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Abstract
Function-as-a-Service (FaaS) is a cloud service model enabling to implement
serverless applications for a variety of use cases. These range from scheduled
calls of single functions to complex function orchestrations executed using
orchestration services such as AWS step functions. However, since the available
function orchestration technologies vary in functionalities, supported modeling
languages, and APIs, modeling such function orchestrations and their deploy-
ment require significant technology-specific expertise. Moreover, the resulting
models are typically not portable due to provider- and technology-specific
details, and major efforts are required when exchanging an orchestrator or
provider due to such lock-ins. To tackle this issue, we introduce a vendor-
and technology-agnostic method for the modeling and deployment of server-
less function orchestrations, which relies on the business process model and
notation (BPMN) and topology and orchestration specification for cloud appli-
cations (TOSCA) standards for modeling function orchestrations and their
deployment, respectively. We also present a toolchain for modeling serverless
function orchestrations in BPMN, generating proprietary models supported
by different function orchestration technologies from BPMN models, spec-
ifying their actual deployment in TOSCA, and then enacting such deploy-
ment. Finally, we illustrate a case study applying our method and toolchain
in practice.
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1 INTRODUCTION

In cloud computing, the term serverless1 is often associated with Function-as-a-Service (FaaS) platforms and the under-
lying programming model as developers are relieved from many traditional infrastructure management tasks.2 With
FaaS, developers can host event-driven code snippets that are automatically scaled by providers (including scaling to zero
instances),3 which means that providers are responsible for managing a suitable deployment stack for to-be-hosted code
snippets. At the same time, the reduced management of component’s deployment stack and scaling configuration gives
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to users the impression that there are no servers at all. Interestingly, these properties can be observed not only in FaaS
offerings but also in many other provider-managed services.4 For example, there are database, messaging, logging, or mon-
itoring offerings that can be used “as a service”, without requiring the user to manage the deployment stack and scaling
configurations. As a result, from the cloud consumer point of view the term “serverless” can be treated as a general pat-
tern for hosting application components in a way that does not require to take care of deploying, managing, and scaling
the components.5

However, fine granularity, strict separation of concerns, and the inherent properties of FaaS—such as constrained
amount of resources a function can use and limited execution time6—often result in the need to compose mul-
tiple functions together, which can be achieved in different ways. For example, functions are often composed by
means of event-driven interactions with other serverless offerings such as databases or message queues.7 Besides such
event-driven compositions of components, there are also technologies that enable the explicit orchestration of FaaS
functions following the idea of workflows8 that can be used to implement common control flow patterns such as
sequence or parallel branching.9 Many prominent cloud providers such as AWS, Azure, or IBM offer such capabili-
ties with their function orchestration services: by using provider-specific orchestration modeling languages developers
can compose multiple serverless functions into complex serverless function orchestrations. Moreover, besides these
provider-managed function orchestration services that can be used directly “as a service”, there are also installable
function orchestration technologies that provide similar functionalities for installable FaaS platforms, for example,
Apache Openwhisk Composer10 and Fn Flow11 enable function orchestration for Apache Openwhisk12 and Fn,13 respec-
tively. However, also these installable function orchestration technologies are not compatible with each other and with
provider services as they employ own technology-specific formats. For the sake of simplicity, in the following, we refer
to both installable function orchestrating technologies as well as provider-managed function orchestration services as
function orchestrators.

Essentially, to use function orchestrators for composing several FaaS functions developers need to follow a set of
repetitive tasks. Firstly, the business logic needs to be implemented according to provider’s requirements, for example,
interaction with provider-specific services as well as complying with execution and size quotas of FaaS platforms.
Secondly, an orchestrator-specific function orchestration modeldescribing the desired function composition needs to be
created. Depending on the chosen function orchestrator, function orchestration models can be specified using pro-
prietary technology- or provider-specific DSLs, or by using general-purpose programming languages.14 As a result,
due to the proprietary and nonstandardized characteristics of orchestration modeling languages offered by function
orchestrators, the resulting function orchestration models are not portable, for example, a function orchestration
modeled for AWS step functions15 cannot be executed on Azure durable functions.16 Furthermore, the capabilities
of function orchestrators are very different, which results in the problem that it is not always possible to create a
semantically equivalent function orchestration model for all providers and technologies. For example, unlike AWS
step functions, Apache Openwhisk Composer does not provide a native construct for modeling delayed function
invocations.

Moreover, to automate the deployment of modeled function orchestrations, typically a provider- and
technology-specific deployment model needs to be defined. Here, apart from provider-specific deployment automation
technologies such as AWS CloudFormation,17 third-party technologies such as Ansible18 or the Serverless Framework19

are typically employed in practice. However, also for this task, we face similar problems as discussed before for model-
ing function orchestrations, since deployment technologies differ significantly from each other leading to lock-ins and
portability issues.

As a result, modeling function orchestrations and their deployments requires expertise in the chosen technology- and
provider-specific modeling languages, that is, function orchestration modeling languages and deployment modeling lan-
guages. Therefore, considerable efforts are required when the chosen function orchestrator or deployment automation
technology needs to be exchanged since the resulting target models are not portable and need to be reimplemented using
other technology- and provider-specific modeling languages. One way to facilitate these modeling tasks is to employ
existing technology-agnostic standardsin the context of each respective task. However, while there exist standardization
efforts such as the Serverless Workflow Specification20 that focus on standardizing function orchestrations by execut-
ing them on dedicated standard-compliant runtimes, no standards are currently adopted neither for executing function
orchestration models directly on available function orchestrators such as AWS step functions, nor for modeling their
respective deployments on these function orchestrators. Therefore, in this paper, we propose a method that enables
deploying and executing modeled function orchestrations directly on chosen existing function orchestrators and is based
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on established standards, namely business process model and notation (BPMN)21 for modeling function orchestrations
and topology and orchestration specification for cloud applications (TOSCA)22 for modeling their deployment in provider-
and technology-agnostic manner. This enables reducing the amount of technology-specific tasks when modeling func-
tion orchestrations and their deployments and fosters the models reuse for different target function orchestrators. As
neither BPMN nor TOSCA are supported by available function orchestrators, we also present how BPMN models can
be automatically transformed into proprietary orchestration formats and combined with TOSCA-compliant deployment
technologies to enable automatically deploying them.

In summary, we present a method for standards-based modeling and deployment of serverless function orchestrations
that enables modeling and automated deployment of function orchestrations in technology-agnostic manner with BPMN
and TOSCA. The main contributions of this work can, hence, be summarized as follows:

(i) We introduce a uniform technology-agnostic function orchestration modeling approach in which function orchestra-
tions are modeled using BPMN. Moreover, we show how these BPMN-based function orchestration models can be
automatically transformed into different target orchestrator formats, for example, Amazon States Language.23 Our
uniform modeling and transformation approach is obtained by analyzing existing serverless function orchestrators
from three major providers (AWS, Azure, and IBM) with respect to the properties of the underlying orchestration
modeling languages.

(ii) We present a TOSCA-based function orchestration deployment modeling approach enabling to declaratively model
deployments of serverless applications that incorporate serverless function orchestrations. This modeling approach
is built on top of our previous work for modeling serverless deployments.24 As TOSCA models can be directly exe-
cuted by standalone TOSCA deployment systems such as OpenTOSCA25 or xOpera,26 there is no need to transform
these models to provider-specific formats as needed for our BPMN function orchestration models.

(iii) We implemented a standards-based function orchestration modeling and deployment toolchainto enable applying our
method in practice. This includes a prototypical implementation of the modeling and transformation tool called
BPMN for function orchestrations (BPMN4FO) for modeling of serverless function orchestrations using BPMN and
an extension of the open source TOSCA-based deployment modeling tool Eclipse Winery.27 In this work, we use the
open source TOSCA deployment automation technology xOpera26 to automatically deploy the produced TOSCA
deployment models.

(iv) We present a case study validating our modeling approaches and the introduced toolchain. More precisely,
we show how we developed and executed the deployment of a serverless application which incorporates an
extract-transform-load (ETL) function orchestration for analyzing the air quality data inspired by an ETL function
orchestration example for AWS step functions available on GitHub.28

The remainder of this article is structured as follows. Section 2 presents a motivating scenario and the research
question, while Section 3 describes the necessary background. Section 4 provides an overview of our method for
standards-based modeling and deployment of serverless function orchestrations. Section 5introduces our uniform
technology-agnostic function orchestration modeling approach, based on BPMN. Section 6 introduces our TOSCA-based
function orchestration deployment modeling approach. Section 7 introduces a toolchain enabling to use our method in
practice, whilst Section 8 presents its actual application in a case study. Section 9 discusses some benefits and limitations
of our method with respect to different portability aspects of function orchestration models. Finally, Sections 10 and 11
discuss related work and draw some concluding remarks, respectively.

2 MOTIVATING SCENARIO AND RESEARCH QUESTION

A typical serverless application is often heterogeneous in terms of components it comprises: a variety of different serverless
offerings such as databases, message queues, logging, and monitoring services could trigger or be accessed by event-driven
FaaS functions.3 Furthermore, as discussed previously, multiple functions might need to be composed into an orchestra-
tion specified by a model, which can be then enacted using function orchestrators such as AWS step functions15 or Azure
durable functions.16 To demonstrate how a serverless function orchestration can be combined with other components in
a serverless application, we introduce a motivating example which describes a function orchestration implementing an
ETL process and a deployment architecture of a serverless application that incorporates such a function orchestration.
Based on this example, we motivate and elaborate on the research contributions of this work.



4 YUSSUPOV et al.

2.1 Modeling function orchestrations

A high-level representation of a sample serverless functions orchestration is shown in Figure 1. In this example,
publicly-available air quality data is extracted, transformed, and stored using FaaS functions and serverless object stor-
age offerings. The example is based on the open source ETL function orchestration for AWS step functions available on
GitHub.28 This function orchestration comprises four FaaS functions (coordinated by a function orchestrator) that inter-
act with serverless object storage buckets. The function get files is responsible for listing the files with air quality data
from the previous day stored in a public object storage bucket open air quality dataset, and splitting them into chunks for
parallel processing. Afterwards, the function orchestrator invokes multiple instances of the function transform datafor
each chunk containing file paths: the files listed in each chunk are downloaded, transformed into an intermediary result,
and stored in the intermediate results bucket. After all intermediary results are received by the function orchestrator, the
function aggregate data is invoked to merge them into a single file, to normalize the file structure, and to store the final
result in the final results bucket. Finally, the function clean up intermediary results is invoked to remove the intermediary
results. After the function orchestration is completed, a single file with the summary about the air quality for the previous
day is available for further usage in the final resultsbucket.

In general, such kinds of function orchestrations can be modeled and executed both on standalone function orchestra-
tors, for example, Apache Openwhisk Composer, and on provider-managed function orchestration services, for example,
AWS step functions. For example, AWS step functions15 can be used to orchestrate functions hosted on AWS Lambda,29

with the orchestration models defined using Amazon states language (ASL).23 The resulting model is a JSON-based
specification describing how functions are to be coordinated as shown in Listing 1.

1 { "StartAt": "GetFiles",
2 "States": {
3 "GetFiles": {..., "Next": "TransformData" },
4 "TransformData": {..., "Next": "AggregateData" },
5 "AggregateData": {..., "Next": "CleanUp" },
6 "CleanUp": {..., "End": true }}
7 }

Listing 1: A simplified example of the function orchestration from Figure 1 modeled for AWS Step Functions in ASL
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F I G U R E 1 A serverless ETL function orchestration for processing open air quality data based on the ETL function orchestration for
AWS step functions available on GitHub28
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On the other hand, many function orchestrators require modeling such function orchestrations in general-purpose
programming languages as so-called orchestrating functions.14 For example, to implement such function orchestration on
Azure functions30 using Azure durable functions,16 modelers can implement and deploy functions enacting the required
function orchestrations in Python, JavaScript, or C#. Likewise, IBM Composer31 can orchestrate functions hosted on
IBM Cloud Functions,32 with orchestrations defined in JavaScript or Python. Listing 2 shows an example modeled in
JavaScript.

1 const composer = require(’@ibm-functions/composer’)
2 module.exports = composer.sequence(
3 composer.action(’ListFiles’, {limits: {timeout: 300000}}),
4 composer.map( composer.action(’TransformData’, {limits: {timeout: 300000}}) ),
5 composer.action(’AggregateData’, {limits: {timeout: 300000}}),
6 composer.action(’CleanUp’, {limits: {timeout: 300000}}) )

Listing 2: A simplified example of the function orchestration from Figure 1 modeled for IBM Composer in JavaScript

As seen from these examples, different function orchestrators use heterogeneous modeling styles and formats, that
is, DSL-based models versus general-purpose function code, which are not compatible with each other and require
understanding orchestration-specific libraries if the orchestration is implemented as function code. Furthermore, the
implementation of similar control flow patterns, for example, sequential or parallel execution, often differs due to this
heterogeneity of capabilities and features. This results in repetitive and error-prone tasks when the same function orches-
tration model needs to be ported from one orchestrator to another or produced for multiple target function orchestrators.
This leads us to Challenge 1:

Challenge 1: The heterogeneity of function orchestrators leads to portability problems that require creating indi-
vidual function orchestration models or function orchestration code for every technology and provider, which
significantly complicates exchanging function orchestrators. Moreover, for creating these models considerable techni-
cal expertise about the modeling language or libraries, respectively, and functionalities of the corresponding function
orchestrator is required. Technology-agnostic standards are currently not supported in the context of function
orchestration, which requires building models for every existing function orchestrator separately.

2.2 Modeling deployments of serverless applications that include function
orchestrations

Although the described function orchestration can be executed independently of other applications, it is also possible
that such function orchestration needs to be employed as a part of a larger serverless application. For example, since the
function orchestration shown in Figure 1 is designed to process data only for the previous day, it is reasonable to trigger
it on a scheduled basis, for example, using a timer event originating from a scheduling service. Furthermore, after the
ETL processing is finished and the final result is ready, a nonorchestrated function might need to be invoked based on the
notification event emitted by the object storage to notify external clients about the result location. Thus, often function
orchestrations are part of larger serverless applications for reasons such as modularization and separation of concerns,
which makes the deployment automation even more complex.

Figure 2 shows an example deployment architecture of a serverless application that combines the ETL func-
tion orchestration described in Section 2.1 with several additional tasks implemented using serverless components
that do not rely on the function orchestrator. Firstly, the deployment of the ETL function orchestration involves
(i) hosting the function orchestration model on the chosen function orchestrator (for example, an ASL model hosted
on AWS step functions) and (ii) hosting the orchestrated functions on a compatible FaaS platform, for example,
AWS Lambda. Next, the function orchestration model is triggered using a user-defined timer rule emitted using
scheduling services such as Amazon EventBridge.33 Moreover, after the final result is stored in the results bucket
hosted on an object storage service such as AWS S3, the standalone notify function is triggered to generate a mes-
sage with the details about the final result and publish it to a message queue created on a provider-managed
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F I G U R E 2 A deployment architecture for a serverless application that combines the ETL function orchestration from Figure 1

messaging service. Consequently, the message queue can be accessed by external clients, for example, a container-
ized application hosted on-premises, to process generated messages. Another external component is the open
air quality dataset itself, since it is public and the respective bucket is not required to be deployed as shown
in Figure 2.

Unsurprisingly, this serverless deployment architecture can be modeled for all major cloud providers using different
deployment automation technologies. While the shown abstract model representing only generic service types such as
“Object Storage”, “FaaS Platform”, or “Function Orchestrator” is basically the same for all providers, the actual deploy-
able models employ provider-specific serverless offerings such as “AWS S3”, “AWS Lambda”, and “AWS step functions”.
Unfortunately, modeling deployments in an executable manner using heterogeneous deployment modeling languages
differs considerably and requires technology-specific knowledge, for example, AWS SAM,34 Serverless Framework,19

Terraform,35 or Ansible18 all offer different, proprietary deployment modeling languages. For example, modeling such a
deployment architecture for AWS using AWS SAM and Ansible would require understanding two different languages and
approaches behind them: the formers requires declarative specification of components and their configurations as shown
in a simplified example in Listing 3, whereas the latter requires defining sequences of tasks responsible for deploying the
underlying components.

1 AWSTemplateFormatVersion: ’2010-09-09’
2 Transform: AWS::Serverless-2016-10-31
3 Resources:
4 GetFiles:
5 Type: AWS::Serverless::Function
6 Properties: ...
7 FunctionOrchestrationModel:
8 Type: AWS::StepFunctions::StateMachine
9 Properties: ...

10 ...

Listing 3: A simplified excerpt from the function orchestration deployment from Figure 2 created using AWS SAM

As a result, modeling and porting such provider- and technology-specific deployment models requires addi-
tional effort, whereas standards such as TOSCA enable abstracting away technology-specific details. However, stan-
dards such as TOSCA are currently not supported for modeling function orchestration deployments, which leads us
to Challenge 2:
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Challenge 2: The heterogeneity of deployment technologies and underlying deployment modeling languages leads
to portability problems that require creating individual serverless application deployment models for every technol-
ogy or provider, respectively, which complicates abstracting such models and porting them to other environments.
Further, creating such models requires considerable technical expertise in the deployment modeling languages and
functionalities of the corresponding deployment automation technology. Provider-agnostic standards are currently
not supported for deploying serverless applications incorporating function orchestrations, which requires to build
separate models for every provider and technology.

2.3 Research question

As can be seen from Sections 2.1 and 2.2, both the function orchestration and the deployment architecture for an appli-
cation incorporating function orchestrations can be modeled in a similar fashion for different providers on an abstract
level. However, when it comes to concrete target technologies, the modeling becomes more complex as each technology
comes with own modeling languages and noticeable technical differences. Deployment automation also varies from tech-
nology to technology, which makes the corresponding deployment models significantly different depending on which
technology is chosen, for example, AWS SAM, Serverless Framework, Terraform, or Ansible.

As a result, such technology- or provider-specific models—for both function orchestrations and their
deployment—are (i) based on proprietary formats that are not portable between the providers. This (ii) results in major
effort if providers need to be exchanged. Moreover, (iii) considerable technical expertise is required which results in
error-prone modeling processes. On the other hand, standards such as BPMN and TOSCA are meant to provide a
technology-agnostic way to represent workflows and application deployments by separating them from actual technolo-
gies used to process a given model, that is, a workflow management system or a deployment automation technology.
Therefore, our research question for this work is as follows:

Research question: “How can the standards BPMN and TOSCA be used to model function orchestrations as well as
their deployments in a provider-agnostic manner while keeping the models portable and automatically executable?”

3 BACKGROUND

In this section, we briefly recall the fundamentals of workflow and deployment modeling focusing on two well-known
standards: BPMN for modeling workflows and TOSCA for modeling application deployments.

3.1 Workflow modeling and BPMN

A business process comprises one or more activities that need to be performed in a specific order to achieve a business
goal.36 Workflows are key enablers for the automation of business processes spanning multiple nonintegrated systems
by providing languages and tools to model, enact, and manage such processes.8 In particular, workflow modeling lan-
guages (WML) such as BPMN21 or BPEL37 enable representing the arrangements of activities in business processes using
a variety of control flow patterns, for example, sequential composition of activities, conditional branches, or parallel
execution.9,38 The resulting models can then be consumed and enacted by workflow management systems (WFMS) which
become responsible for executing modeled business processes. WFMSs are robust and provide multiple advanced func-
tionalities, such as compensation and external events processing, which makes them a better candidate for enacting
modeled business processes compared to custom implementations, for example, implementing a Java application for
orchestrating several scripts. Furthermore, having explicit process models instead of hard-coded integration of required
systems enables flexibly adjusting and reusing existing processes.8,39
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F I G U R E 3 An example BPMN model describing an executable travel booking process41

BPMN21 is a prominent standard for modeling workflows. It provides a semantically-transparent40 graphical nota-
tion for representing control flows that span multiple kinds of activities in business processes. Processes in BPMN are
defined by connecting activities and events using sequence flows, which express the execution ordering relations among
them. Activities are the constructs for expressing units of work in the process, which can be atomic (tasks) or com-
pound (subprocesses). The former are depicted as rounded rectangles with labels indicating the name of the activity. The
latter can be modeled in collapsed and expanded manner: when collapsed, Subprocesses are depicted as regular activi-
ties but with a “+” marker in the bottom of the rounded rectangle. In contrast, expanded Subprocesses reflect the entire
control flow happening within them similar to regular processes. events are modeled as circles and depict an occurrence
of a specific fact during different stages of process execution, for example, start events initiate process instances (drawn
as single-border circles), end eventsmodel the end of process instances (drawn as thick-border circles), and intermediate
eventshappen at any point in-between (drawn as double-border circles). Moreover, gateways enable expressing diver-
gence and convergence of sequence flows. Gateways are represented using diamond shapes with an internal marker that
describes the routing behavior, for example, the “+” marker is used to represent AND gateways for parallel execution of
activities, and “X” marker represents exclusive gateways where a path is chosen based on some condition.42

Figure 3 shows a typical BPMN model for a travel booking process.41 Several activities must be executed to book a
travel, whereas cancelation activities need to be enacted if some of the booking steps were unsuccessful. When a booking
request is received a WFMS starts the execution from the book hotelactivity and calls the next activity based on the result:
if the hotel booking was successful, the WFMS invokes the book car activity, whereas the cancel hotel activity is invoked
otherwise. Conditional gateways here ensure that only one path is taken by the WFMS—the travel is only booked when all
activities are successful. Each activity can be implemented, for example, as standalone web services for processing hotel
or car booking requests. Apart from adding more modeling elements, BPMN 2.0 also defines the operational execution
semantics for all standardized model elements.36 Camunda’s BPMN workflow engine43 is one example of a WFMS that
can execute BPMN 2.0 models.

3.2 Deployment modeling and TOSCA

The manual deployment of applications is inefficient and error-prone. Therefore, deployment automation technologies
such as Terraform and Ansible have been developed to support modeling and automated deployment of applications.44

Essentially, such models enabling deployment automation of applications follow one of two different styles: imperative
and declarative deployment models.45 The former describe a set of ordered operations that must be executed to deploy a
given application, for example, a workflow or a script. The latter instead provide a declarative description of the desired
configuration of an application including such details as the components forming an application, their configuration, as
well as how to interconnect the components. Based on such declarative models, deployment automation technologies
derive the concrete operations that should be enacted to deploy the application and reach its desired configuration. For
instance, Terraform35 and AWS cloud formation17 consume declarative models defined using proprietary deployment
modeling languages. Since all major deployment automation technologies support declarative deployment modeling,44

in the following we focus on declarative deployment models.
TOSCA22 is a standard by OASIS that introduces a vendor-neutral deployment modeling language which enables

modeling application deployments in a declarative and imperative manner. TOSCA provides means to create reusable
and portable models that describe the deployment of an application, which can then be executed using TOSCA-compliant
deployment automation technologies, for example, OpenTOSCA46 or xOpera.26 In TOSCA terms, the structure and



YUSSUPOV et al. 9

WebShop 
(PHP7 Applica�on)

Database 
(MySQL8 DB)

LinuxVM 
(Ubuntu 20.04 VM)

(AWS EC2)

DBMS
(MySQL8 DBMS)

(AWS EC2)

LinuxVM 
(Ubuntu 20.04 VM)

(connectsTo)

(hostedOn) (hostedOn)
DA DAIA connect (…)

runScript(…) IA

create(…) IA

deploy(…) IA deploy(…) IA

create(…) IA

runScript(…) IA

(hostedOn)

(hostedOn)

Webserver
(Apache 2.4)

(hostedOn)

(hostedOn)

F I G U R E 4 A simplified TOSCA topology template based on a LAMP-based application example47

configuration of an application is described as topology template, which specifies the components constituting the applica-
tion, their properties, and the application topology, that is, the details on how components are interconnected. Essentially,
topology templates are directed typed graphs with nodes representing application components and edges defining their
relations. Additionally, modelers are able to introduce type hierarchies in TOSCA, that is, any desired semantics can be
encoded in both nodes and edges, for example, direct calls or event-based invocation of components. In TOSCA terms,
node and relationship types would represent specific component types and connectivity semantics, and can be instanti-
ated as node and relationship templates in the topology template. To enable connecting nodes using a specific relationship,
modelers can introduce a requirement in the source node type which matches with a specific capability on the target node
type. Furthermore, TOSCA enables defining interface operations on node and relationship types, which are executed by
the TOSCA-compliant deployment technologies in a standardized order, for example, to create, configure, and start a
component. The actual deployment logic for a component, or implementation artifacts (IAs) in TOSCA terms, can be pro-
vided in multiple forms, for example, shell scripts or Ansible playbooks, allowing to deploy the same TOSCA model using
different technologies by defining different implementation artifacts for node or relationship types. The actual business
logic, for example, component’s code packaged in a .zip archive, are attached to corresponding node templates as deploy-
ment artifacts (DAs).24 TOSCA supports ontological typing by the possibility to create own node and relationship types
that can be referred to in node templates. Further, application models in TOSCA can be packaged using so-called cloud
service archives (CSARs), which group all the required information including model definitions, file artifacts, and meta-
data listing the contents of the CSAR. CSARs can then be consumed by TOSCA-compliant deployment technologies to
enact the deployment of the application.

As a short introduction to modeling in TOSCA, Figure 4 shows an example e-commerce application topology.24,47

In this topology, a PHP7 application hosted on Apache Web Server interacts with a MySQL8 database, both of which are
hosted on separate Ubuntu 20.04 VM instances provisioned using the AWS EC2 service offering. The resulting TOSCA
topology is a directed typed graph with application components modeled as its nodes (node templates in TOSCA terms).
Each Node Template is related to a specific type, for example, WebShop node template is of type PHP7 Application. The
relationships among components (relationship templates) are modeled as graph edges, whose types in this example are
either hostedOn or connectsTo. The application business logic and the required database schema are attached to the
corresponding Node Templates as deployment artifacts. The actual deployment logic implementations reside in the cor-
responding types as implementation artifacts, enabling required lifecycle operations, for example, the Ubuntu 20.04 VM
node type exposes the runScript() operation which enables executing scripts on the operating system.

4 A METHOD FOR STANDARDS-BASED MODELING AND DEPLOYMENT
OF SERVERLESS FUNCTION ORCHESTRATIONS

Serverless function orchestrations rely at least on two different modeling aspects: (i) modeling orchestrations that describe
control flows spanning multiple functions and (ii) modeling the deployment of serverless applications incorporating such
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function orchestrations. In this section, we present our first contribution of this article—a method for using BPMN and
TOSCA to model the function orchestrations and their deployment in a technology-agnostic manner. Thus, this overview
of our method is a first step for answering our research question described in Section 2.

To tackle the heterogeneity of orchestration modeling languages described by Challenge 1 (see Section 2.1), we abstract
the level of details by employing BPMN as orchestrator-agnostic modeling layer that includes no details about concrete
orchestration modeling languages and other technical details. The resulting BPMN models are intended to provide only
a uniform, orchestrator-agnostic view on modeled function orchestrations without focusing on specifics of a certain
function orchestrator. Further, to tackle the heterogeneity of deployment modeling languages described by Challenge
2 (see Section 2.2), we abstract the level of details by employing TOSCA as technology-agnostic deployment modeling layer
that hides details specific to deployment automation technologies.22 The resulting TOSCA models aim to enable deploy-
ing serverless applications incorporating function orchestrations without references to particular deployment automation
technologies. By combining the BPMN- and TOSCA-based modeling approaches, function orchestrations can be mod-
eled and automatically deployed in a technology-agnostic manner. For simplicity, we describe the overall process as
sequential.

As outlined by Figure 5, our method consists of two main phases. In the technology-agnostic workflow mod-
eling phase, modelers first use BPMN to create generic BPMN-based workflow models using a BPMN-compliant
modeling tool in Step 1. We, therefore, describe how BPMN can be used for modeling function orchestrations
and which restrictions must be regarded to enable the following transformation into orchestrator-specific models
using a common set of BPMN constructs for representing different function orchestration models. We present our
BPMN-based approach, the underlying BPMN constructs, and modeling guidelines in Section 5. In Step 2, using
a dedicated workflow transformation tool, the resulting BPMN model is transformed into a proprietary function
orchestration model for the chosen function orchestrator, for example, ASL model for AWS step functions. Thus,
this tackles the challenge 1 presented in Section 2.1, as the resulting models can be executed automatically by
providers.

In the technology-agnostic deployment modeling phase, modelers use TOSCA to define the technology-agnostic func-
tion orchestration deployment model for a desired serverless application incorporating function orchestration using a
TOSCA-compliant modeling tool in Step 3. We therefore describe how TOSCA can be used for modeling function
orchestration deployments using a common set of TOSCA modeling constructs for representing heterogeneous function
orchestration deployments. In our previous work,24 we showed that TOSCA can be used to represent the event-driven
semantics commonly used in serverless applications, for example, establishing event bindings and describing events in a
technology-agnostic manner. However, our previously introduced approach24 does not support deployment modeling of
function orchestrations. Therefore, we extend our previous approach in this article to include details relevant for modeling
function orchestrations, hence, enabling the deployment of serverless applications incorporating such function orchestra-
tions. We present our TOSCA-based approach, the underlying TOSCA constructs, and modeling guidelines in Section 6.
Next, when the TOSCA model is created, in Step 4the generated function orchestration model needs to be attached as
a TOSCA deployment artifact to enable deploying the orchestration itself. Finally, in Step 5 the CSAR is exported using

F I G U R E 5 A method for standards-based modeling and deployment of serverless function orchestrations
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the TOSCA modeling tool and can then be enacted by a TOSCA-compliant deployment technology of choice. Hence, this
tackles the Challenge 2 presented in Section 2.2 as the resulting deployment models can be executed fully automatically
using TOSCA-compliant deployment technologies.

5 UNIFORM TECHNOLOGY-AGNOSTIC FUNCTION ORCHESTRATION
MODELING

This section presents our uniform technology-agnostic function orchestration modeling approach, which relies on
a set of common BPMN constructs and restrictions that must be followed to enable uniform transformation into
orchestrator-specific formats. The resulting BPMN models can be transformed into proprietary function orchestration
model formats, for example, ASL for AWS step functions. This is achieved by identifying the mappings between BPMN
and function orchestrators-specific modeling languages.

5.1 Overview of the BPMN-based function orchestration modeling approach

To enable the transformation of BPMN-based function orchestrations into proprietary function orchestration formats,
in our approach, we use: (1) a set of technology-agnostic generic function orchestration modeling constructs commonly
encountered in function orchestration models, (2) a set of mappings from these generic function orchestration modeling
constructs to proprietary function orchestrator-specific modeling constructs, and (3) a set of mappings from BPMN to generic
function orchestration modeling constructs. As a result, the BPMN function orchestration models can be transformed into
orchestrator-specific formats if compatible mappings from BPMN 2.0 to target function orchestrator are present, with the
generic function orchestration modeling constructs serving as a “common ground” between these two worlds as shown
in Figure 6. The list of considered generic function orchestration modeling constructs shown in Table 1 is inspired by
well-known workflow control flow patterns by Russel et al.38 and serverless patterns by Taibi et al.,48 which we combined
and adapted to the needs of function orchestration. The high-level idea is to have a generic list of constructs not directly

T A B L E 1 Generic function orchestration modeling constructs based on workflow control flow and serverless patterns38,48

Generic function
orchestration
modeling construct Description

Task The Task construct represents an invocation of a serverless function.

Sequence A Sequence is an ordered arrangement of serverless function invocations executed by a function
orchestrator. After a function invocation is completed, the next one in the sequence is executed.

Conditional branching A Conditional branching construct splits the function orchestration into two or more separate branches,
of which exactly one is taken depending on associated branching conditions.

Parallel branching A Parallel branching construct diverges a function orchestration into multiple branches, which are all
executed concurrently. The next construct after parallel branching is only executed after all branches
have completed.

Fan-out A Fan-out construct takes in an array-like structure of data elements, and for each individual element in
this array a new function instance is invoked for processing this element. The next construct after
Fan-out is only executed after all invoked functions have completed.

Looping A Looping construct repeats execution of a looped construct, for example, invocation of one function or
a sequence of functions, as long as an associated looping condition evaluates to true.

Delay A Delay pauses the execution of the function orchestration for a specified amount of time.

Subworkflow A Subworkflow is a serverless function orchestration invoked from within an enclosing serverless
function orchestration. Within the enclosing function orchestration, subworkflow construct behaves
similar to a regular Task construct.

Error handling Errors may occur during the execution of function orchestration models. The error handling construct
represents the fault handling task(s) that need to be performed in case an error occurs.
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F I G U R E 6 An approach for uniform modeling and transformation of function orchestrations using BPMN

linked to a particular modeling language, but instead representing specific control flow semantics, for example, execution
of one specific task, invocation of a sequence of tasks, execution of tasks in parallel, delaying the execution, and so forth.
For example, a task in general workflow modeling represents an action to be done, whereas in the function orchestration
context we require tasks for representing serverless function calls. Hence, as shown in Table 1, we use the taskgeneric
function orchestration modeling construct as a way to represent an invocation of one function in a function orchestration
model independently of specific function orchestrators. Likewise, the sequencegeneric function orchestration modeling
construct shown in Table 1 represents a sequential execution of one or more functions independently of specific function
orchestrators. Another example orchestration construct is the fan-out, which is inspired by the idea of the fan-out pat-
tern,48 but implemented in the context of a function orchestration. We provide detailed descriptions for each generic
function orchestration modeling construct in Table 1 and use those constructs as a language-independent way to analyze
function orchestration modeling languages.

Having specified a set of generic function orchestration modeling constructs, to enable our BPMN-based model-
ing and transformation approach, we further need to obtain two sets of mappings: (1) from BPMN to generic function
orchestration modeling constructs and (2) from generic function orchestration modeling constructs to proprietary function
orchestrator-specific modeling constructs as shown in Figure 6. To analyze the mappings from generic to proprietary model-
ing constructs, we (i) conducted a review of the current capabilities of three major function orchestrators and documented
their ways of implementing the generic function orchestration modeling constructs shown in Table 1. We present this
technology review in Section 5.2 also including example snippets for each analyzed function orchestrator (simplified due
to space constraints). Next, we perform the same analysis to identify mappings from BPMN 2.0 to the Generic Function
Orchestration Modeling Constructs shown in Table 1. This review is presented in Section 5.3, together with the combina-
tion of both sets of identified mappings to show how function orchestration models created in BPMN can be transformed
into the three analyzed function orchestration model formats.

5.2 A review of serverless function orchestrators

In this section, we identify the mappings between the generic function orchestration modeling constructs shown
in Table 1 and proprietary function orchestrator-specific modeling constructs (see Figure 6) for three prominent func-
tion orchestrators, namely AWS step functions,15 Azure durable functions,16 and Apache Openwhisk Composer.10 To
achieve this, we conduct a review of these function orchestrators to analyze which generic function orchestration mod-
eling constructs these function orchestrators commonly support for deriving a uniform BPMN-based modeling approach
compatible with these function orchestrators. AWS step functions and Azure durable functions are selected since they
represent function orchestrators offered by the two largest cloud providers by market revenues.49 Openwhisk Composer
has been selected as a prominent installable function orchestrator, whilst still being used by IBM’s commercial cloud
offering, hence, making our approach also compatible with the proprietary function orchestrator from IBM, namely IBM
Composer.31

5.2.1 Function orchestration in AWS step functions

AWS enables expressing function orchestrations comprising multiple AWS Lambda functions (and other AWS services)
through AWS step functions. Function orchestrations are modeled as finite state machines, declared with the Amazon
state language (ASL).23 The inputs and outputs of the entire state machine, as well as of its constituent states, are modeled
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in JSON.15 The states of a state machine are all assigned with name and type, which determine their role in directing
the control flow in the modeled function orchestration. We hereafter analyze whether/how the different types of states
supported by AWS step functions enable realizing the generic function orchestration modeling constructs in Table 1.

Task. The generic function orchestration modeling construct task is expressed as the ASL Task state type, within
which some work is to be executed.23 The unit of work to be executed can be (i) an AWS Lambda function, (ii) a sup-
ported AWS service, or (iii) a worker running anywhere and implementing a special API.15 For AWS-specific services, the
Amazon resource name (ARN) needs to be specified, for example, ARN of the AWS Lambda function to be executed. It
also constitutes the most relevant case to this work, as the Task type in ASL actually corresponds to executing a serverless
function deployed on AWS.

Sequence. The generic function orchestration modeling construct sequence is realized by connecting each nonter-
minal state in ASL models, for example, connecting one ASL Task state to a subsequent ASL Task state. This is done
by exploiting the Next property available in ASL states, which allows to put two states in a sequence, also prescribing
that the JSON output produced by a state is passed as input to the subsequent state23—a simplified example is shown
in Listing 4.

1 { "StartAt": "F1", "States":{"F1":{ ..., "Next": "F2"},..., "FX":{ ..., "End": true}}}

Listing 4: Sequence modeled in AWS Step Functions executing functions from F1 to FX

Conditional branching. The generic function orchestration modeling construct conditional branching is realized
by ASL Choice state type.23 By using this ASL state type, the execution flow can be directed to one branch from a set
of possible branches, depending on given conditions. Each condition is associated with a subsequent state, which is the
starting one of the branch to execute when the condition is satisfied. Should no defined condition be met, a Default
branch is executed. An example of the conditional branching realization for AWS step functions is shown in Listing 5.

1 "myCond": {"Type": "Choice",
2 "Choices": [{"Variable": "$.x","BooleanEquals": true,"Next": "true -> F1"}],
3 "Default": "false -> F2" }

Listing 5: Conditional Branching inAWS Step Functions executing function F1 if the variable x is true and function
F2 otherwise

Parallel branching. The generic function orchestration modeling construct parallel branching is realized by ASL
Parallel state type, which allows executing multiple independent branches in parallel.23 The input of such state is
copied and passed to every parallel branch. The branches are then defined by their own state machines, possibly different
one from another, and declared in the Branches array. After the execution, the outputs of all parallel branches are
collected into an array of results and passed to the state following the Parallel state. A simple example of the parallel
branching realization for AWS step functions is shown in Listing 6.

1 {"myParallel": {
2 "Type": "Parallel", ...,
3 "Branches": [
4 {"StartAt": "F1", "States": {"F1": {"Type": "Task", ..., "End": true }}},
5 {"StartAt": "F2", "States": {"F2": {"Type": "Task", ..., "End": true }}}]}

Listing 6: Parallel Branching modeled in AWS Step Functions executing functions F1 and F2 concurrently

Fan-out. The generic function orchestration modeling construct fan-out can be implemented through the ASL Map
state type.23 One such state takes an input array and uses an iterator to process each element of the input array, with the
iterator being itself a function orchestration defined throughout a state machine. Once all elements of the input array
are processed, the results are collected into an array and passed to the state following the ASL Map state—a simplified
example is shown in Listing 7.
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1 {"myFanout": {
2 "Type": "Map",
3 "ItemsPath": "$.inputElements",
4 "Next": "ProcessResults",
5 "Iterator": {"StartAt": "F1","States": {"F1": {"Type": "Task", ...,"End": true}} }}

Listing 7: Fan-out modeled in AWS Step Functions executing function F1 for each item in the inputElements list

Looping. AWS step functions does not directly feature a way of concisely expressing the generic function orchestration
modeling construct looping. The ASL Choice state type can anyhow be used to manually construct loops: the state
transitions to and from the looped unit of work can be arranged into a cycle, with the loop conditions evaluated in the
ASL Choicestate.

Delay. The generic function orchestration modeling construct delay can be implemented through the ASL Wait
state type,23 which allows delaying the execution flow for a given amount of time.

Subworkflow. The generic function orchestration modeling construct subworkflow is realized as a separate state
machine started from within a running state machine.23 The ASL Task state type can indeed be used for invoking it, by
just indicating the ARN of the step functions state machine to be executed. The invocation can be synchronous, hence
resulting in the main workflow waiting for the completion of the subworkflow, or asynchronous. In the latter case, a
callback where the result of the subworkflow is expected can also be provided.

Error handling. The ASL Task, ASL Parallel, and ASL Map may specify the Retry and Catchproperties.23

Retry defines the retry behavior for a state for each error type, for example, maximum attempts or waiting interval
between attempts. Catch instead specifies the state reached when no retries are available anymore, for a given error type.
Execution flow may thus be redirected to any other state within the current state machine.

5.2.2 Function orchestration in Azure durable functions

Azure durable functions enables modeling function orchestrations using the so-called orchestrating functions imple-
mented in any of the programming languages supported by durable functions, that is, C#, JavaScript, or Python.16

Essentially, an orchestrating function is a specific type of function that can be deployed to Azure functions to enable coor-
dinating other “orchestrated types” of functions. In the following, we analyze how the generic function orchestration
modeling constructs described in Table 1 can be realized in Azure durable functions using JavaScript-based examples.

Task. The generic function orchestration modeling construct task is realized by means of so-called Activ-
ity Functions. An Activity Function represents a basic unit of work within durable functions. Essentially,
it is a specific type of functions deployed to Azure Functions and orchestrated using the Azure durable func-
tions function orchestrator. They can be invoked by passing the Activity Function to run to the instruction
context.df.callActivity.16

Sequence. The generic function orchestration modeling construct sequence is realized by chaining one or more
Activity Functions in the function orchestration. For instance, two Activity Function calls can be chained
one after the other, while using yield to await and store the output of the first call, which is then to be used as
input for the subsequent one.16 A simple example of the sequence realization for Azure durable functions is shown
in Listing 8.

1 const df = require("durable-functions")
2 module.exports = df.orchestrator(function* (context) {
3 const elements = yield context.df.callActivity("F1")
4 const results = yield context.df.callActivity("F2", elements)
5 return results });

Listing 8: Sequence modeled in Azure Durable Functions executing functions F1 and F2 with the results of F1 passed
to F2
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Conditional branching. The generic function orchestration modeling construct conditional branching is realized by
using the conventional if-else control flow construct available in any programming language.16 Using these standard
constructs enables realizing the conditional branches and associated conditions by means of if, else if, and else
blocks.

Parallel branching. The generic function orchestration modeling construct parallel branching is realized by
asynchronously calling multiple Activity Functions (or subworkflows, modeling of which is presented later
in this section) representing separate branches without using the yield keyword to avoid waiting for the results of
each branch.16 Instead, the task descriptors returned for each invoked branch can later be used to check whether
this branch is completed and access to its results. Waiting for completion of all parallel branches and retrieving
their results can be achieved by referring to their task descriptors, or by using the yield con-
text.df.Task.all(...) instruction which awaits the results of all tasks in an input set—a simplified example is
shown in Listing 9.

1 const df = require("durable-functions")
2 module.exports = df.orchestrator(function* (context) {
3 const elements = context.df.getInput().elements
4 const tasks = []
5 tasks.push(context.df.callActivity("F1", elements))
6 tasks.push(context.df.callActivity("F2", elements))
7 const results = yield context.df.Task.all(tasks)
8 return results });

Listing 9: Parallel Branching modeled in Azure Durable Functions executing functions F1 and F2 in parallel

Fan-out. The generic function orchestration modeling construct fan-out is realized similar to the parallel branching,
with the only difference that the same branch is called multiple times for each element in the input data array. This is
realized by exploiting conventional iterative control flow constructs to invoking the same branch (activity function or
subworkflow) for different elements of the input array. The completion of all tasks in the realized fan-out is accomplished
in the very same way as that for the parallel branching of tasks.16

Looping. As function orchestrations are implemented with imperative programming languages, the generic function
orchestration modeling construct looping is natively supported by such languages. They indeed all feature, for example,
for and while loops to repeat the same tasks until given conditions are met.16

Delay. The generic function orchestration modeling construct delay in Azure durable functions is implemented using
Durable Timers, which enable delaying execution of tasks in a function orchestration by a given amount of time, or
until a given time is reached.16

Subworkflow. The generic function orchestration modeling construct subworkflow is realized by calling separately
defined and deployed Orchestrating Functions using thecontext.df.callSubOrchestrator(...) instruction.16

These suborchestrations can be invoked synchronously, if yield is used to await for their results, or asynchronously. In
the latter case, the task descriptor returned after the invocation of suborchestrations can later be used to check whether
it is completed and access its results—a simplified example is shown in Listing 10.

1 const df = require("durable-functions")
2 module.exports = df.orchestrator(function* (context) {
3 const input = context.df.getInput()
4 const result = context.df.callSubOrchestrator("mySubOrchestration", input)
5 return result });

Listing 10: Sub-Workflow modeled in Azure Durable Functions executing a sub-irchestration called
mySubOrchestration

Error handling. Error handling can be realized by exploiting the constructs natively featured by the used program-
ming language, for example, try-catch in JavaScript.16 Automated retry policies can also be configured when invoking
activity functions or subworflows. Such policies allow setting, for example, the maximum number of attempts or the
waiting interval between attempts.
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5.2.3 Function Orchestration in Apache Openwhisk Composer

Apache Openwhisk enables deploying serverless functions as Openwhisk actions.12 Such actions can then be composed in
function orchestrations by exploiting the Apache Openwhisk Composer,10 which is also used in the proprietary function
orchestrator IBM Composer31 for orchestrating functions hosted on IBM Cloud Functions FaaS platform.32 For both,
Openwhisk Composer and IBM Composer, function orchestrations can be defined as JavaScript orchestrating functions
that need to be hosted on Apache Openwshik or IBM Cloud Functions, respectively. The basic building blocks for such
orchestrating functions are called combinators, which represent common control flow constructs and are used to compose
Openwhisk Actions.

Task. The generic function orchestration modeling construct task is realized using an Openwhisk Action, which
represents the basic unit of work.12 AnAction can be invoked using thecomposer.action combinator in Openwhisk
Composer.10

Sequence. The generic function orchestration modeling construct sequence is realized using the com-
poser.sequence combinator, which enables chaining Actions and other combinators provided by Openwhisk
Composer.10 The composer.sequence’s input is passed to the first element of the sequence, which processes it and
produces an output, which is in turn passed as input to the second element, and so on. The output produced by the last
element in the composer.sequence constitutes the output of the composer.sequence itself. Listing 11 shows a
simple Sequence executing functions named “F1” and “F2”, which are assumed to be deployed on the Apache Openwhisk
FaaS platform.

1 const composer = require(’openwhisk-composer’)
2 module.exports = composer.sequence(’F1’, ’F2’);

Listing 11: Sequence modeled for Apache Openwhisk Composer sequentially executing functions F1 and F2

conditional branching. The generic function orchestration modeling construct conditional branching is realized by
the composer.if(condition, trueBranch, falseBranch)combinator, which takes as input a condition and
two alternative branches (single actions or subworkflows), one to be executed if the condition evaluates to true and the
other to be executed otherwise.10 The condition itself is a composition of Actions, which returns a JSON object with
a field named value. If this value is set to true, the trueBranch is executed, whereas the falseBranch is executed
otherwise—as shown in a simple example in Listing 12.

1 const composer = require(’openwhisk-composer’)
2 module.exports = composer.if(
3 composer.action(’MyCond’, {action:function(params){...}}),
4 ’F1’, ’F2’);

Listing 12: Conditional Branching modeled for Apache Openwhisk Composer executing function F1 or F2 depending
on the result returned by the MyCondition function

Parallel branching. The generic function orchestration modeling construct parallel branching is realized using
the composer.parallel(branch1, branch2, ...) combinator, which enables running multiple branches (for
example, single actions or subworkflows) concurrently.10 Each branch receives a copy of the combinator’s input, and the
outputs generated by all parallel branches are collected into an array (a simple example is shown in Listing 13).

1 const composer = require(’openwhisk-composer’)
2 module.exports = composer.sequence(
3 composer.parallel(’F1’,’F2’),
4 composer.action(’Sum’, {action: function(params) {
5 return params.value.map(x =>x.value).reduce((a, b) => a + b, 0) }}))

Listing 13: Parallel Branching modeled for Apache Openwhisk Composer executing functions F1 and F2 in parallel
and then summing up their results using the Sum function
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Fan-out. The generic function orchestration modeling construct fan-out is realized using thecomposer.map, which
allows executing the same combination of Actions in parallel for different inputs.10 In particular, given a JSON object
containing an array in the field value, a different instance of the composition specified in composer.map is called to
process each different element in the value array. The outputs are then collected in an array and stored in the value
field of the JSON return object.

Looping. The generic function orchestration modeling construct looping is realized by exploiting the com-
poser.while(condition, bodyComposition) combinator, which takes the guard condition and bodyCompo-
sition to repeat at each iteration. Similarly to Conditional Branching, the condition itself is a composition of
Actions, which returns a JSON object with a field named value. As long as the value field in such object evaluates to
true, the bodyComposition is executed repeatedly.10

Delay. Openwhisk Composer currently does not provide a combinator to represent the generic function orchestration
modeling construct delay, which could enable executing a composition of Actions. The desired delay can anyhow be
realized by defining a helper function blocking the execution until a given period of time has expired, which however
loads the CPU during the delay.

Subworkflow. The generic function orchestration modeling construct subworkflow is just any composition of
Actions modeled as function orchestration and referenced from another function orchestration. A function orchestra-
tion created with Openwhisk Composer is treated as an Action, hence meaning that a subworkflow is fundamentally an
Action itself, and that its invocation is identical to that of any other Action in a composition. For example, if we created
and deployed a function orchestration named MyOrchestration1, we can invoke it from another function orchestration
using the same combinator as for regular Actions, that is, composer.action(‘MyOrchestration1’).10

Error handling. If an error occurs in a function orchestration, an error object is returned as result, which causes the
containing composition to fail.10 The composer.try combinator enables realizing a try-catch construct: if the executed
composition of Actions returns an error object, an error handler is invoked on such error objects. If the error handler does
not return another error object, then the composition is not aborted and continues with the handler’s output. Unfortu-
nately, the composer.try combinator does not work on parallel executions, as the outputs (including error objects) of
the parallel branches are collected in an array. In this case, the resulting array can be checked manually for error objects
after all parallel branches are terminated.

5.2.4 Summary

The analyzed function orchestrators provide native support for the majority of generic function orchestration mod-
eling constructs in Table 1. The modeling constructs that do not have a 1:1 mapping, for example, looping for
AWS step functions or delay for Openwhisk Composer, can nevertheless be implemented using workarounds,
hence enabling the uniform transformation from BPMN to target orchestration formats for all analyzed generic
function orchestration modeling constructs. Table 2summarizes the mapping for each generic function orchestra-
tion modeling construct to its corresponding orchestrator-specific alternative. The support differs from function
orchestrator to function orchestrator, with most differences and limitations occurring on the level of distinct con-
structs. For instance, while Azure durable functions and Apache Openwhisk Composer natively feature looping
constructs, AWS step functions does not have a direct mapping for it. Another example comes from the parallel
branching and fan-out limitations in Azure durable functions, due to which the parallel branches must be exe-
cuted as subworkflows. The same limitation instead does not apply to AWS step functions and Apache Openwhisk
Composer.

5.3 Modeling serverless function orchestrations with BPMN

As described in Section 5.1, after having identified the mappings between the generic function orchestration model-
ing constructs described in Table 1 and the Proprietary Function Orchestrator-specific Modeling Constructs, the similar
process has to be repeated for BPMN Modeling Constructs. We hereafter introduce our uniform modeling of serverless
function orchestrations in BPMN, which enables the specification of serverless function orchestrations compatible with
the three orchestrators analyzed in Section 5.2. BPMN 2.0 is chosen as the basis for our uniform modeling of serverless
function orchestrations for two main reasons, namely: (i) BPMN 2.0 is the well-established standard for modeling business
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processes, (ii) it provides a machine-readable workflow modeling language supporting the generic function orchestration
modeling constructs common to the analyzed orchestrators, and (iii) it offers a visual notation that facilitates explaining
produced models to nontechnical personnel.

5.3.1 BPMN construct mapping

Our BPMN-based uniform modeling aims at fulfilling the goals outlined in Sections 1 and 2, whilst at the same time rec-
onciling the differences and limitations of the analyzed function orchestrators. To achieve this, as shown in Figure 6, the
BPMN Modeling Constructs are analyzed and mapped to the suitable generic function orchestration modeling constructs
from Table 2. Essentially, this yields the subset of BPMN constructs that can be mapped fully and equally among the
supported function orchestrators, which means that any serverless function orchestration model defined in this BPMN
subset can be transformed into any orchestrator-specific model that can actually run on the corresponding orchestrator.
At the same time, a drawback of this design decision is that unique capabilities of certain orchestrators cannot be used
due to missing mappings for orchestrators lacking such capabilities (Section 5.2). This is, however, not preventing to use
such orchestrator-specific features, since the generated function orchestration models can be later enhanced to exploit
such features.

As a first step for modeling function orchestrations in BPMN, we need to identify the initial BPMN constructs
which can be used to represent them. Unsurprisingly, the basis is given by the use of BPMN Process to rep-
resent one modeled serverless function orchestration and it is specified in its own model. Any number of BPMN
Sub-Processes can be included, each expressed in their own separate model, which are then referenced and
invoked from within the main BPMN workflow. A BPMN Start Eventand a BPMN End Event mark the begin-
ning and end of a modeled serverless function orchestration, respectively. There must be one BPMN Start Event
and BPMN End Event per each BPMN Processor BPMN Sub-Process, so that the beginning and end of a
modeled function orchestration can be identified unambiguously. By themselves, such BPMN Start Event and
BPMN End Event are not mapped to any orchestrator-specific constructs. The BPMN Start Event indeed just
marks its subsequent BPMN Activity, BPMN Event, or BPMN Gateway as the beginning of a modeled function
orchestration, to which the inputs are passed. The BPMN End Event instead marks its preceding BPMN element
as the end of a modeled function orchestration, whose outputs are the outputs of the orchestration itself. As the

T A B L E 2 Identified mappings from generic to proprietary function orchestrator-specific modeling constructs
Generic function
orchestration
modeling construct

AWS
step functions

Azure
durable functions Openwhisk Composer

Task ASL task state type Activity function composer.action
combinator

Sequence Next property in states Subsequent synchronous
invocation of activities

composer.sequence
combinator

Conditional branching ASL choice state type if-else composer.if combinator

Parallel branching ASL parallel state type Asynchronous invocation of
subworkflows

composer.parallel
combinator

Fan-out ASL map state type Repeated and asynchronous
invocation of a subworkflow

composer.map
combinator

Looping Explicit loops with conditions
via ASL Choice1

while composer.while
combinator

Delay ASL wait state type Durable timer Custom delay functions1

Subworkflow Invocation of AWS step
function workflow

Invocation of durable function
workflow

composer.action
combinator

Error handling Catch property in states try-catch composer.try combinator

Note: No native modeling construct is present—requires workaround realization.



YUSSUPOV et al. 19

F I G U R E 7 Mapping the sequence generic function orchestration modeling construct to BPMN

F I G U R E 8 Mapping the conditional branching generic function orchestration modeling construct to BPMN

next step, we present the details on our uniform modeling in BPMN for serverless function orchestrations by dis-
cussing the mappings from BPMN Modeling Constructs to generic function orchestration modeling constructs in
Table 1 separately. An actual use of our uniform modeling approach is then shown in the case study presented
in Section 8.

Tasks.BPMN Tasks can be used to represent the generic function orchestration modeling construct taskfrom Table 2.
Since it represents the invocation of a serverless function, the BPMN Task has a mandatory name attribute
where to specify the name of the function to invoke. It must also have exactly one incoming and one
outgoing BPMN Sequence Flow to enable placing the function call directly in the function orchestration
models.

For AWS step functions, the BPMN Task modeling a function call is mapped directly to a ASL Taskstate
type(Section 5.2.1). In Azure durable functions and Openwhisk Composer, instead, the same BPMN Task is mapped to
an Activity Function (Section 5.2.2) or to an Action combinator (Section 5.2.3), respectively. In all three cases,
the mapping is such that the function with the specified name gets invoked.

Sequences. BPMN Sequence Flows enable connecting various BPMN activities, events, or gateways together to
form a sequence (Figure 7), hence, when combined withBPMN Tasks they enable modeling the generic function orches-
tration modeling construct sequence from Table 2. The initial input is passed to the first element in the sequence, which
processes it and passes the produced output to the second element, and so on.

A direct mapping forBPMN Sequence Flows exists for AWS step functions and Openwhisk Composer, namely, the
Next property of states in AWS Step Function (Section 5.2.1) and the composer.sequence combinator in Openwhisk
Composer (Section 5.2.3). In the case of Azure durable functions, the BPMN Sequence Flow is realized by sequen-
tially invoking functions, by also using yield to wait for the outcomes of each function before invoking the subsequent
one (Section 5.2.2).

Conditional branching. BPMN Exclusive Gateways enable expressing the generic function orchestration
modeling construct conditional branching from Table 2. A BPMN Exclusive Gatewayindeed enables executing only
one among a set of branches, based on conditions associated with each branch (Figure 8). Conditions must be expressed
in a uniform way and so that they can be translated to conditions supported by the analyzed function orchestrators.
We hence defined a uniform modeling for conditions as well, which comes as an XSD schema alongside the currently
available prototype implementation (which we later present in Section 7.2).

A direct mapping for BPMN Exclusive Gateways exists in all the three analyzed function orchestrators. In AWS
step functions, the BPMN Exclusive Gateway can be realized through ASL Choice state type (Section 5.2.1).
In Azure durable functions and Openwhisk Composer, instead, it can be realized through native if-else con-
structs (Section 5.2.2) or through the composer.ifcombinator (Section 5.2.3), respectively.
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F I G U R E 9 Mapping the parallel branching generic function orchestration modeling construct to BPMN

F I G U R E 10 Mapping the fan-out generic function orchestration modeling construct to BPMN

Parallel branching. BPMN Parallel Gateways natively enable executing multiple branches in paral-
lel (Figure 9), hence realizing the generic function orchestration modeling construct parallel branching from Table 2. Each
branch independently operates on its own copy of the input data arriving at the opening BPMN Parallel Gateway.
The results computed by all branches are collected together when the flow reaches the closing Parallel Gateway,
and passed to the next workflow step.

For the parallel branching realized using BPMN Parallel Gateways, AWS step functions and Openwhisk Com-
poser have direct mappings, namely,ASL Parallel state type (Section 5.2.1) and thecomposer.parallel combina-
tor (Section 5.2.3), respectively. The parallel branches can then be any combination of the generic function orchestration
modeling constructs, which will be mapped to their own corresponding Proprietary Function Orchestrator-specific Mod-
eling Constructs. The same does not hold for Azure durable functions, as the BPMN Parallel Gateway structure is
mapped to a sequence of asynchronously invoked activities, for example, single Activity Functions. The comple-
tion of all parallel tasks and retrieving their results is then achieved by using the yield instruction for awaiting the
results of all tasks in a set. Hence, for ensuring the portability of a specified function orchestration to any of the three
analyzed function orchestrators, the length of modeled parallel branches should be equal to one, with each branch being
either a single BPMN Task or a BPMN Sub-Process that describes a separate function orchestration (as shown later
in this section).

Fan-out. BPMN Multi-Instance Markers express multiple instances of a marked activity running in paral-
lel (Figure 10), which enables realizing the generic function orchestration modeling construct fan-outfrom Table 2. Each
instance operates on different elements from the original input: assuming the input to be in an array-like structure, the
elements of the array are iterated and each element is processed by a different instance. When all parallel instances
complete processing their elements, the results are collected into an array of results and passed to the next function
orchestration step.

AWS step functions and Openwhisk Composer have direct mappings for the fan-out realized
by BPMN Multi-Instance Markers, namely, ASL Map state type (Section 5.2.1) and the com-
poser.mapcombinator (Section 5.2.3), respectively. In Azure durable functions, instead, the fan-out is realized by
asynchronously invoking multiple instances of the fan-out activity in parallel, with such activity being either a single
Activity Function or separate function orchestration (we discuss the modeling of the generic function orchestra-
tion modeling construct subworkflow later in this section). The completion of all parallelized tasks and retrieving their
results is then achieved by exploiting the yield instruction for collecting the results of all tasks in a set. Notice that
the limitations in realizing the fan-out in Azure durable functions are quite similar to those for the parallel branch-
ing discussed above. Similarly, it also holds that, for ensuring the portability of a specified function orchestration to
any of the three analyzed function orchestrators, the fanned-out activity should be either a single BPMN Task or a
BPMN Sub-Process that describes a separate function orchestration (see the discussion on subworkflow later in
this section).
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Looping. BPMN Loop Marker marks a BPMN activity to be repeated as long as a given condition is satis-
fied (Figure 11), thus, enabling to use it for modeling the generic function orchestration modeling construct looping
from Table 2. The loop condition must be supplied in an additional loopConditionattribute of the marked activity
(with the same uniform condition structure as for conditional branching). The first iteration’s input is the original input,
whereas the input for each other iteration is the output of the previous iteration. The output of the last iteration is then
passed to the next activity in the function orchestration.

Azure durable functions and Openwhisk Composer have direct mappings for the looping construct realized by BPMN
Loop Markers, namely, while loops (Section 5.2.2) and the composer.whilecombinator (Section 5.2.3), respec-
tively. Instead, given that AWS step functions does not directly feature a way of concisely expressing loops (Section 5.2.1),
ASL Choice state type is used to realize loops: the state transitions to and from the looped unit of work can be arranged
into a cycle, with the loop conditions being evaluated in ASL Choice state type.

Delay. BPMN Timer Intermediate Catching Events with one incoming and one outgoing BPMN
Sequence Flow (Figure 12) are used for modeling the generic function orchestration modeling construct delay
from Table 2. The BPMN Timer Intermediate Catching Event must include the milliseconds attribute,
which specifies how long the running function orchestration should delay before proceeding with the subsequent
orchestration step.

AWS step functions and Azure durable functions have a direct mapping forBPMN Timer Intermediate Catch-
ing Events, namely, ASL wait state type (Section 5.2.1) and Durable Timers (Section 5.2.2), respectively.
Openwhisk Composer instead does not feature any mapping for the delay realized by BPMN Timer Intermediate
Catching Events (Section 5.2.3), which can anyhow be realized via helper functions blocking the execution for a
given period of time.

Subworkflow. BPMN Subprocesses enable representing the generic function orchestration modeling construct
subworkflow from Table 2. Each BPMN Subprocess represents a self-contained function orchestration with its own
Start Event and End Event (Figure 13). A BPMN Subprocess is similar to the BPMN Task concerning its place-
ment into a function orchestration and its additional attributes, for example, it has one incoming and one outgoing BPMN
Sequence Flow, a name attribute to specify the name of the function orchestration to be invoked as subworkflow, and
it can be marked with BPMN Multiinstance Marker and BPMN Loop Marker to run multiple instances of the
subworkflow or to repeat it until a given condition is satisfied.

When porting a modeled function orchestration to any of the analyzed orchestrators, each subworkflow is transformed
in its own separate orchestrator-specific function orchestration model, which is then invoked by the orchestrator-specific
main function orchestration. This is done in AWS step functions by mapping the BPMN Subprocess to the ASL Task
state type, which actually performs the invocation of the Step Function realizing the function orchestration in a sub-
workflow (Section 5.2.1). In Azure durable functions, a similar solution is obtained by calling the subworkflow with the
callSubOrchestrator instruction (Section 5.2.2). Finally, in Openwhisk Composer, aBPMN Sub-Process directly
maps to an Openwhisk Action (Section 5.2.3).

Error handling. BPMN Error Boundary Events are applied to BPMN Tasks or Sub-Processesto catch
errors they may raise, thus, enabling to model error handling The BPMN Error Boundary Event has one outgoing
BPMN Sequence Flow, which leads to the branch executed if an error occurs (Figure 14). BPMN Error Boundary
Events handling possible errors have direct mappings in all the three analyzed orchestrators. These are ASL Catch

F I G U R E 11 Mapping the looping generic function orchestration modeling construct to BPMN

F I G U R E 12 Mapping the delay generic function orchestration modeling construct to BPMN
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F I G U R E 13 Mapping the subworkflow generic function orchestration modeling construct to BPMN

F I G U R E 14 Mapping the error handling generic function orchestration modeling construct to BPMN

state types for AWS step functions (Section 5.2.1), try-catch blocks for Azure durable functions (Section 5.2.2), and
composer.try combinators for Openwhisk Composer (Section 5.2.3).

5.3.2 BPMN modeling restrictions for portable function orchestrations

Our uniform modeling for serverless function orchestration aims to be portable and to support the same common subset
of capabilities of the function orchestrators as this enables transforming any modeled function orchestration to any sup-
ported orchestrator-specific model format. For this purpose, the mappings from the previous section are discussed in more
detail and restricted to express only common capabilities that can be transformed to all proprietary formats discussed in
this article.

BPMN process requirements. One requirement for the BPMN Process is that a BPMN End Eventmarks the
end of the modeled function orchestration and occurs only once—this enables unambiguously generating target function
orchestration models. An exception to this is when using BPMN Error Boudary Events, as error handling branches
starting from such events may specify additional BPMN End Event to denote their termination.

For transforming a specified workflow to AWS step functions, the BPMN Process might include optional attributes
awsAccountId and awsAccountRegion, which are needed to derive valid ARNs to the corresponding AWS lambda
functions modeled as namedBPMN Tasks. These attributes can also be left blank—and the model for AWS step functions
will then be generated without function references.

BPMN element input and output. The input and output of states and function orchestrations in AWS step func-
tions is given as JSON objects Section 5.2.1. We apply this concept also to our uniform modeling of serverless function
orchestrations, assuming the data moving along the BPMN Sequence Flows to be JSON objects. This is only a minor
restriction given that Azure durable functions and Openwhisk Composer natively support the input/output of JSON
objects (Sections 5.2.2 and 5.2.3).

BPMN parallel gateway and multiinstance marker requirements. Handling errors that occur in parallel
branches is not equally supported among the analyzed function orchestrators. AWS step functions and Azure durable
functions allow handling errors occurring in parallel branches and fanned-out activities (Sections 5.2.1 and 5.2.2).
Openwhisk Composer instead does not allow directly handling errors occurring in parallel/fanned-out activities run
through the composer.parallel or comoposer.mapcombinators (Section 5.2.3). For this reason, to ensure the
porting to all analyzed function orchestrators, no error handling in parallel can be specified, namely, BPMN Error
Boundary Events must not be attached to activities running as parallel branches nor to activities marked with BPMN
Multi-Instance Markers.

Openwhisk Composer imposes requirements on the input/output of parallel branches specified with BPMN Paral-
lel Gateways and on activities fanned-out with BPMN Multi-Instance Markers. In particular, their output is
assumed to be collected in an array and placed in the value field of a JSON object. The latter is the format prescribed
by Openwhisk Composer’s composer.parallel and composer.map combinators. The same format is expected as
input for activities marked with Multi-Instance Markers, since the composer.map combinator expects an input
structured according to such format.
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BPMN markers requirements. The use of BPMN Multi-Instance Marker and BPMN Loop Marker is lim-
ited within the use of our uniform modeling. Indeed, to enable unambiguously generating target function orchestration
models, only one marker can be applied to the same BPMN element at a time, for example, if a BPMN Multi-Instance
Marker is applied to a BPMN Task, a BPMN Loop Marker can no longer be applied to the same BPMN Task.
Although loops in BPMN can also be modeled, for example, using BPMN Tasks and BPMN Conditional Gate-
ways, in our uniform modeling and transformation approach we only support the BPMN Loop Marker for modeling
the generic function orchestration modeling construct looping.

6 TOSCA-BASED FUNCTION ORCHESTRATION DEPLOYMENT
MODELING

Similar to function orchestration modeling, deployment modeling for function orchestrations requires considerable
technology-specific expertise and is hard to accomplish in a portable manner as described by Challenge 2 in Section 2.2.
Therefore, in this section, we present our TOSCA-based approach for modeling the deployment of serverless function
orchestrations. In our approach, we aim to cover deployment modeling of function orchestrations as independent appli-
cations and as parts of larger serverless applications, thus, requiring us to consider not only the function orchestration
deployment modeling aspects, but also the specifics of modeling event-driven serverless applications in TOSCA. To
achieve this, we use our previous work24 as a basis—while documenting initial decisions for modeling serverless func-
tions and event-triggering semantics in TOSCA, our previous work does not cover the specifics of function orchestration
modeling.

Therefore, the contributions of this section are as follows. We (i) revise and extend our previous work by presenting
additional modeling alternatives related to modeling of serverless functions and event-triggering semantics which were
not present in the original work, and as a novel contribution (ii) we introduce the concepts for modeling function orches-
trations independently and as parts of serverless applications with TOSCA. To illustrate the core aspects of our modeling
approach, we model excerpts of the serverless deployment architecture presented in Section 2 (see Figure 2) using the
AWS cloud infrastructure as an example.

Furthermore, as a proof of concept, we provide a revised hierarchy of TOSCA types (implemented using the
YAML-based TOSCA Simple Profile v1.3 specification) to enable using our function orchestration modeling approach,
which is publicly available on Github.50 This hierarchy of TOSCA types comprises a set of abstract and concrete TOSCA
types. The former represent generic component types such as Function or ObjectStorage, and do not reference any
particular technologies such as AWS Lambda or Azure durable functions. The latter are technology-specific, deploy-
able TOSCA modeling constructs for deploying function orchestrations to three public cloud infrastructures—AWS,
Microsoft Azure, and IBM Cloud. While function orchestration modeling and transformation described in Section 5
is supported for both IBM Composer and Apache Openwshik, we focused on supporting the deployment of func-
tion orchestrations to IBM Composer by providing the corresponding IBM-specific TOSCA node types since the
IBM cloud infrastructure comprises a variety of serverless offerings, for example, object storage and messaging
services, which is typically not the case for the self-hosted deployments.5 Since IBM Composer is based on the
Apache Openwhisk Composer and orchestrates functions hosted on IBM Cloud Functions, which is in turn based
on Apache Openwhisk, our TOSCA types can be adapted for deploying to Apache Openwhisk and Openwhisk
Composer.

6.1 Modeling the deployment of functions, event emitters, and event bindings

The deployment architecture presented in Figure 2 shows how a serverless function orchestration can be combined with
standalone serverless components, for example, the notification function, message queue, and timer event binding for
calling the function orchestration on a scheduled basis. Thus, to model such deployment architectures in TOSCA, apart
from the function orchestration aspects, event-driven deployment aspects must also be reflected in the model. Unsur-
prisingly, all components, for example, functions (orchestrated and standalone), object storage buckets, and message
queues, must be deployed and configured. This also includes configuring required event-bindings between compo-
nents after the components are deployed, for example, a binding between the results bucket and the notify function
in Figure 2.
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6.1.1 Modeling the hosting of serverless components

Figure 15 shows two variants of modeling the hosting for serverless components: (a) the per service configuration approach
from our previous work,24 and (b) an alternative added in our revised TOSCA types hierarchy. In our previous work, we
described modeling of serverless components on a per service basis, for example, functions are hosted on a FaaS platform
and buckets are hosted on an object storage service using the normative relationship type hostedOn (see Figure 15A).
Essentially, since the actual serverless services are always on and do not need to be deployed, the node types representing
them group respective configurations, for example, access policies. Since typical serverless applications are fine-grained
and comprise multiple components sharing similar configurations, in the revised version of our TOSCA types hierarchy,
we use another modeling alternative to reduce the amount of hosting nodes, and hence, the redundancy in the model.
More specifically, we introduce generic node types representing an ecosystem of services can be used, for example, the
AwsPlatform node type which inherits from the abstract CloudPlatform node type enables grouping shared configura-
tions for multiple components, for example, functions deployed in the same region, and reducing unnecessary visual
clutter in the model as shown in Figure 15B. Since TOSCA natively supports the ontological extension of component
types, no linguistic changes of TOSCA such as introducing nonstandardized constructs or features were needed for our
approach. Hence, we utilize TOSCA as-is for creating our type system using the ontological extensibility of the stan-
dard. As a result, all introduced TOSCA constructs are TOSCA-compliant and can be processed by TOSCA-compliant
orchestrators.

6.1.2 Modeling serverless components and their properties

In our previous work,24 we modeled FaaS functions as node templates of the corresponding platform-specific node
type such as AwsLambdaFunction, AzureFunction, or IbmCloudFunction. To generalize this, in the revised TOSCA
types hierarchy introduced in this article, we add abstract node types from which all technology-specific node
types are derived, that is, the abstract node type function is the direct parent of all FaaS-specific node types.
Properties present in all platform-specific node types such as name reside in the abstract function node type,
while the platform-specific properties reside in corresponding platform-specific node types. For modeling other
serverless components such as message queues and object storage buckets we also use this revised approach,
for example, technology-specific node types such as AwsS3Bucket shown in Figure 15inherit from the abstract
the ObjectStorage node type which groups only common properties. Moreover, while in our previous work24

we modeled function runtimes as separate node types (see AwsLambdaNodeJSFunction in Figure 15A), in our
revised TOSCA types hierarchy we model runtimes as properties as shown in Figure 15B—this helps reusing the
same node types for many runtimes, for example, AwsLambdaFunction node type for “Java8” and “node.js12”
runtimes.

F I G U R E 15 Modeling hosting of serverless components: (A) per service configuration and (B) shared configuration
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F I G U R E 16 Modeling event-driven semantics with TOSCA: (A) explicit and (B) implicit event flows

6.1.3 Modeling event-driven semantics

Typically, serverless FaaS-based applications rely on binding functions to events emitted by different kinds of components,
for example, databases, message queues, or logging services. As in our previous work,24 we model event-driven semantics
using the technology-specific derivatives of the abstract relationship type triggers, for example, AwsS3Triggers relationship
type shown in Figure 16A. Note, that the abstract relationship type triggers is derived from the normative TOSCA depend-
sOn relationship type to enforce the correct deployment order—functions must be deployed before configuring event
bindings with a given event emitter. The matching of this relationship happens using the requirement definition invoker
and the capability type invocable, which can easily be used in other kinds of serverless components, for example, contain-
ers hosted on serverless container hosting services such as AWS Fargate can be invocable, too. Event types that trigger the
function are modeled as properties of the relationship template, for example, as custom TOSCA data types following the
CloudEvents specification, or using the primitive string data type—eventType property is a string “PUT” in Figure 16A.
Next, the deployment logic for establishing event bindings is attached to relationships as TOSCA Implementation Artifacts
that connect event emitters with FaaS functions. In terms of lifecycle operations, the actual execution leverages normative
relationship operations such as post_configure_target or post_configure_source. For example, the post_configure_source
normative operation can be used to establish a binding between a bucket and a function as it is invoked only after both of
the components are deployed. As an additional enhancement, to introduce modeling restrictions, the relationship type
fields valid_source_types and valid_target_types can be defined to allow using only certain relationship types between
nodes. Finally, in the revised version of our TOSCA types hierarchy introduced in this article, we show an alternative vari-
ant for modeling event-driven semantics—implicit event flows. For example, for timer-based function invocations the
event binding logic can be represented implicitly as a part of the function as shown in Figure 16B. The actual timer expres-
sion, for example, the cron expression to trigger a function every five minutes (see CronExpr property in Figure 16B), is
then modeled as a property of the function. Thus, the event binding logic for such implicit modeling is triggered as an
extra step during the actual deployment of the Node Template instead of calling a separate operation on the Relationship
Template.

6.2 Modeling deployments of standalone function orchestrations

In this section, we present our new approach for modeling standalone function orchestrations in TOSCA using
the aforementioned ETL function orchestration scenario from Figure 1 deployed to AWS as an example. As
seen in the motivating example in Section 2, apart from regular serverless components, a function orchestration
model must be deployed to a compatible function orchestrator, for example, ASL model for AWS step functions.
Figure 17 shows how standalone function orchestrations can be modeled in TOSCA. Similar to regular server-
less components, we represent the deployment of function orchestration models as node templates of the corre-
sponding technology-specific node type such as AwsSFOrchestration, AzureDFOrchestration, or IbmComposerOrches-
tration, which all inherit from the abstract node type workflow. The abstract workflow node type represents a
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F I G U R E 17 Modeling serverless function orchestrations with TOSCA

generic workflow model, which serves as a parent type for technology-specific constructs representing deployments
to function orchestrators or general-purpose workflow engines. Similar to other serverless components including
the orchestrated functions, the hosting semantics for function orchestration models is represented via the norma-
tive hostedOn relationship type—in our example we use the shared configuration modeling via the AwsPlatform
node type.

Furthermore, we model the orchestration semantics using the technology-specific derivatives of the abstract rela-
tionship type orchestrates, for example, AwsSFOrchestrates relationship type shown in Figure 17. Note, that the
abstract relationship type orchestrates is derived from the normative TOSCA dependsOn relationship type to enforce
the correct deployment order—functions must be deployed before deploying the function orchestration model. The
matching of source and target nodes with this relationship is achieved using the Requirement Definition orches-
trator and capability type orchestrated. As in event-driven relationships, these capabilities can be modeled in other
kinds of components in case they are supported by the orchestrator, for example, AWS step functions enables orches-
trating containers hosted on AWS Fargate. The actual function orchestration model defining the control flow for
orchestrated functions is attached as a deployment artifact to the AwsSFOrchestration node type. The Implementa-
tion Artifact enabling configuration of the function orchestration model is attached to the AwsSFOrchestrates rela-
tionship type as shown in Figure 17. The required configuration depends on the target technology, for example,
function orchestration models in AWS step functions require specifying the Amazon resource names (ARNs) of
orchestrated functions meaning that after deploying each function, the pre_configure_source() Implementation Arti-
fact must be executed for each corresponding relationship to update the function orchestration model with the
correct ARN.

6.3 Modeling the deployment of function orchestrations as parts of serverless
applications

To enable incorporating function orchestrations in larger application models, the concepts introduced in Sections 6.1
and 6.2 can be combined. To present how we combine these concepts, we discuss the modeling of serverless
deployment architecture from Figure 2 using AWS services as an example. This example combines both mod-
eling aspects: a function orchestration model and regular serverless components that interact in event-driven
fashion. We assume that the external components (containerized application and public dataset bucket) are
already deployed by third parties and the access is configured in the business logic, hence, omitting them from
our model. We provide more implementation details when discussing the case study in Section 8, in which



YUSSUPOV et al. 27

we implement and deploy this deployment architecture from Figure 2 for three cloud providers: AWS, Azure,
and IBM.

Essentially, the concepts described in Section 6.1 can be easily applied to the workflow node type and its concrete
derivatives such as AwsSFOrchestration, too. For example, as discussed in Section 6.1.3, the timer-based invocation of
function orchestrations can be modeled either as explicitly using the derivatives of triggers relationship type or implicitly
in node templates—timer expressions are specified as properties of the function orchestration model with the deployment
logic enabling configuration of such event bindings. Furthermore, normative TOSCA relationships such as connectsTo
can be used to model other components and combining them with the technology-specific derivatives of the abstract
triggered relationship type for deploying and configuring components of the application that are not a part of the function
orchestration model.

Figure 18 shows how using the concepts described in Sections 6.1 and 6.2 the motivating scenario introduced
in Section 2 can be modeled in TOSCA to deploy it on the AWS infrastructure. The resulting application topology is
a directed typed graph in which nodes represent technology-specific components such as AwsLambdaFunction and
AwsSQSQueue, and edges represent the interaction types among these components, for example, even-driven invocation,
orchestration, or hosting relationships.

When enacting this model, the overall deployment procedure would happen as follows. As a first step, shared
configurations specified using the AwsPlatform node type are performed. Next, the message queue is created using
the AwsSQSQueue node type and the standalone notification function is deployed using the AwsLambdaFunction
node type. Afterwards, the object storage bucket is deployed using the AwsS3Bucket node type and the correspond-
ing event binding between the bucket and the notification function is created after both components are success-
fully deployed. Furthermore, four orchestrated function are deployed using the same AwsLambdaFunction node
type, with runtimes and other required properties defined in each function to avoid introducing too fine-grained
node types, for example, separate node type per runtime. When all orchestrated functions are deployed, the ASL
function orchestration model can be deployed using the AwsSFOrchestration node type, with the timer-based invo-
cation being modeled implicitly using the CronExpr property. At deployment, the corresponding Amazon even
bridge rule is created and bound to the deployed function orchestration model, hence enabling the timer-based
invocation. As a result, using a combination of event-driven and orchestration modeling specifics, the motivating
example can be successfully represented in TOSCA and deployed using a TOSCA-compliant deployment automation
technology.

F I G U R E 18 A TOSCA-based modeling of the serverless deployment architecture shown in Figure 2 for AWS
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7 A FUNCTION ORCHESTRATION MODELING AND DEPLOYMENT
TOOLCHAIN

In this section, we show how our method presented in Section 4 can be enabled using an open source toolchain. We first
provide an overview how each step of the method from Section 4 is mapped to a particular open source tool and then
discuss the overall way of chaining the tools together. Next, we present each involved tool in more details and, when
applicable, elaborate on our contributions related to implementation of these tools.

7.1 A toolchain for standards-based modeling and deployment of function
orchestrations

Following our method described in Section 4, both modeling approaches introduced in Sections 5 and 6can be combined
in an end-to-end scenario using dedicated BPMN and TOSCA modeling tools. In such end-to-end scenario, in Step 1, a
generic BPMN function orchestration model is created using our BPMN for function orchestrations (BPMN4FO) tool that
enables our uniform function orchestration modeling approach presented in Section 5. Moreover, BPMN4FO includes
a BPMN transformation layer for generating the function orchestration model formats for AWS step functions, Azure
durable functions, Apache Openwhisk Composer, and IBM Composer. Then, the resulting provider-agnostic BPMN func-
tion orchestration model is used to generate supported target model formats, for example, an ASL definition for AWS
step functions (Step 2). Afterwards, the overall deployment of the intended function orchestration model, for example,
as a standalone orchestration of functions, or as a part of a larger serverless application as described in Sections 5 and
6, is modeled using TOSCA (Step 3). The resulting TOSCA model (service template definition) is also enriched with the
deployment artifacts such as functions code and the provider-specific workflow definition generated using the BPMN4FO.
We employ Eclipse Winery,27 a well-known graphical modeling tool for creating deployment models in TOSCA, for
representing deployments of function orchestrations. In Step 4, a CSAR export is triggered using Eclipse Winery to gen-
erate a self-contained deployment package which is then consumed by xOpera to enact the deployment (Step 5). Since
our TOSCA types introduced in Section 6do not utilize any nonstandard TOSCA constructs or features, the generated
self-contained deployment packages are standard-compliant. Therefore, we employ xOpera26 for our toolchain with-
out any modifications as a TOSCA-compliant deployment automation technology. Note, that the overall process is not
required to be sequential, as tools can be reused for model refinement, adding new versions of existing applications, or
using created models separately, for example, a BPMN-based function orchestration model can be used as a high-level
overview of the intended function orchestration. Figure 19 shows the overall process of chaining these tools together.

7.2 Tool support for modeling and transformation of function orchestrations
with BPMN

To enable specifying portable serverless function orchestration models with our uniform function orchestration modeling
approach introduced in Section 5, we implemented the prototype for modeling and transformation of serverless function

F I G U R E 19 A toolchain for standards-based modeling and deployment of function orchestrations
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orchestrations called BPMN4FO. BPMN4FO is a JavaScript-based client-side web application that enables (i) creating
and editing serverless function orchestrations using our BPMN-based uniform modeling approach and (ii) transforming
the resulting BPMN function orchestration models into orchestrator-specific model formats that can be executed with
the supported function orchestrators, for example, ASL models for AWS step functions. BPMN4FO is open source and
publicly available on GitHub (see https://github.com/iaas-splab/matoswo#bpmn4fo), also with a demo instance available
via GitHub Pages for this repository.

7.2.1 Graphical function orchestration modeling with BPMN4FO

Figure 20 provides a snapshot of the graphical editor implemented in BPMN4FO based on the bpmn-js library. The cen-
tral pane of the editor provides modeling area, where BPMN function orchestration models are visually edited. BPMN
function orchestration models may be imported by dragging-and-dropping BPMN XML files to the modeling area, or
they can be created from scratch by dragging and dropping BPMN elements from the pane on the left hand side. The
right hand side of the editor instead enables setting the properties of each BPMN element in the model, for example,
the element name, or custom properties such as conditions for BPMN Conditional Gateways included in our uni-
form function orchestration modeling approach. The available properties actually depend on the selected model element
type. For instance, if a BPMN Exclusive Gatewayis selected (as in Figure 20), the branches property holding the
mapping from conditions to associated branches, displayed as Branches Mapping, becomes available. Finally, the
buttons at the bottom of the editor enable exporting a modeled BPMN function orchestration model in XML format or
as a vector image, as well as transforming and downloading the orchestrator-specific function orchestration model for-
mats that can be run with supported function orchestrators, namely, AWS step functions (ASL models), Azure durable
functions (JavaScript- and Python-based models), Apache Openwhisk Composer (JavaScript-based models) and IBM
Composer (JavaScript-based models). For each supported function orchestrator, the orchestrator-specific function orches-
tration model representing the created BPMN function orchestration model workflow is downloaded as ZIP archive.
When a created BPMN model is invalid, for example, added property is not supported by a function orchestrator, the but-
tons generating orchestrator-specific model on incompatible orchestrators will be disabled and an error message will be
written to the console.

7.2.2 Transformation of modeled function orchestrations with BPMN4FO

Apart from graphical modeling, BPMN4FO supports transforming BPMN function orchestration models into
orchestrator-specific model formats. The architecture of BPMN4FO is shown in Figure 21. The function orchestration

F I G U R E 20 The graphical BPMN editor in BPMN4FO
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F I G U R E 21 The conceptual architecture of BPMN4FO

modeling layer has a BPMN graphical modeler component that provides the graphical user interface in Figure 20. As men-
tioned before, it is realized by extending a production-ready BPMN 2.0 web modeler by Camunda called bpmn-js.51 We
chose bpmn-js (see https://bpmn.io/) since it is already used in industry and since it natively features import/export of
BPMN models to facilitate their storage. With bpmn-js, BPMN function orchestration models can indeed be saved and
loaded from a local file system, hence, the persistence layer in our implementation relies on the local file system.

The buttons available in the BPMN graphical modeler component enable generating runnable orchestrator-specific
function orchestration models by interacting with the function orchestration transformation layer via the API layer. We
implemented BPMN4FO as a frontend-only monolithic application, therefore, all the exposed functionalities are invoked
via the corresponding visual elements in the graphical modeling interface. The transformation of the BPMN function
orchestration model into the desired orchestrator-specific formats is performed by coordinating the four main com-
ponents in the function orchestration transformation layer as shown in Figure 21, namely, generic orchestration model
extractor, generic orchestration model traverser, target model generator,and a set of technology-specific plugins. Firstly,
given the user-created BPMN function orchestration model, the corresponding generic orchestration model extractor com-
ponent generates an internal, language-agnostic model describing each construct and the control flow in the BPMN
function orchestration model, which is used for further processing. Some basic validation is also performed at this stage,
for example, verifying the correct number of input and output BPMN Sequence Flows for the modeled elements.
This generic model extracted from the created BPMN model is then used for generating target function orchestra-
tion models using the target model generator, generic orchestration model traverser components and the corresponding
technology-specific plugin, for example, AWS-specific plugin for generating ASL models for AWS step functions. Essen-
tially, these generic control flow models are traversed and processed by the target model generator using the corresponding
technology-specific plugin which comprises three major subcomponents: condition generator, control flow validator, and
control flow generator. The control flow validator, and control flow generator sub-components are responsible for traversing
the control flow model and ensuring that the control flow hierarchy is valid according to our uniform function orchestra-
tion modeling approach w.r.t. the chosen target format. The control flow generator transforms the control flow hierarchy
into the desired orchestrator-specific function orchestration model format based on the traversal results. When encoun-
tering conditional control flow constructs, representations of the actual conditions must be generated according to each
specific orchestrator. For this purpose, the condition generator is invoked by the target model generator when needed.
the condition generator provides orchestrator-specific condition generation logic, which traverses the modeled conditions
and output their corresponding orchestrator-specific representation, for example, for ASL models. Notice that the trans-
formation logic is realized in a pluggable manner: to add support for more orchestrators than those currently supported,
additional technology-specific plugins comprising corresponding generators can be implemented.

7.3 Tool support for modeling and deployment of function orchestrations with TOSCA

To enable modeling of serverless function orchestrations with TOSCA using our approach described in Section 6, we
use the graphical modeling tool Eclipse Winery,27 which is a part of the OpenTOSCA ecosystem,46 and which provides

https://bpmn.io/
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user interfaces for modeling TOSCA application topologies graphically. Eclipse Winery provides a management GUI for
defining TOSCA constructs such as Node and relationship types, service templates, and so forth. Furthermore, Winery
provides a topology modeling GUI, which enables creating application topologies graphically. The TOSCA types hierarchy
implemented according to the approach in Section 6 is imported into Eclipse Winery to create deployment models for
function orchestrations. After the desired deployment models are ready, they can be exported as deployable CSARs and
processed by a TOSCA-compliant orchestrator such as xOpera. We provide examples of modeled function orchestrations
in Eclipse Winery in the case study in Section 8.

Further, to enable the automated deployment of TOSCA models, we employ (as-is) an open source and lightweight
TOSCA orchestrator called xOpera.26 xOpera supports the YAML-based TOSCA v1.3 specification22 and relies on Ansible
for implementing the deployment logic. Essentially, we provide the CSARs produced by Winery as an input for the CLI ver-
sion of xOpera, which enacts the deployment of serverless applications modeled using concrete, provider-specific TOSCA
types. To enable the deployment on public cloud providers, xOpera requires specifying credentials data locally on the
device used for enacting the deployment, more information on how to use it is in the official documentation (see https://
xlab-si.github.io/xopera-docs).

8 CASE STUDY

In this section, we present how our method for standards-based modeling of function orchestrations introduced
in Section 4 and relying on the two modeling approaches described in Sections 5 and 6 can be used in the context of
implementing the serverless application from our motivating scenario (Section 2). This scenario comes from an existing,
third-party function orchestration28 for processing the OpenAQ dataset (see https://registry.opendata.aws/openaq) that
contains aggregated physical air quality data from public data sources regularly provided by government, research-grade,
and other sources. The resulting ETL function orchestrations generate the minimum, maximum, and average ratings for
air quality measurements on a daily basis and store them in a corresponding cloud object storage bucket. The toolchain
presented in Section 7 is employed for modeling the function orchestration and its deployment. All produced artifacts are
open source and available on GitHub.50

8.1 Modeling and transformation of the air quality data ETL function orchestration

In Step 1 of our method described in Section 4, we need to model the ETL function orchestration for processing air
quality data in BPMN. We create this BPMN function orchestration model as a BPMN Sequence, which starts with
the invocation of the ListFiles function to collect the file paths from the previous day in chunks. Afterwards, since the
TransformData function must be instantiated in parallel for each chunk, we model it using BPMN Task with a BPMN
Multi-Instance Marker, hence representing the generic function orchestration modeling construct “Fan-out”. This
fan-out activity maps one chunk to a separate processor that downloads the files listed in this chunk and transforms
them into an intermediary format. As a next step of this BPMN Sequence, the AggregateData function modeled as
BPMN Task reduces all intermediary files into one final result. Finally, the CleanUp function modeled as BPMN Task
deletes all intermediary files and reports about completing the function orchestration. Figure 22 shows the resulting
model of the BPMN function orchestration model created as described in Section 5. Next, in Step 2 of our method
described in Section 4), we transform the BPMN function orchestration model into three target formats using our
BPMN4FO described in Section 7. While the resulting formats share the same control flow structure and function

F I G U R E 22 BPMN function orchestration model for processing air quality data from Section 2
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names, it can be observed that the output for the chosen function orchestrators differs significantly. Next, we elab-
orate on how the BPMN function orchestration model is transformed into ASL definition for AWS step functions,
a Python-based orchestrator function for Azure durable functions, and a JavaScript-based function composition for
IBM Composer.

Transforming the BPMN function orchestration model for AWS step functions. The transformed function
orchestration for processing air quality data for AWS step functions is shown in Listing 14—it is an ASL model describing
the desired control flow as described in Section 5, with some details omitted from the listing for the sake of brevity. The
ASL definition needs to reference corresponding ARNs of the orchestrated functions, which means that the deployment
information is needed. To enable the automated deployment of this workflow, ARNs of functions can be specified directly
in our prototype in case already deployed functions are planned to be used. However, if the orchestrated functions are
deployed together with the function orchestration model, their ARNs are substituted in the ASL definition after the func-
tions are deployed. This substitution of ARNs happens when xOpera deploys the entire application model and invokes
the pre_configure_source operation on each SFOrchestrates relationship—this updates the initial definition with
the ARN of each connected and already deployed function.

1 { "StartAt": "ListFilesActivity",
2 "States": {
3 "ListFilesActivity":{"Type":"Task","Resource":"LF_ARN",...,"Next":"TransformDataFanout"},
4 "TransformDataFanout": {
5 "Type": "Map", "ItemsPath": "$.value", "ResultPath": "$.value",
6 "Iterator": {
7 "StartAt": "TransformData",
8 "States": {"TransformData": {"Type": "Task", "Resource": "TD_ARN", ...,"End":true}}},
9 "Next": "AggregateData" },

10 "AggregateData": {"Type": "Task", ..., "Next": "CleanUp" },
11 "CleanUp": {"Type": "Task", "Resource": "CleanUp_ARN", ..., "End": true }}}

Listing 14: AWS Step Functions ASL model generated from the BPMN function orchestration model in Figure 22

Transforming the BPMN function orchestration model for Azure durable functions. Unlike AWS step
functions, Azure durable functions requires defining function orchestrations in general-purpose programming lan-
guages such as JavaScript or Python by using constructs from libraries that provide orchestration-specific constructs
as described in Section 5. Listing 15 shows the listing for the transformed BPMN function orchestration model:
For Azure durable functions it is transformed into an orchestrator_function in Python. The generated func-
tion relies on the azure.durable_functions extension to define the control flow. The generated orchestration
uses function names as references to the functions in the workflow, for example, “ListFiles” references the corre-
sponding function in the function orchestration. Usage of the yield keyword ensures the receipt of the results,
also including the execution of multiple parallel instances of the TransformData function using the task_all()
method.

import azure.functions as func
import azure.durable_functions as df
def orchestrator_function(context: df.DurableOrchestrationContext):
result = context.get_input()
result = yield context.call_activity("ListFiles", result)
tasks = []
for item in result["value"]:
tasks.append(context.call_activity("TransformData", item))

result = yield context.task_all(tasks)
result = yield context.call_activity("AggregateData", result)
result = yield context.call_activity("CleanUp", result)
return result

main = df.Orchestrator.create(orchestrator_function)

Listing 15: Azure Durable Functions orchestrating function generated from theBPMNfunction orchestration model
in Figure 22
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const composer = require(’@ibm-functions/composer’)
module.exports = composer.sequence(
composer.action(’ListFiles’, { limits: { timeout: 300000 } }),
composer.map( composer.action(’TransformData’, { limits: { timeout: 300000 } }) ),
composer.action(’AggregateData’, { limits: { timeout: 300000 } }),
composer.action(’CleanUp’, { limits: { timeout: 300000 } }) )

Listing 16: IBM Composer orchestrating function generated from the BPMN function orchestration model in Figure 22

Transforming the BPMN function orchestration model for IBM composer. Finally, Listing 16 shows the listing
for the transformed BPMN function orchestration model, that is, the function composition in JavaScript that can
be consumed by the IBM Composer. Similar to Azure durable functions, IBM Composer (as well as the Apache Open-
whisk Composer) require defining the function orchestration models using an orchestrating function that uses a dedicated
library providing orchestration-specific constructs such as parallel invocation or conditional branching for functions as
described in Section 5. The default timeout of five minutes is generated by the BPMN4FO, but can easily be modified if
necessary in the generated function orchestration model. After generating the function orchestration model for three tar-
get serverless function orchestrators, we can incorporate them in the desired deployment architecture using our TOSCA
modeling approach.

8.2 Modeling the deployment of the air quality data ETL function orchestration

In Step 3 of our method described in Section 4, we implement the required business logic and model the deployment
architecture shown in Figure 2: It incorporates three generated technology-specific function orchestration models with
four orchestrated functions implemented for each respective provider, and integrates them with regular serverless com-
ponents by means of event-driven and direct calls. All orchestrated functions are implemented in Python and rely on
numpy and pandas for processing the open air quality data. The implementations for all three function orchestrators
are based on the open source example for AWS step functions available on GitHub28 and differ mainly in the usage
of provider-specific service offerings. For example, the implementations for Azure and IBM had to be reworked due
to usage of provider-specific libraries and interaction with provider-specific services, that is, object storage services,
FaaS platforms, and message queue services from Microsoft and IBM. We used the concrete, deployable TOSCA types,
which we implemented to enable our modeling approach as described in Section 6 for the YAML-based version of the
TOSCA standard. The provider-specific deployment logic is implemented using Ansible to enable deploying the result-
ing deployment architectures with xOpera. However, since TOSCA abstracts away the deployment technology in use,
the same models can be deployed using other deployment logic implementations, for example, Terraform, thus, mak-
ing these TOSCA models portable across deployment automation technologies. All modeling constructs are available
on GitHub.50

TOSCA-based function orchestration deployment model for AWS. Figure 23 shows the deployment model
implementing our example serverless application for AWS. All components are hosted on the AWS-specific AwsPlat-
form node type, which groups the policy configurations and exposes them for reuse as TOSCA attributes after the
configure operation is completed as described in Section 6.1. All functions are hosted on AWS Lambda and four of
them are orchestrated using AWS step functions, that is, ListFiles, TransformData, AggregateData, and CleanUp func-
tions. The timer-based invocation of the function orchestration is modeled implicitly (see Section 6.1) by defining a
property in the AwsSFOrchestration node type and implementing the corresponding AWS event bridge rule configu-
ration in Ansible as a part of the create operation for this type. The AwsSFOrchestrates relationship type relies on the
pre_configure_source interface operation for updating the workflow definition shown in Listing 14 with correct func-
tion ARNs. After the workflow definition is updated, the configureoperation on the AwsSFOrchestration deploys the
updated ASL function orchestration model to AWS step functions. AWS S3 is used as the object storage offering for
storing intermediate and final results, and the AwsS3Triggers relationship type is used to implement the trigger config-
uration (using post_configure_source interface operation) for invoking AWS Lambda functions based on S3 events, for
example, S3 PUT event. Finally, as a message queue offering we use AWS SQS, in which a dedicated queue is created and
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F I G U R E 23 The deployment architecture from Section 2 modeled for AWS using TOSCA and Eclipse Winery

to which the notify function sends notifications that can be consumed by external applications, for example, deployed
on premises.

TOSCA-based function orchestration deployment model for Azure. Figure 24 depicts the deployment model
implementing our example serverless application for Azure. All components are hosted on the AzurePlatform node type,
which is used to configure their deployment (see Section 6.1). The functions are hosted using Azure functions platform,
whereas the function orchestration model uses the Azure durable functions extension. Similar to AWS, Azure-specific
relationship type AzureDFOrchestrates, which inherits from the abstract orchestrates relationship, is used to model the
orchestration semantics. Azure Blob Storage is used to implement the object storage for storing results, and Azure
Storage Queue is used to implement a message queue. While the majority of topological information is similar to the
AWS-specific model, the model for Azure has specific constructs not used anywhere else, namely (i) the AzureFunc-
tionApp node type which groups functions using the groups relationship type, and (ii) the MainOrchestratorStarter

F I G U R E 24 The deployment architecture from Section 2 modeled for Azure using TOSCA and Eclipse Winery
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F I G U R E 25 The deployment architecture from Section 2 modeled for IBM using TOSCA and Eclipse Winery

function of type AzureClientFunction which is used in durable functions to enable triggering the function orchestra-
tion. The AzureFunctionApp is a convenient way to group functions and their dependencies for deploying the entire
sets of functions simultaneously—in our case, the ETL function orchestration is modeled as a dedicated AzureFunc-
tionApp, whereas the Notify function is hosted in a separate AzureFunctionApp. While bindings can be generated
based on the configuration in relationships, in this work we define bindings as separate artifacts in respective func-
tions and the actual binding happens during the AzureFunctionApp’s create operation together with the deployment
of functions. The timer-based triggering is also modeled as a binding definition of the Azure MainOrchestratorStarter
function.

TOSCA-based function orchestration deployment model for IBM. Finally, Figure 25 demonstrates the deploy-
ment model implementing our example serverless application for IBM. As previously, the IBM-specific IbmPlatform node
type is used to group the deployment configuration for all components in the model (see Section 6.1). It can be observed
that the resulting topology is similar to the models presented before, only the IBM-specific services are used. The func-
tions are hosted using IBM cloud functions platform, whereas the function orchestration relies on the IBM Composer,
with the relationship type IbmComposerOrchestrates representing the orchestration semantics, which also inherits from
the abstract Orchestrates relationship. The JavaScript-based function orchestration model generated using BPMN4FO is
deployed using the create operation on the IbmComposerOrchestration node type. One important point to highlight is that
IBM Composer requires a Redis instance for running workflows that use parallel compositions, meaning that a reference
to a running and accessible Redis deployment must be provided as a property of the IBM IbmComposerOrchestration node
type—we assume that this instance is not the part of the application model and has to be deployed separately, but extend-
ing our model to add such information is straightforward using TOSCA. Further, we employ the majority of decisions
discussed in Section 6, that is, timer-based triggering is modeled implicitly using the property of the IbmComposerOrches-
tration node type. Finally, as an object storage we use IBM Cloud Object Storage and we employ IBM MQ Cloud for
implementing the message queue.

8.3 Enacting the deployment of the air quality data ETL function orchestration

In Step 4 of our method described in Section 4, all three deployment models are then exported as respective CSARs
using Eclipse Winery to be automatically deployed with xOpera. In Step 5 of our method described in Section 4, the
exported CSARs are deployed using xOpera resulting in running applications for extracting, transforming, and loading
the data summary on open air quality and sending the notification to message queues, which can be accessed by exter-
nal applications, also hosted on premises. Figure 26A shows the deployment of the serverless application model shown
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F I G U R E 26 Deployment of the model from Figure 23 using xOpera (A) and its execution on AWS step functions (B)

in Figure 23 using xOpera: interface operations for each node in the modeled topology are executed in the cor-
rect order, for example, the function orchestration model deployment happens only after all orchestrated functions
are deployed and the corresponding ARNs are substituted in the initial function orchestration model using the
pre_configure_sourceoperations for each modeled relationship. After the function orchestration model is deployed, it
gets triggered on a scheduled basis, which in our case every five minutes as it was faster to verify the expected behav-
ior. As discussed previously, the actual execution of the function orchestration is not required to be triggered frequently.
Figure 26B shows one instance of successfully executed ETL function orchestration on AWS step functions. For the
sake of brevity, we omit the figures depicting the deployment and execution of the workflow models for Azure and
IBM clouds.

9 DISCUSSION AND LIMITATIONS

In this section, we discuss how our contributions are aligned with respect to different facets of portability, and possible
ways to address existing limitations of our method.

Portability of function orchestration models. The heterogeneity of modeling languages and orchestrator-specific
features makes it nontrivial to obtain portable function orchestration models. Here, developers basically can use our
transformation-based approach for establishing a uniform way of modeling function orchestrations that can be executed
on different target function orchestrators. Unlike approaches that rely on a dedicated runtime in the target infrastruc-
ture to execute the modeled function orchestration such as the serverless workflow specification,20 one advantage of our
approach is that there is no dependency on an external function orchestration runtime, hence, enabling developers to
employ existing function orchestrators as-is. Furthermore, compared to approaches without visual notation such as the
serverless workflow specification, the visual notation offered by BPMN simplifies explaining function orchestration mod-
els produced using our approach to nontechnical personnel, hence bridging the collaboration gap between managerial
and DevOps teams.

Our decision to focus on portable function orchestration modeling inherently requires to restrict the support to only
the subset of features shared by all function orchestrators. Certainly, such restriction for our BPMN-based modeling and
transformation approach is not always necessary, especially for cases when only one target orchestrator format is needed.
Essentially, this limitation can be addressed by extending BPMN4FO. Firstly, by adding the “nonportable” mappings for
desired function orchestrators, hence enabling the transformation of orchestrator-specific features. Secondly, the BPMN
modeling experience can be enhanced by supporting user-provided configurations defining which orchestrator-specific
features to keep during the transformation, for example, via corresponding UI elements or external configuration files.
Furthermore, for semiautomated processes in which transformed models are intended to be refined and enriched by
modelers, the “nonportable” features can be manually added into transformed models. It is also worth emphasizing that
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our method is not mutually-exclusive with approaches such as the Serverless Workflow Specification: by introducing
respective plugins in BPMN4FO we can enable the transformation of produced BPMN function orchestration models into
new formats.

Another aspect worth discussing is related to changes in provider-specific orchestration services, for example, adding
new or modifying existing features. Clearly, in such cases, the corresponding orchestrator-specific mappings might need to
be adjusted to enable generating updated target function orchestration models. However, even for such cases there are still
several advantages of using our approach. Firstly, previously created models can be used for generating updated versions
of the target formats, hence, facilitating the reuse of existing artifacts based on the changed service requirements. More-
over, the pluggable architecture of BPMN4FO enables updating only the respective technology-specific plugins without
requiring general changes in the toolchain.

Portability of function orchestration deployment models. In this work (see Sections 4,6,7, and 8), we par-
tially address the aspect of portability of function orchestration deployment models by defining the abstract-to-concrete
TOSCA types hierarchy. Despite relying on the same abstract TOSCA types hierarchy, to actually deploy mod-
eled function orchestrations, one needs to create deployment models for each target cloud infrastructure manually.
To reduce the amount of modeling efforts, our approach can be extended by providing automatic refinement
from abstract TOSCA-based deployment models (using technology-agnostic TOSCA types such as functionand work-
flow) to orchestrator-specific TOSCA function orchestration deployment models, for example, by extending Eclipse
Winery to support automated refinement of our TOSCA types hierarchy from abstract to concrete models. With
this extension, a single function orchestration deployment model needs to be produced and then automatically
refined using the underlying toolchain. It is worth highlighting that this limitation appears in the majority of
deployment modeling languages, for example, Ansible, Terraform, or serverless framework would require cre-
ating infrastructure-specific deployment models referring to particular service offerings from cloud providers. A
more portable option is to use Kubernetes-based function orchestrations, since Kubernetes deployment are eas-
ier to port across infrastructures. However, the usage of Kubernetes also does not solve the problem of produc-
ing portable function orchestration deployment models executable on provider-specific services such as AWS step
functions, thus, making the TOSCA models refinement an interesting open research question to be tackled in
future work.

Interchangeability of deployment automation technologies. In TOSCA, declarative application deployment
models are decoupled from the actual deployment automation technologies, that is, the same TOSCA models can be
deployed using different deployment automation technologies by implementing respective implementation artifacts,
for example, using Terraform scripts as implementation artifacts. From the modeling perspective, our approach fully
addresses this aspect since the types hierarchy can be extended with new artifact types representing other deployment
technologies. As a result, the same TOSCA models created using our approach can be automatically deployed with
various kinds of deployment logic implementations, also by using other TOSCA-compliant deployment automation tech-
nology such as OpenTOSCA. However, to be able to use these TOSCA models with other deployment technologies
such as Terraform instead of Ansible, the chosen TOSCA-compliant deployment automation technology must sup-
port them. In case of xOpera this would mean that new technology-specific executor plugins need to be introduced,
for example, an executor for Terraform.26 Another alternative is to employ existing approaches52,53 for transform-
ing TOSCA models into formats consumable by the chosen target technology, for example, TOSCA to Terraform
transformations.

Portability of function orchestration business logic implementation. In this article, we do not address
the portability aspect related to orchestrator-specific function implementations. However, we made the first step
toward portable function orchestrations by introducing concepts for portability of the involved models. As shown
in Section 8, the major differences in provider-specific implementations were related to service-specific inter-
actions and code packaging requirements. For example, the actual business logic for processing the open air
quality data remained mainly the same for all three provider-specific implementations. Therefore, our next step
is to work on identification, decoupling, and description of provider-independent function code that enables
its automated wrapping and packaging for target infrastructures. While existing FaaSification approaches54

could improve the portability aspect for function implementations, often such approaches are restricted and
focus on very specific kinds of code extraction, for example, invocation of functions via API gateways. Here,
approaches such as Any2API55 could be used to automate the wrapping of provider-independent business logic in
future work.
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10 RELATED WORK

Multiple publications focus on the topic of function composition including the underlying programming models and
orchestration engines. Baldini et al.56 formulate the so-called serverless trilemma and implement an extension for Apache
Openwhisk enabling composing functions, which is used as a basis in Openwhisk (and IBM) Composer. Burckhardt
et al.57 introduce a programming model and a distributed execution engine for running serverless function orchestra-
tions that is used by Azure durable functions, that is, enabling modeling of function orchestrations using general-purpose
programming languages such as Python. Carreira et al.58 introduce a framework for defining machine learning work-
flows, which relies on orchestrating AWS Lambdas and serverless storage offerings for processing workflow tasks. John
et al.59 present a serverless workflow engine for running scientific workflows, which enables executing tasks on server-
less offerings such as AWS Lambda and AWS Fargate. Ristov et al.60 introduce an abstract language for modeling
serverless workflows and a system enabling to execute the created models directly on FaaS platforms, hence, circumvent-
ing provider-specific function orchestrators. López et al.61 present a trigger-based orchestrator for serverless functions,
designed with long-running tasks in mind. Further, there exist several calculi for expressing the specifics of server-
less (FaaS-centric) programming model. For instance, Jangda et al.62 introduce a calculus capturing the operational
semantics of serverless programming model, also including a composition language and the engine which can execute
it, implemented on top of Apache Openwhisk. Giallorenzo et al.63 present a concurrent lambda-calculus which aims
to facilitate abstract reasoning about serverless programs for developers and simplify modeling of the serverless imple-
mentation layer w.r.t. interactions among processes. Next, several works focus on analyzing the capabilities of existing
serverless orchestrators. López et al.14 analyze and compare the function orchestrators from AWS, Azure, and IBM, also
categorizing them based on several criteria such as the type of workflow definition, and Barcelona-Pons et al.64 inves-
tigate the capabilities of the same serverless orchestrators w.r.t. processing of highly-parallel workloads. Finally, it is
worth mentioning several projects related to usage of standards in the context of serverless function orchestrations. For
example, it was shown that Camunda Cloud (a commercial BPMN engine offered as a service) can be used to orchestrate
AWS Lambda functions,41 highlighting the possibility of using standards such as BPMN in the context of specific cloud
infrastructures. The Cloudstate project65 aims at providing a standard for development of general-purpose applications
incorporating stateful services, reactive, and data-intensive components for the Kubernetes ecosystem. The serverless
workflow specification20 aims at providing a standardized workflow modeling language in a form of a custom DSL for
defining serverless function orchestrations. Apart from the workflow modeling language, a set of language-specific tools
and SDKs are offered, as well as the Kubernetes-native workflow engine supporting the introduced workflow modeling
language. This specification focuses on providing a uniform way of describing and executing function orchestrations,
which means that a standardized runtime must be used in combination with the models created using the Serverless
Workflow Specification. With respect to the topic of function orchestration modeling, our work differs from all the above
approaches since instead of introducing a new workflow engine, or a new workflow modeling language, we provide an
approach for using an existing standard and mapping to target orchestration format, together with the transformation
engine supporting three function orchestrators. The introduced approach and system architecture are extensible and can
easily support mapping and transformation into other target formats, for example, FaaS-specific engines such as Fission
Flow and Fn Flow, or more general-purpose engines such as Apache Airflow.

Multiple modeling approaches for specifying the deployment of serverless applications are available as well. For
instance, Bogo et al.66 and Brogi et al.67 propose two different solutions to deploy multiservice applications, where the
serverless deployment is realized by relying on Docker containers, whilst at the same time not supporting function orches-
tration mechanisms. Kritikos et al.68 instead introduce a set of extensions for the CAMEL cloud modeling language,
which enable modeling of serverless components including function compositions. However, the extension for mod-
eling compositions is covered briefly, and the references to documentation and implemented example which does not
involve a function composition are not available. In our previous work,24 we described an initial approach for model-
ing serverless applications with TOSCA without going into specifics of workflow modeling and incorporating them as
parts of serverless applications. Several transformation-centric approaches exist which aim at uniform representations
of application deployment and configuration models which can be transformed into the formats of chosen target envi-
ronments. Samea et al.69 present a model-driven configuration approach for cloud environments using a UML profile.
A transformation engine, which enables generating configurations for target environments is mentioned in the context
of future work. Wurster et al.44 introduce a so-called essential deployment metamodel and implement a transformation
system which can translate a subset of TOSCA into multiple target deployment formats such as Terraform or Ansible.
Dehury et al.70 introduce a TOSCA-based approach for modeling data pipelines which can also incorporate serverless
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components such as FaaS functions. Tsagkaropoulos et al.71 introduce TOSCA extensions for edge and fog deployment
modeling which also include constructs for modeling FaaS-hosted functions on provider-managed platforms and on
premises platforms, however, without covering the topic of modeling function orchestrations as well as their deployments.
Moreover, existing graph-based models can be used for analyzing the application structure and identification of hot spots72

or comparing deployment models in a uniform way.73 With respect to the topic of function orchestration deployment
modeling, our work differs from all aforementioned approaches since we not only enable including serverless components
in deployment models, but since we enable also modeling serverless function orchestration deployment models, gener-
ating orchestrator-specific, deployable function orchestration models, and including such function orchestration models
in deployment models.

11 CONCLUSIONS

In this article, we analyzed how existing standards for modeling workflows (BPMN) and application deploy-
ments (TOSCA) can be used in the context of serverless function orchestrations. As a result, we introduced a method for
standards-based modeling and deploying serverless function orchestrations that relies on BPMN and TOSCA modeling
approaches. The main contributions of our work are as follows. We introduced (i) a uniform modeling and transformation
approach for representing serverless function orchestrations in BPMN and transforming them into target orchestra-
tion formats such as ASL for AWS step functions. We (ii) extended our previous TOSCA-based deployment modeling
approach with support for modeling the deployment of serverless function orchestrations. Furthermore, we implemented
(iii) an open source modeling toolchain for using both approaches together, enabling to automatically deploy resulting
deployment models using the open source TOSCA deployment automation technology called xOpera. Finally, we (iv)
implemented a case study application and successfully deployed it using our approaches and the underlying toolchain to
three public cloud providers—AWS, Azure, and IBM.

We believe that the standards-based modeling approaches and the toolchain presented in this article can be of help
to both researchers and practitioners wishing to develop and automatically deploy serverless function orchestration in
technology-agnostic fashion. Indeed, as we shown in Section 8, the uniform BPMN-based function orchestration model-
ing can first be used to specify portable function orchestration models, which can then be automatically translated into
orchestrator-specific, runnable model formats. Our TOSCA-based deployment modeling approach (and the employed
Eclipse Winery) can then be used to specify the deployment of a serverless function orchestrations for coordinating mul-
tiple functions independently, or as parts of larger serverless applications as was shown in Section 8. The CSARs obtained
at the end of the process can actually be processed with a TOSCA-compliant deployment technology such as xOpera
to concretely deploy serverless applications and execute the function orchestrations therein. Another example where
standards can be helpful is the topic of decision support: by defining standards-based models, developers can easier under-
stand whether the given model is supported by the target technology. Both BPMN4FO and the Eclipse Winery described
in Section 7 can support researchers and practitioners in deciding which technology to target, for example, if specifying
some function orchestration configuration that is not supported by an orchestrator, BPMN4FO will not permit generating
the corresponding orchestrator-specific model, hence informing developers that they cannot deploy their application with
such orchestrator. Finally, the audience employing these particular standards can benefit from the presented experience
by building on top of these approaches for modeling serverless function orchestrations and their deployments. Firstly,
we illustrated how BPMN can be used as-is to model serverless function orchestrations, based on an analysis of existing
serverless function orchestrators from three major providers (AWS, Azure, and IBM) with respect to the properties of the
underlying function orchestration modeling languages. Secondly, we also discussed how to extend TOSCA with addi-
tional types to support the deployment of serverless applications incorporating serverless function orchestrations, whilst
always motivating the rationale of our modeling choices. Both can then be of help to researchers and practitioners wish-
ing to perform similar modeling tasks, either using the same or different standards for specifying function orchestrations
and application deployments.

In future work, we plan to extend our method and the underlying toolchain to support automatic refinement of abt-
sract TOSCA-based function orchestration deployment models into concrete, orchestrator-specific orchestration models.
As discussed in Section 9, this would enable reducing the amount of required deployment modeling efforts. Further,
we aim to extend our BPMN4FO prototype to support orchestrator-specific mappings, hence, enabling modelers to use
features that are unique to specific orchestrators for nonportable transformation scenarios and more proprietary func-
tion orchestration formats, also including the Serverless Workflows Specification format. Together with corresponding
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TOSCA models, this extension will make our approach more flexible w.r.t. supported target infrastructures, for example,
enabling the support for Kubernetes-based modeling or the deployment of function orchestrations using Apache Open-
whisk and Apache Openwhisk Composer. Finally, to enable using other deployment automation technologies, we plan to
combine our method with existing approach for transforming TOSCA models into deployable, technology-specific mod-
els, for example, in Ansible or Terraform.52,53 With this extension, we will also enable deploying the produced models
without using TOSCA deployment automation technologies.
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