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Abstract—This work proposes a distributed power allocation
scheme to maximize energy efficiency in the uplink of multi-cell
massive MIMO systems with hardware impairments at the user
equipments (UEs) and imperfect channel state information at
the base stations (BSs). Each UE in the network is modeled as
a rational agent that engages in a generalized non-cooperative
game and allocates its available transmit power to maximize its
individual utility (defined as the UE’s throughput per Watt of
transmit power) subject to target rates and power constraints.
The existence and uniqueness of the generalized Nash equilibrium
of the game are studied in the asymptotic regime where the num-
ber of BS antennas and UEs grow large with a non trivial ratio. A
fully distributed algorithm based on best-response dynamics and
relying on large-scale fading components is proposed. Sufficient
conditions to guarantee convergence to the equilibrium point are
given. Numerical results are used to evaluate the performance of
the proposed solution and to validate the analysis in a system of
finite size.

I. INTRODUCTION

To satisfy the unrelenting demand for high-speed ubiquitous

communications foreseen for the forthcoming decade, broad-

band wireless systems heavily rely on state-of-the-art digi-

tal signal processing techniques to transport broadband data

through a very challenging wireless channel [1]. Among the

most promising technologies, massive multiple-input multiple-

output (MIMO) architectures represent a viable solution to

meet the ambitious goals of future 5G networks while keeping

the complexity of signal processing at the user equipments

(UEs) at a tolerable level [2], [3].

Another peculiar feature of future cellular networks will be

the massive amount of connected devices, which is growing at

an exponential rate [4]. In this context, it is no longer possible

to perform joint system designs by coordinating the transmis-

sions of all nodes in the network. Rather, distributed algo-

rithms to be implemented in networks with self-configuring

nodes are becoming a necessity. Using this approach, the
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nodes in a network are modeled as autonomous decision-

makers, which compete with each other over the network

resources. A well-established mathematical tool to analyze

the interactions among competing entities is game theory [5],

which has been largely employed for the development of

distributed resource allocation schemes in wireless networks

[6], [7]. Among the recent contributions in this field, we

mention [8] wherein the authors study the Nash equilibrium

problem for a group of players aiming at maximizing their

own energy efficiency (EE) while satisfying power constraints

in single and multi-carrier systems (similarly to what was done

in [9] for rate maximization). A quasi-variational inequality

approach is taken in [10] to develop power control algorithms

in networks with heterogenous users. In [11], a similar prob-

lem is considered in the context of relay-assisted systems,

whereas single-user multiple-input multiple-output (MIMO)

networks are considered in [12]. It should be observed that

most of existing works dealing with the maximization of EE

do not account for rate requirements. This may translate into

fairly low UE rates at the equilibrium. Incorporating target

rates changes the setting drastically since any UE’s admissible

power allocation policy depends crucially on the policies of

all other UEs. First results in this context are provided in [13]

wherein Nash equilibria are found to be the fixed points of a

water-filling best response operator whose water level depends

on rate constraints and circuit power.

The aim of this work is to develop a distributed power

allocation scheme for EE maximization in the uplink (UL) of

a massive MIMO network. To this end, the UEs in the network

are modeled as rational, self-organizing agents that engage in

a non-cooperative game wherein each one aims at maximizing

its individual EE while targeting its own power and rate

constraints. This is done under the realistic assumptions that

UEs are subject to transceiver hardware impairments [3] and

that imperfect CSI is available at the BSs. Differently from

[14] in which the number of BS antennas N can be arbitrarily

large while the number of UEs K is kept fixed, the analysis

is conducted for N and K that grow large with a given ratio

K/N . The existence and uniqueness of the Nash equilibrium

points of the asymptotic game are studied. A fully distributed

algorithm based on best-response dynamics and operating at
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the rate of the large-scale fading evolution is proposed to reach

equilibrium.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model and formulates

the EE problem.

A. System Model

Consider the UL of a multi-cell multi-user MIMO system

composed of L BSs with N antennas each and K single-

antenna UEs in each cell. A double index notation is used to

refer to each UE. In particular, the double-index kj refers to

“user k in cell j ”. Since the signal from UE kj is received

at its intended BS j as well as at all other BSs ℓ 6= j, we

call hkjℓ ∈ C
N the channel vector from user kj to BS ℓ and

assume that it is modeled as

hkjℓ =
√

dkjℓwkjℓ (1)

wherein wkjℓ ∈ C
N is the small-scale fading channel modeled

as a Gaussian vector with zero mean and covariance matrix

1/NIN , and dkjℓ accounts for the corresponding large-scale

channel fading or path-loss (from UE kj to BS ℓ).
We assume that the transmission at UEs is affected by

hardware impairments due to the use of non-ideal hardware.

Following [3], this can be modeled as a reduction of useful

signal power by a term 1− ǫ2 and by an additional Gaussian

noise term ηkj ∼ CN (0, ǫ2). In this setting, the transmitted

signal xkj of user kj can be written as

xkj =
√
pkj(1− ǫ2)skj +

√
pkjηkj (2)

where skj ∈ C is the useful signal of UE kj such that

E{|skj |2} = 1 and pkj accounts for the transmit power. As a

result, the signal yj ∈ C
N received at BS j takes the form

yj =
√

pkj(1− ǫ2)hkjjskj +
√
pkjhkjjηkj + nj+

+
∑

(i,m) 6=(k,j)

himj

(√
pim(1− ǫ2)sim + ηim

)
(3)

with nj ∼ CN (0, σ2IN ) being the thermal noise. We assume

that data recovery is accomplished by means of maximum-

ratio-combining (MRC) under the realistic assumption that

channel vectors are not perfectly estimated. We denote by ĥkjj

the estimate of hkjj and assume that [15]

ĥkjj =
√

dkjj

(√
1− τ2kjjwkjj + τkjjzkjj

)
(4)

=
√
1− τ2kjjhkjj + τkjjqkjj (5)

where zkjj ∼ CN (0, IN/N) accounts for the independent

channel estimation errors, while the parameter τkjj reflects

the accuracy or quality of the channel estimate, i.e., τkjj = 0
for perfect CSI and τkjj = 1 for a channel estimate completely

uncorrelated to the genuine channel. Under the above assump-

tions, a lower bound of the SINR of UE kj at its serving BS

j can be computed as [16]:

SINRkj=
pkj(1− ǫ2)

∣∣∣E
[
ĥH
kjjhkjj

]∣∣∣
2

σ2E

[
‖ĥkjj‖2

]
+pkjAkjj +

∑
(i,m) 6=(k,j)

E

[
|ĥH

kjjhimj |2
]
pim

(6)

wherein Akjj is given by

Akjj = ǫ2E
[
|ĥH

kjjhkjj |2
]
+ (1− ǫ2)var

[
ĥH
kjjhkjj

]
. (7)

B. Problem Formulation

The EE (measured in bit/Joule) of user kj is defined as the

ratio of the achievable rate and the total consumed power [17],

[18]

EEkj ,
B log2(1 + SINRkj)

p
(c)
kj + pkj

(8)

where B is the bandwidth and p
(c)
kj is the circuit power

dissipated to operate the kj-th transceiver (see for example

[19] for more details on the power consumption model). To

limit the transmit power, we assume that pkj −pkj ≤ 0 where

pkj denotes user kj’s maximum power. Moreover, since an

unconstrained EE maximization might lead to low spectral

efficiencies per UE, we assume that minimum achievable rates

need to be satisfied:

log2(1 + SINRkj)− θkj ≥ 0 (9)

where θkj is the target rate of user kj in [bit/s/Hz/UE].

Within the above setting, the goal of this work is to develop

a decentralized power control algorithm for EE maximization.

Mathematically, we aim at solving [8], [13]:

arg max
pkj∈Akj

EEkj(pkj ,p−kj) ∀kj (10)

where p−kj is the interference vector containing all transmit

powers except user kj’s, and Akj is the feasible set of pkj
given by:

Akj,
{
pkj ∈R+ :pkj ≤ pkj , log2(1 + SINRkj) ≥ θkj

}
. (11)

The problem in (10) can be restated as a noncoopera-

tive game with complete information1 defined as G′ =
[K, {Akj}, {EEkj}] in which: K = [1, . . . ,KL] is the player

set; Akj denotes the strategy set of player kj; and EEkj is

player kl’s payoff function defined as in (8). Observe that not

only EEkj but also Akj depends on the other users’ transmit

powers p−kj through SINRkj in (6). This makes G′ fall within

the class of generalized non-cooperative games whose most

widely used solution concept is known as generalized Nash

equilibrium (GNE) [20].

To reduce the implementation complexity2, we exploit the

large-scale nature of the network and conduct the analy-

sis in the asymptotic regime in which N,K → ∞ with

1In the context of game theory a non-cooperative game is said to have
complete information if the players know the other players utility functions
and strategy sets.

2The result to follow apply also when the SINR (6) is used.



limN,K→∞ K/N ∈ (0, 1). This allows us to compute the so-

called deterministic equivalents of {SINRkj} [21], as shown

in the following lemma:
Lemma 1: If N,K → ∞ with limN,K→∞ K/N ∈ (0, 1),

then maxkj |SINRkj − γkj | → 0 almost surely with

γkj =
αkjpkj

σ2 + φkjpkj +
∑

(i,m) 6=(k,j) ωkj,impim
(12)

where αkj = (1− ǫ2)(1− τ2kjj)dkjj , φkj = ǫ2(1− τ2kjj)dkjj ,

and ωim,kj =
1
N
dimj .

Proof: The proof easily follows using standard results

in random matrix theory [21], [22]. If N,K → ∞ with

limN,K→∞ K/N ∈ (0, 1), then ‖ĥkjj‖2 − dkjj → 0,

ĥH
kjjhkjj −

√
1− τ2kjjdkjj → 0 (13)

|ĥH
kjjhimj |2 −

dkjjdimj

N
→ 0 (14)

almost surely. Also, Akjj is such that Akjj − ǫ2d2kjj(1 −
τ2kjj) → 0 almost surely. Putting the above results together

(12) easily follows.
Observe that the denominator of the SINR expression in

(12) depends on the pkj . This makes the analysis more

involved compared to standard SINR expressions in which this

does not occur.

III. GAME-THEORETIC FORMULATION AND ANALYSIS

FOR LARGE SCALE NETWORKS

Using the above results, in the sequel we study the asymp-

totic game G defined as G = [K, {Pkj}, {ηkj}] with

ηkj ,
B log2(1 + γkj)

p
(c)
kj + pkj

(15)

and Pkj,
{
pkj ∈R+ :pkj ≤ pkj , log2(1 + γkj) ≥ θkj

}
.

For later convenience, we define γ
kj

= 2θkj−1 the min-

imum SINR required to meet user kj’s rate constraint and

γkj = αkj/φkj the maximum SINR that user kj can obtain

in the ideal case of zero multi-user interference and unlimited

transmit power. Moreover, we call the equivalent channel gain

of user kj:

µkj ,
αkj

σ2 +
∑

(m,i) 6=(j,k)

ωim,kjpim
(16)

A. Feasibility

We begin by looking at the feasibility conditions of the

game. The following result is found:
Lemma 2: If

pkj ≥ γ
kj

σ2
kj +

∑
(i,m) 6=(k,j) ωim,kjpim

αkj − φkjγkj

∀kj (17)

then Bkj(p−kj) takes the form

Bkj(p−kj) = min
{
pkj ,max

{
p⋆kj , pkj

}}
(18)

wherein

p
kj

,
γ
kj

µkj

(
1−

γ
kj

γkj

)−1

(19)

and

p⋆kj , arg max
pkj∈R+

ηkj (pkj ,p−kj) . (20)

Proof: The first part of the thesis easily follows from

rewriting the rate constraints γkj ≥ γ
kj

as

pkj ≥ γ
kj

σ2 +
∑

(i,m) 6=(k,j) ωim,kjpim

αkj − φkjγkj

. (21)

Since pkj ≤ pkj for all kj ∈ K, then

γ
kj

σ2 +
∑

(i,m) 6=(k,j) ωim,kjpim

αkj − φkjγkj

≥

γ
kj

σ2 +
∑

(i,m) 6=(k,j) ωim,kjpim

αkj − φkjγkj

. (22)

Hence, if ∀kj ∈ K (17) holds, then there always exists a power

pkj ∈ [0, pkj ] such that γkj ≥ γ
kj

is fulfilled. The last part

of the proof follows by leveraging [11], where it is shown

that for any given p−kj , ηkj is unimodal and thus admits a

unique maximizer pkj ∈ R+. Accounting for the power and

rate constraints and imposing (17) eventually yields (18).

B. Analysis of the Equilibria

The existence and uniqueness of the GNE points of G are

now studied under the assumption that (17) holds.
Proposition 1: The game G admits a nonempty set of GNE

points.
Proof: Observe that the existence of a GNE is guaranteed

under the following assumptions [23]:

1) The players’ feasible action sets Pkj(p−kj) are

nonempty, closed, convex, and contained in some com-

pact set Ck for all p−kj ∈ P−kj ≡
∏

(i,m) 6=(k,j) Pim.

2) The sets Pk(p−kj) vary continuously with p−kj (in the

sense that the graph of the set-valued correspondence

p−kj 7→ Pkj(p−kj) is closed).

3) Each user’s payoff function ηk(pkj ,p−kj) is quasi-

concave in pkj for all p−kj ∈ P−kj .

In our setting, if the sufficient condition (17) is satisfied,

then the sets Pkj(p−kj) are nonempty, convex3, closed and

bounded for every p−kj . Moreover, each of them varies con-

tinuously with p−kj since the rate constraint log2(1+ γkj) ≥
θkj in Pkj(p−kj) is itself continuous in p−kj . Finally, follow-

ing [11] ηkj(pkj ,p−kj) is proved to be strictly pseudo-concave

since it is given by the ratio between a strictly concave and a

linear function. Since any strictly pseudo-concave function is

also strictly quasi-concave, the third condition is fulfilled.
The following result shows that a unique generalized Nash

equilibrium (GNE) exists, and that the best-response dynamics

(BRD) always converges to such point.
Proposition 2: The game G admits a unique GNE point,

which can be obtained by starting from any feasible power

vector and iteratively updating the transmit powers according

to (18).
Proof: See [24].

3Note that the constraint function log2(1 + γkj) is concave in pkj .



Algorithm 1 Iterative algorithm to solve (10).

1: initialize n = 0 and ∀kj pkj [0] ∈ R+ in the feasible set
2: repeat
3: for k = 1 to K and ℓ = 1 to L do
4: compute µkj [n] using (28)
5: use µkj [n] to update p

kj
[n] in (27)

6: use µkj [n] in (25) to run the Dinkelbach algorithm
7: set λ⋆

kj [n] equal to the Dinkelbach output and update the
power as:

pkj [n+ 1] = min
{

pkj ,max
{

πkj

(

λ
⋆
kj [n]

)

, p
kj
[n]

}}

8: end for
9: update n = n+ 1

10: until convergence

C. Distributed implementation

The best response of a generic player k is characterized in

the sequel to come up with an iterative algorithm that allows

each player to reach the GNE in a distributed manner. Toward

this end, let us first define

νk (x) , γkj

[
1 +

x

2Bµkj

(
γkj − gkj (x)

)]+
(23)

and gkj (x) ,
√
γ2
kj +

4Bµkj

x

(
1 + γkj

)
, with µkj as in (16).

Lemma 3: For any given p−kj (or, equivalently, µkj), the

solution to (20) is found to be

p⋆kj = πkj

(
λ⋆
kj

)
,

νkj
(
λ⋆
kj

)

µkj

(
1−

νkj
(
λ⋆
kj

)

γkj

)−1

(24)

where λ⋆
kj is obtained through the Dinkelbach method as the

solution of the following equation:

Blog2
(
1 + νkj

(
λ⋆
kj

))
− λ⋆

kj

(
pc,kj + πkj

(
λ⋆
kj

))
= 0. (25)

Proof: See [24].

Denote by pkj [n] the transmit power of the kj-th player at

the n-th iteration step. Using the results of Proposition 2

and Lemma 3, it follows that an iterative algorithm operating

according to

pkj [n+ 1] = min
{
pkj ,max

{
πkj

(
λ⋆
kj [n]

)
, p

kj
[n]
}}

(26)

where p
kj
[n] is computed as (using (19))

p
kj
[n] =

γ
kj

µkj [n]

(
1−

γ
kj

γkj

)−1

(27)

converges to the unique GNE of G, with µkj [n] being the

equivalent channel gain in (16) at the n-th iteration step. The

pseudo-code is reported in Algorithm 1.

A close inspection of (23) – (25) and (27) reveals that

the computation of pkj [n + 1] through (26) only requires

knowledge of µkj [n]. Although not available at the kj-th

terminal, this information can be easily acquired taking into

account that:

µkj [n] =
γkj [n]

pkj [n]

(
1− γkj [n]

γkj

)−1

(28)

where γkj [n] denotes the SINR of transmitter kj measured

at its intended receiver at iteration n. Since pkj [n] and γkj

are locally available at the transmitter, the computation of

µkj [n] only requires knowledge of γkj [n]. The latter only

depends on large-scale fading components {dkjℓ}, which can

be accurately estimated and easily exchanged between BSs

as they change slowly with time (relative to the small-scale

fading). Therefore, besides being guaranteed to converge to

the unique GNE, Algorithm 1 can also be implemented in a

fully decentralized fashion at a rate of the large-scale fading

evolution.
IV. NUMERICAL RESULTS

In our simulations we consider a four-cell system, wherein

each base station deploys N = 64 antennas and serves

K = 8 users. Each cell is a square with edge 500m,

wherein the served users are randomly distributed, with a

minimum distance of 50m from the service base station.

All users have the same maximum feasible power P and

hardware-dissipated power p(c) = 10 dBm. The receive noise

power is σ2 = FBN0, with F = 3 dB, B = 1MHz, and

N0 = −174 dBm/Hz. All channels are generated according to

Rayleigh fading model with path-loss model as in [25]. We

set the channel estimation accuracy factor as τ = 0.3 and the

hardware impairment factor to ǫ = 0.1. The minimum rate

constraint θk is set as a percentage Rk of the maximum rate

that user k can achieve when pk → ∞, while the other users’

powers are finite, namely:

θk = Rk lim
pk→∞

log2(1 + γkj) = Rk log2(1 + αkj/φkj) (29)

For simplicity, we assume R1 = R2 = . . . = RK = R.

As performance measure to assess the performance of the

proposed schemes we consider the network global energy

efficiency (GEE), defined as [18]

GEE =

∑
k,j B log2(1 + γkj)
∑

k,j p
(c)
kj + pkj

. (30)

In Fig. 1 we compare the GEE achieved by the the following

resource allocation schemes:

(a) Algorithm 1, with R = 20%. In case one best-response

is unfeasible, we relax the rate requirement to R = 0%;

(b) Algorithm 1, with R = 10%. If one best-response is

unfeasible, we relax the rate requirement to R = 0%;

(c) Algorithm 1, with R = 0%.

(d) As a benchmark, we report the GEE obtained by a

centralized approach designed to maximize the GEE

[24]. In this case we consider R = 0%.

For low values of P , all schemes perform similarly, because

when P is low, the problems with rate requirement are likely

to be unfeasible, and in this case schemes (a) and (b) are

equivalent to (c). Besides, for low P , we see that coordinating

the interference among the different transmitters does not

bring any significant advantage. Instead, for increasing P , the

centralized scheme (d) which jointly manages the multi-user

interference outperforms the distributed schemes, which suffer

from the so-called price-of-anarchy effect [7]. Also, enforcing
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Figure 1. K = 8;N = 64;L = 4; ǫ = 10−1; τ = 0.3. GEE versus
P for: (a) Algorithm 1 with R = 20%; (b) Algorithm 1 with R = 10%;
(c) Algorithm 1 with R = 0%; (d) GEE maximization with R = 0% [24].

Table I
K = 8;N = 64;L = 4; ǫ = 10−1; τ = 0.3. AVERAGE NUMBER OF

REQUIRED ITERATIONS TO REACH CONVERGENCE VERSUS P FOR:
(A) ALGORITHM 1 WITH R = 20%; (B) ALGORITHM 1 WITH R = 10%;

(C) ALGORITHM 1 WITH R = 0%.

Rate requirement R = 0% R = 10% R = 20%

P = −40 [dBW] 1 1 1

P = −32 [dBW] 1.03 1.03 1.03

P = −24 [dBW] 2.30 2.35 2.47

P = −16 [dBW] 4.81 4.93 5.05

P = −8 [dBW] 5.10 5.22 5.37

rate constraints results in a lower GEE, because the mobiles

need to use the excess transmit power in order to meet their

rate requirement.

Next, we analyze the computational complexity of Algo-

rithm 1. Table I shows the average number of iterations

required by Algorithm 1 to converge, for R = 0%, R = 10%,

and R = 20%. The rule ‖p(n)−p(n−1)‖2/‖p(n)‖2 ≤ 10−4 is

used to declare convergence. It is seen that convergence occurs

after a handful of iterations, which slightly increases for larger

P , since increasing P results in a larger feasible set. This

shows that the proposed non-cooperative approach lends itself

to a simple implementation in practical systems. Moreover, for

low P , the number of iterations is not affected by R, because in

this range the generalized game does not reach an equilibrium

and the result of the regular non-cooperative game is used.

The impact of R continues to be minimal also for higher P .
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