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Abstract: Recurrent infection by Clostridioides difficile has recently been treated by fecal microbiota
transplantation (FMT). As viable SARS-CoV-2 was recovered from stool of asymptomatic individuals,
the FMT procedure could be a potential risk of SARS-CoV-2 transmission, thus underlying the
need to reliably detect SARS-CoV-2 in stool. Here, we performed a multicentric study to explore
performances of two commercially available assays for detection of SARS-CoV-2 RNA in stool of
potential FMT donors. In three hospitals, 180 stool samples were spiked with serial 10-fold dilutions of
a SARS-CoV-2 inactivated lysate to evaluate the Seegene Allplex™ SARS-CoV-2 (SC2) and SARS-CoV-
2/FluA /FluB/RSV (SC2FABR) Assays for the detection of viral RNA in stool of FMT donors. The
results revealed that both assays detected down to 2 TCIDs5p/mL with comparable limit of detection
values, SC2 showing more consistent target positivity rate than SC2FABR. Beyond high amplification
efficiency, correlation between Ct values and log concentrations of inactivated viral lysates showed
R? values ranging from 0.88 to 0.90 and from 0.87 to 0.91 for the SC2 and SC2FABR assay, respectively.
The present results demonstrate that both methods are highly reproducible, sensitive, and accurate
for SARS-CoV-2 RNA detection in stool, suggesting a potential use in FMT-donor screening.

Keywords: FMT; RT-PCR; COVID-19; feces; donor screening

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent
of the coronavirus disease-2019 (COVID-19), has caused a pandemic affecting the world
population at a global scale and remains a major public health threat [1].

Even though people infected by SARS-CoV-2 exhibited a wide range of symptoms,
COVID-19 is typically considered a respiratory disease, with primary manifestations includ-
ing cough, sore throat, congestion, anosmia, and dyspnea. Nevertheless, gastrointestinal
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(GI) symptoms have been also recognized as manifestations of the disease [2—4]. Accord-
ingly, even though the transmission of SARS-CoV-2 typically occurs through the respiratory
tract, the recovery of viable viruses from stool of asymptomatic individuals and patients
have been also reported (i.e., sometimes well after their respiratory infection has cleared),
as well as abundant gastrointestinal glandular cell ACE-2 expression (the target receptor for
SARS-CoV-2) and active replication within enterocytes [2,5-8]. Moreover, the detection of
both viable SARS-CoV-2 and viral RNA in wastewater systems further underscore the poten-
tial role of the gastrointestinal tract in viral replication and shedding [9]. At present, however,
a fecal-oral transmission route for SARS-CoV-2 remains to be definitively demonstrated.

In response to this issue, the U.S. Food and Drug Administration (FDA) released
a safety alert about the risk of transmission of SARS-CoV-2 through fecal microbiota
transplantation (FMT), a procedure that in recent years has clearly demonstrated its benefits
in the management of recurrent Clostridioides difficile infection [10-12]. As such, FMT has
been regarded as a non-postponable procedure to be continuously delivered during the
COVID-19 pandemic, and specific recommendations have been released to reorganize
the workflow of FMT during the pandemic to avoid the potential risk of transmission of
SARS-CoV-2 through the fecal transfer and guarantee patient safety [13-15].

These recommendations included the expansion of donor screening with question-
naires and laboratory testing aimed at excluding SARS-CoV-2 infection, including detection
of possible RNA traces in FMT donations [14]. However, development of stool tests has
been slow, and an assessment of methods for detection of SAR-CoV-2 RNA in stool using
commercial platforms has been provided in few cases [16,17], highlighting the need of
reliable and robust methods are urgently needed.

The aim of this study was to validate and test performances of the Seegene Allplex™
SARS-CoV-2 and SARS-CoV-2/FluA /FluB/RSV Assays for the detection of viral RNA in
stool of FMT donors.

2. Materials and Methods
2.1. Study Design

This study involved three institutions in Italy, including the University Hospital
“A. Gemelli” (Rome), the Florence Careggi University Hospital (Florence), and the Pisa
University Hospital (Pisa)—hereinafter referred to as Center 1, 2, and 3—and consisted of
two stages. Firstly, pilot experiments were carried out to establish a suitable quantity of
stool that could be processed minimizing the effect of PCR inhibitors, that can be highly
represented in this matrix, and can therefore affect the sensitivity and reproducibility of rRT-
PCR assays [18]. To this purpose, stools from residual anonymized specimens from three
SARS-CoV-2-negative subjects were collected at Center 2 and then pooled and diluted to a
concentration of 50 mg/mL (the lowest concentration of starting material to be used with
other Seegene Allplex™ diagnostic assays validated on stools) and 20 mg/mL. For each
condition, seven aliquots were prepared and spiked with six serial 10-fold dilutions of SARS-
CoV-2 inactivated lysates and subsequently tested using the SARS-CoV-2/FluA /FluB/RSV
Assay, as described below. In a second stage, a multicentric evaluation was performed
using pooled stool samples from a healthy subject recruited as potential FMT donor by
Center 1. Overall, a total of 10 stool samples were available at each center for validating
and testing two commercial multiplex real-time PCR assays for detection of SARS-CoV-2 in
stool (Figure 1).

2.2. Stool Specimens and Donors’ Clinical Characteristics

Stool samples assayed in the multicentric evaluation phase of this study were obtained
starting from three donations, on consecutive days in September 2021, from a healthy
donor. Donor’s samples were delivered to the Microbiology laboratory of the Center 1,
in accordance with the operational protocol, within six hours after evacuation to ensure
anaerobic bacterial species preservation [19].
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Figure 1. Overview of the study protocol used in this study. (A) Schematic representation of experi-
mental phases performed by Center 1 concerning preparation of stool samples used in downstream
analyses. (B) Schematic representation of experimental phases performed at each Center, including
serial spiked dilutions of SARS-CoV-2 inactivated lysates and rRT-PCR testing.

Donor selection is a very rigorous process. Firstly, the donor underwent a general
questionnaire to exclude intestinal and extra-intestinal disorder. Subsequently, cultural
and molecular analysis were performed on the donor’s stool to avoid the presence of any
pathogen. Specifically, stool samples were analyzed in order to exclude the presence of C.
difficile toxin A /B producer (LIAISON, DiaSorin Spa, Saluggia, VC, Italy) and intestinal
pathogens, such as Salmonella spp., Campylobacter spp., Shigella spp., Yersinia enterocolitica,
protozoa, and helminths. Moreover, the presence of vancomycin-resistant Enterococci
(VRE), methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative multi-drug
resistant bacteria (MDR) was also excluded by cultural assay, using CARB/OXA chromID®
Agar, VRE Agar, SBL Agar and MRSA Agar (bioMérieux, Marcy-1'Etoile, France). Finally,
RT-PCR Allplex™ Gastrointestinal Panel Assays (Seegene, Seoul, Korea) for the comprehen-
sive detection and identification of common gastrointestinal pathogens (i.e., including the
following bacteria: EAEC, EPEC, ETEC, STEC, E. coli O157, Aeromonas spp., Campylobacter
spp., toxigenic C. difficile, Salmonella spp., Shigella spp./EIEC, Vibrio spp., and Yersinia ente-
rocolitica; the following viruses: Adenovirus, Astrovirus, Norovirus GI\GII, Rotavirus, and
Sapovirus; and the following parasites: Blastocystis hominis, Cryptosporidium spp., Cyclospora
cayetanensis, Dientamoeba fragilis, Entamoeba histolytica, and Giardia lamblia) were performed
in order to declare the stool “pathogens free” and then suitable for any procedure.

Once donation was elected as “suitable,” we proceeded with the preparation of
the aliquots. Briefly, 60 g were suspended in 150 mL of sterile NaCl 0.9% and glycerol
10%, using a spatula. The homogenization and filtration phases were performed using
a STOMACHER® 400 Circulator (Seward Ltd., Worthing, UK). The program chosen was
260 rpm for 1 min. The stool suspension was then transferred from the bag into a sterile
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bottle and filtered with sterile gauzes to avoid the passage of any debris. Finally, 2 mL of
the stool suspension were dispensed in sterile Eppendorf and stored at —80 °C.

2.3. Cell Culture and Propagation of SARS-CoV-2

Vero E6 cells were grown as a monolayer in Dulbecco’s modified Eagle’s medium
(DMEM) (Euroclone, Milan, Italy) supplemented with 100 U/mL penicillin/streptomycin
(Euroclone) and 5% heat-inactivated fetal calf serum (FCS) (Euroclone) at 37 °C in a humidi-
fied 5% CO, atmosphere. SARS-CoV-2 wild-type (SARS-CoV-2/human/ITA /Siena-1/2020;
GenBank: MT531537.2) and a B.1.1.7 (Alpha) lineage (GSAID EPI_ISL_1163688) strain were
isolated from clinical swab and propagated on Vero cells until a cytopathic effect (CPE)
appeared. Viral stocks were obtained and titrated on Vero cells. Both viral strains having a
titer of 2 x 10° TCID5p/mL were heat-inactivated at 60 °C for 60 min [20], and stored at
—80 °C until further use.

2.4. Preparation of Stool Samples Spiked with SARS-CoV-2 RNA

At each center, 10 stool samples were diluted in ASL Stool lysis buffer (Qiagen, Hilden,
Germany) to a final concentration of 20 mg/mL by vortexing for at least 1 min, and seven
aliquots were then prepared per each sample. Of these, six were spiked with serial 10-fold
dilutions of SARS-CoV-2 (B.1.1.7)-inactivated lysates from 1071 t0 107 (i.e., equivalent to
2 x 10°-2 TCID5p/mL), and one was used as negative control. Serial 10-fold dilutions of
the viral-inactivated lysates were also prepared in ASL buffer alone to generate control
standard curves (Figure 1).

2.5. RNA Extraction and rRI-PCR Testing

Stool samples were processed at once in Hamilton Microlab STARIet automated ex-
traction and PCR setup system (Hamilton Company, Reno, NV, USA), using the STARMag
96 x 4 Viral DNA/RNA 200 C kit (Seegene Inc., Seoul, Korea).

For SARS-CoV-2 detection, two different commercial assays were used, namely
Allplex™ SARS-CoV-2 (SC2; cat. no: RV10248X) and Allplex™ SARS-CoV-2/FluA /FluB/RSV
(SC2FABR; cat. no: RV10259X) (Seegene Inc.). SC2 performs a multiplex reverse real-time
PCR (rRT-PCR), being able to detect the following four viral targets: the envelope (E) gene,
the RNA-dependent RNA polymerase (RARP), the spike (S) gene, and the nucleocapsid
(N) gene. An exogenous RNA-based internal control (IC) is also provided. The SC2FABR
multiplex rRT-PCR is able to detect three viral targets (S, RARP, and N) also with an exoge-
nous RNA-based IC and an endogenous human-DNA-based IC. rRT-PCR were performed
with a CFX96 thermal cycler (BioRad, Hercules, CA, USA), and results were interpreted
with the SARS-CoV-2 Seegene Viewer Software v. V3.24.000 according to manufacturer’s
instructions. The test results of each kit were interpreted following the manufacturer’s
recommendations; viral targets detection was considered positive for a cycle threshold
(CT) < 40.

For quantitative evaluation of SARS-CoV-2 viral load in control samples (i.e., diluted
in ASL buffer), the Quanty COVID-19v2 (CLONIT Srl, Milan, Italy) PCR kit was used. rRT-
PCR was performed with a CFX96 thermal cycler, and results were interpreted according
to manufacturer’s instructions and normalized to obtain viral load expressed in both
copies/mL and copies/mg stool.

2.6. Analytical Evaluations

Serial 10-fold dilution series of six concentration levels (i.e., from 2 x 10° to 2 TCIDsp/mL)
of inactivated viral lysates, with three measurements for each concentration, were used to
evaluate: (i) a limit of detection (LoD), defined as the minimum concentration of nucleic
acid that gave positive results for the RARP and/or S and/or N targets in the majority (over
95%) of replicates tested [21]; (ii) accuracy, defined as the closeness in agreement between a
single measurement and the true value of the analyte under investigation [22], and precision
(repeatability), defined as the closeness of agreement between single test results on identical
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test material using the same method and aimed at measuring the random error (expressed
as coefficient of variation, CV) of assays over a predetermined period of time by multiple
measurements of aliquots derived from a homogeneous sample [21]; and (iii) linearity to
assess the correlation between Crs and viral loads, expressed as amplification efficiency (¢)
and coefficient of determination (R?) [21].

2.7. Statistical Analysis

Quantitative Ct comparisons were plotted and analyzed by linear regression analysis
in GraphPad Prism (version 9.3.0). One-way ANOVA was performed to compare assays’
performances in the three centers and between samples and ASL. LoD was analyzed by
logit regression analysis in SPSS Statistics software (version 28.0.1.0; IBM). p-Values of <0.05
were considered statistically significant.

3. Results

Here, we explored the performances of two commercially available assays that could
be used to reliably detect the SARS-CoV-2 RNA in stool matrix. First, in order to evaluate a
possible inhibitory effect exerted by an excessive stool matrix, which can negatively impact
on rRT-PCR sensitivity and accurate pathogen detection, preliminary testing was performed
using the SC2FABR assay (which additionally includes an endogenous amplification control
compared to SC2) and spiked dilution of SARS-CoV-2 viral-inactivated lysates (ranging
from 2 x 10° to 2 TCIDsp/mL) into stool samples with a concentration of 50 mg/mL
(the lowest concentration of starting material to be used according to manufacturer’s
instructions) and 20 mg/mL. Results showed that the S\RARP\N targets were detected
in 11/18 (61%) and in 14/18 (77%) dilutions of stool samples concentrated at 50 and
20 mg/mL, respectively (Table S1). Of note, while both exogenous and endogenous controls
were consistently detected over all tested dilutions, regardless of the matrix concentration,
marked differences in Ct values were observed over all tested dilutions. Indeed, for all
targets, lower Ct values were consistently observed in samples concentrated at 20 mg/mL
compared to those concentrated at 50 mg/mL (Table S1). Taken together, these results
suggest a decreased amount of starting stool material can markedly increase consistency of
detection of SARS-CoV-2. Accordingly, all the following tests were carried out using the
lowest stool concentration that gave reliable results (i.e., 20 mg/mL).

A multicenter comprehensive evaluation was then performed across three different
hospitals (i.e., Center 1, 2, and 3), each processing 10 stool samples that were spiked with six
10-fold serial dilutions of SARS-CoV-2 viral-inactivated lysates (i.e., overall equivalent to
180 spiked samples), and rRT-PCR determinations were carried out using both commercial
assays to estimate the variability, reproducibility, and consistency in detection of SARS-
CoV-2 RNA (Figure 1).

Results of dilution experiments showed that both assays detected down to 2 TCIDs5p/mL,
which roughly corresponded to a technical LoD of 7 x 103 copies of viral RNA per mg of
stool matrix or to 1.33 x 10? copies/ pL, with mean Cr values at a 10~-fold dilution ranging
from 27.87 £ 2.26 to 30.11 £ 2.58 for the SC2 assay and from 27.52 & 2.24 to 35.15 £ 1.95
for the SC2FABR assay. LoD values for the N target of SC2FABR, as per logit regression
analysis, were 6.92 x 103 copies/mg (CI: 2552-12349), corresponding to 13.84 x 10% (CI:
5077-24720) copies/ L.

Although both assays had comparable LoD values, the SC2 was characterized by a
more consistent target positivity rate (i.e., accuracy of 100%) than the SC2FABR, which exhib-
ited slightly lower rates for the N target with dilution spiked with more than
2 x 102 TCIDsy/mL (Table 1). Negative controls consistently showed expected results.
Interestingly, in both assays, spiked dilutions with and without (i.e., ASL) stools showed a
similar behavior (in terms of ACt) with the exogenous IC compared to SARS-CoV-2 target
genes (Table 1 and Table S2).
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Table 1. Overview of Ct values of rRT-PCR experiments performed with the Seegene Allplex™ SC2 (SARS-CoV-2) and SC2FABR (SARS-CoV-2/FluA /FluB/RSV)
assays, using serial 10-fold spiked dilutions of SARS-CoV-2 viral-inactivated lysates in stool samples and controls (ASL). Quantitative evaluations of SARS-CoV-2

viral load have been also reported. Abbreviations: cp, copies; CV, coefficient of variation; SD, standard deviation; TCID, median tissue culture infectious dose.
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Assessment of linearity revealed a degree of correlation between Ct values and log
concentrations of inactivated viral lysates, with R? values ranging from 0.88 to 0.90 and
from 0.87 to 0.91 for the SC2 and SC2FABR assay, respectively. Consistently, calculation of
the PCR efficiency resulted in values greater than 108 and 114% for the SC2 and SC2FABR
assay, respectively (Table 2, Figure 2). Endogenous control, on the other hand, displayed a
linear dilution factor in half dilutions only (i.e., not detected in 10~* to 10~° dilutions), a
behavior likely influenced by the host DNA present in cell cultures employed for spiked
samples (Table 2).

Table 2. Evaluation of the linear dynamic range determined over six 10-fold serial dilution series
for the SC2 (SARS-CoV-2) and SC2FABR (SARS-CoV-2/FluA /FluB/RSV) assays. Abbreviations: R2,
coefficient of determination; ¢, amplification efficiency.

Stool Samples ASL Controls

Allplex™ Assay Target R? € (%) R? € (%)
RdARP/S 0.88 114 0.84 115
SC2 N 0.91 120 0.90 117
E 0.90 121 0.88 114
RARP 0.91 114 0.96 107
SC2FABR S 0.89 108 0.96 103
N 0.87 133 0.94 122
4 N
A B
40 40
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23 B S =N . =N
® \:\ -+ E \}\\ + E
I~ 8- I~ S
U 20 e O 20 “ N
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Figure 2. Global correlation between C values and log concentrations of inactivated viral lysates of
SARS-CoV-2 observed for the SC2 (SARS-CoV-2) assay (A) and corresponding controls in ASL buffer
(B) as well as the SC2FABR (SARS-CoV-2/FluA /FluB/RSV) assays (C) and corresponding controls in
ASL buffer (D). Mean Ct values and standard deviation are shown per each dilution. rRT-PCR gene
targets in each assay are identified by a color-based legend.
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Interlaboratory estimates of precision of both assays was overall comparable, with a to-
tal CV ranging from 4.78 to 12.29% for high-concentration samples (i.e., 2 x 10° TCIDsp/mL)
and from 5.55 to 8.91% for low-concentration samples (2 TCIDsg/mL) (Table 1). The CVs
for exogenous and endogenous controls were in line with those of stool samples (Table S2).
Analysis of variance (ANOVA) to compare assays’ performances between the three Centers
revealed no statistically significant differences in variation of Ct per each dilution.

4. Discussion

Since the onset of the COVID-19 pandemic, the shedding of SARS-CoV-2 RNA in
feces and the recognition of gastrointestinal symptoms in infected subjects have been
documented by several studies [8,15,23-25], raising major concerns about a potential
transmission of SARS-CoV-2 via the fecal-oral route [26-28]. However, to date, no studies
have demonstrated a fecal matter-associated route of infection for SARS-CoV-2, and its
transmission via stool specimens remains a topic of some debate, primarily concerning
FMT treatment.

The U.S. Food and Drug Administration (FDA) has recently issued a safety alert about
the risk of transmission of SARS-CoV-2 through FMT procedures [29], and additional
recommendations have been released to avoid the potential risk of transmission of SARS-
CoV-2 through fecal transfer and guarantee patient safety [26-28]. The potential fecal-oral
asymptomatic transmission of SARS-CoV-2 has raised safety concerns for administering
FMT globally; therefore, there is an urgent need for SARS-CoV-2 stool testing to be incor-
porated into FMT donor screening protocols in the COVID-19 era [13,30-33]. However,
methods for the detection of the virus in stool have been poorly described.

Here, we present a technical evaluation of diagnostic performances of two IVD marked
assays, namely the Seegene Allplex™ SARS-CoV-2 and SARS-CoV-2/FluA /FluB/RSV, for
the detection of SARS-CoV-2 RNA in stool of potential FMT donors. Using accurate refer-
ence materials, including human processed stool from a healthy FMT donor and inactivated
SARS-CoV-2 lysates, we have demonstrated sensitive and reproducible detection of SARS-
CoV-2 RNA in stool. Present results also highlighted the need to accurately select the
quantity of starting material, since it is well known that stool represents a highly heteroge-
neous sample matrix containing a plethora of PCR inhibitors (e.g., complex bile salts, urea,
and glycolipids) that can negatively affect downstream molecular applications, including
rRT-PCR [18]. In that regard, the use of endogenous amplification control may provide
useful information to rule out the presence of potential PCR inhibitors or inefficient PCR
conditions, indicating that dilution of the starting material may be required to obtain
reliable results. Similarly, comparing the Ct value of the exogenous amplification control of
stool sample and the one of ASL-negative control could be of help to confirm the absence
of eventual inhibitors. None of the commercial assays to date validated for detection of
SARS-CoV-2 RNA in stool adopted this approach [16,17].

A precise evaluation of the SARS-CoV-2 load in stools remains therefore technically
challenging. Indeed, attempts to quantify the amount of SARS-CoV-2 RNA in stool samples
yielded highly heterogeneous estimates ranging from 10 to 10?> genome copies/mL [34].
According to the manufacturer’s specification, the SC2 and SC2FABR assays have a claimed
LoD of 5000 RNA copies/mL and of 0.028 TCIDsp/mL, respectively, for nasopharyngeal
swab specimens. Although in our experimental conditions a LoD as low as 133 RNA
copies/uL (equivalent to 7 x 10% copies of viral RNA/mg of stool matrix) has been de-
termined, based on the high R? and ¢ values, the technically assessed absence of PCR
inhibitors (i.e., comparing Ct from ASL controls) and the log linearity behavior observed
in serial dilution series of both assays, we would likely expect comparable performances in
terms of LoD between respiratory specimens and the stool matrix. Among the few studies
evaluating the LoD of SARS-CoV-2 RNA in stool using commercial platforms, one reported
slightly higher LoD values for stool (i.e., 1250-2500 genome copies/mL) than upper respi-
ratory specimens (i.e., 250-1000 copies/mL), a phenomenon most likely explained by the
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presence of PCR inhibitors in tested samples [16]; however, no specific evaluations have
been performed to verify this hypothesis.

In terms of accuracy, SC2 and SC2FABR exhibited similar performances except for
the N target, which showed a delayed gene positivity in dilution spiked with more
than 2 x 10? TCID5p/mL in the latter assay. This peculiar pattern has been recently doc-
umented for the SC2FABR assay and was ascribed to a mutation occurring in the N
nucleocapsid gene of SARS-CoV-2 belonging to the B.1.1.7 (Alpha) lineage [35].

Taken together, the present results demonstrate that both assays are highly repro-
ducible, sensitive, and accurate for SARS-CoV-2 RNA detection in stool, with potential uses
in FMT donor screening and in the release of quarantined FMT products.

This study, however, was beset with some limitations, including the lack of limiting
conditions in dilution experiments to more accurately determine the LoD, and the need to
evaluate the performance of the commercial assays here assessed using a larger number
of stool samples. Additionally, although the SC2 and SC2FABR assays are routinely used
for diagnosis of SARS-CoV-2 infections caused by B.1.1.529 (Omicron), B.1.1.617.2 (Delta)
lineages from respiratory specimens, further experiments will be required to confirm their
performance when assayed on the stool matrix.

5. Conclusions

Continued efforts in evaluating and validating molecular assays for detection of SARS-
CoV-2 in stool are warranted to support adaptation of FMT donor screening and banking
programs to the era of COVID-19 pandemic.
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