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ABSTRACT 

Casting a geophysical inverse problem into a Bayesian setting is often discouraged by the 

computational workload needed to run many forward modeling evaluations. Here we present 

probabilistic inversions of electrical resistivity tomography data in which the forward operator is 

replaced by a trained residual neural network that learns the non-linear mapping between the 

resistivity model and the apparent resistivity values. The use of this specific architecture can provide 

some advantages over standard convolutional networks as it mitigates the vanishing gradient problem 

that might affect deep networks. The modeling error introduced by the network approximation is 

properly taken into account and propagated onto the estimated model uncertainties. One crucial aspect 

of any machine learning application is the definition of an appropriate training set. We draw the 

models forming the training and validation sets from previously defined prior distributions, while a 

finite element code provides the associated datasets. We apply the approach to two probabilistic 
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inversion frameworks: a Markov Chain Monte Carlo algorithm is applied to synthetic data, while an 

ensemble-based algorithm is employed for the field measurements. For both the synthetic and field 

tests, the outcomes of the proposed method are benchmarked against the predictions obtained when 

the finite element code constitutes the forward operator. Our experiments illustrate that the network 

can effectively approximate the forward mapping even when a relatively small training set is created. 

The proposed strategy provides a forward operator three that is orders of magnitude faster than the 

accurate but computationally expensive finite element code. Our approach also yields most likely 

solutions and uncertainty quantifications comparable to those estimated when the finite element 

modeling is employed. The presented method allows solving the Bayesian electrical resistivity 

tomography with a reasonable computational cost and limited hardware resources.  
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INTRODUCTION 

Geophysical inversion exploits the measured experimental data to infer the distribution of physical 

parameters in the subsurface. From the mathematical point of view, this process is an inverse problem 

that is often ill-posed (Tarantola, 2005; Aster et al. 2018) meaning that many models reproduce the 

observed data equally well. For this reason, one key aspect of geophysical inversions is the 

quantification of the uncertainties affecting the recovered solution. The Bayesian setting is usually 

adopted to accurately propagate the uncertainties from the available geophysical data onto the 

estimated parameters. In this context, the solution of an inverse problem is expressed by the posterior 

probability density (PPD) function in the model space (Tarantola, 2005). However, the PPD can be 

expressed in a closed-form only for linear problems with Gaussian assumptions about the data and 



 

 

model parameter distributions. For a non-linear relation linking the model to the data, or for non-

parametric prior assumptions, a numerical assessment of the PPD is needed.  

In this context, Markov Chain Monte Carlo (MCMC) algorithms (Sambridge and Mosegaard, 2002) 

constitute a possible approach to numerically solve a probabilistic inversion. The increasing 

computational power provided by modern parallel architectures has considerably promoted the 

applications of these methods to solve geophysical problems (Dosso et al. 2012; Sen and Stoffa 2013; 

Ray et al. 2017; Grana et al. 2021). However, their use remains a formidable computational task in 

problems with expensive forward operators and with many unknown parameters. Several strategies 

have been proposed to mitigate this issue for example by employing compression strategies (Grana 

et al. 2019) to reduce the dimensionality of the parameter space or by exploiting the information about 

the gradient of the error function to guide the probabilistic sampling (Sen and Biswas, 2017; Fichtner 

et al. 2019; Gebraad et al. 2020; Zhao and Sen, 2021; Aleardi and Salusti, 2020; Aleardi 2021).  

Ensemble-based data assimilation methods such as ensemble smoother with multiple data 

assimilation (ES-MDA) (Emerick and Reynolds, 2013) constitute an efficient alternative to MCMC 

algorithms because they are computationally faster but might underestimate the model uncertainty in 

high-dimensional parameter and data spaces. This undesirable phenomenon is usually called 

ensemble collapse (Sætrom and Omre, 2013) and can be mitigated either by compressing model and 

data spaces (Luo et al., 2018) or by enlarging the number of models forming the ensemble, although 

this strategy increases the computational demanding.  

Over the last years, machine learning algorithms (Monajemi et al., 2016; Goodfellow et al. 2016) 

have been increasingly applied to solve geophysical problems (Araya-Polo et al. 2018; Richardson, 

2018; Waldeland et al. 2018; Wang et al. 2019; Wu and McMechan 2019; Puzyrev 2019; Park and 

Sacchi, 2020; Sun 2020; Aleardi 2020b; Moghadas 2020; Aleardi and Salusti, 2021). In particular, 

Convolutional Neural Networks (CNNs) are very popular architectures that exploit sparse 

connectivity and sharing weights among convolutional layers to reduce the computational cost of the 



 

 

training phase and improve the generalization ability (LeCun et al, 2015; Krizhevsky et al. 2017). 

The number of convolutional layers in a CNN plays a crucial role because a deeper network can 

potentially better approximate non-linear functions. It is usually believed that the deeper the network, 

the higher is the accuracy (match between actual and desired and network responses). However, it is 

often experienced that as the network gets deeper its performances degrade on both training and 

validation sets. This should not be confused with the well-known overfitting issue that usually 

manifests as a higher prediction error on the validation set. Instead, it may result from the optimization 

function, activation function, initialization of the network, or more importantly, from the vanishing 

gradient problem. This represents a crucial limitation when training deep networks (i.e., constituted 

by many convolutional layers) with derivative-based backpropagation algorithms (LeCun et al., 

1998) and occurs when the network is unable to backpropagate the gradient information from deep 

to shallow layers. As a consequence the degradation problem arises: the accuracy gets saturated for a 

given number of layers and then starts degrading rapidly if additional layers are added. He et al. 

(2016) proposed a Residual Neural Network (ResNet) to solve this problem, in which layers are 

connected through skip connections that add the outcomes of a shallow layer to the output of a deeper 

one.  

The electrical resistivity tomography (ERT) method is one of the most widely used geophysical 

techniques that provides the subsurface resistivity distribution for a variety of hydrogeological, 

environmental, and engineering problems (e.g., Dahlin 2001; Rucker et al. 2011; Chambers et al. 

2014; Uhlemann et al. 2015; Moradipour et al. 2016; Whiteley et al. 2017; Bièvre et al. 2018; Hojat 

et al. 2019a; Dahlin 2020; Hermans and Paepen 2020; Aleardi et al. 2020; Loke et al. 2020; Norooz 

et al. 2021). Due to incomplete data coverage and noise contamination, the ERT is an ill-posed 

problem affected by non-uniqueness and instability of the solution (i.e., small variations of the data 

produce large perturbations in the predictions), and hence, an accurate estimation of the model 

uncertainty is of primary importance. However, the ERT is routinely solved through deterministic 

approaches in which optimization algorithms minimize a predefined objective function. Such 



 

 

methods are generally computationally efficient but provide an estimation of the model (i.e., the most 

likely solution) without accurately quantifying the associated uncertainty. On the other hand, the 

computing time needed for multiple forward evaluations (e.g., through a finite element code) hampers 

the application of probabilistic approaches to solving the ERT problem and in this context, either 

advanced MCMC recipes or model and data compression strategies are usually needed (Aleardi et al. 

2020; Vinciguerra et al. 2021) to keep the computational cost affordable.   

In this work, we reduce the computational burden of the probabilistic ERT inversion by replacing the 

code for the forward evaluation with a trained ResNet. The idea is to use a trained network as a 

computationally efficient approximation to the forward problem, while also accounting for the 

approximation error introduced by the network and propagating it onto the final PPD (using the same 

strategy presented in Hansen and Cordua, 2017).  Multiple models and associated apparent resistivity 

data are used to make the ResNet learn the non-linear mapping between the model and the data space. 

The models forming the training and validation sets are generated according to prior model 

assumptions, while a 2.5D finite-elements (FE) Matlab modeling code constitutes the forward 

operator (Karaoulis et al., 2013) that computes the associated apparent resistivity data. We first 

demonstrate the method by inverting synthetic data, then the method is tested on field measurements. 

In the synthetic case, we employ the Differential Evolution Markov Chian (DEMC; Vrugt, 2016) to 

numerically assess the PPD, while the field inversion is solved through the ES-MDA algorithm. The 

outcomes of the proposed approach are also benchmarked with those yielded by DEMC and ES-MDA 

inversions in which the FE code constitutes the forward modeling engine. Other studies have already 

employed machine learning techniques to solve the ERT problem and especially to approximate the 

non-linear inverse mapping (Liu et al. 2020; Vu and Jardani, 2021; Aleardi et al. 2021a), but as far 

as the authors are aware, this is the first paper in which machine learning is used to speed up 

probabilistic ERT inversions. In this study, all the inversion codes have been written in Matlab, and 

the Matlab deep learning toolbox has been used to implement CNN and ResNet.  



 

 

METHODOLOGY 

The Bayesian framework and the probabilistic inversion 

The Bayesian solution of an inverse problem is expressed by the posterior probability density (PPD) 

function in model space:  

𝑝(𝐦|𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝)
,     (1) 

where 𝑝(𝐦|𝐝) denotes the PPD, 𝑝(𝐝|𝐦) is the so-called data likelihood function, whereas 𝑝(𝐦) and 

𝑝(𝐝) are the prior distributions of model parameters 𝐦 and observed data 𝐝, respectively. In most 

cases the data likelihood is derived from the L2 norm difference between predicted and observed 

data, under the assumption of Gaussian-distributed noise:  

𝑝(𝐝|𝐦) ∝ −0.5 × (𝐝 − 𝐺(𝐦))
𝑇

𝐂𝐝
−1(𝐝 − 𝐺(𝐦)),     (2) 

in which 𝐂𝐝 is the data covariance, and G is the forward operator. For non-linear problems, a 

numerical evaluation of the posterior can be derived using, for example, MCMC sampling algorithms 

or ensemble-based methods. The main computational demand when solving a Bayesian non-linear 

inverse problem lies in the computation of the likelihood because it requires running a forward 

evaluation for each sampled model. For this reason, our work aims to replace the computationally 

expensive forward operator G with the predictions of a trained network. The use of such 

approximation introduces a modeling error that if ignored can generate overfitting with the observed 

data and introduce artifacts in the final solution. Therefore, we also properly propagate the error 

introduced by the network approximation onto the final PPD. To this end the data covariance matrix 

𝐂𝐝 is computed as the sum of the noise contaminating the data 𝐂𝐧 and the modeling error that takes 

into account the imperfect physics relating the model to the data 𝐂𝐩 (Menke, 2018): 𝐂𝐝 = 𝐂𝐧 + 𝐂𝐩. 

Both noise and modeling errors are considered to be Gaussian-distributed with a zero mean value. 

The modeling error matrix is derived by evaluating the covariance of the difference between desired 

and actual network outputs and is computed on the validation set (see Hansen and Cordua, 2017 for 



 

 

details). With desired output, we mean the data generated by the FE routine that are assumed to be 

perfect, error-free predictions of the apparent resistivity values.   

 

The differential evolution Markov chain 

Markov chain Monte Carlo methods sample the target PPD by adopting the Metropolis-Hasting rule 

that defines the probability to move from the current state of the chain (i.e. the current model  𝐦)  to 

the proposed (perturbed) state 𝐦′ as follows: 

𝛂 = 𝒑(𝐦′|𝐦) =  𝐦𝐢𝐧 [𝟏,
𝒑(𝐦′)

𝒑(𝐦)
×

𝒑(𝐝|𝐦′)

𝒑(𝐝|𝐦)
×

𝒒(𝐦|𝐦′)

𝒒(𝐦′|𝐦)
].     (𝟑) 

q() denotes the proposal distribution that defines the new state 𝐦′ as a random deviate from a 

probability distribution 𝑞(𝐱′|𝐱) conditioned only on the current state 𝐦. If 𝐦′ is accepted 𝐦 = 𝐦′. 

Otherwise, 𝐦 is repeated in the chain, and another state is generated. The ensemble of sampled 

models after the burn-in period is used to numerically compute the statistical properties  of the PPD 

(e.g. mean, mode, standard deviations, marginal densities). Many sampling recipes have been 

proposed to reduce the computational cost of MCMC inversions (Vrugt, 2016), and here, we employ 

the Differential Evolution Markov Chain (DEMC) that exploits differential evolution principles to 

guide the sampling procedure. In DEMC N Markov chains and multivariate proposals are generated 

from the collection of chains at each iteration. Let the d-vector 𝐦 be the state of a single chain, then 

at each t-1 iteration the 𝑁 chains define a population 𝐌 = {𝐦𝑡−1
1 , 𝐦𝑡−1

2 , … , 𝐦𝑡−1
𝑁 }. A proposal model 

𝐦𝑝 is then generated for each chain according to: 

𝐦𝑝
𝑖 = 𝐦𝑡−1

𝑖 + 𝛾(𝐦𝑡−1
𝑎 − 𝐦𝑡−1

𝑏 ) + 𝜖,     𝑎 ≠ 𝑏 ≠ 𝑖     (4) 

where 𝛾 is the jump rate, i denotes the considered chain, whereas a and b are integer values drawn 

from {1,…,i-1,i+1,…,N} without replacement; 𝜖 is a normally distributed random deviate 𝜖 =

𝒩(0, 𝜎), where 𝜎 is properly set for the problem at hand. Each proposal is accepted according to the 

Metropolis-Hasting rule. The probability of 𝛾 = 1 is usually set to 10% and this allows mode-jumping 



 

 

which is a significant strength of DEMC over more conventional MCMC algorithms (i.e., random 

walk Metropolis). In this work, we solve the probabilistic ERT inversion using the DEMC algorithm 

presented in Vinciguerra et al. (2021) in which the Discrete Cosine Transform (DCT) 

reparameterization is used to compress the model space and to make the MCMC sampling 

computationally feasible. We refer the reader to that publication for further details.   

 

The ensemble smoother with multiple data assimilation 

The ES-MDA is an iterative procedure in which the updated models are used as the prior in the next 

iteration. The method starts with an ensemble of models generated according to the prior assumptions. 

Then, these models are updated by applying a Bayesian updating step to a stochastic observation of 

the data �̃�𝑘 under model and data Gaussian assumptions with empirical parameters estimated from 

the ensemble members. A single ES-MDA iteration can be written as: 

𝐦𝑘
𝑢 = 𝐦𝑘

𝑝 + �̃�𝐦𝐝
𝑝 (�̃�𝐝𝐝

𝑝 + 𝐂𝐝)−1(�̃�𝑘 − 𝐝𝑘
𝑝),        (5) 

where: 

�̃�𝐦𝐝
𝑝 =

1

𝑄 − 1
∑(𝐦𝑘

𝑝 − �̅�𝑝)(𝐝𝑘
𝑝 − 𝐝�̅�)

𝑇
 ,       (6)

𝑄

𝑘=1

 

�̃�𝐝𝐝
𝑝 =

1

𝑄 − 1
∑(𝐝𝑘

𝑝 − 𝐝̅𝑝)(𝐝𝑘
𝑝 − 𝐝�̅�)𝑇

𝑄

𝑘=1

,       (7) 

with k=1,…,Q, where Q represents the number of models in the ensemble and �̃�𝑘 is a random 

perturbation of the observed data according to the Gaussian distribution 𝒩(𝐝, 𝐂𝐝). The subscripts u 

and p denote the updated (current iteration) and prior (previous iteration) variables, respectively;  �̃�𝐦𝐝
𝑝

 

and �̃�𝐝𝐝
𝑝

 represent the empirical covariance matrices estimated from the ensemble members, whereas 

�̅�𝑝 and 𝐝̅𝑝 are the empirical ensemble mean of the model parameters and predicted data, respectively.   



 

 

The following steps are implemented for the ES-MDA: 

1. Define the number of models in the ensemble Q, the maximum number of iterations k, and 

the inflation coefficient α for each iteration with ∑
1

𝛼𝑖
= 1𝑄

𝑖=1 ; 

2. Generate realizations according to the prior 𝑝(𝐦); 

3. For each iteration:  

a. Apply the forward operator and compute the Q data vectors data generated by the 

ensemble members:  {𝐝 
𝑝} 1,…,𝑄; 

b. Perturb the observations of each ensemble member according to:  �̃�𝑘 = 𝐝 +

√𝛼𝑖𝐂𝐝
−1/2

𝐧 , with 𝐧 = 𝒩(0, 𝐈), where I is the identity matrix and 𝐝 denotes the 

observed data; 

c. Update the ensemble using equations 5-7 with  𝐂𝐝 replaced by 𝛼𝑖𝐂𝐝. 

All the ensemble members at the last iteration represent possible subsurface scenarios in agreement 

with the acquired geophysical data and with the prior assumptions. From this ensemble of models, 

the PPD can be numerically evaluated. Theoretically, the method converges when the ensemble size 

𝑁 tends to infinity. In practical applications, a sensitivity analysis is generally required to determine 

the optimal number of ensemble members that guarantees accurate posterior uncertainty assessments. 

In particular, the number of ensemble members should be large enough to get an accurate estimate of 

the 𝐂𝐝𝐝
𝑝

 and 𝐂𝐦𝐝
𝑝

 matrices but small enough not to make the forward evaluations computationally 

impractical. Usually, the number of ensemble members needed to get accurate uncertainty 

assessments increases with the dimension of the model space (Aleardi et al. 2021b).   

 

The selected ResNet architecture 

In the present work, a neural network is viewed as functions 𝐹 that get  input I and through the internal 

parameters P comuptes the output response 𝐎: 



 

 

𝐎 = 𝐹(𝐏, 𝐈).       (8) 

Both convolutional and residual networks use convolutional filters (also known kernels) and fully 

connected layers to extract features (forming the so-called features maps) from mono- or multi-

dimensional inputs. The feature mapping from one arbitrary layer to the next can be written as (Sun 

et al. 2020): 

𝑂𝑗
ℎ

 
= 𝑓 (𝐵𝑗 + ∑ 𝑂𝑖

ℎ−1 ∗ 𝑊𝑗   
𝐿

𝑖=1
) ,     𝑗 = 1, 2, … , 𝐽      (9) 

where L denotes the number of feature maps in the (h-1)-th layer; J is the number of feature maps in 

the h-th layer; 𝐵𝑗 is a matrix with the same size as 𝑂𝑗
ℎ expressing the biases for the h-th layer; 𝑂𝑗

ℎ 

represents the j-th feature map in the h-th layer, 𝑂𝑖
ℎ−1 is the i-th feature map in the (h-1)-th layer, and 

𝑊𝑗 represents the j-th filter of the h-th layer that is the weight matrix connecting 𝑂𝑗
ℎ with 𝑂𝑖

ℎ−1; 𝑓() 

is the activation function that includes non-linearity in the mapping process. Finally, ∗ represents the 

convolution process. Therefore, in a traditional convolutional neural network, each layer feeds into 

the next one (Figure 1, left panel), and in each training iteration 

the weights are updated proportionally to the partial derivative of the loss 

function with respect to the current weights. With an increasing number of hidden layers, it might 

happen that the gradient will become vanishingly small, thus preventing the update of the weights. 

Therefore the learning capabilities of the network degrade rapidly, leading to 

higher prediction error. An effective solution to this issue is provided by ResNet that makes use of 

shortcuts and skip connections to add the result of a shallow layer directly to the corresponding output 

of a deeper layer so that the information is passed through the network as an identity function (Figure 

1, right panel). The idea behind this approach is to assume that the residual mapping (R(x) in Figure 

1, right panel) is easier to optimize than the mapping f(x) of traditional CNNs (Figure 1, left panel). 

This strategy helps to prevent the loss of information that occurs when backpropagating the gradient, 

thus ensuring that deeper networks do not perform any worse than shallower counterparts. Many 



 

 

different types of residual blocks exist but here we use the original configuration as depicted in Figure 

1.  

The resistivity model is the input of the network, whereas the flattened apparent resistivity section 

constitutes the output response. We employ the same ResNet architecture represented in Figure 2 in 

both synthetic and field applications. Note that we use skip connections to adjust features dimensions 

before addition layers, while the zero-padding preserves the dimensions after convolution. We use 

the Leaky ReLU activation function (Hahnloser et al. 2000) with a leakage value of 0.1. After the last 

convolutional layer, the feature maps are flattened and passed to the first fully connected layer. 

Dropout is used to prevent overfitting, in which a given percentage of randomly selected neurons is 

ignored during the training phase (i.e., in our case the 10%). Batch normalization is used as an 

additional regularization operator (Santurkar et al. 2018), while we set the batch size to 32. The He 

method (He et al., 2015) is used to initialize the internal network parameters 𝐏. The root-mean-square 

error (RMSE) between the desired and the computed output is considered as the loss function, while 

the updating of the learnable weights is driven by the Adam optimizer (Kingma and Ba, 2014) running 

for 20 epochs. The initial learning rate is set to 0.001 and this value is scaled by 0.95 every epoch. 

Some tests have been performed to define the optimal hyperparameter configurations (i.e., type of 

activation function, number of convolutional layers, size of the filters, strategy to initialize the 

weights, learning rate value). The final choice has been determined through a trial-and-error 

procedure and according to the accuracy evaluated on the validation set. In our several experiments 

(not all shown here for brevity) we found that many different ResNet architectures (i.e., with different 

numbers of layers, filter dimensions) worked similarly. The final one has been selected as a 

reasonable compromise between the computational cost of the training phase and the accuracy of the 

predictions. This means that the applicability of the approach does not critically depend on the 

specific network configuration employed. Some tests with different hyperparameter configurations 

are presented in Appendix A.  



 

 

 

SYNTHETIC INVERSIONS 

We consider a schematic subsurface resistivity model represented by a rectangular block with a 

resistivity of 50 Ωm hosted in a homogeneous half-space with resistivity equal to 150 Ωm (Figure 3). 

The study area is discretized with 11 × 35 = 385 rectangular cells with vertical and lateral 

dimensions of 0.5 m and 1 m, respectively. The resistivity values within the cells correspond to the 

model parameters to be estimated. We simulate a Wenner acquisition layout with 36 electrodes with 

a=1 m. The maximum a value is 11. This configuration results in 198 data points. In this example, 

we employ the Wenner layout because it has been also used for the field data acquisition, but the 

presented inversion framework can be applied to other electrode configurations as well. The FE code 

was used to compute the noise-free observed dataset that we contaminated with uncorrelated Gaussian 

noise with a standard deviation equal to 20% of the total standard deviation of the noise-free data.  

Figure 4 represents the prior model assumptions used to generate the training and validation sets and 

also used in the following probabilistic inversion. We employ a stationary log-Gaussian prior with 

mean and variance values directly derived from the true model of Figure 3, while a Gaussian 

variogram is used as the spatial continuity pattern with horizontal and vertical variogram ranges equal 

to 4 and 1.5 m, respectively. Note that this prior constitutes a simplification of the actual distribution 

of the resistivity values in the synthetic model. Indeed, the true resistivity values are not Gaussian 

distributed as clearly shown by the true model of Figure 3.  

To keep the number of FE forward modeling evaluations needed for the probabilistic inversion to a 

minimum, we are particularly interested in assessing the network accuracies and generalization 

capabilities as the size of the training set decreases. Figure 5 represents the RMSE error computed 

for the synthetic experiment on the validation set with the selected network architecture (Figure 2) 

when the size of the training is reduced. We observe that the accuracy rapidly increases passing from 

200 to 2000 training examples, then it stabilizes if additional examples are provided. For this reason, 



 

 

in all the following examples the ResNet learns the forward mapping using 2000 examples for 

training, whereas 500 is the size of the validation set. Lower RMSE values can be obtained with a 

larger training set (e.g., with 3500 examples) but we deem that this improvement is not worth the 

extra computational cost required. According to our experience, we might say that a final RMSE 

lower than 30-35 is acceptable for the synthetic inversion. Indeed for an RMSE value higher than this 

threshold, the modeling error becomes comparable to the error related to noise contamination in the 

data (see for example Appendix A). This substantially deteriorates the accuracy and the precision of 

the results. Obviously, the acceptable RMSE value is case-dependent as it is related to the statistical 

properties of data and noise. 

Figure 6 shows a direct comparison between the RMSE values computed on the validation set for the 

ResNet and CNN as the total number of convolutional layers varies. The first nine ResNet layers 

maintain the hyperparameter setting previously shown in Figure 2, while the convolutional layers 10-

13 use the same configuration of layer 9 (20 filters with dimensions 3×3). The architectures of CNN 

and ResNet are the same, as they only differ in the fact that skip connections and addition layers are 

not used by CNN. It emerges that for seven convolutional layers the CNN gets saturated and then the 

accuracy decreases if other layers are added. Conversely, the ResNet accuracy steadily increases and 

eventually reaches a stable value for nine convolutional layers. This problem affected both the 

validation (Figure 6) and training set (not shown here for brevity), and hence it can not simply be 

associated with an overfitting issue. We also observed that this accuracy decrease also affected other 

CNN architectures with different hyperparameter settings (i.e., type of activation function, size of 

convolutional filters). Therefore, we deem that this result is not even related to the specific network 

architecture employed. We finally interpret this result as a possible consequence of the vanishing 

gradient problem as it disappears when the ResNet architecture is employed. However, we also have 

to say that the CNN provided a quite accurate forward approximation with a final RMSE lower than 

the optimal value of 30-35. This means that also the CNN forward can effectively replace the FE code 

and that the use of CNNs does not hamper the applicability of the proposed approach. 



 

 

Figure 7 displays the evolution of the RMSE on the training and validation sets for the finally selected 

network configuration (Figure 2) and using 2000, and 500 training and validation examples, 

respectively. We observe that the RMSE attains a stable value after 10 epochs. Similar errors on the 

validation and training sets prove that overfitting has been prevented. Figure 8 compares some 

examples of apparent resistivity pseudosections predicted by the trained ResNet and the associated 

FE datasets taken from the validation set. The close similarity between the actual and desired output 

(computed through the FE code) confirms that the network can effectively approximate the non-linear 

relation linking the model to the data. All the tests discussed in this work have been run on a common 

notebook equipped with an Intel i7-10750H CPU@2.60GHz with 16Gb of RAM, and with NVIDIA 

GeForce RTX 2060. Considering a parallel code, the generation of the 2000 training examples takes 

15 minutes, approximately, while the training running on the GPU is completed in less than 5 minutes.  

Before including the trained network in the inversion framework we quantify the reduction in the 

computing time for the forward evaluation guaranteed by the ResNet approximation. To this end, we 

run 100 forwards using both the FE code and the trained network (Figure 9) and it turns out that the 

ResNet guarantees a time reduction of three orders of magnitudes. This will translate into a dramatic 

difference in the computational cost of the probabilistic inversions.  

Figure 10 compares the diagonal entries of the 𝐂𝐧 and 𝐂𝐩 matrices in the synthetic data application. 

We observe that the data variations related to noise contamination are of one order of magnitude 

higher than the variations associated with the modeling error. This also means that the posterior 

uncertainties will be mainly related to noise contamination and different parameter illumination rather 

than the approximation error introduced by the ResNet. 

Figure 11 represents the histogram of the prediction error computed on the validation set and the 

corresponding normal probability plot. The histogram proves that, as desired, the modeling error 

distribution has a null mean value, thus demonstrating that the ResNet forward operator does not add 

any systematic bias in the predicted apparent resistivity values. The normal probability plot illustrates 



 

 

that, despite some minor deviations, the modeling error distribution can be reasonably assumed to be 

Gaussian. 

We now discuss the MCMC inversion results obtained in this synthetic test. As previously mentioned 

we applied the same inversion code described in Vinciguerra et al. (2021) in which the DEMC 

algorithm is used to sample the PPD in a DCT compressed parameter space. As in that paper, only 

15 DCT coefficients are considered in the inversion, thus meaning that the 385D full model domain 

has been sparsely represented by 15 unknown parameters. The prior assumptions in the DCT space 

have been analytically derived from the prior information defined in the original, uncompressed 

space. In what follows we also compare the results we obtain when the ResNet and FE forward 

modeling codes are used. In both cases, the DEMC sampling starts from prior realizations and makes 

use of 30 interactive chains evolving for 3000 iterations with a burn-in period of 500. Figure 12 

represents the most likely solutions and associated posterior uncertainties when the two forward 

operators are employed. In both inversions, we obtain congruent and extremely similar results, with 

no significant differences. The low rectangular resistivity body is successfully located and, as 

expected, the posterior uncertainties are lower in the central and well-illuminated part of the model 

and increase towards the bottom and lateral edges of the investigated area due to lower parameter 

illumination. For a more complete overview of the results, Figures 13 and 14 compare the marginal 

prior, posterior, and true model parameter values in the DCT domain. The true coefficients in the 

compressed space have been analytically derived by projecting the resistivity model of Figure 3 onto 

the DCT domain. All the considered fifteen coefficients are displayed. Again we observe that very 

similar posterior evaluations are estimated with the two forward modelings. This demonstrates the 

reliability and stability of the presented approach.  

Figure 15 shows the evolution of the negative log-likelihood for the 30 chains and for the two DEMC 

inversions. In both examples, the inversion attains the same stable misfit values within the same 

number of iterations (i.e., 500). Figures 16a-c compare the observed data with the apparent resistivity 



 

 

pseudosection generated on the most likely solution of Figure 12a when the ResNet and FE codes are 

employed. On the one hand, the similarity between Figure 16a and 16b illustrates that the predictions 

provided by the DEMC inversion successfully reproduce the observed data. Moreover, the good 

agreement between Figures 16b and 16c is a further demonstration of the capability of the trained 

ResNet to predict the forward mapping. Figure 16d shows instead the predicted data associated with 

the inversion tests in which the FE code has been used. Also in this case the predicted model of Figure 

12b successfully reproduces the observed data.  

As a final and more quantitative assessment of the results, we list in Table 1 the 90% coverage ratio, 

the root-mean-square errors (RMSE) between true and predicted models, observed and predicted data, 

together with the computing times for the two probabilistic inversions. These computing times refer 

to the hardware resources previously described and to parallel codes in which the forward evaluations 

are distributed across different cores. We remind that the 90% coverage ratio quantifies the percentage 

of resistivity values in the true model that fall within the 90% confidence interval as estimated by the 

probabilistic inversion. The two inversions provide very similar models, data predictions, and also 

uncertainty estimations. However, there is a dramatic difference in the computational demand: the 

inversion takes only 10 minutes when the ResNet forward operator is used, while approximately 20 

hours are needed with the FE code. These results demonstrate that the proposed approach not only 

drastically reduces the computational workload of the probabilistic sampling but, more importantly, 

also provides model estimations and uncertainty assessments comparable to those achieved with the 

FE forward modelling.  

 

FIELD DATA APPLICATION 

We now apply the presented approach to invert a field dataset acquired for levee monitoring along 

the Parma River in Colorno (Italy). We refer the interested reader to Hojat et al. (2019b) for more 

information about the study area. Due to the considerable computing time (several days) needed to 



 

 

tackle this inversion with the previously considered DEMC approach (see Vinciguerra et al. 2021), 

we resort to applying the ES-MDA algorithm. We invert a single dataset acquired with electrodes 

buried in a 0.5 m-deep trench and employing the Wenner configuration using 48 electrodes with a 

unit electrode spacing of a = 2 m. The dataset is corrected for the effect of the soil covering the 

electrodes (Hojat et al. 2021). The investigated site covers an area that is 94 m wide and 14 m deep 

and it is discretized with rectangular cells with vertical and lateral dimensions of 1 m and 2 m, 

respectively. This configuration results in 15×47= 705 resistivity values to be estimated from 360 

data points.  

We exploit all the available information about the investigated site to define the prior distribution of 

model parameters (see Hojat et al. 2019b). In particular, we still simplify the actual distribution of 

the subsurface resistivity with a log-Gaussian prior, and we employ a spatial variability pattern 

described by a Gaussian variogram with lateral and vertical ranges equal to 6 m and 2 m, respectively 

(Figure 17). In this area, we mainly expect a low-resistivity clay body that around 2-3 m depth hosts 

a more permeable layer with higher resistivity values associated with the presence of sand and gravel.  

Similar to the synthetic case we draw from the prior 2000 models for training and 500 for validation. 

We maintain the same ResNet architecture that was previously described with the only difference 

related to the dimension of the input image (in this case a model with 15 rows and 47 columns) and 

in the output size (a vector of 360 apparent resistivity values). As demonstrated in Figure 18 the 

similarity of the ResNet predictions with the corresponding FE responses extracted from the 

validation set proves the capability of the trained machine learning model to predict the forward 

relation. Figure 19a shows the histogram of the prediction error derived from the validation set and 

just from a visual inspection we can affirm that the Gaussian assumption is reasonable also for this 

field data application. Figure 19b again shows that the data variability related to the noise 

contamination as expressed by the 𝐂𝐧 matrix is larger than that expected from the modeling error. In 



 

 

this case, the 𝐂𝐧 matrix has been derived from the variance of repeated measures of the apparent 

resistivity values within a short time frame, under the assumption of Gaussian distributed noise.  

For the inversion, we employ the ES-MDA algorithm with an ensemble of 2000 models initially 

drawn from the prior assumptions and updated during five consecutive iterations. Similar to the 

synthetic example, we compare the results obtained when the ResNet and FE forward operators are 

used. No data or model space compressions are applied in this case. Figure 20 represents the final 

results in terms of the most likely solution and associated standard deviation. Similar and congruent 

outcomes are achieved in both cases: the inversion predicts a sand-gravel body at shallow depth 

hosted in shales. As expected the uncertainty tends to increase in correspondence of the high 

resistivity body and at the lateral and bottom edges of the model.   

Figure 21 shows the observed data and the data generated by the ResNet and FE on the model of 

Figure 20a, together with the apparent resistivity pseudosection derived with the FE code from the 

model of Figure 20b. Both inversions provide most likely solutions that accurately reproduce the field 

measurements with very minor differences in the data generated by the ResNet and FE codes. This 

demonstrates that the trained network can properly approximate the forward relation even for realistic 

resistivity models not seen during the learning procedure. As a further demonstration of the 

generalization ability of the trained ResNet network Figure 22 compares, for the inversion test 

running with the ResNet forward,  the observed data and the data predicted with both the ResNet and 

FE forwards on the initial and final (i.e., at the last iteration) ensemble of models. Again very minor 

differences can be seen in the apparent resistivity values provided by the two forward operators. 

Figures 23 and 24 compare (for the inversion running with the ResNet forward) some models forming 

the initial ensemble and the corresponding predictions at the last iteration. We observe that the 

inversion satisfactorily converges towards congruent results. Indeed all the models at the very last 

iteration show similar characteristics such as the low resistivity anomaly in the shallowest and central 

part of the study area, and the high resistivity body buried around 3 m depth.    



 

 

The computing times for the ES-MDA inversion with the ResNet and FE forward modelings are equal 

to 1 minute and 1.3 hours, respectively. So also in this case the trained ResNet model guarantees a 

significant speed-up of the inversion procedure, while still guaranteeing reliable predictions. 

 

CONCLUSIONS 

This work was aimed at reducing the computational cost of the probabilistic ERT inversion. To this 

end, we trained a ResNet network to learn the non-linear mapping between the model parameters and 

the associated data. This approach replaces the computationally complex FE forward modeling with 

the more computationally efficient network predictions. This reduced the average time needed for a 

forward evaluation of several orders of magnitude. In both synthetic and field experiments, the 

modeling error introduced by the network approximation was one order of magnitude lower than the 

expected data variability related to noise contamination. This modeling error has been quantified and 

properly propagated into the final estimates. The synthetic and field examples demonstrated that a 

neural network can be used to describe a (relatively) complex forward operator. Our examples also 

illustrated the applicability of the approach and that it provides most likely solutions and uncertainty 

assessments comparable to those achieved with the FE forward modeling. 

The main challenge of this methodology might be generating a large enough training set. Indeed the 

forward model needs to be evaluated as many times as the size of the training set. This procedure 

may be time-consuming, but need to be done only once, and it is also easily parallelizable. Once 

trained the ResNet model is applicable only for the specific acquisition layout assumed for the training 

phase. If the recording geometry changes a new training set needs to be generated, and a new learning 

phase must be run. Moreover, note that in our examples the training data was generated according to 

a specific prior distribution. Thus, if the prior assumptions change, a new training set needs to be 

created and a new network needs to be trained. An alternative approach might be generating the 

training set according to a much broader prior model, namely, a prior model that generates realizations 



 

 

with larger spatial variability. Such a training set could be used to learn a forward mapping to be used 

for a wider range of possible prior assumptions without the need for multiple retraining. Another 

possibility is to apply transfer learning techniques to update the internal parameters of a previously 

trained network when the distribution of the new prior differs from that assumed during the training 

procedure. These may be subjects for future researches. In any case, it is worth noting that our results 

demonstrated that the network can be successfully trained also with a relatively small training set. 

Moreover, both the MCMC and ES-MDA algorithms will need many more forward evaluations than 

the size of the training set we considered. The main benefit of the presented approach is that it 

provides an alternative forward that is much faster than the FE code. This allows using sampling-

based approaches to solve the probabilistic ERT inversion with a reasonable computational cost and 

using limited hardware resources. The approach can be also applied to reduce the computational 

complexity of other non-linear inverse problems that have to be solved through a stochastic sampling 

over the parameter space.  
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APPENDIX A 

We here represent the final RMSE values computed on the training and validation sets for four 

different network configurations. These are variants of the network represented in Figure 2 in which 

only one parameter has been modified. All these networks consider the same training and validation 

set previously used to train the finally selected network. 

• Network 1: The same as Figure 2 but with a filter size of 5×5 in all the layers; 

• Network 2: The same as Figure 2 but all the convolutional layers use a total number of filters 

increased by 5 (e.g., the CONV 2 and CONV 3 layers use 10 filters; see Figure 2); 

• Network 3: The same as Figure 2 but without the first fully connected layer; 

• Network 4: The same as Figure 2 but with the ReLU activation function instead of the 

LeakyRelu.  

Figure 25 represents the final RMSE values computed on the validation and training sets for the four 

previously considered networks. All the configurations provide quite satisfactory predictions 

especially the Networks 2-4 with prediction errors lower than the optimal value of 30-35. This figure 

also shows that the selected network architecture (Figure 2) yields slightly better results than the four 

considered alternatives. Finally, Figure 26 illustrates a comparison of the apparent resistivity 

pseudosections predicted by Network 1 and the desired response (FE output). Compare this figure 

with Figure 8 to appreciate the better predictions provided by the selected network.  

 

 

 

  



 

 

 

FIGURES AND CAPTIONS 

 

Figure 1: Comparison between a convolutional block in CNN (left) and a residual block 

in ResNet (right).  

  



 

 

 

Figure 2: Representation of the employed ResNet architecture annotated with key 

parameters. For example, in the second convolutional layer “CONV 2” the term within 

bracket (5, 3x3, Pad) indicates that we employ 5 convolutional filters with size 3x3 and 

that zero-padding is applied. The only difference in the synthetic and field data 

applications concerns the dimension of input and output response. See the text for details. 

  



 

 

 

Figure 3: The true model for the synthetic inversion. 

  



 

 

 

Figure 4: a) Log-Gaussian prior distribution for the synthetic example. b), and c) spatial 

correlation functions associated with the assumed 2-D variogram model for the 

horizontal and vertical directions, respectively. 

  



 

 

 

Figure 5: RMSE values computed on the validation set for different sizes of the training 

ensemble (200, 500, 1000, 2000, 3500, 5000, and 10000 examples) 

  



 

 

 

Figure 6: Final RMSE values computed on the validation set for the CNN and ResNet as 

the number of convolutional layers varies. 

  



 

 

 

Figure 7: Evolution of the RMSE on the training (blue line) and validation sets (magenta 

circles). 

  



 

 

 

Figure 8: Some comparisons between (a) the network responses and (b) the desired (i.e., 

FE) output from the validation set. In c) we represent the sample by sample difference 

between a) and b). Note the different color scale in c) with respect to a) and b). 

  



 

 

 

Figure 9: Box plots derived from 100 runs of the ResNet and FE forward operators (a, 

and b, respectively). The red crosses represent outliers. Note the different scales on the 

vertical axes. 

  



 

 

 

Figure 10: Comparison between the diagonal entries of the 𝐂𝐧 and 𝐂𝐩 matrices. 

  



 

 

 

Figure 11. a) Histogram of the prediction error computed on the validation set. b) Normal 

probability plot derived from the prediction error shown in a). The red line depicts the 

theoretical trend for a Gaussian distribution. 

  



 

 

 

Figure 12: a) and b) the most likely models predicted by the DEMC inversions when the 

ResNet and FE forward operator are employed, respectively. c) and d) Posterior standard 

deviations associated with the solution shown in a) and b), respectively. 

  



 

 

 

Figure 13: Inversion results in the DCT space when the ResNet forward modeling is 

employed. Each plot refers to one of the fifteen considered DCT coefficients. The red 

lines represent the marginal priors, the black bars are the marginal posteriors, whereas the 

green lines indicate the true DCT parameter values. 

  



 

 

 

Figure 14: As in Figure 13 but when the FE forward code is used. 

  



 

 

 

Figure 15: Evolution of the negative log-likelihood during the DEMC inversion for the 

30 chains and the first 3000 iterations. a) With the ResNet forward operator. b) With the 

FE forward operator. 

  



 

 

 

Figure 16: a) Observed data. b) Apparent resistivity pseudosection computed on the 

models shown in Figure 12a when the ResNet forward operator is used. c) Apparent 

resistivity pseudosection computed on the models shown in Figure 12a when the FE 

forward operator is used. d) Predicted data computed on the most likely model of Figure 

12b with the FE code. 

  



 

 

 

Figure 17: a) Log-Gaussian prior distribution for the field data inversion. b), and c) the 

spatial correlation functions associated with the assumed 2-D variogram model for the 

horizontal and vertical directions, respectively. 

  



 

 

 

Figure 18: Some comparisons between (a) the network responses and (b) the desired 

output extracted from the validation set. In c) we represent the sample by sample 

difference between a) and b). Note the different color scale in c) with respect to a) and b). 

  



 

 

 

Figure 19: a) Histogram of the modeling error computed on the validation set. b) Diagonal 

entries of the 𝐂𝐧 and 𝐂𝐩 matrices in the field data application. 

  



 

 

 

Figure 20: a) and b) the most likely solutions provided by the ES-MDA inversions when 

the ResNet and FE forward operator are employed, respectively. c) and d) Posterior 

standard deviations associated with the models shown in a) and b), respectively. 

  



 

 

 

Figure 21: a) Observed data. b) Apparent resistivity pseudosection computed on the 

model shown in Figure 20a when the ResNet forward operator is used. c) Apparent 

resistivity pseudosection computed on the model shown in Figure 20a when the FE 

forward operator is used. d) Predicted data computed on the most likely model of Figure 

20b with the FE code. 

  



 

 

 

Figure 22: Comparison between the observed data (black line), the data computed on the 

initial ensemble of models (green lines), and the data associated with the models at the 

last ES-MDA inversion (magenta lines). For graphical convenience, the pseudo sections 

have been flattened to 1D vectors. a) and b) refer to the same models but when the ResNet 

and FE codes are employed, respectively. 

  



 

 

 

Figure 23: Examples of prior realizations forming the starting ensemble of the ES-MDA 

inversion with the ResNet forward operator. 

  



 

 

 

Figure 24: Models extracted from the ensemble at the last ES-MDA iteration when the 

the ResNet forward is used.



 

 

 

Figure 25: RMSE on validation and training sets for the four different network 

architectures considered and the finally selected configurations (represented in Figure 2). 

  



 

 

 

Figure 26: Some comparisons between (a) the network predictions provided by Network 

1 and (b) the desired output extracted from the validation set. In c) we represent the 

sample by sample difference between a) and b). Note the different color scale in c) with 

respect to a) and b). Compare with Figure 8. 

  



 

 

 

 

TABLE 

 RMSE Model RMSE Data 90% coverage 

ratio 

Computing 

Time 

DEMC with the ResNet 

forward operator 

117.81 6.23 86.71% ≈ 10 minutes 

DEMC with the FE  

forward operator 

116.34 6.12 86.98% ≈ 20 hours 

Table 1: Table listing for the two DEMC inversions, the RMSE values between predicted 

and true models, observed and predicted data (see Figure 12), the 90 % coverage ratios, 

and the computing time for the inversion. 

 


