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Abstract: The biomedical field is characterized by an ever-increasing production of sequential data,
which often come in the form of biosignals capturing the time-evolution of physiological processes,
such as blood pressure and brain activity. This has motivated a large body of research dealing
with the development of machine learning techniques for the predictive analysis of such biosignals.
Unfortunately, in high-stakes decision making, such as clinical diagnosis, the opacity of machine
learning models becomes a crucial aspect to be addressed in order to increase the trust and adoption
of AI technology. In this paper, we propose a model agnostic explanation method, based on occlusion,
that enables the learning of the input’s influence on the model predictions. We specifically target
problems involving the predictive analysis of time-series data and the models that are typically
used to deal with data of such nature, i.e., recurrent neural networks. Our approach is able to
provide two different kinds of explanations: one suitable for technical experts, who need to verify
the quality and correctness of machine learning models, and one suited to physicians, who need to
understand the rationale underlying the prediction to make aware decisions. A wide experimentation
on different physiological data demonstrates the effectiveness of our approach both in classification
and regression tasks.

Keywords: interpretability; occlusion; recurrent networks; biomedical signals

1. Introduction

The increasing amount of data generated in each field of human activity, paired with
the increasing availability of computing power, has contributed to the success of Machine
Learning models. Deep Learning systems, in particular, have gained a lot of traction in the
last 10 years thanks to their ability to build an internal representation at different levels of
abstraction [1]. This feature, along with the high accuracy exhibited in a variety of different
settings, largely contributed to their adoption.

In the biomedical domain, Deep Learning has been applied to a variety of different
tasks. One area of active study is related to the processing of one-dimensional physiological
signals, with the majority of contributions focusing on classification [2]. Applying machine
learning techniques also in a regression setting is of particular interest in this field as it
enables new non-invasive monitoring techniques for several physiological signals, such as
arterial blood pressure (ABP). Research has been conducted to estimate APB from several
other signals, such as Photoplethysmogram (PPG) [3] or Electrocardiogram (ECG) and
heart rate [4].

Given their inherently black-box nature, Deep Learning systems pose key challenges
in the biomedical field where transparency is a critical feature. To trust a model, a clinician
needs to know why such model is generating the predictions he/she is seeing. The same is
true for patients who have the right to know the reasons behind a decision or a diagnosis.
This need for transparency and interpretability has fostered a research effort targeting the
development of models and techniques to gain insight and possibly an understanding
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of the models’ predictions and their inner workings [5–9]. This large body of research
literature, however, is mostly limited to models for static data types, including flat vectorial
information or images. On the other hand, a large share of the data produced in the life
sciences is of sequential nature, these being time-series of physiological measurements,
such as blood pressure, heart rate, electrodermal activity, or genomic/proteomic chunks.

In this paper, we attempt to fill this gap by specifically targeting the explainability
within the context of recurrent neural networks for biomedical signals represented as time-
varying sequential data. Within this context, we propose a model agnostic technique (based
on systematic occlusion study) to gain granular knowledge about input influence on the
predictions of the model. We do so while providing a multi-faceted access to interpretability,
considering both the point of view of the machine learning practitioner and the life-science
expert, providing targeted explanations for the two reference populations. Our approach is
especially designed for explaining the black-box regressors, but we also discuss how it can
be adapted for explaining the classification of time series. We evaluated our method on
three different datasets of physiological signals in both regression and classification tasks.
The remaining of the paper is organized as follows. Section 2 discusses related works.
Section 3 formalizes the problem faced and introduces basic concepts for the explanation
method, which is described in Section 4. Experimental results are presented in Sections 5
and 6. Section 7 concludes the paper.

2. Related Works

Interpretability is a multi-faceted problem, and even though it has recently received
much attention and different explanation approaches have been proposed [5–8], a singular
shared formalization is still lacking [10]. Explanation methods can be categorized as
model-agnostic or model-specific, depending on whether they take into consideration the
knowledge of the internal structure of the black box or not.

According to the type of explanations provided by a methodology, we can further
differentiate between local and global methods: the former ones generate explanations for
specific data instances, while the latter for the logic of the black box as a whole [8].

Some local explanation methods leverage gradient-based methods in order to identify
relevant features [11–13]. Layer-wise relevance propagation (LRP) [14], instead, makes
explicit use of the network activations. The core idea is to find a relevance score for each
input dimension starting from the magnitude of the output. The backpropagation pro-
cedure implemented by LRP is subject to a conservation property: the relevance score
received by a neuron must be redistributed to the lower layers in the same amount. Several
different rules were proposed to favour a positive contribution or to generate sparser
saliency heatmaps. The Integrated Gradients method [15] combines the sensitivity prop-
erty of LRP and guarantees the implementation invariance property: if two models are
functionally equivalent then the attributions are identical for both. LIME [16] and SHAP [7]
are two well-known local methods. The first one generates a simpler interpretable model
that approximates the behaviour of the black box in the specific neighbourhood of the
instance to be explained. SHAP [7] is a framework that defines a class of additive feature
attribution methods and uses a game theoretic approach to assign an importance score to
each feature involved in a particular prediction. LRP [14], DeepLIFT [13], and LIME [16]
can be considered particular instances of this class of methods.

For models that use attention [17], it is possible to inspect and visualize the learned
weights to gain insights on the assigned importance for a given input instance. This
approach has been widely applied for model inspection on different types of data and
fields, including the biomedical one. RETAIN [18] is an RNN-based model for the analysis
of electronic health record (EHR) data. It employs an attention mechanism that allegedly
mimics the modus operandi of a clinician: higher weight is given to recent clinical events
in the EHR to generate a prediction. The timeline [9] predicts the next category of a medical
visit given past EHRs. First, it calculates a low-dimensional embedding of the medical
codes of a given EHR; then, a self-attention mechanism generates a context vector. This
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context vector is then multiplied by a coefficient obtained from a specifically designed
function, which takes into account the specific diseases and the time interval. The resulting
visit representation vector is the input of a classifier. Given the presence of the multiplier
coefficients, it is possible to know how much a specific event contributed to the prediction
of the next visit. In [19], the authors show that time steps closer to therapy was associated
with higher attention weights and were more influential on the prediction. An adaptation
of Class Activation Mapping [15] to 1D time series is described in [20] and applied to Atrial
Fibrillation Classification.

Models can also be explained by generating or querying prototypical instances that
are representatives of specific output classes. PatchX [21] uses patches to segment the
input time series. It extracts local patterns and classifies each of them according to the
occurrence of the pattern in a given class. The classification outcome for a complete time
series depends on the classes associated with each pattern within it. Other prototype-
based approaches leverage the latent representation learned by autoencoders to generate
explanations as in [22,23], but in this case, there is a trade-off between prototype quality
and classification accuracy.

In [24], the explanations and prototypes are extracted using an information theoretic
approach. The authors take the user’s understanding into consideration, which is modelled
as a function of the input x of the systems: u(·) : Rn → R : x 7→ u := u(x) and can be
seen as a summary of that specific input. Similarly, an explanation e := e(x) is a quantity
presented to the users to help in the understanding of a specific prediction ŷ. By considering
the data points as independent and identically distributed (i.i.d.) realizations of a random
variable, the conditional Mutual Information I(e; ŷ|u) represents the amount by which the
explanation reduces the uncertainty about the prediction.

Our brief literature survey highlights that most of the interpretability methods are
tailored to specific settings and sometimes learning architectures. Model agnostic tech-
niques exist but are applied almost exclusively to classification problems and rarely to
regression. Additionally, the availability of approaches for sequential data is substantially
lower and limited to classification tasks and, sometimes, to forecasting scenarios [8]. The
sequence generation setting is left with few approaches, such as [20], adapted from different
tasks that need access to the internals of the models. The method proposed in this paper
attempts to overcome such limitations by introducing a model agnostic method that can
generate explanations in sequential data processing tasks comprising both regression and
classification tasks.

3. Problem Statement

In this paper, we address the problem of explaining the behaviour of a black box model
b in the prediction of a time series y given a multivariate time series X = {x1, x2, . . . , xn}.

A prediction dataset X , Y, thus, consists of a set X = {X1, X2, . . . , Xs} ∈ Rs×h×n of
multivariate time series, where we have a target univariate time series Y ∈ Rs×h assigned
to each multivariate one. A multivariate time series X consists of n univariate time series,
each one with h time points x = {t1, t2, . . . , th} ∈ Rh. For instance, a single univariate time
series can model an ECG signal. In the following, we also use the term signal to indicate a
single univariate time series. We name a local subsection of a signal a sub-signal.

Definition 1 (Sub-signal). Given a signal x ∈ Rh, a sub-signal x′ of x with length w < h is a
sequence of w contiguous data points of x, i.e., x′ = {tp, . . . , tp+w−1} for 1 ≤ p ≤ h− w + 1.

Given a black box, time series predictor b and a multivariate time series X s.t. b(X) = y,
our aim is to provide an explanation for the decision b(X) = y. We use the notation b(X ) = Y
as a shorthand for {b(X) | X ∈ X} = Y. We assume that b can be queried at will.
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4. The MIME Method

We approach the above explanation problem proposing MIME (Masking Inputs for
Model agnostic local Explanation), a method aiming at understanding why a recurrent
neural network outputs a specific prediction and how it reacts to engineered changes in
the input signal by using a methodology rooted on occlusions. By occlusion, we denote
the alteration of a part of the input signals with a given value. This kind of technique has
been applied to analyse the robustness of image classifiers, where important features of the
image are masked to observe changes in the predicted class [25].

MIME produces an explanation targeted at two different types of users: physicians
and technical experts. Physicians receive information about the importance of a particular
input signal for the final prediction and information about some particular parts of the
input signals influencing the prediction. This information is supported by visualizations.
Technical experts instead can use MIME to analyse the robustness of the prediction model
against some input perturbation.

The different components of our explanation are obtained by using the occlusion
mechanism. The occlusion approach proposed in this work does not require prior knowl-
edge concerning the data structure and distribution, and it only requires having access to
input signals and model predictions. For each of the sequential input time series of the
model, we generate an occluded version by substituting the original signal values with a
user-defined value. The alteration can be chosen to last for the whole signal or for a fixed
time-span. In the latter case, a windowed approach is employed to systematically analyse
the effect of occluding different parts of each input signal.

In the following (Figure 1), we provide a step-by-step description of the proposed
methodology, which includes: (i) The determination of the importance of each input signal;
(ii) Analysis of the impact of the input signals perturbation; (iii) The extraction of the most
influential sub-signals.

Figure 1. MIME overview. The original input X is occluded, generating Xocc. A black box model b
generates predictions y and yocc using both altered and unaltered inputs. The two predictions are
compared using an error measure (e.g., MAE).

4.1. Occlusion Approach

LetX ∈ Rs×h×n be a tensor representing samples of multivariate time series composed
of n signals of the length h. Each signal x is represented by a vector x ∈ Rh. We use

#–

1
and

#–

0 to denote vectors whose components are, respectively, all ones and all zeroes. The
altered signal x̂ is obtained according to the type of modification required. In the case of a
full length occlusion, we have: x̂ = ov

#–

1 with ov being the occluding value and
#–

1 ∈ Rh.
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In order to modify x with a localized alteration of duration d starting after p timesteps,
we define two binary masking vectors m1 and m2 as:

m1 = (
#–

1a,
#–

0 ,
#–

1b)

m2 = ¬m1 (1)
#–

1a ∈ Rp,
#–

0 ∈ Rd,
#–

1b ∈ Rh−(p+d)

where ¬ is bit-wise negation. By means of the above masks, we get the x̂ vector as:

x̂ = (x�m1) + ovm2 (2)

The localized alteration provides the basic elements to define an occlusion approach
based on a window w covering a specific temporal range.

Given a multivariate time series X, we define an occlusion window w with a duration
of d timesteps, and we derive the number of possible segments of a signal that we can
occlude, i.e., q =

⌊
h
d

⌋
+ c, where c = 0 if the signal duration is divisible by d; otherwise,

c = 1.
Signal occlusion is performed on each segment i with i ∈ [1 · · · q]. For each x, we alter

only a single segment per time. The alteration can be performed on any of the signals xj ∈ X
with j ∈ [1, · · · n], one at time or by considering any subset of signals in X. Algorithm 1
reports the occlusion procedure for a single signal.

By generating the occlusions, we collect the model outputs for both the unaltered
input samples Y = b(X ) and under the occluded inputs X̂ , i.e., Yocc = b(X̂ ). Then, we
consider the discrepancies between the two output signals measured in terms of mean
absolute error (MAE) between Y and Yocc. Thus, higher values of MAE denote higher
importance of the occluded signal parts. This approach allows us to investigate several
aspects of the models trained for different tasks in the biomedical domain and to extract
and analyse explanations. We discuss these aspects in the following sections.

Algorithm 1 Occlusion.

1: procedure OCCLUDE(x, wsize, widx)
2: len←LENGTH(x)
3: xocc ←COPY(x)
4: ov ← 0 . user-defined occlusion value.
5: start← wsize · widx
6: end← start + wsize
7: if end > len then
8: end← len
9: end if

10: for i← start, end do
11: xocc[i]← ov . window occlusion
12: end for
13: return xocc
14: end procedure

4.2. Input Signal Importance

The first step of MIME aims at determining the importance of each input signal for the
prediction task. A large number of approaches have been developed to investigate feature
importance in machine learning models for interpretability purposes. Most of them are
specifically designed to deal with classification tasks, while others (such as SHAP [7]) rely
on assumptions that are not always valid, such as the independence of the input features.
As an example, in our setting, two input signals, such as cardiac and respiratory data,
cannot be considered independent.
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In our approach, for each input signal x ∈ X, we evaluate the importance of x by
applying the black box b on both the data with the entire signal x occluded and the original
data without any occlusion. The MAE resulting from the comparison of the two predictions
quantifies the importance of the signal x. Occluding the entire signal means considering
a window with a size equal to the signal length, i.e., setting wsize = h and widx = 1 in
Algorithm 1.

4.3. Estimating Duration of Induced Perturbation

Occluding parts of the input signals results in an alteration in the network outputs. The
predicted signals under input occlusion manifest a perturbation that, as the empirical anal-
ysis will show, is clearly visible when plotting the two generated outputs. Following up on
this intuition, we developed a procedure to quantify the duration of the induced alteration.

The rationale of our duration estimation procedure follows the approach discussed
previously for the signal importance assessment. For any segment occluded in the input
signals, we quantify the deviation of the occluded prediction from the unaltered one by
computing their MAE over a window of d timesteps. In particular, given the two predicted
signals y and yocc, we apply the procedure described in Algorithm 2. First, we segment the
two signals in q = b h

d c+ c sub-signals (with c = 0 if h is divisible by d, c = 1 otherwise),
obtaining two lists of sub-signals s and socc, respectively, (lines 4–5, Algorithm 2). Then,
we compute the MAE for any pair of aligned sub-signals, i.e., ∀i ∈ [1 . . . v]. MAE(si, si

occ)
(lines 6–9). Perturbation duration is quantified by counting the number of sub-signals
for which the MAE is above a threshold TMAE (lines 10–15), whose value is application-
dependent.

Algorithm 2 Perturbation duration.

1: procedure PERTDURATION(y, yocc, TMAE)
2: wsize ← d . user-defined size
3: mael ← empty list
4: s←SEGMENT(y, wsize)
5: socc ← SEGMENT(yocc, wsize)
6: for all si ∈ s do
7: ε← MAE(si, si

occ)
8: Append ε to mael
9: end for

10: wc ← 0
11: for all ε ∈ mael do
12: if ε > TMAE then
13: wc ← wc + 1
14: end if
15: end for
16: return wc . n. windows with MAE > TMAE
17: end procedure

4.4. Determining Influential Sub-Signals

The windowed occlusion procedure can also serve to identify the most relevant or
influential input sub-signals for the model. This is, again, obtained by contrasting original
predictions with the model outputs under occlusion, measuring the mean discrepancy
between the two. Algorithm 3 describes the details of our approach. In particular, it
computes, for each input signal x ∈ X, the importance of each sub-signal of x. To this
end, the input signal x is segmented in q sub-signals s1, . . . , sq (line 4), and for each si, an
occluded version of the signal x is computed (line 6). Then, the importance of the sub-signal
si is measured by computing the derived MAE comparing the model prediction y on the
unaltered signal and yocc on the occluded signal (lines 8–10). Once the MAE is computed
for each sub-signal, the algorithm produces a heatmap that provides a visual inspection



Entropy 2021, 23, 1064 7 of 21

that highlights the importance (measured by MAE) of each sub-signal (see Figure 3 as an
example). Finally, the method extracts the top-k sub-signals with the highest MAE.

Next, the top-k sub-signals of each signal are used to provide the physicians with a set
of important sub-signals of each category of the input signal. To this end, given the whole
set of multivariate time series X , MIME selects from each multivariate X ∈ X the single
univariate signals xj and extracts the top-k sub-signals with the highest MAE, which we
denote by TKX

j (Algorithm 3).
Finally, MIME derives the set I by computing the union of these top sub-signals

obtained for each of the j-th signals, i.e., I = ∪X∈X TKX
j . Finally, it extracts the most

important ones from such set, again relying on the MAE values.

Algorithm 3 Top-K influential Sub-signals.

1: procedure TOPKSUB-SIGNALS(X, x, model, wsize, k)
2: mae_signal ← empty list
3: subsignals← empty list
4: s← SEGMENT(x, wsize)
5: for i← 1, |s| do
6: xocc ←OCCLUDE(x, wsize, i)
7: Xocc ← (X \ {x}) ∪ {xocc}
8: yocc ← PREDICT(Xocc, model)
9: y← PREDICT(X, model)

10: ε← MAE(y, yocc)
11: Append (ε, si) to mae_signal
12: end for
13: mae_signal ← REVERSESORT(mae_signal)
14: for j← 1, k do
15: Append mae_signal.get(i)[1] to subsignals
16: end for
17: return subsignals
18: end procedure

4.5. Self Organizing Maps Clustering of Influential Sub-Signals

The set I of influential sub-signals, extracted using the procedure described in the
previous section, is then used as input for a Self Organizing Map (SOM) [26]. SOMs are the
most popular family of neural-based approaches to topographic mapping. They leverage
soft-competition among neighbouring neurons arranged on low-dimensional lattices to
enforce the principle of topographic organization. Soft-competition ensures that nearby
neurons respond to similar inputs, while lattice organization provides a straightforward
means to visualize high-dimensional data onto simple topographic structures. Thanks
to these characteristics, they have found wide application as an effective computational
methodology for adaptive data exploration [27].

In this work, SOMs are used as a visualization tool targeted to domain experts. Thanks
to the SOM ability to cluster signals by their morphological similarity and mapping them
to a specific neuron, or more generally, to a neighbourhood of neurons, it is possible to
obtain a synthetic and organized view of those signals. Exploiting the ability to project
auxiliary information such as the MAE linked to each sub-signal in I, it is possible to
identify prototypical portions of signals associated with the highest error. This process
allows us to provide physicians with an intuitive tool to identify and visualize the “critical”
parts of the signals. For the sake of our analysis, we can use all sub-signals in the original set
I, or alternatively, we can operate on a subset G, obtained by selecting the most informative
n (i.e., the ones with the highest error) elements from I.

After the training phase, we query the SOM to obtain the best matching unit (BMU)
∀si ∈ I and link the BMU to the MAE associated with si. The set of all sub-signals mapped
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to the BMU with coordinates (u, v) is denoted by Su,v = [s1, s2, . . . , sz]. We build a matrix
E ∈ Ru×v with the same dimensions of the map where each element E[u, v] is:

E[u, v] =
∑
|Su,v |
z=1 MAE(sz)

|Su,v|
sz ∈ Su,v

By projecting the matrix E on top of the original SOM map, we can easily identify neurons
that react to sub-signals with a larger MAE thanks to colour intensity. Sub-signals associated
with each BMU can be plotted in isolation or can be linked back to the original input signals
they were extracted from, highlighting critical portions of the original time series.

4.6. Explaining Time Series Classification

As described above, MIME is designed to explain regression tasks. However, it can be
easily adapted for providing explanations in time series classification tasks. In this case, each
multivariate time series is assigned to a label, i.e., the target Y ∈ Rs. In order to adapt our
approach to these tasks, we propose determining the signal influence (Section 4.2) and the
most influential sub-signals (Section 4.4) by computing the MAE discrepancy between the
model losses for the occluded and original signals rather than between the model outputs.
Moreover, when selecting the influential sub-signals, we will look into those that lead
the model to change its classification prediction. That is why we adapt the approach to
return the sub-signals that have the highest MAE and yocc 6= y. Clearly, since the prediction
is a class label here and there is no temporal information associated with the target, we
cannot provide the analysis on the impact of the perturbation in terms of duration of the
induced alteration.

All in all, the approach needs to be customized based on whether the predictive task is a
regression or a classification problem. In a regression setting, the only actionable choice is
the selection of the discrepancy function. For the sake of this work, we measure occluded-
unoccluded output discrepancy using MAE. For classification problems, in Algorithm 3,
we need to compute the MAE discrepancy between the model losses for the occluded
and original inputs rather than between the model outputs. Moreover, when selecting
the influential sub-signals, we are interested in those that cause the system to change
its classification prediction. For this reason, we append the tuple (ε, si) to the list of the
candidate-important sub-signals (line 11) if and only if yocc 6= y.

5. Experimental Setup

We tested the approach on both classification and regression tasks using several
models trained on three different datasets of physiological signals. In this section, we detail
the dataset employed and the models used in the experimental assessment.

5.1. Datasets

The first set of signals is from the Cuff-Less Blood Pressure Estimation Data Set (CBPEDS) [28]
available in the UCI ML repository [29]. CBPEDS contains a subset of the physiological
signals available in MIMIC II Waveform Database [30] that are useful to create systems
for non-invasive blood pressure estimation. MIMIC II is part of PhysioBank [31]. Three
different types of synchronized patients recordings are available: electrocardiograms (ECG),
photoplethysmograph from fingertip (PPG) and invasive arterial blood pressure (ABP).

The second dataset is the Combined measurement of ECG, Breathing and Seismocardio-
grams Database [32] (CEBSDB), which was constructed to compare RR time series of ECG
and seismocardiograms (SCG). Signals were collected by asking 20 presumed healthy
volunteers to be very still in a supine position on a comfortable conventional single bed and
awake. The subjects were monitored in a basal state for 5 min, for 50 min while listening to
classical music, and for another 5 min after the music ended. From this dataset, we used all
the available recordings with exception of “ECG lead I”.
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To test the approach on a classification task, we used a dataset obtained from the
PTB Diagnostic ECG Database (PTBDB) [33]. A set of ECG beats were extracted from the
original 549 full-length recordings. The nine diagnostic classes (eight for unhealthy heart
conditions, one for healthy) in the original dataset were condensed into two classes: one
for healthy beats and the other for pathologic conditions. We remand to [34] for details
regarding preprocessing and beat extraction.

A summary of the main characteristics of these datasets is available in Table 1. Details
on datasets preprocessing are reported in Appendix A.

Table 1. Summary of datasets.

CBPEDS CEBSDB PTBDB

# of timeseries 10,158 1512 14,552

# of variables 3 3 1

Length (time points) 1250 1250 187

Sampling freq. 125 Hz 5 kHz 125 Hz

# of classes - - 2
# of normal time-series - - 4046

# of abnormal time-series - - 10,506

5.2. Models

A total of 9 different models were trained, 3 for each dataset. Given the temporal nature
of the physiological signals under analysis, Recurrent Neural Networks models were used.
We trained 2 RNN models together with a third non-recurrent one to be used as a baseline
competitor. Models were implemented using Keras [35] with Tensorflow 2.0 [36] backend.

Using signals from CBPEDS, we trained the models for the task of estimating the
full-length ABP signal using ECG and PPG signals as inputs. On this regression setting, we
selected the following models:

• a convolutional autoencoder (AUT) [37] composed of a total of 26 layers: 15 for the
encoder and 10 for the decoder;

• a Gated Recurrent Units network (GRU) [38] composed of 5 layers, with a single output;
• a convolutional GRU (CNN-GRU) [39] network of 5 layers and a single output.

A similar regression task was designed with signals from CEBSDB. With the ECG and
Breathing signals as input, we predict the whole SCG signal. Given the similarity of the two
regression tasks, the six models share most of the architectural choices. Some hyperparameters
were tuned to adapt the models to the specific task (details in Appendix B).

We also trained 3 additional models in a binary classification setting using the ECG
signals from the PTBDB dataset:

• a fully connected feed forward neural network (MLP) [40] composed of 5 layers;
• a Gated Recurrent Units network (GRU) [38] composed of 4 layers, with a single output;
• a convolutional GRU (CNN-GRU) [39] network of 4 layers and a single output.

Differently from the regression setting, in this case, we used a fully connected network
(MLP) as a baseline. This choice is motivated by the fact that it exhibited predictive
performances comparable with those of the recurrent models. For all models, the dataset
was split into 3 parts: 70% of the data has been used for the training, 10% for validation and
20% for the test set. Networks trained on CEBSDB and CBPEDS used the Mean Absolute
Error (MAE) as the loss function, while Binary Cross Entropy was used for models trained
on PTBDB.

In the following, we denote models trained on each dataset with the subscripts α,
β and δ, for the CBPEDS, CEBSDB and PTBDB, respectively. Table 2 summarizes model
performances in the unoccluded case.
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Table 2. Selected model performances on each dataset.

CBPEDS (MAE) CBPEDS (MAE) PTBDB (Accuracy)

Valid. Set Test Set Valid. Set Test Set Valid. Set Test Set

GRUα 14.909 17.636 - - - -
CNN-GRUα 14.814 17.826 - - - -

AUTα 11.744 13.581 - - - -

GRUβ - - 1.494 1.662 - -
CNN-GRUβ - - 1.451 1.779 - -

AUTβ - - 1.315 2.073 - -

GRUδ - - - - 99.31% 99.18%
CNN-GRUδ - - - - 96.46% 96.29%

MLPδ - - - - 92.58% 99.18%

6. Experiments

In the following sections, we describe the results of the experiments performed using
the MIME explainer. First, we report results for signal importance assessment using both
whole length occlusion and the windowed approach. Next, we describe the analysis
pertaining to the duration of induced perturbations. Following, we detail experiments
to extract the most influential sub-signals and the associated SOM-based visualizations.
Lastly, we provide examples of the Signal Occlusion Contribution Visualization targeting the
clinical experts.

6.1. Signal Importance

Experiments to quantify signal importance for models trained on regression tasks
(CBPEDS and CEBSDB) were performed by occluding segments of the input signal with
zero values or with the mean value of the dataset for the whole duration. The effects have
been evaluated on the validation and test sets from both datasets.

Table 3 reports the results for models trained on the CBPEDS dataset. We include the
MAE with the unaltered input as a reference. Different models with different inductive
biases learn different representations, and in doing so, they assign different levels of
importance to the input signals. The table highlights (in boldtype) that the GRUα model
relies more on the PPG signal, as occluding it results in a larger MAE. We have similar
results for the AUTα model, while the CNN-GRUα model, instead, has a larger MAE
when the ECG signal is occluded. The type of occlusion seems to play a secondary role,
probably related to samples distribution, as results on the validation set indicates. The most
important input signals remain the same for all three models, with MAE score variations
according to the occlusion type.

Table 3. CBPEDS Signal importance results.

Occlusion Type Validation Set MAE Test Set MAE

GRUα CNN-GRUα AUTα GRUα CNN-GRUα AUTα

No occlusion 14.90 14.81 11.77 17.63 17.82 13.58

ECG zeroed 17.42 17.17 13.70 18.96 19.63 15.68
PPG zeroed 17.32 14.52 14.21 20.01 18.65 16.18

ECG mean 16.97 17.07 13.74 18.83 19.71 15.57
PPG mean 18.05 14.57 14.11 19.80 18.23 16.22

For the CEBSDB dataset, the signal importance assessment in Table 4 reveals a strong
reliance of all the three networks on the ECG input signal to correctly generate the SCG
output signal. This behaviour is evident when analysing the errors in Table 4: the MAE
associated with ECG occlusion is always higher, with the only exception of the GRUβ
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model on the test set. The occlusion value has a strong impact on the autoencoder model,
while the effects are of smaller magnitude than for the other models. Figure 2 shows a
graphical example of the different outputs of the GRUβ model (trained to predict the SCG )
when different input signals are occluded.

Table 4. CEBSDB signal importance results.

Occlusion Type Validation Set MAE Test Set MAE

GRUβ CNN-GRUβ AUTβ GRUβ CNN-GRUβ AUTβ

No occlusion 1.494 1.451 1.315 1.662 1.779 2.073

ECG zeroed 1.862 1.864 2.416 1.773 1.786 2.130
Breathing

zeroed 1.532 1.451 1.319 1.897 1.779 1.949

ECG mean 1.868 1.863 1.868 1.773 1.786 2.135
Breathing mean 1.533 1.426 1.319 1.899 1.646 1.954

Figure 2. GRUβ predictions for the SCG with occluded input signals. With ECG occluded, the output
prediction is a signal oscillating around zero values.

6.2. Windowed Occlusion

In this section, we report the results obtained by occluding the input signals with zero
values for a fixed window of time for all window indexes. This approach has been applied
in both classification and regression models. In the former case, we report the average MAE
error obtained across all the windows, and in the latter case, the mean accuracy obtained
by considering the occluded prediction.

Table 5 shows the results on CBPEDS datasets. In general, larger mean MAE values are
associated with the occlusion of the most meaningful sub-signals, and the error increases
with the window size. In predicting the arterial blood pressure, the GRUα model exhibits
larger errors when ECG is occluded. The autoencoder is the worst performer of the three
models when the PPG signal is occluded, while the CNN-GRUα model is the most robust
among the tested networks.

Table 6 reports results on the CEBSDB dataset. In this regression task, the AUTβ model
is the most susceptible model when the ECG signal is occluded, while the CNN-GRUβ, as
in the ABP estimation task, is less influenced by the occlusion. The GRUβ model confirms
its larger reliance on the breathing signal compared to the other networks, as the associated
MAE shows.

The accuracy results obtained with the three different models for the classification
task on PTBDB are reported in Table 7. Here, the ECG is the only input signal, and we
experimented with different occlusion values. Several window sizes were tested with
duration of 25, 50, 75, 100 and 125 time steps. The choice of the occlusion value (zero or
mean signal value on the dataset) has a negligible impact on the accuracy (from 1% to 4%).
Interestingly, all models worsen their prediction when the occlusion is zero, especially at
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lower window sizes. Increasing the occlusion duration results in a larger accuracy loss
for all models, independently from the value used. The feedforward network used as a
baseline is the less susceptible model followed by the CNN-GRUδ model. The pure GRU
model has, in general, the largest accuracy loss.

Table 5. CBPEDS mean MAE results for different window sizes. Occlusion with zero values. Lowest
values are in bold, highlighting models less affected by occlusion error.

Wsize Signal Test Set MAE

GRUα CNN-GRUα AUTα

25 ECG 0.619± 0.143 0.406± 0.076 0.405 ± 0.054
25 PPG 0.522± 0.119 0.448 ± 0.094 0.856± 0.112
25 Both 0.810± 0.170 0.741 ± 0.139 0.959± 0.111

75 ECG 1.088± 0.254 0.760 ± 0.153 0.810± 0.131
75 PPG 1.088± 0.239 0.901 ± 0.185 1.232± 0.168
75 Both 1.657± 0.344 1.328 ± 0.232 1.681± 0.224

125 ECG 1.425± 0.232 1.080 ± 0.150 1.180± 0.140
125 PPG 1.544± 0.227 1.299 ± 0.174 1.664± 0.190
125 Both 2.507± 0.337 1.973 ± 0.213 2.362± 0.203

Table 6. CEBSDB Mean MAE results for different window sizes. Occlusion with zero values. Lowest
values are in bold, highlighting models less affected by occlusion error.

Wsize Signal Test Set MAE

GRUβ CNN-GRUβ AUTβ

25 ECG 0.061 ± 0.034 0.062± 0.025 0.112± 0.016
25 Breath 0.068 ± 0.057 0.071± 0.032 0.0682± 0.010
25 Both 0.093± 0.059 0.091 ± 0.036 0.147± 0.020

75 ECG 0.129 ± 0.057 0.137± 0.056 0.236± 0.042
75 Breath 0.127± 0.094 0.11± 0.053 0.0887 ± 0.017
75 Both 0.183± 0.098 0.161 ± 0.067 0.268± 0.047

125 ECG 0.194 ± 0.078 0.206± 0.073 0.339± 0.041
125 Breath 0.187± 0.126 0.147± 0.068 0.111 ± 0.0183
125 Both 0.263± 0.118 0.231 ± 0.082 0.363± 0.046

Table 7. PTBDB models mean accuracy decrease for different window sizes. Lowest decreases in bold.

Test Set Accuracy
Decrease (%)

Wsize Occ Value GRUδ CNN-GRUδ MLPδ

25 zero 13.18 14.29 10.86
25 mean 10.18 12.29 8.0

50 zero 20.18 19.29 16.0
50 mean 18.18 17.29 14.0

75 zero 26.18 23.29 19.0
75 mean 26.18 19.19 17.0

100 zero 29.18 26.29 20.0
100 mean 25.18 26.29 21.0

125 zero 28.18 25.29 21.0
125 mean 28.18 26.29 21.0

6.3. Induced Perturbation Duration

Table 8 provides the results for the experiments quantifying the duration of the
perturbation caused by different occlusion types in CBPEDS. The GRUα model shows the
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largest sensibility to the alteration of ECG input and takes more timesteps to undo the
induced error, which can last up to 250 timesteps (2 s) even for small occlusion durations,
confirming the importance of this signal for this specific model. CNN-GRUα seems to
recover faster than the GRUα model. Moreover, the duration of the perturbation is similar
for ECG and PPG occlusions. The best model at dealing with the perturbation duration is
AUTα. Its mean duration is the lowest in the Table, and when ECG is occluded, its effect
lasts for zero timesteps. This does not mean, however, that the induced perturbation is
zero: it rather indicates that the induced error is less than the chosen tolerance for the MAE.

Table 8. CBPEDS perturbation duration for the different models occluded with zero value. Lowest
durations are highlighted in bold.

Wsize Signal Test Set Mean Duration (ts)

GRUα CNN-GRUα AUTα

25 ECG 188.00± 40.69 138.00± 25.61 0.00 ± 0.00
25 PPG 161.50± 33.25 136.00± 25.57 15.50 ± 12.13
25 Both 206.00± 47.05 171.00± 35.83 17.00 ± 11.66

75 ECG 91.18± 20.90 195.59± 43.08 0.00 ± 0.00
75 PPG 244.12± 62.15 202.94± 45.28 20.59 ± 9.53
75 Both 91.18± 20.90 213.24± 49.35 23.53 ± 5.88

125 ECG 310.00± 68.19 257.50± 44.79 0.00 ± 0.00
125 PPG 300.00± 64.23 257.50± 44.79 25.00 ± 0.00
125 Both 327.50± 76.20 280.00± 55.68 25.00 ± 0.00

The results for the CEBSDB task are reported in Table 9: in this setting, the autoencoder
needs a larger time to recover from induced perturbation. Occluding the breathing signal
causes no perturbation for both AUTβ and the CNN-GRUβ, while the effect is low for the
GRUβ model. Compared with the ABP estimation task, perturbation durations are, in
general, lower, with the exception of the autoencoder model. This effect may be due to
the nature of the predictive task: the SCG signal has higher variability than ABP, which is
probably causing models to recover faster from alterations.

Table 9. CEBSDB Perturbation duration for the different models occluded with zero value. Lowest
durations are highlighted in bold.

Wsize Signal Test Set Mean Duration (ts)

GRUβ CNN-GRUβ AUTβ

25 ECG 0.00 ± 0.00 14.50± 12.34 0.00 ± 0.00
25 Breath 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
25 Both 18.00± 12.29 25.50± 3.50 1.50 ± 5.94

75 ECG 38.24 ± 17.40 58.82± 14.71 91.18± 28.36
75 Breath 2.94± 11.76 0.00 ± 0.00 0.00 ± 0.00
75 Both 69.12 ± 18.25 75.00± 8.57 98.53± 26.39

125 ECG 87.50 ± 16.77 117.50± 11.46 155.00± 18.71
125 Breath 10.00± 30.00 0.00 ± 0.00 0.00 ± 0.00
125 Both 122.50 ± 17.50 127.50± 7.50 192.50± 46.17

6.4. Visualizing Sub-Signal Occlusion Effects

The increasing availability of medical datasets motivates the need for tools to make
sense of this large amount of information [41]; one of the fastest and most effective ways to
convey key aspects of data under analysis is by visualization. The proposed explanation
is targeted at experts in the medical domain. By expert in the medical domain, we mean a
clinician or doctor, that is, a person who has no professional computer science background
but rather a medical one.
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We get our visualization by overlapping two different kinds of plots. The first one is
the plot of the input signal we are considering, which in the case of CBPEDS, is either an
ECG curve or a PPG curve. The second one is a windowed heatmap used as a background
for the first plot. The heatmap is generated by occluding the signal under analysis for a
specific user-defined window of time, with the approach described in Section 4.2.

For each occluded window index, we plot the associated MAE error with a propor-
tionally intense background colour. Figure 3 shows an example of our visualization of
the occlusion contribution for an ECG signal from the CBPEDS dataset with a window
occlusion size of 50 timesteps. For the ECG signal analysed, it is clear that an occlusion in
the first window of the signal results in a higher error. Moreover, the section of the signal
around the 800th time step (indicated with a red triangle) is also associated with a high
MAE. By observing this visualization, clinicians can get an insight into which portion of the
input signals are influential for the output prediction of the model and assess whether the
highlighted sub-signals are critical morphological features employed for classical diagnosis
methods. Another example of such a visualization for a different window size is reported
in Appendix C.

Figure 3. A visualization of sub-signal occlusion contributions for an ECG signal from CBPEDS. The
occlusion window size is equal to 50. Red triangles mark the portions of the signal that contribute
more to MAE increase.

In order to assess the interpretation provided by MIME, we compared it with the
Integrated Gradients (IG) method [15]. Figure 4 compares the most influential sub-signals
of an ECG signal identified by MIME and IG in PTB dataset. The comparison points out
how both methods are concordant in identifying the same important window as the key
subsequence in the analysed signal.

We also provide a quantitative evaluation of the concordance between the MIME and
IG interpretations. To this end, we compute a score measuring when the two methods
select the same sub-signal or sub-signals that are temporally close as the most influential
ones. Given that, MIME returns an importance score for each window of duration d over the
signal x (as explained in Section 4.6). We define an importance score, based on Integrated
Gradients, to compare our results with the IG method. In particular, given a window
of duration d, we calculate this score as the sum of the IG values IGj of each timestep j,
i.e., IGscore = ∑d

j=1 IGj. We assign an index to each window; thus, we can derive from
each signal which window index corresponds to the highest importance score in both
methods. We name them indexIG and indexMIME. Then, we compute how many windows
identified by MIME and IG perfectly match or differ by no more than 1 window index,
i.e., |indexIG − indexMIME| <= 1. A preliminary investigation conducted on MLPδ found
that MIME and IG have a concordance score of 68.20% for the signals in PTB dataset. We
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leave a more in-depth quantitative characterization of the relationships between the two
approaches as future work.

Figure 4. A comparison of importance assigned to sub-signals of an ECG from PTB by MIME (left)
and Integrated Gradients (right). The window with the highest score is marked by the red triangle.

6.5. Most Influential Sub-Signals

In this section, we describe the SOM-based analysis performed on the most influential
samples extracted from the various datasets and according to the different models. The
maps were trained using the MiniSOM python library [42]. For each recurrent model, we
trained several SOMs using the top 5000 sub-signals extracted from the corresponding
training dataset as input. All maps have dimensions (12, 17). We used a Gaussian neigh-
bourhood function with σ = 2.05 and hexagonal topology. SOMs were trained with a
learning rate lr = 0.7 for a total of 105 steps.

After the training phase, we have tested the SOM with the top 2000 sub-signals
extracted from the test portion of each dataset to build the E matrix with E ∈ R12×17. We
normalize E to have values in the [0, 1] range and project this information on the SOM as a
heatmap. Figures 5 and 6 show two examples of visualizations obtained from the SOMs
trained on ECG signals. In the figures, we report also a close-up on the prototypical signals
associated with the most active neuron in the map. Signals associated with the highlighted
neurons show large MAE errors and share morphological characteristics.

Self Organizing Maps obtained from the training dataset can be shared with users
of the predictor to help them in assessing the behaviour of the model on novel data. By
repeating the most influential sub-signal extraction phase on a production dataset, the
SOM can be used to generate an updated visualization. Such visualization will provide a
useful global overview of problematic sub-signals of new time series data.

Figure 5. The SOM map with MAE-based colouring for a GRUα model tested on ECG sub-signals.
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Figure 6. SOM maps with MAE-based colouring for a GRUδ model tested on ECG sub-signals.

7. Conclusions

In this work, we presented an interpretability approach for sequential data based
on input occlusion. The approach is model-agnostic and only requires access to model
inputs and outputs. Using the proposed methodology, we studied several recurrent neural
networks trained on both regression and classification tasks and analysed the importance
assigned by the models to each input signal.

Our results highlight how different models rely on different input signals to generate
their predictions and show larger errors when that input is occluded. The perturbation
induced by occlusion lasts longer when the occluded input are those resulting from the
signal importance analysis. In regression tasks, recurrent models are more robust compared
to the convolutional autoencoder baselines, with the CNN-GRUs suffering less from input
alteration compared to the pure GRU models. The increased robustness is probably due to
the convolutional layer providing “look-ahead” capabilities to the recurrent layer.

The simple feedforward network used as a baseline in the classification task is more
robust with respect to the two recurrent models. As in the regression setting, the CNN-GRU
performed better compared to the vanilla GRU and exhibited a minor loss of classifica-
tion accuracy.

Moreover, leveraging the occlusion approach, we designed two different visualizations
aimed at clinicians. The first one gives a detailed view of the error associated with the
occlusion of portions of a single input signal.

The second one is based on Self Organizing Maps and is used to visually inspect and
discover critical sub-signals associated with high prediction errors.

Interesting future work directions are the development of a data-driven algorithm to
select the optimal occlusion window size and increasing the human–machine interaction
degree. The latter would allow the proposed approach to be used in “what if?" scenarios,
enabling faster comparisons of explanations generated from user-specified parameters.
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Appendix A. Dataset Preprocessing

Appendix A.1. CBPEDS

The Cuff-Less Blood Pressure Estimation Data Set is available from the UCI ML repository.
Each entry in the dataset is a multivariate time series containing the following signals:

• ECG signal: electrocardiogram from channel II;
• PPG signal: photoplethysmograph from fingertip;
• ABP signal: invasive arterial blood pressure.

Each signal is collected at a sampling frequency of 125 Hz. All three signals are
synchronized for each patient.

Preprocessing steps:

1. Smoothing all signals with a simple averaging filter;
2. Removing signal blocks with irregular and unacceptable human blood pressure values;
3. Removing signal blocks with severe discontinuities, which was not resolved by

smoothing filter in step 1;
4. The calculation of PPG signal autocorrelation, which indicates the degree of similarity

between successive pulses, and removing blocks with high alteration.
5. Removing samples with irregular readings appearing in at least one of the three

signals;
6. Signals duration normalization. Each signal was divided into segments of 10 s.

Appendix A.2. CEBSDB

The The combined measurement of ECG, Breathing and Seismocardiograms Database is
available from Physiobank.

Each entry in the dataset is a multivariate time series containing the following signals:

• ECG signal: electrocardiogram from channel I;
• ECG signal: electrocardiogram from channel II;
• Breathing signal: breathing signal from thoracic piezoresistive band;
• SCG signal: seismocardiogram obtained using a triaxial accelerometer.

Each channel was sampled at 5 kHz. All four signals are synchronized for each patient.
Preprocessing steps:

1. removing ECG obtained from channel I from all samples to maintain consistency with
the CBPEDS dataset;

2. downsampling all signals to have a duration of 1250 time steps.

Appendix B. Trained Models

Appendix B.1. Models for CBPEDS

Adam with a learning rate of 3× 10−3 was used as the optimizer, and the batch size
was set to 512 for all architectures. The best models were selected according to the best
validation score of three training runs.

Appendix B.1.1. GRUα Model

The network is composed of five layers:

• Input: all the 1250 timesteps of both PPG and ECG are passed as input to this layer;
• Dense: a fully connected layer of 256 neurons with linear activation functions;
• Batch-Norm: the batch normalization layer. Keras default parameters were used;
• Recurrent layer: the recurrent part of the network is based on a GRU of 256 neurons

with hyperbolic tangent activations and sigmoid as recurrent activation functions;
• Output: the fully-connected layer composed of a single neuron with a linear activa-

tion function.
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Appendix B.1.2. CNN-GRUα Model

The network involves five layers:

• Input: ECG and PPG signals are passed in their full length as in the GRUα case;
• 1-D Conv: one-dimensional convolutional layer composed of a kernel of 6 convolu-

tional filters with a length of 128 time steps. This layer has linear activation function
and stride equal to 1;

• Batch-Norm: the batch normalization layer. Keras default parameters were used;
• Recurrent: the recurrent part of the network is composed of a GRU of 256 neurons

with hyperbolic tangent activations and sigmoid as recurrent activation functions;
• Output: the fully-connected layer composed of a single neuron with a linear activa-

tion function.

Appendix B.1.3. AUTα Model

A deep convolutional autoencoder composed of a total of 26 layers. The encoder part
of the network comprises 15 layers, and the decoder part counts 10 layers. The encoder is
composed of a sequence of four blocks, each composed of a sequence of four layers, except
for the last one that is missing the max-pooling layer:

• 1-D Conv: one-dimensional convolution with a filter bank of 9 filters and ReLU
activations. Filter lengths are different in each block. For block one to four, lengths
are, respectively, 256, 128, 64 and 16;

• Batch-Norm: the batch normalization layer. Keras default parameters were used;
• Dropout: random dropout of 15%;
• Max Pooling: max pooling is applied with different pool sizes and strides parameters

in each block. From block one to three pool sizes are, respectively, 2,5 and 5. The same
is valid for stride parameters.

The decoder is composed of three blocks performing transposed convolution to output
a signal with the same length of the input. Each block comprises three parts:

• Up-sampling layer: repeats input before convolution operation;
• 1-D Conv: analogous to the ones presented in the encoder but in reverse order. Bank

of 9 filters with different lengths, respectively, 32, 64 and 1 for blocks from 1 to 3;
• Batch-Norm: identical to the encoder’s one;
• Dropout: identical to the encoder’s one.

Appendix B.2. Models for CEBSDB

Adam with a learning rate of 3× 10−5 was used as the optimizer, and the batch size
was set to 512 for all architectures. The best models were selected according to the best
validation score of three training runs.

Appendix B.2.1. GRUβ Model

The sequence of the network layer is the same as the GRU model for the CBPEDS,
with the difference being that the Dense layer and the GRU layer are composed of 1250
and 64 units, respectively.

Appendix B.2.2. CNN-GRUβ Model

The architecture of the convolutional GRU is identical to the one used for the CBPEDS.
We remand to the previous section for the details.

Appendix B.2.3. AUTβ Model

The architecture of the autoencoder is identical to the one used for the CBPEDS. We
remand to the previous section for the details.
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Appendix B.3. Models for PTBDB

Appendix B.3.1. GRUδ Model

This model was trained for 180 epochs using Adam with a learning rate of 3× 10−3

and a batch size of 256. It is composed of the following layers:

• Input: 187 ECG timesteps;
• Recurrent layer: the recurrent part of the network is based on a GRU of 200 neurons

with hyperbolic tangent activations and sigmoid as recurrent activation functions;
• Dense: the fully connected layer of 100 neurons with ReLU activation functions;
• Output: a single neuron with the sigmoid activation function.

Appendix B.3.2. CNN-GRUδ Model

This model was trained for 220 epochs using Adam with a learning rate of 3× 10−3

and a batch size of 512. It is composed of the following layers:

• Input: 187 ECG time steps;
• 1-D Conv: one-dimentional convolutional layer with a filter bank of 64 kernel of size

30 and stride 1;
• Recurrent layer: the recurrent part of the network is composed by a GRU of 32 neurons

with hyperbolic tangent activations and sigmoid as recurrent activation functions;
• Output: a single neuron with the sigmoid activation function.

Appendix B.3.3. MLPδ Model

This model was trained for 100 epochs using Adam with a learning rate of 3× 10−4

and a batch size of 512. It is composed of the following layers:

• Input: 187 ECG timesteps;
• Dropout: random dropout of 10%;
• Dense: fully connected layer of 20 units with ReLU activations;
• Dropout: random dropout of 20%;
• Dense: fully connected layer of 20 units with ReLU activations;
• Dropout: random dropout of 20%;
• Dense: fully connected layer of 20 units with ReLU activations;
• Dropout: random dropout of 30%;
• Output: fully-connected layer composed of a single neuron with a sigmoid activa-

tion function.

Appendix C. Visualizing Sub-Signal Occlusion Effects

Here, we show another example of the proposed visualization that highlights sub-
signals contributions to the error (Figure A1). The plot shows an ECG signals from CBPEDS
occluded with a window size of 25 time steps.
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Figure A1. A visualization of sub-signal occlusion contributions for an ECG signal from CBPEDS.
The occlusion window size is equal to 25. Red triangles mark the portions of the signal that contribute
more to MAE increase.
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