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Abstract

In [Duane, Garsia, Zabrocki 2013] the authors introduced a new dinv statistic, de-
noted ndinv, on the two part case of the shuffle conjecture [Haglund, Haiman, Loehr,
Remmel, Ulyanov 2005] in order to prove a compositional refinement. Though in
[Hicks, Kim 2013] a non-recursive (but algorithmic) definition of ndinv has been
given, this statistic still looks a bit unnatural. In this paper we “unveil the mystery”
around the ndinv, by showing bijectively that the ndinv actually matches the usual
dinv statistic in a special case of the generalized Delta conjecture in [Haglund, Rem-
mel, Wilson 2018]. Moreover, we give also a non-compositional proof of the “ehh”
case of the shuffle conjecture (after [Garsia, Xin, Zabrocki 2014]) by bijectively prov-
ing a relation with the two part case of the Delta conjecture.
Mathematics Subject Classifications: 05E05

1 Introduction

In [10] the authors proposed a combinatorial formula for the symmetric function ∆′en−1
en,

which was known to give the Frobenius characteristic of the so called diagonal harmonics
(cf. [14]). This went under the name of shuffle conjecture and it kept busy several re-
searchers for quite sometime. After proving some important special cases, like the famous
q, t-Catalan by Garsia and Haglund [7] or the more general q, t-Schröder by Haglund [9],
not much progress had been made for a few years.
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In [11] Haglund, Morse and Zabrocki formulated a compositional refinement of the
shuffle conjecture, which gave a new impulse to the search for a proof of this intriguing
conjecture.

Looking at special cases of the compositional shuffle conjecture, in [6] Duane, Garsia
and Zabrocki introduced a new dinv statistic, which they denoted ndinv, to provide a
compositional refinement of the two part shuffle conjecture. This statistic looked a bit
unnatural, as it was originally defined recursively. Later in [15] Hicks and Kim were able
to give a non-recursive (though algorithmic) definition of ndinv: still the notion appears
quite artificial.

In this work we “unveil the mystery” around this ndinv statistic by establishing a rela-
tion between the two part shuffle conjecture and a generalization of the shuffle conjecture
due to Haglund, Remmel and Wilson [12], known as (generalized) Delta conjecture. In
fact we show how the ndinv is none other than the natural dinv statistic, but read on
the appropriate subset of partially labelled Dyck paths. We do this by combining two
bijections in [4] and [3] that involve parallelogram polyominoes.

In the same line of research, Garsia, Xin and Zabrocki in [8] managed to prove the
case 〈·, ekhm−khn−k〉 of the compositional shuffle conjecture: this was the most general
special case of the shuffle conjecture that had been proved before the breakthrough proof
of the full compositional shuffle conjecture by Carlsson and Mellit in [2].

In the present article we establish a bijective relation between the case 〈·, ekhm−khn−k〉
of the shuffle conjecture and the case 〈·, hmhn〉 of the Delta conjecture in [12] (k being
the number of decorated rises). This will allow us to give an alternative proof of the case
〈·, ekhm−khn−k〉 of the shuffle conjecture, independent of its compositional refinement. It
is worth noticing that, in the current absence of a compositional refinement of the Delta
conjecture, our new proof gives at least a hope that it might be possible to prove the
“ehh” case of the Delta conjecture (so far still open) with the available methods.

The rest of the article is organized in the following way. In Section 2 we give the
combinatorial definitions that we need in the article. In Section 3 we state the generalized
Delta conjecture, while in Section 4 we introduce the missing definitions from symmetric
function theory and we prove the identities needed later. In Section 5 we discuss the ndinv
and we show how it matches the dinv on certain partially labelled Dyck paths. Finally, in
Section 6 we give our non-compositional proof of the “ehh” case of the shuffle conjecture
by establishing a relation with the two part Delta conjecture.

2 Combinatorial definitions

In this section we introduce some of the basic combinatorial definitions that we are going
to use in the rest of the article.

2.1 Dyck paths

Definition 1. A Dyck path of size n is a lattice path going from (0, 0) to (n, n), using
only North and East unit steps and staying weakly above the line x = y called the main
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diagonal. A labelled Dyck path is a Dyck path whose vertical steps are labelled with (not
necessarily distinct) positive integers such that the labels appearing in each column are
strictly increasing from bottom to top. See Figure 1 for an example. A partially labelled
Dyck path is a labelled Dyck path in which we allow 0 to be a label, except for the first
North step (the bottom-left one).

The set of all Dyck paths of size n is denoted by D(n), the set of labelled Dyck paths
of size n is denoted by LD(n), and the set of partially labelled Dyck paths of size m + n
with m zero labels is denoted by PLD(m,n). We identify LD(n) with PLD(0, n). For
D ∈ PLD(m,n) we set li(D) to be the label of the i-th vertical step.

2

4

5

1

3

2

6

1

Figure 1: A labelled Dyck path.

Definition 2. A parking function of size n is a function f : [n] → [n] such that #{1 6
j 6 n | f(j) > i} 6 n+ 1− i (here we used the standard notation [n] := {1, 2, . . . , n}).

We denote by PF(n) the set of all the parking functions of size n. These are in bijective
correspondence with the subset of labelled Dyck paths of size n whose labels are exactly
the numbers from 1 to n. In particular, a parking function f corresponds to the labelled
Dyck path with label i in column f(i) for 1 6 i 6 n. We will usually the identify parking
functions with the corresponding labelled Dyck paths.

Definition 3. An area word is a (finite) string of symbols a1a2 · · · an in a well-ordered
alphabet such that if ai < ai+1 then ai+1 is the successor of ai in the alphabet.

Definition 4. Let D be a (partially labelled) Dyck path of size n. We define its area word
to be the string of integers a(D) = a1(D)a2(D) · · · an(D) where ai(D) is the number of
whole squares in the i-th row (from the bottom) between the path and the main diagonal.

Notice that the area word of a Dyck path is an area word in the alphabet N.

Definition 5. We define the statistic area on D(m+ n) and PLD(m,n) as

area(D) :=
m+n∑
i=1

ai(D).
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For example, the area word of the path in Figure 1 is 01212011, so its area is 8.

Definition 6. Let D ∈ PLD(m,n). For 1 6 i < j 6 m+ n, we say that the pair (i, j) is
a diagonal inversion if

• either ai(D) = aj(D) and li(D) < lj(D) (primary inversion),

• or ai(D) = aj(D) + 1 and li(D) > lj(D) (secondary inversion).

Then we define di := #{i < j 6 m+ n | (i, j) is a diagonal inversion}.

Definition 7. We define the statistic dinv on PLD(m,n) as

dinv(D) :=
m+n∑
i=1

di(D),

and on D(m+ n) by assuming that the inequality condition on the labels always holds.

The number of primary and secondary diagonal inversions are referred to as primary
and secondary dinv respectively. The labelled Dyck path in Figure 1 has dinv equal to
6: its diagonal inversions are (2, 7), (4, 7) (primary), and (2, 6), (3, 4), (3, 8), (5, 8) (sec-
ondary).

Definition 8. Let D ∈ PLD(m,n). We define its dinv reading word as the sequence of
the positive labels read starting from the ones in the main diagonal going bottom to top,
left to right; next the ones in the diagonal y = x + 1 bottom to top, left to right; then
the ones in the diagonal y = x + 2 and so on. Notice that some authors use the reverse
convention, getting the reverse of our word.

For example, the labelled Dyck path in Figure 1 has dinv reading word 22416153.
To each (partially) labelled Dyck path we associate a monomial in the variables

x1, x2, . . . : for D ∈ PLD(m,n) we set

xD :=
m+n∏
i=1

xli(D)

where we set x0 = 1 (which explains the word partially).
These definitions can be extended to decorated Dyck paths. The idea of decorating

rises first appeared in [12], together with its modification to the area (cf. also [17]).

Definition 9. The rises of a Dyck path D of size n are the indices

Rise(D) := {2 6 i 6 n | ai(D) > ai−1(D)},

or, in words, the vertical steps that are directly preceded by another vertical step.
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Definition 10. A decorated Dyck path is a Dyck path where certain rises are decorated
with a ∗. By D(m + n)∗k (resp. PLD(m,n)∗k) we denote the set of Dyck paths (resp.
partially labelled Dyck paths) of size m+ n with k decorated rises.

Decorations on the rises influence the area in the following way.

Definition 11. Let D be a (labelled) decorated Dyck path, and let a1(D) · · · am+n(D) be
its area word. Now, let DRise(D) ⊆ Rise(D) be the set of indices such that i ∈ DRise(D)
if the i-th vertical step of D is a decorated rise. We define the area of D as

area(D) :=
∑

i 6∈DRise(D)

ai(D).

For a more visual definition, the area is the number of whole squares that lie between
the path and the main diagonal, except for the ones in the rows containing a decorated
rise.

The dinv of a decorated (partially labelled) Dyck path is defined as the dinv of the
path ignoring the decorations.

In the definition of partially labelled Dyck paths we do not allow a zero in the bottom-
left corner; but in Section 5.2 we will make use also of objects that allow this. We avoid
to introduce a new name/notation for these objects, but we want to define for them the
notion of “zero composition”.

Definition 12. We define the zero composition of a partially labelled Dyck path with a 0
label in the bottom-left corner (cf. Section 5.2) as the composition α � m where αi is the
number of 0 labels between the i-th zero label that lies on the main diagonal (included),
and the (i + 1)-th zero label that lies on the main diagonal (not included) if it exists, or
the end if it does not.

2.2 Polyominoes

Definition 13. A reduced (parallelogram) polyomino of size m × n is a pair of lattice
paths from (0, 0) to (m,n) using only north and east steps, such that the first one (the
red path) always lies weakly above the second one (the green path). For an example, see
Figure 5 on the right, or even Figure 3, but ignoring the added notation.

The set of reduced polyominoes of size m×n is denoted by RP(m,n). It is convenient
for the purpose of this paper to declare that a reduced polyomino also has a pair of
overlapping horizontal steps (one red and one green) from (−1, 0) to (0, 0). As we will
show, this does not alter any of the statistics, but it makes easier to describe certain
bijections. We will refer to these steps as ghost steps.

Reduced polyominoes are also encoded by their area word, this time in the ordered
alphabet N := 0 < 0̄ < 1 < 1̄ < 2 < . . . . The area word of a polyomino is computed with
a slight modification of the algorithm described in [1, Section 2]. It consists of drawing a
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Figure 2: A partially labelled Dyck path with zero composition α = (3, 1, 2, 1).

diagonal of slope −1 in the polyomino from the end of every horizontal green step, and
attaching to that step the “length” of that diagonal, i.e. the number of unit squares that
it crosses. Then, one puts a dot in every square not crossed by any of those diagonals,
and attaches to each vertical red step the number of dots in the corresponding row. Next,
one bars the numbers attached to vertical red steps, and finally one reads those numbers
following the diagonals of slope −1, reading the labels when encountering the end of its
step and the red label before the green one. See Figure 3 for an example. Notice that
some diagonals can have length 0, and that the ghost steps (outside the grid) force the
area word to start with a 0.

0 1 2

0

1

1 1

0̄

1̄

1̄

1̄

0̄

0̄

0̄

0̄

0̄

1̄

1̄

Figure 3: A 6× 11 reduced polyomino. Its area word is 00̄11̄21̄1̄10̄0̄00̄0̄0̄111̄1̄.

The proof of the following proposition is identical to the proof of [1, Corollary 3.2],
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hence it is omitted.

Proposition 14. For m,n > 0, there is a bijective correspondence between m×n reduced
polyominoes and area words of length m + n + 1 in the alphabet N starting with 0, with
exactly m+ 1 unbarred letters, and exactly n barred letters.

On reduced polyominoes we have statistics area and dinv similar to the ones we have
on Dyck paths. Let ai(P ) be the i-th letter of the area word of a reduced polyomino,
(where a0 = 0 is the one associated to the ghost horizontal green step) and let |ai(P )| be
its value, disregarding the bars.

Definition 15. We define the statistic area on RP(m,n) as

area(P ) =
m+n∑
i=0

|ai(P )|,

which is also the number of whole squares between the two paths.

Definition 16. Let P ∈ RP(m,n). For 0 6 i < j 6 m + n, we say that the pair (i, j) is
a diagonal inversion if ai(P ) is the successor of aj(P ) in the alphabet N. Then we define
di(P ) := #{i < j | (i, j) is a diagonal inversion}. Finally, we define the statistic dinv on
RP(m,n) as

dinv(P ) =
m+n∑
i=0

di(P ).

Definition 17. The rises of a reduced polyomino P are the indices

Rise(P ) := {1 6 i 6 n | |ai(P )| > |ai−1(P )|},

which correspond in the figure to the diagonals of slope −1 from the endpoint of a vertical
red step to the endpoint of a horizontal green step.

Definition 18. A decorated reduced polyomino is a reduced polyomino where certain rises
are decorated with a symbol ∗.

By RP(m,n)∗k we denote the set of reduced polyominoes of sizem×n with k decorated
rises. A decoration on a rise does not affect the dinv of a reduced polyomino, while it
affects its area in the same way as it does for Dyck paths, namely in computing the area
we have to disregard the letters of the area word whose index is a decorated rise.

2.3 Two car parking functions

We need one more combinatorial object, namely two car parking functions.

Definition 19. A two car parking function is a labelled Dyck path such that all the labels
have value 1 or 2.
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We will refer to the 1’s as small cars and to the 2’s as big cars. Once again, it is
convenient to think about them as having m + 1 big cars instead, one of them in the
bottom-left corner (which we call ghost car and draw in gray). This doesn’t alter any of
the statistics.

The set of two car parking functions of sizem+n with n 1’s andm 2’s, and k decorated
rises is denoted by PF2(m,n)∗k.

2

1

2

1

2

2

1

2

1

2

1

2

Figure 4: A two car parking function with five 1’s and six 2’s (plus the ghost car).

The name two car parking functions was given because replacing the 1’s and the 2’s
with two decreasing sequences n, . . . , 1 and m+n, . . . , n+ 1 in the dinv reading word, the
dinv is not altered. In other words, two car parking functions with n labels equal to 1 and
m labels equal to 2 behave exactly as parking functions whose dinv reading word is in the
shuffle (n, . . . , 1)� (m+n, . . . , n+1) do, according to the bistatistic (dinv, area). To avoid
confusion, we will refer to labelled Dyck paths with labels in {1, 2} as two car parking
functions, and to labelled Dyck paths whose reading word is a shuffle of two decreasing
sequences as two shuffle parking functions.

Definition 20. We define the big car composition of P ∈ PF2(m,n)∗k as the composition
α � m + 1 where αi is the number of big cars between the i-th big car that lies on the
main diagonal (included), and the (i + 1)-th big car that lies on the main diagonal (not
included) if it exists, or the end if it does not.

The two car parking function in Figure 4 has big car composition α = (3, 3, 1) (the
ghost car is shown in the picture).
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3 The Delta conjecture

In this short section we limit ourself to recall the definitions needed to state the Delta
conjecture, in particular the definition of the Delta operators. For the missing notation
we refer to [5, Section 1] or [13] (cf. also Section 4).

We denote by Λ the algebra over the fieldQ(q, t) of symmetric functions in the variables
x1, x2, . . . . We denote by en, hn and pn the elementary, complete homogeneous and power
symmetric function of degree n, respectively. We denote by ω the involution of Λ defined
by ω(en) := hn for all n.

Also, for any partition µ, we denote by sµ ∈ Λ the corresponding Schur function. It is
well-known that the symmetric functions {sµ}µ form a basis of Λ. The Hall scalar product
on Λ, denoted 〈 , 〉, can be defined by stating that the Schur functions are an orthonormal
basis.

Let H̃µ ∈ Λ denote the (modified) Macdonald polynomial indexed by the partition µ.
As the polynomials {H̃µ}µ form a basis of Λ, given a symmetric function f ∈ Λ, we can
define the Delta operators ∆f and ∆′f on Λ by setting

∆fH̃µ := f [Bµ(q, t)]H̃µ and ∆′fH̃µ := f [Bµ(q, t)− 1]H̃µ, for all µ, (1)

where Bµ(q, t) =
∑

c∈µ q
a′µ(c)tl

′
µ(c), a′µ(c) and l′µ(c) are the coarm and coleg of c in µ,

respectively, and the square brackets denote the plethystic substitution.
The first formulation of the generalized Delta conjecture appears in [12], which we

state in terms of labelled decorated Dyck paths.

Conjecture 21 (Generalized Delta conjecture). For any integers n > k > 0,

∆hm∆′en−k−1
en =

∑
D∈PLD(m,n)∗k

qdinv(D)tarea(D)xD. (2)

For m = 0, this is known as Delta conjecture. For m = k = 0, the generalized Delta
conjecture reduces to the Shuffle conjecture in [10], recently proved in [2].

Definition 22. Given µ ` n, a µ-shuffle is a string of numbers from 1 to n such that the
substrings (1, . . . , µ1), (µ1 + 1, . . . , µ1 +µ2), . . . , (n−µ`(µ) + 1, . . . , n) appear in increasing
order. Given µ ` n − d and ν ` d, a µ, ν-shuffle is a string of numbers from 1 to n such
that the substrings (1, . . . , µ1), . . . , (n− µ`(µ) + 1, . . . , n− d) appear in increasing order,
and the substrings (n−d+ν1, . . . , n−d+1), . . . , (n, . . . , n−ν`(ν)+1) appear in decreasing
order.

It is well known (cf. [13, Chapter 6]) that the generalized Delta conjecture predicts
that taking the scalar product of ∆′en−k−1

en with eµhν corresponds to taking the subsets
of paths whose dinv reading word is a µ, ν-shuffle.

In this paper we only deal with the hahb case (i.e. a shuffle of two decreasing sequences)
and the eahbhc case (i.e. a shuffle of an increasing sequence and two decreasing sequences).
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4 Symmetric functions

In this section we prove the identities of symmetric functions needed in the rest of the
article.

For all the undefined notations and the unproven identities, we refer to [5, Section 1],
where definitions, proofs and/or references can be found.

4.1 Notation

We denote by Λ =
⊕

n>0 Λ(n) the graded algebra of symmetric functions with coefficients
in Q(q, t), and by 〈 , 〉 the Hall scalar product on Λ, which can be defined by saying that
the Schur functions form an orthonormal basis.

The standard bases of the symmetric functions that will appear in our calculations are
the monomial {mλ}λ, complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ
bases.

We will use implicitly the usual convention that e0 = h0 = 1 and ek = hk = 0 for
k < 0.

For a partition µ ` n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑
λ`n

K̃λµ(q, t)sλ (3)

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)tn(µ) with n(µ) =
∑
i>1

µi(i− 1) (4)

are the (modified) Kostka coefficients (see [13, Chapter 2] for more details).
The set {H̃µ[X; q, t]}µ is a basis of the ring of symmetric functions Λ. This is a

modification of the basis introduced by Macdonald [16].
If we identify the partition µ with its Ferrers diagram, i.e. with the collection of cells

{(i, j) | 1 6 i 6 µi, 1 6 j 6 `(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-arm
and co-leg (denoted respectively as aµ(c), lµ(c), aµ(c)′, lµ(c)′) as the number of cells in µ
that are strictly to the right, above, to the left and below c in µ, respectively.

We set M := (1− q)(1− t) and we define for every partition µ

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c) (5)

Tµ := Tµ(q, t) =
∏
c∈µ

qa
′
µ(c)tl

′
µ(c) (6)

Πµ := Πµ(q, t) =
∏

c∈µ/(1)

(1− qa′µ(c)tl′µ(c)) (7)

wµ := wµ(q, t) =
∏
c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1). (8)
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We will make extensive use of the plethystic notation (cf. [13, Chapter 1]).
We define the nabla operator on Λ by

∇H̃µ := TµH̃µ for all µ, (9)

and we define the delta operators ∆f and ∆′f on Λ by

∆fH̃µ := f [Bµ(q, t)]H̃µ and ∆′fH̃µ := f [Bµ(q, t)− 1]H̃µ, for all µ. (10)

Observe that on the vector space of symmetric functions homogeneous of degree n, denoted
by Λ(n), the operator ∇ equals ∆en . Moreover, for every 1 6 k 6 n,

∆ek = ∆′ek + ∆′ek−1
on Λ(n), (11)

and for any k > n, ∆ek = ∆′ek−1
= 0 on Λ(n), so that ∆en = ∆′en−1

on Λ(n).

For a given k > 1, we define the Pieri coefficients c(k)µν and d(k)µν by setting

h⊥k H̃µ[X] =
∑
ν⊂kµ

c(k)µν H̃ν [X], (12)

ek

[
X

M

]
H̃ν [X] =

∑
µ⊃kν

d(k)µν H̃µ[X], (13)

where h⊥k is the adjoint operator of the multiplication by hk with respect to the Hall
scalar product, ν ⊂k µ means that ν is contained in µ (as Ferrers diagrams) and µ/ν has
k lattice cells, and the symbol µ ⊃k ν is analogously defined. The following identity is
well-known:

c(k)µν =
wµ
wν
d(k)µν . (14)

Recall also the standard notation for q-analogues: for n, k ∈ N, we set

[0]q := 0, and [n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1 for n > 1, (15)

[0]q! := 1 and [n]q! := [n]q[n− 1]q · · · [2]q[1]q for n > 1, (16)

and [
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
for n > k > 0, while

[
n

k

]
q

:= 0 for n < k. (17)
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4.2 Some basic identities

First of all, we record the well-known

〈H̃µ, sn−r,1r〉 = er[Bµ − 1] for all µ ` n. (18)

The following identity is also well-known: for any symmetric function f ∈ Λ(n),

〈∆edf, hn〉 = 〈f, edhn−d〉. (19)

We will use the following form ofMacdonald-Koornwinder reciprocity : for all partitions
α and β

H̃α[MBβ]

Πα

=
H̃β[MBα]

Πβ

. (20)

The following identity is also known as Cauchy identity :

en

[
XY

M

]
=
∑
µ`n

H̃µ[X]H̃µ[Y ]

wµ
for all n. (21)

We need the following well-known proposition.

Proposition 23. For n ∈ N we have

en[X] = en

[
XM

M

]
=
∑
µ`n

MBµΠµH̃µ[X]

wµ
. (22)

Moreover, for all k ∈ N with 0 6 k 6 n, we have

hk

[
X

M

]
en−k

[
X

M

]
=
∑
µ`n

ek[Bµ]H̃µ[X]

wµ
. (23)

4.3 A few useful identities

We recall here [9, Theorem 2.6], i.e. for any A,F ∈ Λ homogeneous∑
µ`n

ΠµF [MBµ]dAµν = Πν

(
∆A[MX]F [X]

)
[MBν ], (24)

where dAµν is the generalized Pieri coefficient defined by∑
µ⊃ν

dAµνH̃µ = AH̃ν . (25)

Observe that (18) implies

〈∆hn∆′em−kem+1, hm+1〉 = 〈∆hnem+1, sk+1,1m−k〉

We recall here two theorems from [3].
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Theorem 24 ([3, Theorem 5.1]). For n,m, k > 0 and m > k > 0, we have

〈∆′em+n−k−1
em+n, hmhn〉 = 〈∆hn∆′em−kem+1, hm+1〉. (26)

Theorem 25 ([3, Theorem 5.3]). For n,m, k > 0 and m > k > 0, we have

m−k+1∑
r=1

tm−k−r+1〈∆hm−k−r+1
∆eken

[
X

1− qr

1− q

]
, en〉 = 〈∆hn∆′em−kem+1, hm+1〉. (27)

Finally, we recall [5, Lemma 5.2], i.e. for every n, k ∈ N, with n > k > 1, and for
every β ` n, we have

en−k−1[Bβ − 1]Bβ =
∑
γ⊂kβ

c
(k)
βγBγTγ. (28)

4.4 A new identity

We want to prove the following new identity.

Theorem 26. For n,m, k > 0 and m > k > 0, we have

〈∆hn∆′em−kem+1, hm+1〉 = 〈∇em+n−k, ekhn−khm−k〉. (29)

Proof. On one hand

〈∇em+n−k, ekhn−khm−k〉 =

(using (22)) =
∑

µ`m+n−k

M
Πµ

wµ
TµBµ〈H̃µ, ekhn−khm−k〉

=
∑

µ`m+n−k

M
Πµ

wµ
TµBµ〈h⊥m−kH̃µ, ekhn−k〉

(using (12)) =
∑

µ`m+n−k

M
Πµ

wµ
TµBµ

∑
β⊂m−kµ

c
(m−k)
µβ 〈H̃β, ekhn−k〉

(using (19)) =
∑

µ`m+n−k

M
Πµ

wµ
TµBµ

∑
β⊂m−kµ

c
(m−k)
µβ ek[Bβ]

(using (14)) =
∑
β`n

M
1

wβ
ek[Bβ]

∑
µ⊃m−kβ

ΠµTµBµd
(m−k)
µβ

(using (24)) =
∑
β`n

M
1

wβ
ek[Bβ]Πβ (∆em−ke1[X/M ]em+n−k[X/M ])

∣∣
X=MBβ

(using (23)) =
∑
β`n

M
Πβ

wβ
ek[Bβ]

∑
λ`m+n−k+1

em−k[Bλ]Bλ
H̃λ[MBβ]

wλ
.
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On the other hand

〈∆hn∆′em−kem+1, hm+1〉 =

(using (22)) =
∑

λ`m+1

hn[Bλ]em−k[Bλ − 1]
MBλΠλ

wλ

(using (28)) =
∑

λ`m+1

hn[Bβ]
∑
γ⊂kλ

c
(k)
λγBγTγ

MΠλ

wλ

(using (14)) =
∑

γ`m−k+1

MBγTγ
wγ

∑
λ⊃kγ

hn[Bλ]d
(k)
λγ Πλ

(using (24)) =
∑

γ`m−k+1

MBγTγ
wγ

Πγ (∆ekhn[X/M ])|X=MBγ

(using (23)) =
∑

γ`m−k+1

MBγTγ
wγ

Πγ

∑
β`n

ek[Bβ]
TβH̃β[MBγ]

wβ

(using (20)) =
∑
β`n

M
Πβ

wβ
ek[Bβ]Tβ

∑
γ`m−k+1

BγTγ
wγ

H̃γ[MBβ].

So our identity would follow from∑
λ`m+n−k+1

em−k[Bλ]Bλ
H̃λ[MBβ]

wλ
= Tβ

∑
γ`m−k+1

BγTγ
wγ

H̃γ[MBβ]. (30)

But

Tβ
∑

γ`m−k+1

BγTγ
wγ

H̃γ[MBβ] =

=
∑

γ`m−k+1

BγTγ
wγ

TβH̃γ[MBβ]

(β ` n) =
∑

γ`m−k+1

BγTγ
wγ

en[Bβ]H̃γ[MBβ]

(using (13)) =
∑

γ`m−k+1

BγTγ
wγ

∑
λ`m+n−k+1

d
(n)
λγ H̃λ[MBβ]

(using (14)) =
∑

λ`m+n−k+1

H̃λ[MBβ]

wλ

∑
γ`m−k+1

c
(n)
λγ BγTγ

(using (28)) =
∑

λ`m+n−k+1

H̃λ[MBβ]

wλ
em−k[Bλ − 1]Bλ.

Using em−k[Bλ] = em−k[Bλ − 1] + em−k−1[Bλ − 1], in order to prove (30), it remains to
show that ∑

λ`m+n−k+1

H̃λ[MBβ]

wλ
em−k−1[Bλ − 1]Bλ = 0,
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which is clear by following our last computation backward for em−k−1[Bλ − 1]:∑
λ`m+n−k+1

H̃λ[MBβ]

wλ
em−k−1[Bλ − 1]Bλ =

(using (28)) =
∑

λ`m+n−k+1

H̃λ[MBβ]

wλ

∑
γ`m−k+1

c
(n+1)
λγ BγTγ

(using (14)) =
∑

γ`m−k+1

BγTγ
wγ

∑
λ`m+n−k+1

d
(n+1)
λγ H̃λ[MBβ]

(using (13)) =
∑

γ`m−k+1

BγTγ
wγ

en+1[Bβ]H̃γ[MBβ]

= 0

as en+1[Bβ] = 0 (since β ` n). This completes the proof of the theorem.
Corollary 27. For n,m, k > 0 and m > k > 0, we have

〈∆′em+n−k−1
em+n, hmhn〉 = 〈∇em+n−k, ekhn−khm−k〉. (31)

Proof. Just combine (26) and Theorem 26.
Corollary 28. For n,m, k > 0 and m > k > 0, we have

m−k+1∑
r=1

tm−k−r+1〈∆hm−k−r+1
∆eken

[
X

1− qr

1− q

]
, en〉 = 〈∇em+n−k, ekhn−khm−k〉. (32)

Proof. Just combine Theorem 25 and Theorem 26.

5 The newdinv

In this section we show that the newdinv is actually the natural dinv statistic on a specific
subset of partially labelled Dyck paths.

5.1 Definition of the newdinv

The definition of the newdinv depends on a bijection Φ defined in [6, Section 4]. First of
all, we consider the two shuffle parking functions as two car parking functions (starting
with a 2), and we think of these paths as sequences of dominoes [`i, ai] where `i is the
label in the i-th row, and ai is the i-th letter in the area word. Then Φ acts as follows:
consider the subsequence of dominoes between the first one (included; it is necessarily a
[2, 0]) and the next [2, 0] (excluded, if any; otherwise consider the whole sequence). If
the subsequence consists of the domino [2, 0] only, then it is removed and Φ does not
do anything else. Otherwise, we remove the next domino (which must be a [1, 0]), then
we replace all the [2, a] in the subsequence with [2, a−1], and finally we replace all the
pairs of dominoes [1, a][2, a−1] with [1, a−1][2, a] if there is any. They define the newdinv
recursively as newdinv(PF ) := k − 1 + newdinv(Φ(PF )), where k is the number of [2, 0]
dominoes in the parking function.
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5.2 Two bijections involving polyominoes

In [3, Theorem 8.4] the authors define a bijection; a slight modification of this function
bijectively maps reduced polyominoes of size m × n to the “Catalan” partially labelled
Dyck paths, i.e. paths with m + 1 zero valleys, n positive labels (that are increasing in
the dinv reading word order), and n decorated rises (which forces a zero label to be in
the bottom-left corner, as in Definition 12). Notice that every step with a non-zero label
must be a decorated rise.

We describe here the inverse map, which we call η−1, as it is easier. See Figure 5
for an example. It works as follows: looking at the rows of the partially labelled Dyck
path going bottom to top, we draw a horizontal red step if the row contains a zero valley,
and we draw a vertical step otherwise; next we draw a horizontal green step below each
horizontal red step such that the number of squares between them is the same as the
number of squares in the row containing the zero valley corresponding to the matching
horizontal red step; finally, we draw the vertical green steps in the only possible way. The
image is the set of m × n reduced polyominoes (the first two steps are the ghost steps),
and the area is trivially preserved, as the lengths of the rows that contribute to the area
are the same as the heights of the columns of the polyomino.

∗
∗

∗
∗

∗

0
1
2

0
0

0
3
4

0
5

0
0

Figure 5: A partially labelled Dyck path in our special subset (left), and the corresponding
polyomino (right).

In [3, Theorem 4.5] the authors define another bijection between RP(m,n)∗k and
PF2(m,n)∗k, preserving both dinv and area. We take a slightly modified version, which
we call ψ. See Figure 6 for an example. It consists of taking the area word of the poly-
omino, building a Dyck path with the same area word (disregarding bars), putting 1’s
in rows corresponding to barred letters and 2’s in rows corresponding to unbarred letter,
and keeping the decorations on the rises exactly as they were. The image is the set of two
car parking functions with m + 1 2’s and n 1’s that start with a 2, where the starting 2
plays the same role as the ghost steps in the polyomino, since adding (or removing) a 2
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in the first row does not alter the statistics in any way. Removing it we get an element
in PF2(m,n)∗k, but it is more convenient to just keep it.

2
1
2

1
2

2
1
2

1
2

2
1

Figure 6: A reduced polyomino (left) with area word 00̄11̄2100̄11̄222̄ and its corresponding
two car parking function (right).

We omit a proof of the bijectivity of the maps ψ and η−1 as they are analogous to
the ones in [3]. Notice that both these maps actually have stronger properties, which are
described in [3].

5.3 Relation with the newdinv

It turns out that the composition ψ ◦ η−1 of the bijections described above preserves the
area statistic, and sends the natural dinv statistic into the newdinv.

In fact, it translates the recursion of [6, Theorem 1.1] in the usual recursion for labelled
Dyck paths that occurred for example in [17] and [2]. Indeed, if we let Φ to be the map
defined in [6, Section 4], then the composition η ◦ψ−1 ◦Φ ◦ψ ◦ η−1 is essentially the same
recursive step used for example in [17, Proposition 4]. This fact is the core of the content
of the proof of the following theorem.

Theorem 29. The composition ψ◦η−1 of the two bijections maps the natural dinv statistic
on “Catalan” partially labelled Dyck paths to the newdinv statistic on the two shuffle parking
functions, and preserves the area.

It also maps the zero composition on the partially labelled Dyck paths to the big car
composition on the two shuffle parking functions.

Proof. In order to prove that the dinv is mapped to the newdinv, it is enough to show
that the map η ◦ψ−1 ◦Φ ◦ψ ◦ η−1 decreases the dinv by k− 1 when applied to a partially
labelled Dyck path as above, where k is the number of times that the path touches the
main diagonal (not counting the endpoint - notice that k must also be the number of zero
valleys on the main diagonal).
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Let us first see what ψ−1 ◦ Φ ◦ ψ does. In terms of area word, it is extremely easy:
it takes the area word of the polyomino and it removes the initial 0 if it starts with two
consecutive 0’s; otherwise, it takes the subsequence of the area word strictly before the
second 0, removes the first 0̄ (there must be one), decreases all the unbarred letters by
one unit, changes all the sequences a−1 ā to a−1 a, if any, and then moves the modified
subsequence to the end of the area word.

Now the goal is to understand what happens to the picture. If the polyomino starts
with two consecutive horizontal red steps (the first being the ghost one), then it just
deletes one. If it doesn’t, however, we claim that what happens is that the first vertical
red step is removed, the last vertical green step before the second pair of overlapping
horizontal steps is removed (if any; otherwise, the last vertical green step is removed -
notice that the first pair of overlapping horizontal steps consists of the first two steps), and
then the portion of the two paths between the first pair of overlapping steps (included)
and the last one (excluded) is cycled to the end. See Figure 7 for an example.

Figure 7: The reduced polyomino in Figure 3 (left) and its image via the map ψ−1 ◦Φ ◦ψ
(right). The section before the second pair of overlapping steps (boxed in orange) is
shrunk vertically by one unit and moved to the end.

The first thing to notice is that the 0’s in the area word correspond to the pairs of
overlapping horizontal steps. This is clear from the construction of the area word in
[1, Section 2] (see also the first algorithm described in [3, Subsection 2.1]), and it means
that the region involved in this process is the one between the first two pairs of overlapping
horizontal steps. Now, the first vertical red step corresponds to the first 0̄, which is deleted
as expected.

Deleting the last vertical green step in the region means that the two paths are verti-
cally pushed one step closer to each other. When doing this, the length of the diagonal of
slope −1 starting from the end of a horizontal green step (which determine the values of
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the unbarred letters in the area word) decreases by one if and only if the other end hits
the beginning of a horizontal red step, which is equivalent to saying that the matching
letter is not part of a rise in the reading word: rises correspond exactly to diagonals of
slope −1 going from the end of a horizontal green step to the beginning of a vertical red
step, as it is clear from a correspondence with Dyck paths shown in [1, Section 3] (see also
the second algorithm described in [3, Subsection 2.1]). This means that the corresponding
unbarred letters decrease by one unit.

For the same reason the value of the barred letters that are part of a rise decreases by
one unit (this is clear from the correspondence with Dyck paths in [1, Section 3], as the
vertical red step is sliding below the matching horizontal green step); notice also that the
red step, being pushed down, is now read before the horizontal green step which was part
of the same rise. This means that a rise a ā is changed into a−1 a, which is the same as
decreasing the unbarred letter one unit and then change the sequences a−1 ā we get to
a−1 a. It is immediate that barred letters that were not part of a rise keep their position
in the area word instead. Cycling the region to the end simply does the same to the area
word.

This proves that ψ−1 ◦Φ◦ψ acts on reduced polyominoes as we claimed. Now we have
to check what happens to partially labelled Dyck paths. If a polyomino starts with two
horizontal red steps then the corresponding Dyck path starts with two consecutive zero
valleys on the diagonal, and η ◦ψ−1 ◦Φ◦ψ ◦η−1 simply deletes one and doesn’t change the
dinv. Otherwise, first of all notice that 0’s in the area word of the polyomino correspond to
zero valleys on the diagonal (it is clear because they correspond to overlapping horizontal
steps). Now, deleting the first vertical red step corresponds to deleting the first vertical
step that is not a valley, which is the one immediately above the starting zero valley (hence
it lies in the second row; since the red path is not otherwise altered, the sequence of zeroes
and positive labels remains the same. Next, deleting the last vertical green step decreases
the number of squares in each column of the interested region by one, which means that
the zero valleys in the matching region of the Dyck path (except the one in the bottom left
corner) should get one step closer to the main diagonal, and since the relative positions
of zeroes and positive labels does not change, this maneuver corresponds to deleting the
last horizontal step before the next zero valley on the diagonal (if any; otherwise it is
the last horizontal step). Finally, the whole region is cycled to the end. This maneuver
doesn’t change the dinv (the primary becomes secondary and viceversa), except for the
contribution of the deleted step: its primary dinv is balanced by the secondary dinv gained
by the zero valley that lied in the bottom left corner, but its secondary dinv is lost, and
it formed secondary inversions with the zero valleys on the diagonal (except the bottom
left one), which are exactly k − 1.

This proves that ψ◦η−1 maps the dinv to the newdinv. Checking that the compositions
match is trivial, as both match the composition of the unbarred letters of the polyomino,
where the breakpoints of the parts are the 0’s.

We can immediately derive the following corollary.
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Corollary 30. Let PLD(α, n)∗n denote the set of partially labelled Dyck paths of size
m + n + 1 with a zero label in the bottom-left corner that have zero composition equal to
α � m + 1, and n decorated rises (i.e. every non-zero label is attached to a decorated
rise). Let also PF2(α, n)∗0 denote the subset of PF2(m,n)∗0 whose elements have big car
composition equal to α � m + 1. Then for every composition α � m + 1, we have the
identity ∑

P∈PLD(α,n)∗n

qdinv(P )tarea(P ) =
∑

P∈PF2(α,n)∗0

qndinv(P )tarea(P ).

Notice that the main result of [6] is precisely that the right-hand side of the identity
in Corollary 30 is equal to

〈∆hnCα, em+1〉,

where a definition of Cα can be found for example in [11]. Hence Corollary 30 provides a
new combinatorial interpretation for this expression.

6 The “ehh” case of the shuffle conjecture

In this section we prove the combinatorial counterpart of Corollary 27, which we recall
here: for n,m, k > 0 and n,m > k > 0, we have

〈∆′em+n−k−1
em+n, hmhn〉 = 〈∇em+n−k, ekhn−khm−k〉. (33)

6.1 The “ehh” bijection

Let us call (with a slight abuse of notation) (k, n,m)-shuffle paths the elements of PF(m+
n− k) whose dinv reading word lies in the shuffle

(1, . . . , k)� (n, . . . , k + 1)� (m+ n− k, . . . , n+ 1).

Theorem 31. There is a bijective correspondence between PF2(m,n)∗k and the set of
(k, n,m)-shuffle paths that preserves the bistatistic (dinv, area).

Remark 32. This result does not provide any new evidence by itself (since the shuffle
conjecture has been completely proved), but it suggests that a similar approach could be
used to solve the eahbhc case of the Delta conjecture as well, since it implicitly provides
a combinatorial recursion similar to those that are used to prove the eahb and hahb cases
(cf. [4] and [3]).

Proof. Let D be a (k, n,m)-shuffle path. First of all, replace all the numbers from k + 1
to n with bold 1’s and all the numbers from n + 1 to m + n− k with bold 2’s, with the
convention that any bold number is bigger than any regular one. It is immediate to check
that this operation does not alter the dinv (since it preserves inversions).

Now, for any number 1 6 i 6 k, perform the following operation. First add a decorated
vertical step immediately after the one with the i label assigned, then add a horizontal
step immediately after the new vertical step, next replace the label with a bold 1, and
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Figure 8: A parking function of size 8 with dinv reading word 51827364 ∈ 123�54�876,
an intermediate step of the bijection, and the corresponding two car parking function.

assign a bold 2 to the new decorated step. If this is done starting from k and then going
down to 1, step by step both statistics are preserved: the area obviously does not change
(we are adding a decorated letter to the area word without changing the other ones);
the primary dinv on the left of i is now primary dinv on the left of the new bold 1; the
primary dinv on the right of i is now secondary dinv on the left of the new bold 2; the
secondary dinv on the left of i is now either primary dinv on the left of the new bold 2 (if
it came from a bold 1) or secondary dinv on the left of the new bold 1 (if it came from
a bold 2); and the secondary dinv on the right of i is now secondary dinv on the right of
the new bold 1. Finally, replace bold numbers with regular ones.

The image is an element in PF2(m,n)∗k with the same dinv and area of D. It remains
to prove that the map is bijective, but it is since the inverse is easy to compute: given an
element in PF2(m,n)∗k, replace all the 1’s that are not immediately before a decorated
rise (which are exactly n− k) with the numbers n, . . . , k+ 1 according to the order given
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by the dinv reading word (i.e. start with those on the main diagonal going bottom to top,
then move to the diagonal y = x+1 going bottom to top, and so on); then do the same for
all the 2’s that are not decorated rises (there are exactly m−k of them) with the numbers
m + n− k, . . . , n + 1; and finally delete the vertical steps containing decorated rises and
the following horizontal steps (there must be one, since an element in PF2(m,n)∗k can’t
have more than two consecutive vertical steps) and replace the labels immediately before
the deleted rises with the numbers 1, . . . , k. The ghost car has to be added at the end.

Remark 33. Combining Theorem 31, Corollary 27 and the proof of the “hh” case of the
Delta conjecture in [3], we get a new, non-compositional proof of the “ehh” of the shuffle
conjecture.

In fact the recursion used in [3] to prove the “hh” case of the Delta conjecture has
a nice counterpart on the (k, n,m)-shuffle paths, which gives a combinatorial argument
for the “ehh” case of the shuffle conjecture independent from the one in [3]. This is the
content of the next section.

6.2 The “ehh” recursion

From [3] we have that PF2
q,t(m\r, n)∗k (where the parameter r specifies the number of big

cars on the main diagonal) satisfies the following recursion

PF2
q,t(m\r, n)∗k =

n∑
s=1

m−r+1∑
u=1

k∑
h=0

tm+n−r−s−k+1

[
r + s− 1

s

]
q

× q(
h
2)
[
s

h

]
q

[
s+ u− h− 1

u− h

]
q

PF2
q,t(m− r\u, n− s)∗k−h

with initial conditions PF2
q,t(m\r, 0)∗k = δm,rδk,0.

This recursion has an interpretation in terms of (k, n,m)-shuffle paths. Let us call
small cars the labels from 1 to k, medium cars the ones from k+ 1 to n, and big cars the
ones from n+ 1 to m+ n− k. Notice that the small cars are the only ones in increasing
order in the dinv reading word, so in particular there can be inversions involving only
small cars. We have that PF2

q,t(m\r, n)∗k corresponds to the subset of (k, n,m)-shuffle
paths of which r − 1 big cars lie on the main diagonal. In the recursion, h counts the
small cars on the main diagonal, s − h counts the medium cars on the main diagonal,
u− h counts the big cars at height 1, and the recursive step is performed by deleting all
the medium and big cars on the main diagonal, converting the small cars on the main
diagonal to big cars, and then pushing everything else one step towards the diagonal
(i.e. in the area word the 0’s corresponding to medium and big cars are deleted, the 0’s
corresponding to small cars are converted to big cars, and all the other letters keep their
car size and decrease by one their value). Next, since we necessarily get a labelled Dyck
path with a big car in position 1, we delete it and get a (k− h, n− s,m− r)-shuffle path
with u− 1 big cars on the main diagonal, completing the recursive step.
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The proof of [3, Theorem 6.1] shows that this same recursion with the same initial

conditions is satisfied by tm−k−r+1〈∆hm−k−r+1
∆eken

[
X

1− qr

1− q

]
, en〉. So this proves that

the latter polynomial matches the q, t-enumerator of (k, n,m)-shuffle paths with r − 1
big cars on the main diagonal. Summing over r, and using Corollary 28, we get a non-
compositional proof of the “ehh” case of the shuffle conjecture, as claimed.
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