

A peculiar merged model based on 6 significant radiomic features and DL model based
on 3D-Resnet-10 has been analyzed to distinguish severe and critical cases of COVID-19. In
the test cohort, the merged model yielded an AUC of 0.861, compared to AUC of 0.838 and
0.787 of single radiomic and DL models respectively, demonstrating the complementarity
between the two types of features [122].

A Chinese retrospective multicenter study showed accuracy in the prediction of
hospital stay in COVID-19 patients, as predictor of patients’ prognosis. Authors determined
10 days as the optimal cut-off value, classifying patients into short-term (<10 days) and
long-term (>10 days) hospital stay. Their radiomic models of 6 features were based on
logistic regression (LR) and random forest (RF) and reached an AUC of 0.97 and 0.92,
respectively [21].

Differently from the previous studies about the analysis of the focus of pneumonia for
patient stratification, Tan et al. tested their radiomics automatic ML model on the non-focus
lung areas in the first CT scan of COVID-19 patients because they affirmed it could be
difficult to distinguish initial areas of interstitial inflammation by eyes in early CT images.
Authors included 219 first chest CT of patients with moderate and severe symptoms
from which they extracted image texture features to construct classification models. The
proposed model demonstrated a good prediction of COVID-19 pneumonia and its different
clinical types due to differences in the non-focus areas with an AUC > 0.95 [21].

Moreover, a radiomic model combining CT feature and clinical data has been tested
for its role in the prediction of RT-PCR negativity in order to identify the right retesting time.
In this way, it is possible to avoid unnecessary repeated tests and prolonged hospital stay.
Cai et al. included 203 patients in their retrospective study, divided into RT-PCR negative
and RT-PCR positive groups according to the results of 3 RT-PCR tests performed after
3–5 days from symptoms disappearance. For each patient, 20 different features (clinical,
quantitative and radiomic) were collected and compared between the two groups. Authors
concluded that the RT-PCR negative group had a longer interval from onset of symptoms
to CT scan (23 vs. 16 days) and the radiomic model of 9 features had a good performance
for differentiating the RT-PCR negative group with an AUC of 0.812 [123].

Among the risk factors for severe COVID-19, comorbidities have been associated with
increased risk of progression, probably due to a persistent pro-inflammatory state and
attenuation of the immune response [124].

Lu et al. analyzed the effect of diabetes mellitus on chest CT features and COVID-19
severity in 3 groups of patients divided according to their clinical history of DM and HbA1c
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level. Their CT images were quantitatively evaluated, focusing on percentage of total lung
lesion volume (PLV), percentage of ground-glass opacity volume (PGV) and percentage of
consolidation volume (PCV) as parameters of pneumonia severity.

It was demonstrated a positive correlation between blood glucose level, measured
also with blood fasting glucose, at admission and pulmonary involvement (higher PLV,
PGV and PCV) that, in turn, were predictors of poor clinical outcomes (AUC of 0.796,
0.783, 0.816, respectively) [125]. Another retrospective study quantified pneumonia lesions
on CT images through a UNet neural network to assess the influence of comorbidity on
COVID-19 patients.

Differently from the previous study, Zhang et al. included hypertension—the most
common, COPD and cerebrovascular diseases in addition to DM, already described as ma-
jor risk factors [126]: authors found a significant correlation with age, length of incubation
period, abnormal laboratory findings and severity status. Moreover, a higher number of
comorbidities resulted in a higher number of CT lesions, especially in presence of DM as
main risk factors for lung volume involvement [127].

In Table 7, we provided a summary of the papers included in our review focused on AI
in the stratification and definition of severity and complications of COVID-19 pneumonia
at Chest CT. Figure 7 shows the distribution of subjects included considering those studies
where it was clearly stated.

Table 7. AI in the stratification and definition of severity and complications of COVID-19 pneumonia at Chest CT.

Authors Year ML Model Population (No. of Patients) Results

Chatzitofis 2021 DenseNet201 497 COVID+
AUC: 0.79–0.97—moderate
risk, 0.81–0.92—severe risk,

0.93–1.00—extreme risk

Xiao et al. 2020 Instance Aware ResNet34 408 COVID+ AUC: 0.892

Zhu et al. 2020 DL 408 COVID+ Accuracy: 85.91

Wang et al. 2020

DenseNet121-FPN (lung
segmentation), COVID-19Net
(novel) (COVID-19 diagnostic

and prognostic analysis)

924 COVID+, 4448 COVID- AUC-3 sets: 0.87, 0.88, 0.86

Meng et al. 2020 De-COVID19-Net (novel) 366 COVID+ AUC: 0.943

Li et al. 2020 DenseNet 46 COVID+ AUC: 0.93

Ho et al. 2021
Custom architectures (not very
interesting) + an assortment of

existing architectures
297 COVID+ AUC: 0.916

Hu et al. 2020
Custom architectures (not very
interesting) + an assortment of

existing architectures
164 COVID+ Identification of lesions

Li et al. 2020 QCT 196 COVID+ AUC: 0.97

Zhang et al. 2020 QCT 73 COVID+ Identification of volumes and
dynamic changes

Pan et al. 2021 QCT 95 COVID+
Correlation with CT

score—Spearman’s correlation
coefficient 0.920

Cheng et al. 2020 QCT 30 COVID+
Significant correlation with
laboratory data, PSI and CT

score

Ippolito et al. 2020 QCT 108 COVID+ Significant correlation with
laboratory data and CT score
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Table 7. Cont.

Authors Year ML Model Population (No. of Patients) Results

Mergen et al. 2020 QCT 60 COVID+ Significant correlation with
laboratory and clinical data

Lanza et al. 2020 QCT 222 COVID+ AUC: 0.83—oxygenation
support, 0.86—intubation

Kimura-Sandoval
et al. 2020 QCT 166 COVID+ AUC: 0.884—MV,

0.876—Mortality

Burian et al. 2020 QCT 65 COVID+ AUC: 0.79

Liu et al. 2020 QCT 134 COVID+ AUC: 0.93

Noll et al. 2020 QCT 37 COVID+ Correlation with clinical data

Durhan et al. 2020 QCT 90 COVID+
AUC: 0.902—severe

pneumonia, 0.944—ICU
admission

Wang et al. 2020 QCT 27 COVID+ Correlation with clinical data

Qiu et al. 2021 Radiomics 84 COVID+ AUC: 0.87

Homayounieh
et al. 2020 Radiomics 92 COVID+ AUC: 0.99—disease severity,

0.90—outcome

Fu et al. 2020 Radiomics 64 COVID+ AUC: 0.833

Chen et al. 2021 Radiomics 40 COVID+
“AUC -3 classifiers: 0.82,

0.88,0.86, c-index-nomogram:
0.85”

Wu et al. 2020 Radiomics 492 COVID+
“AUC: 0.862—early-phase
group, 0.976—late-phase

group”

Li et al. 2020 DL-Radiomics 217 COVID+ AUC: 0.861

Yue et al. 2020 Radiomics 31 COVID+ AUC-2 models: 0.97, 0.92

Tan et al. 2020 Radiomics 219 COVID+ AUC-3 cohorts: 0.95, 0.95, 0.98

Cai et al. 2020 Radiomics 203 COVID+ AUC: 0.812

Lu et al. 2021 QCT 126 COVID+ AUC: 0.796—PLV, 0.783—PGV,
0.816—PCV

Zhang et al. 2020 QCT 294 COVID+ (Dice coefficients >0.85 and all
accuracies >0.95)

5.4. AI in the Differential Diagnosis of COVID-19 Pneumonia from Other Pneumonia at Chest CT

The differentiation between pneumonia related to COVID-19 or to other pathogens
represents a challenge due to superimposable clinical and radiological characteristics, but
it is critical for early diagnosis and pandemic control.

Multiple studies have evaluated the diagnostic performance of different AI systems in
the detection of COVID-19 and in the differential diagnosis with other common pneumonia,
demonstrating an AUC in the range of 0.903 to 0.99 [128–134].

A Chinese retrospective and multi-center study developed a 3D DL model COVNet
to detect COVID-19 and distinguish it from community-acquired pneumonia (CAP) due
to typical and atypical bacteria or viruses. The calculated AUC for COVID-19 and CAP
were 0.95 and 0.94, respectively, tested in a dataset of 3322 patients. The application of
Gradient-weighted Class Activation Mapping (Grad-CAM) simplified the interpretability
of the proposed model: it was an automatically generated heatmap that applied the red
color to the suspected regions associated with the predicted class [133]. Other studies
aimed to evaluate not only the performance of a proposed AI model in the differential
diagnosis, but also the radiologist’s performance with and without AI assistance [131].
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Figure 7. Distribution of subjects included in the studies for the development of ML models for the stratification and
definition of severity and complications of COVID-19 pneumonia at Chest CT. The plot shows the distribution of the
subjects included in the studies: in the legend in the right upper corner of the figure, the red bar represents the COVID-19
pneumonia group of patients, the yellow bar represents the non-COVID-19 pneumonia group of patients.

A retrospective study employed an EfficientNet architecture for the pneumonia classi-
fication task and a heatmap generated through a Grad-CAM for the visualization of the
important image regions. The proposed model achieved an AUC of 0.95 and a higher
accuracy, sensitivity and specificity than those of experienced radiologists (96% vs. 85%,
95% vs. 79%, 96% vs. 88%). Authors deduced that the performance of radiologists with AI
assistance improved compared to manual interpretation, yielding higher accuracy (90%),
sensitivity (88%), and specificity (91%) [133].

Another observation study by Zeng et al. tested a ML algorithm based on a radiomic
texture analysis of CT imaging to distinguish pneumonia due to COVID-19 (NCP) and
Influenza A (IAP). Their nomogram included 8 radiomic features as independent diag-
nosticators of NCP after application of LASSO regression model that were subsequently
included into a radiomics score (higher values suggested COVID-related pneumonia).
Their data suggested an excellent performance of the nomogram with an AUC of 0.87,
helping clinicians in the choice of the right management [135].

Table 8 provides a summary of the papers included in the review focused on AI in
the differential diagnosis of COVID-19 pneumonia from other pneumonia at Chest CT.
Figure 8 shows the distribution of subjects included considering those studies where it was
clearly stated.
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Table 8. AI in the differential diagnosis of COVID-19 pneumonia from other pneumonia at Chest CT.

Authors Year ML Model Population (No. of Patients) Results

Song et al. 2020 BigBiGAN 98 COVID+, 103 COVID- AUC: 0.972—internal test,
0.850—external validation

Yan et al. 2020 EfficientNetB0 206 COVID+, 412 COVID- AUC: 0.962—per-slice,
0.934—per-scan

Liu et al. 2020 Radiomics 61 COVID+, 27 COVID- AUC: 0.99
Yang et al. 2020 ResUNet 118 COVID+, 576 COVID- AUC: 0.903

Bai et al. 2020 EfficientNet-B4 521 COVID+, 665 COVID- AUC: 0.95—internal testing,
0.90—independent testing

Li et al. 2020 COVNet (novel) 468 COVID+, 2854 COVID- AUC: 0.96
Abbasian Ardakani et al. 2021 COVIDiag 306 COVID+, 306 COVID- AUC: 0.965

Zeng et al. 2020 Radiomics 41 COVID+, 37 COVID- AUC: 0.87

Figure 8. Distribution of subjects included in the studies for the development of ML models for the differential diagnosis of
COVID-19 pneumonia from other pneumonia at Chest CT. The plot shows the distribution of the subjects included in the
studies: in the legend in the right upper corner of the figure, the red bar represents the COVID-19 pneumonia group of
patients, the yellow bar represents the non-COVID-19 pneumonia group of patients.
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6. Computational Cost

A brief introduction to the concept of the computational cost is due. Computational
cost is a generic name that refers to the computational power in (usually in terms of number
of operations and memory) required to run an algorithm. Even the most demanding
algorithms can be executed in reasonable time when more computational resources are
provided. Generally speaking pipelines not based on deep learning have a rather low
computational cost, both during training and inference. Indeed, studies based on radiomics
and quantitative CT do not require expensive or very performant hardware to reach very
low run times. Deep learning models, on the other hand, require modern, dedicated
hardware (GPUs) to train in reasonable time but may still require multiple days to train.

This does not hinder their effectiveness or their use in production as the inference time
is usually significantly lower. Among deep learning architectures some are designed specif-
ically for a lower computational cost [136] while others focus on performance disregarding
computational efficiency [137]. In particular, studies employing 3D convolutions [74] or
studies that leverage multiple large models [81] are very computationally intensive and
probably would require an amount of resources that few hospitals can provide. Nonethe-
less, for pipelines dedicated to a single disease, the required throughput is not too high
and larger models can still provide value.

7. Discussion

In this literature review, we presented a structured review on the applications that
AI can have in the clinical setting with regards to chest imaging in COVID-19 patients,
describing the performances that the several DL/radiomics models have both in the
identification, screening, stratification of patients as well as the differential diagnosis with
other pneumonia.

Some of the previously described models showed very high performances, suggesting
that the implementation of AI techniques would aid radiologists in their clinical practice,
leading to a significant increase in accuracy values and leveraging their daily workflow
performance.

However, the potential utility of the machine learning-based models using CXR and CT
images for diagnostic and prognostic purposes in COVID-19 has been analyzed in a systematic
review that included some of the previously discussed studies [21,84,91,98,99,121,132].

According to Roberts et al. [138], none of the included studies in their systematic
review showed a sufficient robustness and reproducibility to be integrated into the regular
clinical practice, due to biases in datasets, either too small or too heterogeneous, poor data
integration or insufficient validation. In addition, some machine learning models may
show over and under-fitting bias.

Specifically, as concerns the quality of the training data of the analyzed studies [138]
the authors suggested the following key issues:

• a warning about using online repositories because of (1) the potential bias attributable
to source issues and the inability to match demographics through populations (2) the
possible overfitting on the shared dataset (3) the eventual low-resolution unbalanced
across classes of the images of the shared dataset.

• to pay attention to CXRs projections (anteroposterior vs. posteroanterior) since models
can wrongly correlate more severe disease to the view of the radiogram and not to the
actual radiographic findings

• most studies did not report the timing between imaging and RT–PCR tests, since a
negative RT–PCR test is a definitive exclusion criteria COVID-19 infection.

The authors recommended also major attention in the development of further ML-
based algorithms; suggesting external validation, assessment with established frameworks
(e.g., QUADAS, CLAIM, RQS) and checklists to identify these weaknesses [138].

Furthermore, other authors advised the sampling of large datasets to reduce predictive
uncertainty, even though most works used small image samples, due to the lack of large
open COVID-19 datasets (particularly for CXR) [139–142].
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This is why further studies are needed to implement AI capacities in the above dis-
cussed settings (identification, screening, patients’ stratification and differential diagnosis),
in order to guide the development of AI-empowered tools to reduce human error and
assist radiologists in their decision-making process.

Limitations of the study:
Firstly, we would like to cite some limitations of the reviewed studies which include

inadequate verification of datasets [138], limited time available considering the on-going
pandemic, lack of large datasets for some authors. It’s worth mentioning that the first
published work that reviews the usability of X-ray images to detect COVID-19 was of a
very limited dataset [143]. In some investigations, the number of positive images used
in the training was less than 100, which greatly limits the generalization power of the
models, under the CNN paradigm [144]. The rapidly evolving and emerging applications
of AL/ ML in COVID-19 can also represent another hurdle for reviewing the previous work.
Some authors have managed to release newer versions of their early pandemic studies;
enforcing their algorisms with larger datasets, including clinical information, overcoming
some of the technical issues that was raised earlier such as over-fitting. Additionally, to
avoid the limitations regarding the selection bias, we set a structured criteria for inclusion
and exclusion of the selected studies.

8. Conclusions

The combination of chest imaging and artificial intelligence can help for a fast, accurate
and precise disease extent quantification as well as for the identification of patients with
severe short-term outcomes. AI/ ML as well as radiomics have feasible applications and
optimistic potential to help leverage the radiologists’ workflow in the current pandemic.
In other words, there are multiple domains that can benefit from AI applications in chest
imaging, including identification, screening and risk stratification of COVID-19 cases.
As aforementioned, the basic stages to tackle that pandemic include early and accurate
identification of COVID-19, and ML can play a crucial role in this setting.

The integration of ML techniques will help in diagnosing this condition faster, cheaper,
and safer in the upcoming years. However, various biases should be overcome in the
development of further ML-based algorithms to guarantee sufficient robustness and repro-
ducibility for their integration into clinical practice.

Though, as previously stated by Roberts et al. [138], many of those ML models
developed could not be proved to be ready for the translation in clinical practice.

Datasets of higher quality, articles with enough documentation to be repeatable as well
as external validation are required to give the currently developed ML models a sufficient
robustness and reproducibility to integrate them into clinical practice.
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