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The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and
long non-coding RNA (lncRNA), such as the X inactive specific transcript
Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject
of intense debate. While cross-linking, immuno-precipitation and super-
resolution microscopy argue against direct interaction of Polycomb with
some lncRNAs, there is increasing evidence supporting the ability of both
PRC1 and PRC2 to functionally associate with RNA. Recent data indicate
that these interactions are in most cases spurious, but nonetheless crucial
for a number of cellular activities. In this review, we suggest that while
PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it
might occur indirectly and, at least in part, through the process of liquid–
liquid phase separation. We present recent models of lncRNA-mediated
PRC1/2 recruitment to their targets and describe potential RNA-mediated
roles in the three-dimensional organization of the nucleus.
1. Polycomb-group repressive complexes
Polycomb-repressive complexes 1/2 (PCR 1/2) are repressive proteins, firstly
described in Drosophila melanogaster, responsible for the Hox-genes silencing [1],
and competing with activating factors such as these from the Thritorax-group
proteins [2]. In Drosophila, Polycomb complexes are recruited to target genes by
recognition of polycomb response elements, also called PREs [3].Whilemammals
largely lack canonical PREs, CpG islands seem to pay an equivalent role [4].
Polycomb-mediated silencing is essential for several cellular functions, from
pluripotency [5] to lineage specification [6] senescence and cancer [7,8]. In mam-
mals, Polycomb complexes come in two main flavours, polycomb-repressive
complex 1 (PRC1) and Polycomb-repressive complex 2 (PRC2). Each of these com-
plexes can be further divided into three [9] or six [10] subcomplexes, respectively,
depending on the complex composition and cellular function [11,12]. Polycomb
complexes are responsible for placing repressive chemical marks on histone
tails, regulating chromatin functions. In particular, PRC2 places methyl groups
at the lysine 27 of the histone H3 [13], via Ezh2, its catalytic subunit, while
PRC1 places mono-ubiquitin moieties at lysine 119/120 of histone H2A [14],
via the Ring1A/B catalytic subunits. Polycomb marks on the chromatin, are, in
turn, read by Polycomb complexes subunits [15,16] (positive reinforcing loops)
and other complexes (readers) to stabilize gene silencing [17]. Both Polycomb
complexes are capable of binding RNA, and this function of Polycomb complexes
is crucial to ensure correct gene expression [18–20]. While PRC1/2 complexes are
thought to have non-catalytic roles in genome architecture (e.g. by organizing the
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genome in three-dimensional) [21], the catalytic activity of
these complexes is critical for polycomb-mediated silencing
[22–24]. As the role of these marks has been discussed else-
where, we refer the reader to other excellent reviews [25,26].
In our review, we focus on the role of RNA and in particular
of long-coding RNAs, in the recruitment of these complexes
to the chromatin, using the two most studies lncRNAs, Xist
and HOTAIR, as models.
PRC2

RepB
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HOTAIR RNA (5¢)
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Figure 1. Xist and HOTAIR interactions with Polycomb proteins. (a) Schematic
representation of possible PRC1/2 interactions via the Xist A- [51] and B- [52]
repeats (black lines). The question marks indicates the debated interaction of
PRC2 with the A-repeat (b) Schematic representation of HOTAIR interaction at
domain 1 (D1), helix 7 (H7) [53] with PRC2 (black lines).
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2. Direct versus indirect binding of
polycomb-repressive complexes 1/2
components to Xist and HOTAIR

Long non-coding RNAs (lncRNAs) are RNAmolecules longer
than 200 bases that lack protein-coding potential [27,28]. They
represent a significant portion of the cell transcriptome [29] and
work as activators or repressors of gene transcription acting
on different regulatory mechanisms [30–32]. lncRNAs can act
as scaffolds for protein recruitment [33–40] and behave as
guides and/or sponges for titrating RNAs and proteins,
influencing transcription at regulatory regions or triggering
transcriptional interference [41–43]. In the large spectrum of
activities, the RNA structure plays a central role and dictates
precise functionalities by creating spatial patterns and alterna-
tive conformations and binding sites for proteins [44,45]. In this
review, we will focus on the two best-studied lncRNAs, Xist
and HOTAIR, to critically discuss what we know about the
interaction of PRC1/2 complexes with RNA.

Xist is a long non-coding RNA and the master-regulator of
X chromosome inactivation (XCI) [46–49]. Xistworks as a scaf-
fold for the recruitment of repressive complexes on the inactive
X chromosome (Xi) [46,50]. As for its structure, six conserved
repetitive regions (Rep), named A to F, have been reported to
be essential for its function [30,44]. The interaction between
Xist and PRC1/2 has been studied in detail. In particular,
PRC1 has been reported to interact with Xist B-repeats and
PRC2 with Xist A-repeats (see below) (figure 1a). In the case
of PRC1-Xist B repeats, a study from the Heard laboratory
showed that a region encompassing the Xist B/C-repeat is
necessary for PRC1 recruitment [52]. The Brockdorff labora-
tory mapped this interaction to the B repeat mostly, and
proved that HNRNPK, which physically interacts with PRC1,
is directly involved in RNA binding (figure 1a) [54]. For the
PRC2-Xist interaction with the A-repeats, there is not agree-
ment in literature. A seminal study from the Lee laboratory
has shown that Xist A-repeats directly recruits EZH2 via
direct interaction with its stem and loops [51]. However, differ-
ent lines of evidence stemming from developmental studies
suggest that Xist expression and PRC2 recruitment can be
decoupled. In particular, in developing female embryos, Xist
RNA clouds seems to precede H3K37me3 domains, making a
direct interaction unlikely [55,56]. In agreement with these
observations, super-resolution microscopy [57] and genetics
analysis [58] point towards a non-direct interaction. In particu-
lar, Almeida et al. suggest that Xist attracts PRC2 to the
chromatin via the recognition of the chromatin mark placed
by PRC1 (i.e. H2AK119ub), in agreement with other models of
PRC1/2 recruitment [59,60] (discussed in more details below).

HOTAIR [61] is another well-known lncRNA regulating the
expression of the HOX genes during development [61].
HOTAIR works as a scaffold for the recruitment of the PRC2
members EZH2, SUZ12, and it is also able to act in trans to
allow the establishment of a repressed chromatin state at the
HOX clusters [62,63]. How HOTAIR interacts with PRC2
in vivo is still debated, an in vitro study indicates a direct inter-
action between HOTAIR and EZH2 at its 50 [63,64]. In
particular, HOTAIR interaction with PRC2, mapped at the
HOTAIR repeat D1 helix 7 (H7) [53], appears to be direct (in
the range of 200 nM) [63,64]. HOTAIR-PRC2 interactions
might be very different from those of Xist-PRC1/2 (figure 1b).
The interaction between HOTAIR and PRC2 is likely sustained
by the repetitive Guanine stretches (G-tracts) found in the D1
helix [64]. This interpretation is in line with data from
Somarowth et al. showing equal affinity of the PRC2 complex
to natively purified or refolded HOTAIR 50/30 using in vitro
assays [53]. Noticeably, the putative Xist-PRC2 interaction
region (A-repeats) ismissing thekeyRNArecognition sequences
needed for specific interactions (discussed below) [65].
3. Xist and HOTAIR show different modes of
interactions with polycomb-repressive
complexes 1/2 components

We analysed our previously published data on Xist and
HOTAIR [35,66,67] binding abilities to PRC1/2 components.
In our studies, we employed the catRAPID [35,68] method to
estimates the binding potential of proteins to RNA molecules
through van der Waals, hydrogen bonding and secondary
structure propensities of both protein and RNA sequences.
This allows the identification of binding partners with high
confidence [69]. In agreement with experimental evidence
[54], catRAPID identified a direct interaction between Xist 50-
end and HNRNPK [35] (Global Score = 0.99 on a scale ranging
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Figure 2. Xist and HOTAIR RNA predicted structure and interaction propensity and super-resolution microscopy. (a). Xist interaction propensity profile (Z-normalized
binding propensities of RNA regions) calculated with catRAPID indicates that the binding of HNRNPK is in the region comprising the Xist Rep B and the Xist Rep C
[35], in agreement with experimental evidence [54]. (b) Xist and PRC2 do not directly interact. Representative image of Xist and PRC2 catalytic subunit Ezh2 from
Cerase et al. [57]. Reproduced with the permission of the editor, PNAS February 11, 2014 111 (6) 2235–2240. (c) HOTAIR interaction propensity calculated with
catRAPID indicates the binding of EZH2 in the D1 domain [66], in agreement with experimental evidence [57,58].
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from 0 to 1, where 0 indicates no RNA-binding ability and 1
strong affinity; figure 2a; by contrast, the negative control Dys-
kerin Pseudouridine Synthase 1 DKC1 has a score of 0.01). To
identify interactions of long non-coding RNAs such as Xist,
catRAPID exploits a special pipeline that is based on the div-
ision of the transcript into fragments and calculation of their
individual binding propensities (Z-normalized to 0 mean and
standard deviation of 1), which is useful to spot the binding
sites (figure 2a) [35]. PRC1 catalytic subunits Ring1A/B
showed a high catRAPID score (Global Score = 0.98) [35], in
accordance with what reported by Chu et al. [39] using Xist
complementary oligo probes in pull-down experiments. Yet,
it should be mentioned that Chu et al. [39] used formaldehyde
fixation conditions to identifyXist binders,which indicates that
non-direct interactions can be detected in their experiments.
Other PRC1 components and PRC2 subunits did not rank
high in our catRAPID analysis [35]. This is in agreement with
the observation that PRC2 elements are under-represented in
proteomic [36,37,39] and genetic screens [33,34] designed to
reveal Xist interactomes. As for other PRC1 and PRC2
elements, we predicted low interaction propensities. For
example, SUZ12, EZH1 and EZH2 have Global Score values of
0.01, 0.22 and 0.35, respectively. This is in line with the results
of the previous analysis [70]. In brief, using randomizedXist A-
repeats as a control, Ezh2 has been predicted to bind Xist with
lowaffinity (EZH2-A-repeats interaction propensity is approxi-
mately 1, using a scale where positive interactions have scores
greater than 10). These findings are in good agreement with
three-dimensional-SIM data (figure 2b), showing the poor
overlap betweenXist and PRC2 [57], suggesting that this inter-
action might be sustained by intermediary proteins or via an
indirect cascade (i.e. through PRC1-mediated H2A119 ubiqui-
tination, see below).

On the other hand, catRAPID predictions indicate that
HOTAIR and EZH2 might directly interact (Global Score = 0.99;
figure 2a; by contrast, the negative control, the keratin-associated
protein KRTAP21 has a score of 0.01, which is in agreementwith
previous biochemical evidence [63,64]). In both Xist and
HOTAIR analyses, protein interactions strictly occur in highly
structured regions of the transcripts (figure 2c) that contain
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G-rich stretches. These findings are in line with recent studies
revealing that double-stranded regions in RNA molecules
provide the scaffold for protein complexes [71,72]. Indeed,
since RNA transcripts are highly flexible, an increase in second-
ary structure makes the protein partners bind tightly [72],
favouring their accumulation on the scaffold, which can induce
the formation of phase-separated assemblies (discussed
below) [71].

In regards to the RNA structure, the CROSS (Compu-
tational Recognition of Secondary Structure) algorithm
predicts the propensity of a nucleotide to be double-stranded
given the neighbour nucleotides and the crowded cellular
environment [73]. CROSS has been previously employed to
compute the structural properties of Xist and HOTAIR [73,74].
In accordance with dimethyl sulfate (DMS)-sensitivity exper-
iments [75], CROSS [73] analysis predicts that, Xist B and C
Repeats (nucleotides approximately 2000–5500) as well as Xist
A repeats (nucleotides approximately 1–400) and E (nucleotides
approximately 10 000–12 000) of Xist are highly structured.
Among Xist-interacting proteins binding to RepE, there are
the splicing regulators polypyrimidine Tract Binding Protein 1
(PTBP1), MATRIN-3 (MATR3), CUG-Binding Protein 1
(CELF1) and TAR-DNA Binding Protein (TDP-43) [35–37,39].

In the case of HOTAIR, CROSS [73] identifies specific
regions in the D1 region (nucleotides 1–500) as the most
structured, together with the adjacent D2 region (nucleotides
500–1000 and nucleotides 1500–2200), which agrees with
DMS experiments [53] (figure 2c, bottom). In addition to
EZH2 [76], HOTAIR was shown to interact with the histone
demethylases LSD1 (lysine-specific demethylase 1A). LSD1
is a flavin-dependent monoamine oxidase that demethylates
lysines, specifically lysine 4 on histone H3. LSD1 is known
to form a multi-protein complex with REST (RE1-Silencing
Transcription factor) and CoREST that are critical players in
gene silencing [63,64].
4. Polycomb-repressive complexes 1/
2–long non-coding RNA interactions
and phase separation

Phase separation is defined as the process by which a homo-
geneous solution divides in two or more separated phases.
Paraspeckles are a classic example of phase-separated cellular
entities, nucleoli and stress granules [19,44–49], which are
membrane-less assemblies composed of RNA and proteins.
Formation of cytoplasmic stress granules is an evolutionary
conserved mechanism. For example, stress granules are
formed in response to environmental changes (i.e. heat
shock) and favour the confinement of enzymes and nucleic
acids in discrete regions of the nucleus or cytoplasm [77]. Struc-
turally disordered and nucleic acid binding domains promote
protein–protein and protein–RNA interactions in large ‘higher-
order’ assemblies [78,79]. Intrinsically disordered proteins,
which are enriched in polar and non-polar amino acids such
as arginine and phenylalanine, have been shown to promote
phase transitions in the cell [45].

In a recent publication [67], we reasoned that Xist exerts
its functions—at least in part—through the formation of silen-
cing granules by phase separation, in which PRC1 and PRC2
are also recruited. More precisely, we suggested that non-cano-
nical recruitment of repressive PRC1 complexes is promoted or
reinforced by the formation of higher order assemblies. In this
scenario, the primary de novo recruitment of PRC1/2 would
happen through the Xist B repeats [54] direct interaction and
involve proteins with a strong propensity to phase separate.
As predicted by the catGRANULE algorithm [45] that estimates
the ability of proteins to form liquid-like assemblies containing
protein and RNAmolecules [67], both EZH2 andHNRNPK are
prone to phase-separate (figure 3a and table 1). Yet, HNRNPK
shows amuch higher granulation score than EZH2 (1.60 versus
0.71; note that the score is z-normalized and 0 correspond to the
average protein propensity), which suggests enhanced ability to
form large ribonucleoprotein complexes. In agreementwith this
observation, experimental [57,81] and computational studies
[67] have indicated that Xist could phase separate with its
associated proteins, but no evidence has been proposed so far
on HOTAIR ability to form such assemblies. This finding is in
linewith the fact that PRC2 components might directly binding
to HOTAIR, while most of Xist-Polycomb associations [51,82]
are largely indirect [54] (figures 1 and 2). Indeed, analysing
the whole protein interactomes of both Xist [36,39] and
HOTAIR [83], we found that Xist binding partners are highly
prone to phase separation, while HOTAIR interactions show
lower propensity to phase separate, which is in accordance
with the observation that indirect protein–protein interactions
may mediate associations through structurally disordered
domains (figure 3b) [67]. We note that HOTAIR binding part-
ners have a non-negligible propensity to phase separate with
respect to a similar length negative control (antisense of 30

UTR of Alpha Synuclein; around 2500 nucleotides; figure 3b)
[80], which suggests that HOTAIR might form medium-size
assemblies [84].

In the Xist case, PRC1 positive feedback recruitment may
be reinforced by liquid-like interactions in which specific
elements such as CBX2 [85] (liquid–liquid phase separation
propensities of 1.17 [45]) as well as SAM-domain multimeriza-
tion [86] or intrinsically disordered domains could be involved.
Based on their phase separation scores, we speculate that other
proteins such as HNRNPU (phase separation propensity of
2.5) and MATR3 (liquid–liquid phase separation propensity
of 1.5) might contribute towards the recruitment of polycomb
proteins to the Xist body (table 1). These interactions might
also be mediated by intrinsically disordered proteins yet to
be discovered binding the Xist A-, D-30end repeats. This protein
multimerization driven by phase separation and the RNA–
protein interactions might be playing a critical role in this
process [67] and, in turn, trigger RNA Polymerase II (Pol-II)
and basic transcription factors eviction, inducing gene
silencing and heterochromatinization (figure 3c).
5. Non-catalytic functions of polycomb-
repressive complex in shaping the three-
dimensional genome might be
mediated by RNA interactions

Work from different laboratories has shown that PRC1/2 com-
plexes are essential regulators of cellular three-dimensional
structure (recently reviewed by Illingworth RS [85] and
Cheutin and Cavalli [87]). Very recent work from the Cavalli
lab has elegantly shown how PRC1 can exert different
and apparently opposing functions such as gene repression,
three-dimensional organization of the genome and gene
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Table 1. Liquid–liquid Phase Separation (LLPS) propensity of PRC1 and
PRC2 components. The score is Z-normalized and values >0 indicate that
the protein is prone to phase-separate.

gene LLPS

HNRNPK 1.601

RING1 1.499

JARD2 1.339

SUZ12 1.226

CBX2 1.175

CBX4 1.169

CBX8 1.058

EZH2 0.711

CBX6 0.592

PHC1 0.556

EED 0.509

RBBP4 0.466

PHC2 0.401

RING2 0.107

BMI1 −0.059
PCGF2 −0.096
PHC3 −0.438
CBX7 −0.439
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activation [88]. In brief, Loubiere and colleagues showed, using
PRC1 mutants at the duchsund locus in Drosophila, that genes
are positively and negatively regulated by PRC1. In particular,
they suggest that while in the absence of activating transcrip-
tion factors (TFs), PRC1 is mostly involved in gene silencing,
in the presence of TF, PRC1 might be able to regulate gene
expression by making PRC1-dependent promoter enhancer
contacts [88]. As PRC1 has also been shown to have a role in
regulating occupancy, elongation and phosphorylation of
RNA polymerase II (Pol-II) [89,90], it is tempting to speculate
that these functions of PRC1 might be, in part, mediated by
its ability to bind to RNAvia RING1A/B or CBX7 [91] proteins
(figure 4a). In support of this idea/interpretation, a paper from
the Moazed laboratory [92] has shown that the Rixosome, a
conserved RNA degradation machinery, interacts with
PRC1/2, and it is recruited at Polycomb sites for efficient
gene silencing. Similarly, Garland et al. [93] showed a link
between the RNA degradation pathways and Polycomb
silencing. In particular, they showed that KO of Zcfh31, a com-
ponent of the poly(A) RNA exosome targeting (PAXT)
complex, increases the cellular level of poly-adenylated RNA,
triggering the destabilization of the PRC2 complex, impaired
chromatin binding and reduction of gene silencing [93].
Furthermore, work from several laboratories has shown that
Polycomb can interact with RNAs [94,95], nascent transcripts
[96] or with R-loops at Polycomb-repressed targets [94,97].
These lines of evidence support the idea that the interaction
of Polycomb proteins with RNA might be spurious, yet it is
critical for numerous cellular functions, from nuclear three-
dimensional organization [85,87,98–100], repression of target
genes [94,101,102], spreading on PRC1/2 [103], cellular
differentiation and lineage commitment.
6. Conclusion
Elegant biochemistry work from several laboratories showed
that PRC1 [19] and specific PRC2 subcomplexes [20,104]
(i.e. PRC2.1, PRC2.2 depending on the accessory subunits pre-
sent in the complex, reviewed in Van Mierlo and colleagues
[9]) bind to RNA with different affinities and specificities.
Recent work suggests that the interaction of PRC1/2 com-
ponents to RNA is promiscuous [18,105], and in part mediated
by protein–protein interactions [65]. It has also been shown
that EZH2–RNA interactions can catalytically inactivate or
expel EZH2 [101,104,106–108], suggesting that RNA binding
is essential for the modulation of polycomb catalytic activities
[50] (figure 4b). However, allosteric RNA inhibition can be
relieved both by H3K27me3 and methylated JARID protein
interactions (the latter also in agreement with Cifuentes-Rojas
and colleagues [106,109]). These lines of evidence suggest a
new model of PRC2 recruitment that can explain both de novo
polycomb recruitment (RNA binding) and spreading (using
established polycomb domains) [20].

Taking into account previous experimental and compu-
tational work, we suggest that the ‘canonical’, direct lncRNA-
mediated PRC2 recruitment has to be revisited [105]. As for
Xist, the de novo recruitment of PRC1 andPRC2 is highly unlikely
to occur through a mechanism of recruitment to the chromatin
associated with catalytically inactivated complexes (i.e. allosteric
inhibition). Although the recruitment ofXist to pre-existing CpG
islands might partially alleviate its catalytic inhibition (104).
Alternatively, these interactions occur indirectly (no complex
inhibition), through intermediate proteins or by means of
liquid–liquid phase separation (figure 3a–c). For example, Xist
A-repeats, the putative Xist-PRC2 interaction region, are missing
the key RNA recognition sequences needed for specific inter-
actions [65], which suggests that these interactions, although
critical, might also be spurious [18,65,105] (binding many
RNAs with low affinity) or indirect. As for the HOTAIR-
mediated de novo Polycomb recruitment (possibly mediated by
direct interactions), it is possible that residual H3K27me3 at the
HOX locus might alleviate allosteric inhibition [110]. For
PRC1/2 recruitment on the inactive X chromosome (Xi) at the
onset ofXCI, it is likely that de novo accumulation largelydepends
on PRC1-mediated mark on the chromatin, such as H2A-119ub
(figure 1a) [23,54,58,104]. In this regard, work from the Pasini
and Klose laboratory elegantly proved that H2A119 ubiquitina-
tion is essential for PRC1/2 silencing and PRC2 de novo
recruitment [22,23,59]. We believe that more work has to be
done in order to have a final model of lncRNA and Polycomb
recruitment, capable of reconciling all this evidence.
7. Material and methods
7.1. RNA–protein interaction predictions and granule

propensity
To compute protein-RNA interactions, we used the catRAPID
approach that evaluates the interaction propensities of
polypeptide and nucleotide chains based on their physico-
chemical properties predicted from primary structure [35,66].
Structural disorder, nucleic acid-binding propensity and amino
acid patterns such as arginine-glycine and phenylalanine-gly-
cine are key features of proteins coalescing in granules [45].
These features were combined in a computational approach,



H3K27

H3K27me3

RNA

nuclesome

K116me3
Jarid2
nascent
RNA

(a) (b)

Figure 4. RNA sustains Polycomb complexes functions. RNA can facilitate PRC1/2 complex and sustain three-dimensional contacts and loops (also mediated by the
cohesin complex; red/blue ring) to coordinate gene expression by brining co-regulated genes together (gene A, green; Gene B, purple; green/blue ribbons represent
nascent RNA from gene A/B). Rixosome could also be participating to these interactions. (B) RNA inhibits PRC2 catalytic activity. RNA (green) can inhibit PRC2
catalytic activity. Its activity can be relieved by H3K27me3 tails (red lollipop) or methylated Jarid2 proteins.
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catGRANULE, that we employed to identify RBPs assembling
into granules (scores >0 indicate granule propensity). We pre-
dicted the secondary structure of transcripts using CROSS
[73,74]. The algorithm predicts the structural profile (single-
and double-stranded state) at single-nucleotide resolution
using sequence information only and without sequence length
restrictions (scores > 0 indicate double stranded regions).

HOTAIR repeats annotation: D1 (nucleotides 1–530) con-
sists of 12 helices, 8 terminal loops and 4 junctions (three
3-way junctions and one 4-way junction). D2 (nucleotides
531–1040) consists of 15 helices, 11 terminal loops and 4 junc-
tions (three 5-way junctions and one 3-way junction). D3
(nucleotides 1041–1513) is the smallest of all the four domains
and consists of 9 helices, 6 terminal loops and 3 junctions
(two 4-way junctions and one 3-way junction). Finally, D4
(nucleotides 1514–2148) is the largest among the four
domains and consists of 20 helices, 13 terminal loops and 7
junctions (one 6-way, two 4-way and four 3-way junctions).
Data accessibility. Relevant data are available at 1) http://crg-webser-
vice.s3.amazonaws.com/submissions/2020-03/251545/output/
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vice.s3.amazonaws.com/submissions/2020-03/251800/output/
index.html?unlock=6cbd243faa (HnrnpK-Xist); http://crg-webser-
vice.s3.amazonaws.com/submissions/2020-03/251574/output/
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