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Abstract

In-situ measurements are necessary for a long-term analysis of the spatial structure of the geomagnetic tail. This
type of long length mission requires the use of a propellantless propulsion system, such as a classical solar sail, to
continuously rotate the design orbit apse line such that it remains parallel to the Sun-Earth direction. To reduce
the mission costs, this paper suggests the employment of Sun-pointing smart dusts, which are here investigated
in terms of propulsive acceleration level necessary to guarantee a mission feasibility. A Sun-pointing smart dust
can be thought of as a millimeter-scale solar sail, whose geometric configuration allows it to passively maintain
an alignment with the Sun-spacecraft line. The smart dust external surface is coated with an electrochromic
reflective film in such a way that it may change, within some limits, its propulsive acceleration magnitude. A
suitable control law is necessary for the smart dust to enable an artificial precession of its Earth-centred orbit,
similar to what happens in the GeoSail mission. This paper analyzes the required control law using an optimal
approach. In particular, the proposed mathematical model provides a set of approximate equations that allow a
simple and effective tradeoff analysis between the propulsive requirements, in terms of the smart dust acceleration,
and the characteristics of the design orbit.
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Nomenclature

a osculating orbit semimajor axis ( km)

ap propulsive acceleration, with ap , ‖ap‖ ( mm/s2)

apr radial component of ap ( mm/s2)

apt transverse component of ap ( mm/s2)

a?pmin
reference value; see Eq. (21) ( mm/s2)

A/m area-to-mass ratio ( m2/kg)

e osculating orbit eccentricity

E? eccentric anomaly when r = r? ( deg)

f dimensionless auxiliary function; see Eq. (31)

F dimensionless auxiliary function; see Eq. (34)

G dimensionless auxiliary function; see Eq. (35)

H Hamiltonian function

î orbital reference frame unit vector
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J performance index

n design parameter

O Earth’s center-of-mass

p osculating orbit semilatus rectum ( km)

r Earth-SPSD distance ( km)

r? reference distance ( km)

r̂� Sun-SPSD unit vector

R⊕ Earth’s mean radius ( km)

SW switching function; see Eq. (19)

t time ( days)

T (O; îr, ît) orbital reference frame

δ Earth-Sun line angle ( deg)

∆tsp scientific phase time interval ( days)

λi variables adjoint to ith state

µ⊕ Earth’s gravitational parameter ( km3/s2)

ν osculating orbit true anomaly ( deg)

ν? true anomaly when r = r? ( deg)

φ auxiliary angle; see Eq. (7) ( deg)

τ dimensionless switching parameter

ω osculating orbit argument of perigee ( deg)

Ω⊕ Earth’s orbital angular velocity ( deg/day)

Subscripts

0 initial

a apogee

ac constrained to apmin

f final

max maximum

min minimum

p perigee

r radial

t transverse

Superscripts

max maximum

min minimum

∧ unit vector
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1. Introduction

An in-depth knowledge of the complex physical phenomena that govern the plasma dynamics within
the Earth’s magnetosphere, especially in the magnetotail region, is known to have a great importance from
both a scientific and a technical viewpoint. For example, the availability of accurate models is a necessary
prerequisite for a successful forecasting capability of the space weather, including the ability to anticipate
an imminent storm and protect orbiting spacecraft as well as electrical systems on the ground. Since the
dynamical models developed for Earth are expected to be valid in the magnetospheres of the other terrestrial
planets, their study is extremely useful for improving our knowledge of planets’ internal structure and hence
for better understanding the intrinsic properties of our planetary system [1].

To solve the above problems, in-situ measurements are necessary. A long-term residence of a spacecraft in
the geomagnetic tail allows important scientific objectives, such as the occurrence of magnetic reconnection
or the magnetospheric boundary layer, to be investigated. This mission scenario requires the payload to be
placed into an elliptic orbit with a high apogee radius to explore the whole geomagnetic tail. Unfortunately,
a conventional Keplerian orbit, with its fixed orientation in space, is not of practical use, because the
geomagnetic tail is always aligned along the Sun-Earth line and, as such, it rotates with respect to an
inertial (heliocentric) reference frame. This implies that the apse line of a Keplerian orbit would be aligned
with the geomagnetic tail once per year only. As a result, considering the geomagnetic tail dimensions, about
3 months of data could be acquired, with only 1 month of accurate data from the tail axis [2]. To guarantee
a continuous flux of in-situ measurements, the apse line of the spacecraft orbit is required to artificially
precess at an angular rate equal to that of the Earth in its heliocentric orbit, equal to about 0.9856 deg/day.
However, previous studies [3] have shown that the ∆V required to precess such orbit by chemical (or electric)
propulsion is very large, on the order of 3.5 km/s (or 4.5 km/s) per year, making conventional thrusters unable
to guarantee a sufficiently long mission length, due to propellant mass constraints.

A possible solution, which guarantees long stay times in the Earth’s magnetotail, is offered by the GeoSail
mission concept [2, 3, 4, 5]; see Fig. 1. In that mission, the required Sun-synchronous apse-line precession
is obtained by means of a classical solar sail, thus avoiding the conventional limits imposed by propellant
consumption. Assuming an ideal force model [6], McInnes et al. [3] have proposed a simple steering law that
consists in orienting the sail nominal plane such that its normal is always directed along the Sun-spacecraft
line. A more effective control law is discussed in Ref. [7] from an optimal viewpoint.

Sun-Earth line

solar sail

design orbit

Figure 1: GeoSail mission concept for geomagnetic exploration; courtesy of Dr. Hiroshi Hasegawa.

The concept described in this paper is similar to that proposed in the GeoSail mission, but now the
artificial precession of the apse line is obtained by means of smart dusts (SDs). A SD is a femtosatellite
with a maximum side length of a few centimeters and a high area-to-mass ratio [8, 9, 10, 11]. The latter
characteristic allows the SD to exploit the solar radiation pressure as a propulsive force in a similar way as
a solar sail does [12]. Actually, a SD is essentially a micro solar sail spacecraft with all of the subsystems
integrated on a single plate [13]. With suitable strategies, such as the use of facets, the SD may be designed
such as to passively maintain a Sun-facing attitude. The latter configuration will be therefore referred to as
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Sun Pointing Smart Dust (SPSD). Its thrust level can be changed by means of an Electrochromic Control
System (ECS), which uses electrochromic material coated on the SD external surface [14, 15]. The optical
properties of electrochromic materials change when a suitable voltage is applied. In particular, when an
ECS is activated, the SPSD specular reflection coefficient increases, thus increasing the generated thrust
for a fixed area-to-mass ratio. In fact, assuming that the optical properties of the electrochromic material
may be changed between two states, the SPSD thrust will vary between two different values, the larger
(smaller) of which corresponds to when the ECS state is activated (deactivated). With this strategy, its
dynamics may be simply but effectively controlled. The main advantage of SDs over conventional spacecraft
is in their much smaller sizes and costs, to such an extent that a number of them can be stored within
a single mother spacecraft and then released in the desired orbit [16]. An important shortcoming is their
reduced communication capability. However, although a direct link with Earth could be impossible at
current technology level, each SD could communicate with the mother spacecraft which, in turn, would be
responsible of collecting the scientific data and transmit them to the ground station. Also, using multiple
SPSDs, the whole geomagnetic tail could be filled with sensors that precess with the same rate as the
geomagnetic tail, thus enabling a real-time 3-D visualization of the plasma structure in the magnetosphere.

Considering a SPSD with an electrochromic material coated on its surface, the question arises on whether
its propulsive acceleration may be sufficient for a GeoSail-like mission. This problem is addressed in this
paper from an optimal viewpoint, by looking for the minimum propulsive acceleration necessary for the
SPSD to precess the apse line of the reference orbit at a Sun-synchronous angular rate. It is shown that
its solution is consistent with the current technology level. A semi-analytical model is also discussed, which
may be effectively used for analyzing the tradeoff performance between the required acceleration level and
the length of the scientific phase per orbital revolution.

2. Mission analysis

Consider a SPSD in an elliptical Earth-centred orbit of semimajor axis a0 and eccentricity e0, whose
orbital plane coincides with the ecliptic plane. Introduce a two-dimensional radial-tangential reference frame
T (O; îr, ît), in which the origin coincides with the Earth’s center-of-mass O, îr is the radial unit vector
along the O-SPSD line, and ît is the transverse unit vector directed in the sense of the SPSD motion; see
Fig. 2.
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Figure 2: Reference frame and design orbit conceptual scheme.

Using the mathematical model discussed by McInnes et al. [3], the two-dimensional motion of the SPSD
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may be described by the following Lagrange’s planetary equations in Gaussian form [17]

da

dν
=

2 p r2

µ⊕ (1− e2)
2

[
apr e sin ν +

apt p

r

]
(1)

de

dν
=

r2

µ⊕

[
apr sin ν + apt

(
cos ν +

r cos ν + e r

p

)]
(2)

dω

dν
=

r2

µ⊕ e

[
−apr cos ν + apt sin ν

(
1 +

r

p

)]
(3)

dt

dν
=

r2
√
µ⊕ p

{
1− r2

µ⊕ e

[
apr cos ν − apt sin ν

(
1 +

r

p

)]}
(4)

where µ⊕ is the Earth’s gravitational parameter, t is the time, r is the O-SPSD distance, while, with reference
to the osculating orbit parameters, ν is the true anomaly, a is the semimajor axis, ω is the argument of
perigee measured counterclockwise from a reference (fixed) direction, see Fig. 2, and p is the semilatus
rectum, with

p = a
(
1− e2

)
, r =

p

1 + e cos ν
(5)

In Eqs. (1)–(4), apr , ap · îr (or apt , ap · ît) is the component of the propulsive acceleration vector ap along
(or perpendicular to) the O-SPSD direction; see Fig. 2. Note that the dynamics model described by Eqs. (1)–
(4) assumes the perturbing effects due to Earth’s oblateness and lunisolar gravitational attractions to be
negligible compared to the propulsive acceleration of the SPSD induced by the solar radiation pressure [3].

The propulsive acceleration components {apr , apt} can be written as a function of the SPSD design
characteristics and the osculating orbit parameters, as is described in the next section.

2.1. Sun-pointing smart dust thrust model

The propulsive acceleration vector of an Earth-orbiting SPSD with an active ECS is obtained by suitably
adapting the mathematical model discussed in Refs. [18, 19, 20], which describes the SPSD motion in a
heliocentric two-dimensional case. To this end, let apmax (or apmin) be the maximum (or minimum) value of

ap , ‖ap‖, obtained when the ECS is switched on (or off); see Fig. 3.
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Figure 3: Conceptual scheme of a SPSD.

To a first order, the Sun-SPSD distance is nearly constant and equal to r⊕ , 1 au, while the Sun-SPSD
unit vector roughly coincides with the Sun-Earth unit vector r̂�; see Fig. 2. These assumptions amount
to neglecting the Earth’s orbit eccentricity and the Earth-SPSD distance r with respect to the Earth-Sun
distance r⊕. Note that, according to Fig. 2, the Sun-SPSD unit vector can be written as

r̂� = cosφ îr + sinφ ît (6)

in which φ is an auxiliary angle defined as

φ , π − ν + δ − ω (7)
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where δ ∈ [0, 2π] rad is the angle between the reference direction and the O-Sun line. Without loss of
generality, assume δ = 0 at the initial time t = t0 , 0, that is, the apse line of the SPSD osculating orbit is
initially aligned with the Earth-Sun line. Accordingly, the time variation of δ can be written as

δ = Ω⊕ t (8)

where Ω⊕ , 0.9856 deg/day is the Earth’s orbital angular velocity, in accordance with the assumption of
constant Earth-Sun distance (equal to r⊕).

Since the Sun-pointing condition requires the direction of ap to coincide with the Sun-SPSD line, the
propulsive acceleration vector may be written as

ap = apmin
[1 + τ (n− 1)] r̂� (9)

where τ ∈ {0, 1} is a time-varying (switching) control parameter that models the on/off behavior of the
ECS [20], while n , (apmax

/apmin
) ∈ [1, 2] is a design parameter whose value only depends on the thermo-

optical characteristics of the electrochromic reflective film [15, 11]. The interval extremes within which
n ranges, correspond to a fully absorptive (n = 1) or a specular reflecting (n = 2) electrochromic film.
In particular, a value of n = 1.8 is consistent with a case [18] in which all of the impinging photons are
absorbed when the ECS is switched-off, and a non-specular (incomplete) reflection [21, 22] when the ECS
is switched-on. Note that apmin

in Eq. (9) also depends on the SPSD area-to-mass ratio A/m, that is, the
ratio of the effective illuminated surface (i.e., the area projected along r̂�) to the smart dust total mass.
Assuming n = 1.8 and using the results of Refs. [8, 20], Tab. 1 summarizes the values of {A/m, apmin

, apmax
}

for a low- (SPSD1), medium- (SPSD2), and high-performance (SPSD3) configuration.

Table 1: Values of {A/m, apmin , apmax} for a low- (SPSD1), medium- (SPSD2), and high-performance (SPSD3) smart dust
with n = 1.8. Data adapted from Refs. [8, 20]

SPSD1 SPSD2 SPSD3

A/m [m2/kg] 17.39 32.61 54.63

apmin
[mm/s2] 0.0794 0.1487 0.2491

apmax
[mm/s2] 0.1429 0.2676 0.4483

Substituting Eqs. (6)–(8) into Eq. (9) it is found that

apr = −apmin [1 + τ (n− 1)] cos (ν + ω − Ω⊕ t) (10)

apt = apmin
[1 + τ (n− 1)] sin (ν + ω − Ω⊕ t) (11)

Note that Eqs. (10)–(11) (and so Eq. (9)) neglect the shadowing effects due to the eclipse periods, when the
propulsive acceleration vanishes (or reduces) due to the Earth’s shadow cone. In fact, Ref. [7] shows that
the eclipse periods have a negligible effect on the optimal steering law of a solar sail-based mission for the
geomagnetic tail exploration.

2.2. Problem description and trajectory optimization

A continuous analysis of the spatial structure of the geomagnetic tail through in-situ measurements [3, 23]
requires a space vehicle to cover a highly elliptic orbit, of which the apse line should precess at a rate equal
to Ω⊕; see Fig. 4.

According to the results of Ref. [2], the design orbit perigee is located on the Earth’s dayside at a radius
rp = 11R⊕ (where R⊕ is the Earth’s reference radius), while the apogee is aligned with the geomagnetic
tail on the Earth’s nightside at a radius ra ∈ [22, 30]R⊕. Although communications with Earth at these
altitudes could be difficult for a femtosatellite at current technology level, one or more smart dusts could be
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Figure 4: Conceptual sketch of artificial apse line precession.

released by a mother spacecraft [16], which could collect the scientific data and transmit them to the ground
station. Such a feature is able to increase the mission lifetime and its flexibility, since a set of smart dusts
could accomplish different scientific observations. In this context, with reference to the mission scenario
analyzed in Refs. [2, 4, 7], in the remainder of this work a nominal value of ra = 23R⊕ will be assumed,
such that the value of the design orbit semimajor axis is a0 = 17R⊕, whereas the design eccentricity is
e0 = 12/34 ' 0.353. Assuming, without loss of generality, that ν(t0) = ν0 , 0 and ω(t0) = 0 (that is, the
SPSD is initially at the perigee, and the apse line is aligned with the Earth-Sun direction), the differential
system of Eqs. (1)–(4) is completed by the initial conditions

a(ν0) = a0 ≡ 17R⊕ , e(ν0) = e0 ≡ 12/34 , ω(ν0) = 0 , t(ν0) = 0 (12)

The time-variation (or, equivalently, the ν-variation, that is, the variation with respect to the true
anomaly ν ∈ [0, 2π] rad) of the switching parameter τ , which allows the apse line to precess at the desired
rate Ω⊕, can be obtained as the solution of an optimal control problem, in which the performance index

J , −apmin (13)

is to be maximized as a function of τ = τ(ν), with the terminal constraints

a(νf ) = a0 , e(νf ) = e0 , ω(νf ) = Ω⊕ tf (14)

where tf is the time at which ν = νf , 2π rad. The solution to this problem is the value of a
(min)
pmin ,

min{apmin
}, that is, the minimum propulsive acceleration magnitude necessary for the SPSD to align the

apse line of the reference orbit with the Earth-Sun direction, when the SPSD completes a single revolution
around the Earth; see Eqs. (14).

To look for a solution of the optimal problem, an auxiliary differential equation is first added to the
Lagrange’s planetary equations, that is

dapmin

dν
= 0 (15)
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which simply states that apmin , once selected, is a constant of motion. The optimal control problem is solved
using an indirect method, in which the Hamiltonian function H is defined as [24, 25]

H , λa
da

dν
+ λe

de

dν
+ λω

dω

dν
+ λt

dt

dν
+ λap

dapmin

dν
(16)

where {λa, λe, λω, λt, λap} is the set of variables adjoint to the states {a, e, ω, t, apmin
}. Using Eqs. (1)–(4)

and (15) the Hamiltonian function becomes

H =
2 p r2 λa

µ⊕ (1− e2)
2

[
apr e sin ν +

apt p

r

]
+
r2 λe
µ⊕

[
apr sin ν + apt

(
cos ν +

r cos ν + e r

p

)]
+

r2 λω
µ⊕ e

[
−apr cos ν + apt sin ν

(
1 +

r

p

)]
+

r2 λt√
µ⊕ p

{
1− r2

µ⊕ e

[
apr cos ν − apt sin ν

(
1 +

r

p

)]}
(17)

The ν-variation of each adjoint variable is given by the Euler-Lagrange equations [24, 25], viz.

dλa
dν

= −∂H
∂a

,
dλe
dν

= −∂H
∂e

,
dλω
dν

= −∂H
∂ω

,
dλt
dν

= −∂H
∂t

,
dλap
dν

= − ∂H
∂apmin

(18)

whose full expressions, obtained with a symbolic manipulation software, are here omitted for the sake of
brevity. From the Pontryagin’s maximum principle, the optimal control law τ = τ(ν) is such that, at any
value of true anomaly ν, the Hamiltonian function is an absolute maximum. In particular, since H is a
linear function of τ , see Eqs. (10)–(11) and (16), the optimal solution is a bang-bang control [25], viz.

τ =
sign (SW ) + 1

2
with SW ,

∂H
∂τ

(19)

where sign (·) is the signum function, while SW is obtained from Eq. (17). Finally, the transversality
condition [24] gives three additional boundary conditions

λap(ν0) = 1 , λap(νf ) = −1 , λt(νf ) = −Ω⊕ λω(νf ) (20)

The resulting two-point boundary value problem (TPBVP) is therefore described by the 10 differential
equations (1)–(4), (15), and (18), with the 10 boundary constraints (12), (14), and (20). The TPBVP has
been solved using the procedure described in Ref. [26], while the differential equations have been numerically
integrated in double precision using a variable order Adams-Bashforth-Moulton solver scheme [27, 28] with
absolute and relative errors of 10−12.

2.3. Necessary propulsive level

The optimal control problem described in the last section has been solved, parametrically, as a function
of the design parameter n ∈ [1, 2]; see also Eq. (9). The numerical results, obtained by solving about 30

optimal control problems, are collected in Fig. 5, where the function a
(min)
pmin = a

(min)
pmin (n) describes how the

required (minimum) propulsive acceleration magnitude varies with n.

The curve a
(min)
pmin = a

(min)
pmin (n) is close to a hyperbola, whose analytic expression is

a(min)
pmin

'
a?pmin

n
with a?pmin

, 0.0974 mm/s2 (21)

where a?pmin
is the value of a

(min)
pmin when n = 1; see Fig. 5. This interesting result is in agreement with the

numerical simulations which show that, for each value of n ∈ [1, 2], the optimal control law is τ(ν) = 1, that
is, the ECS is switched on along the whole SPSD revolution. Therefore, the SPSD acts like a Sun-pointing
millimeter-scale solar sail (without ECS) in which the thermo-optical characteristics of the reflective film are
constant, and the degradation effects [29, 30, 31, 22] are neglected. This behavior is by no means surprising,
since the condition τ(ν) ≡ 1 allows the SPSD to exploit, at each time, the maximum propulsive acceleration
magnitude apmax

= napmin
and, therefore, to minimize apmin

for a given value of n.
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Figure 5: Minimum value of apmin as a function of n, when a0 = 17R⊕ and e0 = 12/34.

Conversely, the maximum value of apmin , that is, the upper limit of the minimum propulsive acceleration
magnitude necessary for the apse line to precess, is obtained when the ECS is switched off along the entire
SPSD revolution, viz. τ(ν) ≡ 0. This intuitive result is confirmed by a more rigorous analysis in which the
control law τ = τ(ν) is chosen such as to minimize (instead of maximizing) the performance index J given
by Eq. (13). In this case, Eq. (19) is replaced by

τ =
1− sign (SW )

2
with SW ,

∂H
∂τ

(22)

whose solution gives the optimal control law which minimizes, at any value of ν, the Hamiltonian function
defined in Eq. (16). In this case, for each n ∈ [1, 2], the maximum admissible value of the minimum

propulsive acceleration magnitude is constant with a
(max)
pmin , max{apmin

} = a?pmin
. In other terms, for a given

value of n, the value of apmin
is to be chosen in the range

apmin ∈
[
a?pmin

n
, a?pmin

]
(23)

or, equivalently, the pair {n, apmin
} must be selected in the admissible region S defined in Fig. 6. In

particular, the boundary of the admissible region S is determined by the two functions a
(min)
pmin = a

(min)
pmin (n)

and a
(max)
pmin = a

(max)
pmin (n), and gives all of the pairs {n, apmin

} for which the ECS is always switched on or off,
respectively.

When, instead, a generic pair {n, apmin
} coincides with a point inside the admissible region S, the optimal

control law contains both arcs with τ = 0 and arcs with τ = 1. In particular, when the value of n and apmin

is fixed, according to the approach of Ref. [7] the ν-variation of the switching parameter τ can be obtained
by minimizing the control effort required to achieve the desired (artificial) apse-line precession. Accordingly,
for a given pair {n, apmin

} ∈ S the function τ = τ(ν) is chosen such as to maximize the performance index
Jac ≤ 0 defined as

Jac , −
∫ 2π

0

τ dν (24)

where the subscript ac is used to emphasize that the minimum propulsive acceleration is constrained equal
to apmin . Note that, in the limit case of max[Jac] = 0 (or max[Jac] = −2π), the ECS is switched off (or
switched on) along the whole SPSD revolution, i.e. τ = 0 (or τ = 1) for ν ∈ [0, 2π] rad. From Eq. (24), the
Hamiltonian function now becomes [24]

Hac , H− τ (25)

where H is given by Eq. (16). The Euler-Lagrange equations are still given by Eqs. (18), whereas the optimal
control law is

τ =
sign (SWac

) + 1

2
with SWac ,

∂Hac
∂τ

=
∂H
∂τ
− 1 ≡ SW − 1 (26)
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Figure 6: Admissible region S when a0 = 17R⊕ and e0 = 12/34.

where SW is defined in Eq. (19). A potential mission scenario that involves a low-performance SPSD, where
the optimal control law is given by Eq. (26), is discussed in the next section.

2.4. Case study

Consider the low-performance SPSD1 with n = 1.8 and apmin = 0.0794 mm/s2; see Tab. 1. The pair
{n, apmin

} associated with the SPSD1 corresponds to a point inside the admissible region S defined in
Fig. 6. In this case, the optimal control law that guarantees the desired artificial precession of the apse line,
obtained through Eq. (26), is given by

τ(ν) =



0 if ν ∈ [0, 119.6) deg

1 if ν ∈ [119.6, 151.6) deg

0 if ν ∈ [151.6, 208.4) deg

1 if ν ∈ [208.4, 240.4) deg

0 if ν ∈ [240.4, 360] deg

(27)

The function τ = τ(ν) is nearly symmetric with respect to the apse line, and has two arcs in which the ECS
is switched on; see also Fig. 7.

Figure 8 shows the ν-variation of both the smart dust osculating orbital elements {a, e, ω}, and the angle
δ which localizes the direction of the Earth-Sun line; see also Fig. 2. In particular, ω closely follows the value
of δ, while it is exactly equal to δ when ν = {0, 2π} rad, in agreement with the constraints of Eqs. (12) and
(14) [recall Eq. (8)]. This interesting behavior is illustrated in Fig. 9, which draws the difference (ω − δ)
between the orientation of the osculating orbit apse line and the Earth-Sun direction. The maximum value
of |ω − δ| is less than 0.25 deg, that is, the osculating orbit apse line is nearly aligned with the Earth-Sun
direction at any time (or at any value of ν).

Finally, Fig. 8 shows that a/a0 ' 1 and e/e0 ' 1, that is, the value of the osculating orbit semimajor
axis and eccentricity are close to their design orbital values a0 and e0, respectively. This point is at the
heart of the analytical approximation of the admissible region S discussed in the next section. Note that the
behavior of a = a(ν) and e = e(ν) shown in Fig. 8 is representative of a generic mission scenario in which
the pair {n, apmin} is selected in the admissible region S defined in Fig. 6.

3. Analytical approximation of the admissible region

According to the typical behavior of the state variables illustrated in Fig. 8, the simplification is now
made that both the osculating orbit semimajor axis and eccentricity do not vary with time, and the apse
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Figure 7: Optimal control law for the SPSD1, when a0 = 17R⊕ and e0 = 12/34.

line is always aligned with the Earth-Sun direction. In other terms, it is assumed that a = a0, e = e0, and
δ = ω for ν ∈ [0, 2π] rad. Bearing in mind Eq. (8), Eqs. (10)–(11) become

apr = −apmin
[1 + τ (n− 1)] cos (ν) (28)

apt = apmin [1 + τ (n− 1)] sin (ν) (29)

so that, with the aid of the second of Eqs. (5), Eq. (3) reduces to the compact expression

dω

dν
= apmin

[1 + τ (n− 1)]

(
a20
µ⊕

)
f(e0, ν) (30)

where f = f(e0, ν) is a dimensionless auxiliary function defined as

f(e0, ν) ,

(
2− cos2 ν + e0 cos ν

) (
1− e20

)2
e0 (1 + e0 cos ν)

3 (31)
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Figure 8: Variation with ν of the osculating orbit elements for the SPSD1, when a0 = 17R⊕ and e0 = 12/34. Green circles:
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Figure 9: Angle (ω − δ) between the apse line and the Earth-Sun direction, when a0 = 17R⊕ and e0 = 12/34.

When the switching parameter takes a constant value for ν ∈ [0, 2π] rad, that is, when either τ ≡ 0 or τ ≡ 1
along the whole SPSD revolution around the Earth, Eq. (30) may be used to get an analitycal/graphical
relation between the propulsive requirements (in terms of apmin and n) and the characteristics of the design
orbit {a0, e0}.

3.1. Case of τ ≡ 0 during the SPSD revolution

Assume the ECS to be switched off during the whole revolution around the Earth, that is, τ ≡ 0. In this
case, Eq. (30) reduces to

dω

dν
= a(max)

pmin

(
a20
µ⊕

)
f(e0, ν) (32)

which, by separation of variables, gives the variation of the argument of perigee ∆ω , ω(νf )−ω(ν0) ≡ ω(νf )
in a single SPSD revolution, viz.

ω(νf ) = a(max)
pmin

(
a20
µ⊕

)
F (33)

where the dimensionless quantity F = F (e0) depends on the design orbit eccentricity e0 as

F =

∫ 2π

0

f(e0, ν) dν ≡
(
1− e20

)2
G

e0
(34)

with

G = G(e0) ,
∫ 2π

0

2− cos2 ν + e0 cos ν

(1 + e0 cos ν)
3 dν (35)

The integral in the right hand side of Eq. (35) can be solved parametrically (as a function of e0) with
standard numerical methods, such as the adaptive recursive Simpson’s rule [32], which is implemented in
the MATLAB built-in function “quad”. The function G = G(e0) is reported in Fig. 10 when e0 ∈ [0, 0.9].
Using a curve fitting procedure, the function G = G(e0) can be approximated, with an absolute error less
than 0.1, by the equation

G(e0) ' 7.003

e40 − 1.189 e30 − 0.4256 e20 − 0.1484 e0 + 0.7508
(36)

At the end of the revolution around the Earth, when the flight time tf is close to the Keplerian orbital
period of the design orbit, that is

tf = 2π

√
a30
µ⊕

(37)
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the angle δ between the reference (fixed) direction and the Earth-Sun line is [see Eq. (8)]

δ(νf ) ≡ δ(tf ) = 2πΩ⊕

√
a30
µ⊕

(38)

Enforcing the condition for which the SPSD apse line is aligned with the Earth-Sun line at the end of the

orbital period, that is, ω(νf ) = δ(νf ), from Eqs. (33) and (38) the analytical expression of a
(max)
pmin is obtained

as

a(max)
pmin

=
2πΩ⊕ e0

G (1− e20)
2

√
µ⊕

a0
(39)

where G is given by either Eq. (36) or Fig. 10 as a function of e0. For example, when a0 = 17R⊕ and

e0 = 12/34, Eq. (39) gives a
(max)
pmin ' 0.096 mm/s2, a value very close to the actual (numerical) result

a?pmin
' 0.0974 mm/s2; see also Fig. 6.

Notably, in the special case when e0 = 0, Eq. (39) states that a
(max)
pmin = 0, that is, the design orbit apse

line precesses without any propulsive acceleration. This seemingly odd result can be explained by the fact
that a circular design orbit (e0 = 0), may be thought of as the limiting case when the number of apse lines
tends to infinity and, therefore, the Earth-Sun direction is always aligned with one of these lines.

3.2. Case of τ ≡ 1 during the SPSD revolution

Assume now that the ECS is always switched on during the SPSD revolution around the Earth, that is,
τ ≡ 1. In this case, Eq. (30) gives

dω

dν
= na(min)

pmin

(
a20
µ⊕

)
f(e0, ν) (40)

which coincides with Eq. (32) when a
(max)
pmin is formally replaced by na

(min)
pmin . As such, paralleling the procedure

discussed in the last section, the analytical approximation of the minimum value of apmin is

a(min)
pmin

=
a
(max)
pmin

n
≡ 2πΩ⊕ e0

nG (1− e20)
2

√
µ⊕

a0
(41)

where G is again given by Eq. (36) or Fig. 10. Note that a
(min)
pmin varies as 1/n, according to the curve in

Fig. 5 and the approximate relationship of Eq. (21).
Equations (39) and (41) can be used to perform a parametric analysis of the SPSD propulsive require-

ments as a function of the design orbit characteristics {a0, e0}, as is discussed in the next section.
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3.3. Parametric analysis of propulsive requirements

Consider a SPSD orbit with a perigee radius rp = 11R⊕ and an apogee radius ranging in the interval
ra ∈ [22, 30]R⊕. Such a variation of ra is consistent with a possible in-situ exploration of the downstream
region of Earth’s magnetosphere [2]. When ra is taken as a free parameter, the admissible ranges of variation
for a0 and e0 are

a0 = a0(ra) =
rp + ra

2
∈ [16.5, 20.5]R⊕ , e0 = e0(ra) =

ra − rp
ra + rp

∈ [1/3, 19/41] (42)

Accordingly, the values of a
(min)
pmin and a

(max)
pmin are estimated, as functions of ra, by substituting Eqs. (42) into

Eqs. (39) and (41). The result corresponding to n = 1.8 is shown in Fig. 11. In particular, the value of

a
(min)
pmin increases of about 26% when the apogee radius varies from its design value of 23R⊕ to the upper

limit of 30R⊕.
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Figure 11: Propulsive requirements as a function of the design orbit apogee radius ra, with rp = 11R⊕ and n = 1.8.

On the other hand, a greater value of ra (and, therefore, a more elliptical working orbit) implies a longer
length of time in the downstream region of Earth’s magnetosphere. For exemplary purposes, assume that the
scientific phase of the mission (that is, the in-situ analysis of the magnetotail) starts when the Earth-SPSD
distance is r > r? , 15R⊕. The length of the scientific phase ∆tsp for each orbit can be calculated, as a
function of ra, by solving a Kepler’s problem [33], and the result is

∆tsp =
2π − 2 (E? − e0 sinE?)√

µ⊕/a30
(43)

where E? is the eccentric anomaly at r = r?, given by

E? = 2 arctan

[√
1− e0
1 + e0

tan

(
ν?

2

)]
(44)

in which

ν? = arccos

[
a0
(
1− e20

)
− r?

e0 r?

]
(45)

Recalling Eqs. (42), the function ∆tsp = ∆tsp(ra) of Eq. (43) is drawn in Fig. 12.
Combining the information given by Figs. 11 and 12, and using the length of time of the scientific phase

as a free parameter, a
(min)
pmin and a

(max)
pmin are reported in Fig. 13 as a function of ∆tsp. The figure clearly shows

that a tradeoff between the propulsive requirements (in terms of a
(min)
pmin ) and ∆tsp is easily obtained from

Eqs. (39), (41) and (43).
Notably, Eq. (39) can also be applied when a conventional Sun-pointing solar sail is used to artificially

precess the orbit’s apse line. In that case, the solar sail attitude may be passively maintained using a
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Figure 12: Length of the scientific phase for each orbit as a function of the apogee radius, when rp = 11R⊕ and r? = 15R⊕.

2.5 3 3.5 4 4.5
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

"tsp[days]

a
p
m

in
[m

m
/
s2

]

min

(max)

p
a

min

(min)

p
a

Figure 13: Propulsive requirements as a function of ∆tsp, when rp = 11R⊕, r? = 15R⊕ and n = 1.8.

conically shaped structure, and Eq. (39) provides the characteristic acceleration necessary for achieving the
desired precession. The solar sail film can be partially covered with electrochromic material panels [34],
which allow the propulsive acceleration to be varied by switching them on (or off), in a similar way as that
illustrated for a SPSD; see Fig. 14. The approximate model proposed in this work may be therefore applied
in the same way to this more classical mission scenario.

4. Conclusions

This paper has discussed the application of a Sun-pointing smart dust to the GeoSail mission scenario,
whose aim is the scientific exploration of the Earth’s magnetic tail. The required working orbit is highly
elliptical, and an artificial apse line precession must be induced, in order to constantly align the orbital
apse-line with the Sun-Earth direction. Assuming that the smart dust is equipped with an electrochromic-
based control system capable of modifying the propulsive acceleration magnitude generated by the solar
radiation pressure, an optimal control problem has been solved to identify the performance requirements of
the proposed mission scenario.

Since the semimajor axis and the eccentricity of the osculating orbit have negligible variations during
the artificially-induced precession, an approximate mathematical model has been derived and discussed,
based on the assumption that these parameters remain constant along the whole revolution around the
Earth. Once the desired length of time in the magnetotail region is chosen, the semi-analytical results of
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Figure 14: Sun-pointing solar sail-based concept, with electrochromic material panels, for geomagnetic tail exploration.

the approximate model offer a simple means to calculate the propulsive requirements of the smart dust in
terms of acceleration magnitude. The simulation results show that this concept is feasible with current or
near-term technological level.
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