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Abstract
Objective. The emotional response to olfactory stimuli implies the activation of a complex cascade
of events triggered by structures lying in the limbic system. However, little is known about how this
activation is projected up to cerebral cortex and how different cortical areas dynamically interact
each other. Approach. In this study, we acquired EEG from human participants performing a
passive odor-perception task with odorants conveying positive, neutral and negative valence. A
novel methodological pipeline integrating global field power (GFP), independent component
analysis (ICA), dipole source localization was applied to estimate effective connectivity in the
challenging scenario of single-trial low-synchronized stimulation.Main results.We identified the
brain network and the neural paths, elicited at different frequency bands, i.e. θ(4− 7Hz),
α(8− 12Hz) and β(13− 30Hz), involved in odor valence processing. This brain network includes
the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the
posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was
analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal
interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of
pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus.
Significance. The results introduce new evidences on the role of the OFC during hedonic
perception and underpin its specificity during the odor valence assessment. Our findings suggest
that, after the odor onset different, bidirectional interactions occur between the OFC and other
brain regions associated with emotion recognition/categorization and memory according to the
stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes
based on odor valence.

1. Introduction

Processing of multiple streams of information fre-
quently occurs in the orbitofrontal cortex (OFC)
[1]. Indeed, several neural pathways convey informa-
tion from the ventral (or object) visual stream, taste,
olfactory and somatosensory areas to the OFC, as
well as in the other direction [2]. Functional MRI
and other imaging techniques showed that amongst
other tasks the OFC evaluates the valence of olfact-
ory stimuli (i.e. pleasantness/ unpleasantness) [3, 4],

by interacting with primary olfactory cortex (e.g. the
piriform cortex) and other structures [5–9]. Yet, the
cortical dynamics during and after olfactory stim-
ulation cannot be described when using fMRI, due
to its poor temporal resolution. In turn, EEG has
an unmatched high temporal resolution and thus
the potential to unveil cortical interactions under-
lying odor valence. Nevertheless, so far EEG has
mostly been used to characterize the cortical activity
involved in olfactory processes by means of spectral
power analyses and event-related-potentials (ERPs)
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[10–12]. While these techniques allow to identify
individual brain areas, they do not permit the invest-
igation of interactions between cortical areas. How-
ever, since emotions are elicited over distributed brain
networks [13, 14], and because subtle differences
in emotional content may selectively activate these
networks [15], alternative methods must be used
when aiming at understanding the neurobiological
underpinning of processing of emotional content. In
this context, connectivity measures based on mul-
tivariate autoregressive (MVAR) models can provide
both the directionality of the interaction between
localized brain sources, as well as the frequencies
at which such interactions occur [16]. Furthermore,
time-varying solutions of these methods enable to
describe interactions dynamically [17], making them
especially suited for analyzing the temporal cas-
cade of events that follow stimulation. In particular,
this methodology found great applicability, ranging
from the physiological aspects of network-related
disorders, such as Alzheimer’s and Parkinson’s Dis-
ease [18], to the discrimination of BCI-related tasks
[19]. However, despite this wide-field of applica-
tions, to the best of our knowledge, no previous
studies have yet used such techniques to analyze
EEG-based effective connectivity during olfactory
stimulation.

One of the main challenges in EEG studies with
olfactory stimuli is represented by the stimulation
paradigm. Specifically, precise stimulus-timing and
adequate number of stimuli characterizing the exper-
imental protocol are two factors that majorly affect
the observations. The former is required in the ana-
lysis of event-related psychophysiological measures,
as for instance olfactory ERP, and typically achieved
with the use of an olfactometer [20]. The latter
relies instead on the trade-off between sufficient
inter-stimulus-interval (ISI) between olfactory stim-
uli [11, 21], required because of habituation, and the
duration of the experiment (i.e. the shorter the bet-
ter). Nevertheless, in many social ecological scenarios
the olfactory response arises from single or few stim-
uli. Furthermore, in such scenarios, a high synchron-
ization among neural responses to olfactory stimuli
could be challenging due to difficulties in identify-
ing the precise moment in which the olfactory stim-
ulus is inhaled and therefore perceived. In this con-
text, developing novelmethodological approaches for
the characterization of olfactory-related EEG dynam-
ics in nonstructured settings would certainly have
a relevant impact. To this aim, we propose a new
processing pipeline to deal with single-trial low-
synchronized olfactory stimuli implementing MVAR
models with an ad-hoc sliding-window approach.
Indeed, on the one hand, our pipeline is able to foster
robust estimates of interactions for single-trial stim-
uli, taking care of model parameter setup [22]; on
the other hand, it limits the impact of low synchron-
ization by smoothing the observed interactions after

stimulus administration, due to the sliding-window
approach.

Another crucial aspect in the study of the neural
correlates of olfaction is related to the close relation-
ship between odors and emotions. In this context, the
most basic classification of odors is based on valence
and intensity [5]. In particular, exposure to olfactory
stimuli evokes a response in specific neural systems
that evaluate odor valence and intensity as well as
higher order tasks [5, 12]. Intensity is hereby determ-
ined by the concentration of the odorant. Valence,
however, is not exclusively a consequence of molecu-
lar features of the odorant [6], but also the result
of perceptual memory established at prior exposure
[12]. As a result, odor recognition is the matching of
the evoked neural profile to pre-established odor tem-
plates [23]. In this context, it has been recently shown
that olfactory stimuli of different pleasantness levels
can induce changes in functional connectivity among
brainmodules, and that such changes could be linked
to emotional processing [24]. In this view, quanti-
fying the cortico-cortical interactions between brain
areas occurring after olfactory stimuli with positive
and negative valence may be of particular interest,
although they never have been investigated.

In this work, we analyzed EEG acquisitions
from healthy subjects performing a passive odor-
administration task and investigated the potential
and relevant cortico-cortical interactions in mediat-
ing odor valence assignment and memory involve-
ment. Specifically, we hypothesized that the expos-
ure to odorants with different valence could trigger
interactions among distributed cortical activity. In
addition, we attempted at observing potential dif-
ferences in such interactions based on odor valence.
To this aim, we applied a new processing pipeline
designed ad-hoc for studying cortico-cortical causal
interactions in the challenging scenario of single trial
stimulation without the use of a computer controlled
olfactometer (i.e. by presenting odors in bottles).
Accordingly, we first performed independent com-
ponent (IC) analysis (ICA, [25]) of EEG signals at
the subject level, in order to exploit the instantan-
eous temporal independence of IC, limiting zero-lag
effects on the subsequent MVAR model estimation
[26, 27]. Then, subject-specific IC were clustered at
the group level with a K-means algorithm, in order to
identify common brain activity across subjects. Spe-
cifically, the equivalent current dipoles [28] associ-
ated with ICA maps were clustered based on their
position, guaranteeing homogeneous spatial localiz-
ation among clusters. Afterwards, time-series asso-
ciated with network nodes were used to construct
MVAR models from which the renormalized par-
tial directed coherence (RPDC) was derived [29].
Such normalization of MVAR model coefficients is
a scale-free measure that allows for direct compar-
ison of causalities across subjects. Patterns of causal
interaction were estimated for olfactory stimuli of
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different valence (pleasant, neutral, unpleasant). The
analysis was confined to a 15 s-long time-window
ranging from 5 s before the stimulus presentation to
10 s after. The window duration was inferred from a
time-varying global field power (GFP, [30]) analysis.
Specifically, we identified those time-windows dur-
ing which significant changes in GFP were observed
with respect to a resting baseline. In such windows,
we then analyzed time-varying causal interactions
with a moving-window approach, controlling the
local stationary of signals that is required for stable
MVAR estimation. Rigorous statistical surrogate test-
ing allowed us to identify the amount of interac-
tion among the clustered sources even with a lim-
ited number of stimuli. The experimental paradigm
of odor administration was designed taking into
account a sufficient inter-stimulus interval to recover
the baseline (i.e. 60 s) [11, 21] and sufficient stimulus
duration [31–33]. The perceived valence of the stim-
uli was controlled by the self-assessment-manikin
(SAM) test [34].

2. Materials andmethods

2.1. Participants
The experimental protocol was approved by the Eth-
ical Committee of the University of Pisa. All par-
ticipants signed an informed consent prior to the
experiment.

We recruited 30 healthy volunteers (age 26± 2,
16 males, all right-handed) for this study. We asked
participants not to smoke, to eat or to drink in
the 30 min preceding the experiment. We also
asked them not to use any deodorant nor per-
fume limiting any possible interference with the
experiment. We determined olfactory threshold by
preparing ten solutions diluting a mother solu-
tion ofN-butanol (CH3CH2CH2CH2OH; 4.05 g L−1)
according to increasing powers of two (8-4096), we
asked each participant to identify the N-butanol solu-
tion with respect to distilled water. For each parti-
cipant, we considered the test to be successfully con-
cluded after four consecutive correct distinctions of
N-butanol with respect to distilled water. All 30 par-
ticipants had similar olfactory perception threshold
ensuring a homogeneous panel in terms of olfactory
perception [21].

2.2. Stimuli
We administered five different odorants, namely (a)
vanillin (C8H8O3; 152.15 g mol−1); (b) benzalde-
hyde (C6H5CHO; 106.12 g mol−1); (c) N-butanol
(CH3CH2CH2CH2OH; 74.12 g mol−1); (d) isova-
leric acid ((CH3)2CHCH2COOH; 102.13 g mol−1);
(e) butyric acid (CH3CH2CH2CO2H; 88.11 gmol−1).
We selected odorants in order to convey positive
valence (vanillin, benzaldehyde) and negative valence
(isovaleric acid, butyric acid) [35]. We chose odor-
ant concentrations to guarantee isointense solutions,

and we kept odorants into separate vials. We admin-
istered odor stimuli by approaching vials at ∼2 cm
fromparticipants’ nostrils. Each stimulus was admin-
istered once.

2.3. Experimental protocol
Participants followed this protocol: (a) 3 min of ini-
tial rest; (b) 1 min of pre-stimulus rest; (c) 5 s of
olfactory stimulation; (d) 1 min of post-stimulus
rest; (e) self-assessment questionnaire. The duration
of the stimulation was chosen based on previous
works using similar stimulation lengths [31–33]. We
repeated this block for each odorant. The order of
stimuli was randomized across subjects. After each
administration, participants scored the stimulus in
terms of arousal (from 1 to 5) and valence (from
−2 to 2) according to the Self-Assessment Manikin
(SAM) test [34]. Participants kept their eyes closed
during the experiment in order to exclude visual stim-
ulation and other type of interference (e.g. expecta-
tion, anticipation)while approaching the vials to their
noses. They sit on a chair in an isolated room. Parti-
cipants were not instructed to perform any particu-
lar breathing/sniffing technique, instead they breathe
normally during the experiment.

2.4. EEG acquisition setup
We recorded the EEG signal with a 128-channel
Geodesic EEG System 300 from Electrical Geodesics,
Inc. (EGI). Electrodes were grounded/referenced
through two additional channels placed between Cz
and Pz, and in the vertex of the cap (i.e. Cz), respect-
ively. We maintained impedance of each electrode
below 20 kΩ during all acquisitions.We acquired EEG
signal with a sampling frequency of 500 Hz.

2.4.1. EEG analysis
Wepreprocessed the EEG signals using EEGLAB [36].
First, we filtered EEG data with a zero-phase anti-
aliasing filter and then down sampled to a sampling
frequency of 100 Hz. We then high-pass filtered data
above 1 Hz with a non-causal filter to improve sta-
tionary without affecting signal phase [37]. Next, we
cleaned EEG with an optimized adaptive PCA-based
spatial filter removing high-amplitude components
(e.g. eye-blinks, muscle, sensor motion) [38, 39]. We
then visually inspected preprocessed data to eventu-
ally remove parts of the data not properly cleaned by
the spatial filter. More than the 92.74% of the original
data was retained. Finally, we average-referenced EEG
signals and decomposed them into sets of maxim-
ally independent components (ICs) with the AMICA
algorithm [40]. These ICs reflected both brain sources
and different types of artifacts (muscular, ocular and
other sources of noise). Six participantswere excluded
from further analysis due to low EEG signal quality
resulting in data from 24 participants to be included
in the subsequent analysis.
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2.5. IC selection and network identification
To identify non-brain sources of activity we applied
a semi-automatic procedure. First, we used the
FieldTrip [28] to model each independent compon-
ent as an equivalent current dipole within a bound-
ary element model of the head based on the tem-
plate from Montreal Neurological Institute (MNI;
Montreal, Canada). We estimated each dipole with a
two-stage procedure. First, we obtained a coarse local-
ization on a fixed three-dimensional grid. The origin
of Cartesian axes was placed in correspondence of the
MNI origin (i.e. the anterior commissure), while the
X,Y andZ axes extended left-right, posterior-anterior
and inferior-superior, respectively. The grid consisted
of 34 equally spaced points ranging −85 to +85 mm
in the X and Y direction, while 17 points were used
between 0 and+85mm in the Z direction. Among all
the grid points, we restricted dipoles reconstruction
to only graymatter positions based on a segmentation
of the MNI template. Then, we performed a nonlin-
ear optimization of dipole position and orientation
by minimizing the error between the model and the
measured potential [28]. We excluded from the ana-
lysis those components whose best-fit dipole residual
variance was higher than the 15% of the scalp map
current distribution, since they are likely to be asso-
ciated with non-brain activity [41]. Finally, we car-
ried out a visual inspection in order to exclude those
components whose map, time-course and/or spec-
trum were associated with artifacts.

We aggregated the remaining components across
all subjects and clustered with a K-means algorithm
whose feature vector was made of dipole position and
orientation. In particular, this was suggested as a con-
venient way to assess the spatial homogeneity of a set
of ICs from a group of subjects [42]. Accordingly,
we run K-means with n = 100 replicates for reliabil-
ity purposes. Specifically, since for running K-means
algorithm the number of clusters needs to be spe-
cified a priori, we determined the optimal number of
clusters with the silhouette approach [43]. Then, we
considered only those clusters that had a contribu-
tion from all subjects [42]. In particular, we assumed
that these clusters were likely to reflect shared sources
among subjects during the experiment. As a result,
three additional participants that did not contribute
to every cluster were excluded from further analyses.
Therefore, data from a total of 21 participants entered
analysis.

2.6. GFP analysis
For each stimulus, we estimated GFP ([30]) with a
moving-window approach in the range from −5 s to
+15 s around odor administration. Moving windows
were 5 s long and the step between successivewindows
was 1 s, for a total of 16 windows. The first window
covered the last 5 s of the resting state before the onset
of the stimulus (i.e. rest condition), while the follow-
ing segments represented the evolution over time of

the GFP after the odor administration. We calculated
statistically significant deviations from the rest con-
dition during the odor administration by comparing
the GFP of each window with the rest condition with
a Wilcoxon sign-rank test (for more details see Stat-
istical analysis section).

2.7. Causality analysis
We estimated network ICs interactions through
MVAR modeling of their associated time courses in
a time-span ranging from −5 s to +10 s around
each stimulus onset. We derived MVAR models by
means of the Vieira-Morf algorithm, using a moving-
window of 5 s and a step of 1 s. We estimated model
order by weighting different optimal model orders
according to four information criteria (i.e. AIC, BIC,
FPE, HQ). We assured validation of the models by
testing the whiteness of residuals, the model consist-
ency and stability [26, 44, 45]. Finally, we estimated
causal interactions between network ICs on validated
models by means of the renormalized partial direc-
ted coherence (RPDC) estimator, providing an index
of coupling that does not depend on the scale of sig-
nals [29]. We evaluated this metrics for each MVAR
model yielding to a time-frequency connectivity mat-
rix of RPDC where each column represented a source
(FROM) and a sink (TO) node respectively.

2.8. Statistical analysis
In order to assess at the group level how stimulus
perception differed, we performed a Wilcoxon test
followed by a multiple-comparison correction with
Bonferroni method on SAM test scores of intens-
ity and valence. We estimated statistically signific-
ant GFP differences between each moving window
and the rest condition at the group level through
a sign rank Wilcoxon test. We controlled false dis-
covery rate through the Benjamini-Yekuteli correc-
tion for multiple testing under dependency [46]. We
assessed statistical significance of connectivity estim-
ates by means of a phase randomization approach
[47]. We performed 300 randomizations per parti-
cipant and stimulus. We carried out group level ana-
lysis by averaging surrogate distributions from each
participant. We averaged for each connection, fre-
quency and time-window separately, i.e. for each
(i, j,ω, t). We obtained causality statistical signific-
ance by comparing average connectivity across sub-
jects with the group-level null-distribution. We con-
trolled for multiple testing with the false discovery
rate procedure presented in [48]. Tests were con-
sidered significant whether p< 0.05.

3. Results

Participants categorized all odorants equally in terms
of intensity, while significant differences were found
in terms of valence as shown in figure 1 (p< 0.05,

4



J. Neural Eng. 18 (2021) 056050 A L Callara et al

Figure 1. Valence average± standard error (SE) according to the SAM questionnaire. Significant statistical differences between
stimuli are reported (p< 0.05, Bonferroni-corrected).

Bonferroni-corrected).We expected vanillin and ben-
zaldehyde to be pleasant, N-butanol to be neutral and
isovaleric acid as well as butyric acid to be unpleasant.
In fact, participants evaluated vanillin and benzalde-
hyde as significantly more pleasant than butanol; and
isovaleric acid significantly less pleasant than butanol.
We did not find any difference between butyric acid
and the neutral odor. For the remainder of the study,
we therefore selected the most pleasant odor (O+)
vanillin, the most unpleasant odor (O−) isovaleric
acid and N-butanol as a neutral reference (O#).

3.1. GFP
We used changes in GFP to define the time-window
of interest for the causality analysis. GFP corresponds
to the spatial standard deviation, and it quantifies
the amount of activity at each time point in the field
considering the data from all recording electrodes
simultaneously, resulting in a reference-independent
descriptor of the potential field [30]. This is par-
ticularly useful for defining the timing of relevant
changes in brain activity when there is no hypothesis
on the spatial location of sources contributing to such
changes. Here, we attempted at observing variations
in GFP median values before, during and after the
stimulus presentation. Based on the observed vari-
ations, we identified the time-range of interest for the
subsequent connectivity analysis.

We evaluated the evolution of GFP during stimu-
lus administration within 5 s windows ranging from
−5 s to +10 s with a step size of 1 s (for methodolo-
gical details see section 2). In particular, the first win-
dow, representing the rest condition, was compared
with each of the successive windows. We observed
significant changes (p< 0.05, Bonferroni-corrected)
in GFP values during the stimulus administration

(figure 2). Specifically, regardless of the stimuli, a
decrease in GFP at stimulus onset (t = 0) was evid-
ent (figure 2). While the time-windows in which this
happens are different for each stimulus, all stimuli
showed differences around stimulus administration
from window (−1,4)s to window (4,9)s. Accordingly,
we performed connectivity analysis from the rest-
ing condition (−5,0)s to the end of the stimulation
(5,10)s.

3.2. Network identification and EEG causal
interactions
We investigated causal cortico-cortical interactions
by means of MVAR modeling of independent com-
ponents obtained through ICA [25]. Accordingly,
we first identified a common network at the group
level reflecting the same neural activity across sub-
jects and then analyzed the time-varying causal inter-
actions between network nodes time-series through
the RPDC ([29]) estimator, a Granger-based caus-
ality measure (methodological details at section 2).
Granger-Causality measures are a family of con-
nectivity metrics whose principle of causality is
based on temporal precedence. Accordingly, if the
prediction error of a time series is reduced by
including another time series in the MVAR regres-
sion model, then the second series is said to have
a causal influence on the first time series. Such
causal measures are particularly attractive for EEG
analysis since they can be also represented in the
frequency domain, and thus giving not only the
strength and the direction of the interaction, but
also the frequency range at which the interaction
is happening.

We identified an average of 120 components per
subject, for a grand total of 2523 components. For
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Figure 2.Median±MAD of GFP between –5 s and+10 s around stimulus onset. Each time-point represent a 5 s-long window.
The time-point reported in the horizontal axis represent the starting point of each window. Statistically significant differences
between each window and the first window ( ) are highlighted with red stars ( * )(p< 0.05, FDR-corrected).

each subject, an average of 15 ICs was associated with
non-artefacted activity according to the scalp-map
explained-variance of their associated equivalent
dipole. We performed K-means clustering with an
optimal number of five clusters, according to the sil-
houette approach. The cluster vector contained three
values describing the dipole position and three val-
ues describing the orientation, ensuring a homo-
geneous spatial distribution of the clustered activity
and depicting a common network among subjects
on which the connectivity analysis was carried out
(figure 3 summarizes the identified network across all
subjects). Specifically, the network was obtained by
clustering all the non-artefactual ICs into an optimal
number of clusters (N= 5, estimated with the silhou-
ette approach [43]) through K-means algorithm. We
labelled network nodes based on the nearest greymat-
ter to the anatomical position of the cluster centroids
according to their x− y− z MNI-coordinates, i.e.
precuneus (Cl1: PCC/PCu, (−10,−51,23)), cingu-
late gyrus (Cl2: CgG (−5,7,25)), orbitofrontal cortex
(Cl3:OFC (0,29,−12)), superior temporal gyrus (Cl4:
STG (40,−52,14)), and parahippocampal gyrus (Cl5:
PHG (−25,−19,−18)).

The causality analysis evidenced significant inter-
actions in the θ, α and β bands during O+ and
O− (p< 0.05, FDR corrected), whereas no signific-
ant causality was observed during the neutral stim-
ulus. The spectro-temporal matrices of interactions
during O+ and O− are shown in figure 4. In partic-
ular, we report the time-frequency representation of
RPDC(ω, t) for each connection from source nodes
(j) (i.e. columns) to sink nodes (i) (i.e. rows). The
reported values are averaged RPDC estimates that sig-
nificantly differed from 0 (p< 0.05, FDR corrected)
according to the phase randomization surrogate test.
We observed that before stimulus presentation, there
was no significant interaction. This result indicates
that during rest (i.e. baseline), the brain regions con-
tributing to the network are not engaged in any spe-
cific interaction among them. Then, after the stim-
ulus presentation, several causal interactions were
observed, mainly in the θ, α and β bands. Inter-
estingly, the first time-window with significant con-
nectivity was the one covering the 5 s of stimu-
lus presentation. This happened for both O+ and
O−, whereas for O# there was not any significant
interaction, suggesting that the interactions between
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Figure 3. Clustering outcome across all subjects. IC dipole centroid locations in each cluster are displayed in red on a standard
MRI atlas. The scalp maps are obtained by averaging single subject scalp maps contributing to the cluster. The cluster centroid
positions are anatomically labeled with the closest grey matter according to MNI-coordinates.

network nodes respond to the valence’s absolute
value, independent of direction.

A three-dimensional rendering of network inter-
actions is shown in figures 5–7. Specifically, for each
time-window and each frequency bin we derive a 3D
representation of connectivity estimation. Here, we
report the RPDC values integrated over three differ-
ent frequency bands (i.e. θ in figure 5, α in figure 6
and β in figure 7) and for 3 different time-windows.
The first window covers from −6.5 s to 0 s and
represents the rest condition, while the second and
third windows range from 0 s to +6.5 s (i.e. the
stimulus condition) and from 5 s to 11.5 s (i.e. the
post-stimulus condition), respectively. By evaluating

network interactions in these three time-windows we
show the transitional dynamic before, during, and
after the stimuli.

Considering the θ band, we observed that during
the stimulus administration the OFC represented the
most active node for both stimuli, becoming inactive
after the stimulus. However, the interactions were dif-
ferent for O+ and O−. During O+ administration,
the OFC received causal inflow from the PHG and
produced causal outflow towards the STG, while dur-
ing O−, the OFC interacted only with the CgG (i.e.
OFC→CgG). Interestingly, during the post-stimulus
window, the same three nodes were engaged for both
stimuli (i.e. PCC/PCu, STG, CgG).
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O+: Vanillin

O-:Isovaleric Acid

Figure 4. Time-frequency representation of asymmetric cortical connectivity matrix for O+: Vanillin, (top) and O–: Isovaleric
Acid, (bottom). Columns represent network sources whereas rows represent network sinks. The dynamic causal interactions
around stimulus onset between each source and sink is expressed by the corresponding RPDC matrix. Non-zero causality is
reported only for those cases in which p< 0.05, and thus only statistically significant causalities are displayed.

A similar behavior was observed also in the α
band (figure 6). Specifically, during O+ administra-
tion, the OFC node represented one of the most act-
ive nodes of the network, in being the node with
greatest inflow. On the other hand, the PCC/PCu was
observed to be the node with higher outflow. Con-
sidering O−, OFC → CgG interactions were present
as for the θ band. However, other interactions were
present as well (i.e. CgG→ PHG, PCC/PCu→ STG,
PHG→ STG). Finally, during the post-stimulus very
similar network interactions were observed for both
stimuli, with PCC/PCu being the most active node,
communicating with PHG, CgG, STG.

In theβ band, interactionsweremorewidespread,
involving all network nodes during both stimulus and
post-stimulus conditions. During the stimulus condi-
tion, for both O+ and O−, similar interactions were
present: i.e. PCC/PCu→ STG, OFC→ STG, STG→
PCC/PCu, STG → PHG and PHG → STG. On the
other hand, during the post-stimulus, shared patterns
were less compared to stimulus condition and limited
to OFC→ CgG and STG→ PCC/PCu.

Causality was derived from MVAR model coef-
ficients according to the normalization procedure
presented in [29]. MVAR model fitting was per-
formed with an average model order p = 12 for each
condition (see section 2 for methodological details).
In order to ensure a well-posed MVAR estimation
(i.e. a datapoint-to-parameter ratio ⩾ 10) [22], the
moving-window length was adjusted to 6.5 s. Indeed,
this represent a major issue for obtaining robust
estimates of MVAR model coefficients [22]. Accord-
ingly, we adapted the window length to fulfil the
condition (M∆TFsm)/(M2p)⩾ 10, where M is the
number of network nodes (i.e.M= 5),∆T is the win-
dow length (i.e. ∆T= 6.5 s), Fs is the sampling rate
(i.e. Fs = 100), and m is the number of trials. Thus,
in the case of single trials (i.e. m= 1) it reduces to
(∆TFs)/(Mp)⩾ 10 [22]. For each subject, for each
stimulus and for eachmoving-window, the validation
of estimated models evidenced the absence of correl-
ated residuals through the ACF test (p< 0.05), sug-
gesting a proper modeling of the underlying dynam-
ics. Average model consistency across subjects was
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Figure 5. 3D rendering of observed significant causalities during the olfactory stimulation task integrated in the θ band. From left
to right the causality profiles for the rest, stimulus, and post-stimulus frames are reported for the positive (i.e. O+: vanillin, top),
the neutral (i.e. O#: n-butanol, middle) and negative (i.e. O−: isovaleric acid, bottom) stimuli. Each network node is reported
within a standard template along with its label (i.e. PCC/PCu, CgG, OFC, STG, PHG). Node color and size represent node inflow
and outflow, respectively. Edge color represents the frequency at which the peak of connectivity occurs. The connections between
network nodes are represented by cylinder of different size, whose magnitude is proportional to connectivity magnitude. The
directionality of the connection is given by the direction in which the cylinder tapers. 3D rendering available from the SIFT
toolbox [49]. During the stimulus condition the OFC node represent the main driver of the network for both stimuli in the θ
band.

91.24% for stimulus O+, 93.31% for stimulus O#
and 93.33% for stimulus O−. All models were stable
according to the maximum eigenvalue criterion [26].

4. Discussion

In this work, we developed a pipeline of analysis for
the study of EEG-based brain connectivity during
hedonic olfactory stimulation. In particular, we pro-
pose a framework that allows to obtain physiologic-
ally plausible interactions among brain regions in the
presence of single trial stimulation and with a rel-
atively simple stimulation paradigm, in which odors
were presented by approaching vials to subjects nose
[20]. Twenty-one subjects with comparable olfactory
sensitivity participated in an experimental protocol
where EEG was monitored during the administration
of a pleasant, an unpleasant, and a neutral odor of
similar intensity. We show that during stimulation
with the pleasant and the unpleasant odor, but not
with the neutral odor, the OFC interacts, mainly in

the θ and α bands, with several brain regions asso-
ciated with episodic memory retrieval (i.e. PCC/PCu
[50]) and emotional memory (i.e. CgG [51], PHG
[52]). In addition, connectivity profiles depended on
the direction of odor valence, as different paths were
observed for the pleasant and the unpleasant odorant.
The causality analysis among IC time-courses allowed
us to observe significant differences at the group level
in brain interactions based on the hedonic content
of different olfactory stimuli. We hypothesized that
the higher order processing of non-neutral olfactory
stimulation results in differing connectivity networks.
In line with this, we observed that both the pleas-
ant and the unpleasant odors produced significant
changes in cortico-cortical interactions after stimu-
lus administration. In contrast, we did not observe
any significant change in causalities after adminis-
tration of the neutral stimulus. Similarly, a recent
work by Abbasi and colleagues suggested that con-
nectivity differences may arise based on the pleasant-
ness level of positive-valenced olfactory stimuli [24].
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Figure 6. 3D rendering of observed significant causalities during the olfactory stimulation task integrated in the α band. From left
to right the causality profiles for the rest, stimulus, and post-stimulus frames are reported for the positive (i.e. O+: vanillin, top),
the neutral (i.e. O#: n-butanol, middle) and negative (i.e. O−: isovaleric acid, bottom) stimuli. Each network node is reported
within a standard template along with its label (i.e. PCC/PCu, CgG, OFC, STG, PHG). Node color and size represent node inflow
and outflow, respectively. Edge color represents the frequency at which the peak of connectivity occurs. The connections between
network nodes are represented by cylinder of different size, whose magnitude is proportional to connectivity magnitude. The
directionality of the connection is given by the direction in which the cylinder tapers. 3D rendering available from the SIFT
toolbox [49]. In the α band interactions were less specific with respect to the θ band. Nevertheless, also in this case the OFC was
one of the most active nodes contributing to the network during the stimulus condition.

Accordingly, based on our results, we can reinforce
the hypothesis that the high hedonic content of the
non-neutral odors may activate a cascade of events
not triggered with a neutral stimulus. This is despite
the fact that all stimuli, including the neutral one,
induced a change in GFP, in line with the observation
that all odorants evoke a cortical response [53].

We estimated causalities at the group level with a
multi-step procedure involving (a) independent com-
ponent analysis of EEG signals, (b) components clus-
tering at the group level, and (c)modeling of IC time-
courses with MVAR models, from which the RPDC
measure was derived. The network nodes associated
with IC time-courses were located in regions associ-
ated with emotion processing and memory retrieval
and modulation [1, 15]. Specifically, the OFC repres-
ented the node with highest inflow during olfactory
stimulation, confirming its central role in olfactory
perception [2, 54]. Furthermore, the interactions of
OFC with other brain areas associated with emotion

perception and memory (i.e. PCC/PCu, CgG, PHG,
STG)[15, 51, 55] suggest the presence of a distrib-
uted network engaged in valence of olfactory pro-
cessing rather than segregated activations [15]. This is
particularly evident in the θ band during the admin-
istration of O+ where interactions originate in the
PHG, project to the OFC, and further to the STG.
Interestingly, some of these regions share common
networks with the OFC and the amygdala, a cen-
ter for emotional learning and memory modulation
[56]. Another interaction of interest is the PHG-OFC,
since the PHG provides the access route for the OFC
to the hippocampus, a structure that receives dir-
ect input from the olfactory bulb and encodes long-
term memory. These pathways may be important for
enhanced memory encoding of emotionally salient
stimuli [52].

In this studywe tested the hypothesis that hedonic
content differentially activates common brain net-
works [15]. Indeed, during O− stimulation fewer
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Figure 7. 3D rendering of observed significant causalities during the olfactory stimulation task integrated in the β band. From left
to right the causality profiles for the rest, stimulus, and post-stimulus frames are reported for the positive (i.e. O+: vanillin, top),
the neutral (i.e. O#: n-butanol, middle) and negative (i.e. O−: isovaleric acid, bottom) stimuli. Each network node is reported
within a standard template along with its label (i.e. PCC/PCu, CgG, OFC, STG, PHG). Node color and size represent node inflow
and outflow, respectively. Edge color represents the frequency at which the peak of connectivity occurs. The connections between
network nodes are represented by cylinder of different size, whose magnitude is proportional to connectivity magnitude. The
directionality of the connection is given by the direction in which the cylinder tapers. 3D rendering available from the SIFT
toolbox [49]. In the β band, interactions were more widespread compared to the θ and α bands. In this case, the positive and the
negative stimulus induced similar interactions, mainly during the stimulus condition: i.e. PCC/PCu→ STG, OFC→ STG,
STG→ PCC/PCu, STG→ PHG and PHG→ STG.

interactions occurred compared to O+. In addition,
O− stimulation evoked only OFC to CgG causalit-
ies, highlighting a less interconnected network, again
compared toO+. ForO−, CgG is involved in negative
affect and may therefore provide an alternative access
route to the hippocampus [57–59].

It is worthwhile pointing out that several inter-
actions occurred within the θ and the α bands.
Noticeably, these frequency ranges have been widely
reported in the cortical changes related to olfact-
ory stimulation [60]. In particular, the θ band has
been associated with emotion classification [61] and
response-to-odor by evaluating the cortical changes
of EEG signal [53]. We can suppose that this fre-
quency range is involved in brain interactions rather
than in the activation of single neuron ensembles.
Interestingly, OFC dynamical causal interactions
come up with the stimulus presentation and disap-
pear after five seconds from the stimulus onset.

Relevant dynamics were observed also in the α
band. Indeed, while during the rest condition we
did not observe any significant interaction, after the
stimulus administration significant interactions were
present. Accordingly, we can assume that the olfact-
ory stimulation produced significant changes in net-
work interactions also for this frequency range with
respect to the resting baseline. Here, causal interac-
tions were more widespread and more interconnec-
ted with respect to the θ band.While in the θ band the
OFC played a relevant role in the interaction network
only during stimulation; in the α band this contribu-
tion was present after stimulation finished, but only
for the positive stimulus. This last observation may
be due to a longer lasting effect of positive vs. neg-
ative stimuli. Furthermore, a relevant source node of
the network was represented by the PCC/PCu, which
may be interpreted as corresponding to its central role
in emotion formation and processing. Nevertheless,
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we should also consider that in closed-eye condition
α rhythms usually represent the main frequency of
EEG activity [62]. Consequently, theymay reflect also
other processes not strictly related to the emotional
regulation. Although it is out of the scope of thiswork,
an interesting avenue for future studies may consider
whether there is a relationship between the duration
of cortical responses to odors and their frequency
content. In this context, we advance the hypothesis
that some of the interactions observed in the β band
could be related to the hedonic amplitude of stimuli,
independently of the direction. Indeed, during stim-
ulation, several patterns of interactions were shared
in the response to both positive and negative stimuli,
but not to the neutral one.

The time-range in which connectivity analysis
was carried out was determined through a GFP ana-
lysis. Specifically, we observed that around stimulus
administration GFP was lower with respect to the
resting baseline. Hence, we limited the analysis to a
time span covering from rest (−5,0)s to post-stimulus
(5,10)s. In particular, we assumed lower values of
GFP would have been associated with a lower syn-
chronization of global activity [63]. In this view, we
hypothesized that during these time-windows lagged
interactions among brain regions, instead of global
synchronization, may occur. Accordingly, we invest-
igated the presence of lagged interactions withMVAR
models. Of note, the window for which we observe a
first variation in GFP is the one covering from −1 s
to 4 s around stimulus presentation. In this view, we
can assume that the significant variation is due to the
amount of post-stimulus data in such sliding window
(i.e. 80%).

The physiological plausibility of the frequency
ranges involved in the interactions and brain
regions involved in the phenomenon suggest that
the proposed approach can depict olfaction-related
cortico-cortical interactions even in the presence of
methodological challenges given by single-trial stim-
ulation and limited timing control of the stimuli
(i.e. without the use of an olfactometer). In par-
ticular, we exploited a moving-window approach
with overlapping windows aiming at a smoothing
the responses after stimulus administration. Further-
more, we used sufficiently-long windows to prop-
erly estimate MVAR model parameters in the case of
single trials. Specifically, we controlled the window-
length in relation to the number of samples, to the
number of sources and to the model order to obtain
robust model estimates [22]. In this view, the pro-
posed pipeline could be applied to more realistic
situations such as ecological and/or social scenarios
in which controlling the timing of olfactory stimuli
as well as their number may be not possible.

The proposed pipeline of analysis was purposely
developed to deal with single-trial stimuli. In par-
ticular, a specific issue concerns the limited SNR of
the modelled timeseries that may increase the false

positives and false negatives of the observed caus-
alities [64]. Here, we attempted at maximizing the
SNR of the available data with a multi-step proced-
ure involving PCA and ICA analysis at single sub-
ject level, data cleaning by experts and subsequent
clustering of components at the group level. Spe-
cifically, these multivariate approaches can lead to
an improvement of SNR when artefact related com-
ponents are detected and removed [65, 66]. In such
procedure, a critical issue may be that of removing
brain-related ICs, or conversely, maintaining artefact
related ICs. Indeed, in both situations, an increase
in false positives and/or false negatives may occur.
In this scenario, the performed group-level clustering
of independent components may reduce such risks
by enhancing consistency of activity across different
subjects [67]. Specifically, clustering ICs at the group
level highlights common behaviours across subjects.
Accordingly, clustered components are unlikely to be
related to artefacts, that should be instead different
across the subjects. As a result, the contribution of
artefact-related components on the results is likely to
be reduced.

Another limitation is related to the stimulation
protocol, as it could be intrinsically characterized by
limited standardization such as little differences in the
distance between the vials and the nose. Accordingly,
despite we cannot exclude that odors can potentially
be perceived with slightly different intensities, they
all were perceived equally in terms of arousal accord-
ing to SAM test. In this view, since odor intensity has
beenpositively correlatedwith subjective arousal such
that odors that are more intense are rated as more
arousing [68, 69], we hypothesized such differences
as negligible.

We did not give any particular instructions to our
participants regarding sniffing, in linewith the notion
that natural breathing patterns optimize odor detec-
tion [70]. However, since the presence of odors in the
inhaled air changes sniffing patterns [71] and because
smelling and sniffing both activate the brain, we can-
not exclude that some of the observed differences
in brain activation patterns are caused by condition
dependent sniffing behavior thatmay not be captured
by respiratory frequency alone. Future studies should
carefully control for this variable.

We are aware that also faster dynamics are
involved in olfaction, as for instance those observed
with olfactory ERP [21]. In this context, the con-
straints for obtaining stable estimates of the MVAR
model [22, 44] may represent a limitation for
observing such dynamics in the single-trial case.
Indeed, we had a lower bound on the window
length (i.e. at least 6.5 s) mainly related to single-
trial paradigm. Nevertheless, extending our pipeline
to olfactory ERP paradigms would allow to resolve
cortico-cortical interactions at smaller scales. In
particular, the promising results in terms of observed
interactions poses interesting insights for future
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analysis of olfactory ERPs by means of connectivity
methods. In such scenario, the use of a computer-
controlled olfactometer would be unavoidable to
properly control the stimulation times as well as the
flow properties required for inducing olfactory ERPs
[11, 20, 21].

Another limitation may be related to the tag of
brain regions contributing to the network. Indeed,
these regions were labelled based on the position of
each cluster centroid. However, although the elec-
trodes were placed in the same standard positions
across the subjects through a geodesic net, we can-
not exclude possible slight inaccuracies in source
position estimation [72]. Another approximation is
introduced by estimating dipole positions within the
MNI template [73, 74]. Accordingly, from a physiolo-
gical point of view, future improvements could con-
sider a combination with other kind of data, as for
instanceMRI and fMRI, enabling amore detailed spa-
tial description of brain areas.

A general limitation that should be considered
when using EEG to study olfaction is related to the
deepness of some of the structures involved in olfact-
ory processing. Among these, the piriform cortex
(PC), i.e. the primary olfactory cortex, is a deep struc-
ture in the brain. Moreover, other structures involved
in olfaction, such as the amygdala (AM) and hippo-
campus (HIP) are even deeper [75–77]. Accordingly,
the activity recorded with EEG is more likely to derive
from projections of these brain areas onto the cor-
tex rather than from their direct activation. In this
context, the PC shows an extensive network of inter-
connections with cortical areas such as the orbito-
frontal cortex (OFC) and the entorhinal cortex, as
well aswith subcortical regions.Here, we attempted at
observing the cascade of events that followed olfact-
ory stimulation in terms of cortico-cortical causal
interactions. However, for investigating more deep
structures, the integration of EEG with other tech-
niques such as fMRI may be necessary.

The validity of asymmetrical causal interactions
was assessed by rigorous statistical procedure of
RPDC null distribution and by the validation of fit-
ted MVAR models. Specifically, models were found
to capture more than the 91% of correlation struc-
ture present in the data, according to the consistency
analysis. However, a small portion of total dynamics
may be represented by nonlinear interactions [44].
Although the fraction of non-captured dynamics is
relatively small (i.e. 10%), future enhances in the
model could include the presence of nonlinear inter-
actions within the model parameters.
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[50] Bonǹı S 2015 TMS evidence for a selective role of the
precuneus in source memory retrieval Behav. Brain Res.
282 70–5

[51] Phillips M L 1998 Investigation of facial recognition memory
and happy and sad facial expression perception: an fMRI
study Psychiatry Res.: Neuroimaging 83 127–38

[52] Rempel-Clower N L 2007 Role of orbitofrontal cortex
connections in emotion Ann. New York Acad. Sci.
1121 72–86

[53] Lorig T S and Schwartz G E 1988 Brain and odor: I.
Alteration of human EEG by odor administration
Psychobiology 16 281–4

[54] Royet J P, Plailly J, Delon-Martin C, Kareken D A and
Segebarth C 2003 fMRI of emotional responses to odors::
influence of hedonic valence and judgment, handedness and
gender NeuroImage 20 713–28

14

https://doi.org/10.1093/chemse/bjl012
https://doi.org/10.1093/chemse/bjl012
https://doi.org/10.3389/fpsyg.2014.00033
https://doi.org/10.3389/fpsyg.2014.00033
https://doi.org/10.1371/journal.pone.0097343
https://doi.org/10.1371/journal.pone.0097343
https://doi.org/10.1007/s00221-016-4744-z
https://doi.org/10.1007/s00221-016-4744-z
https://doi.org/10.1007/s11517-011-0739-x
https://doi.org/10.1007/s11517-011-0739-x
https://doi.org/10.1371/journal.pone.0198846
https://doi.org/10.1371/journal.pone.0198846
https://doi.org/10.1038/nrneurol.2014.178
https://doi.org/10.1038/nrneurol.2014.178
https://doi.org/10.1016/j.ijpsycho.2010.07.007
https://doi.org/10.1016/j.ijpsycho.2010.07.007
https://doi.org/10.1016/S0079-6123(06)59009-0
https://doi.org/10.1016/S0079-6123(06)59009-0
https://doi.org/10.1068/p5563
https://doi.org/10.1068/p5563
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1109/TNSRE.2020.2981991
https://doi.org/10.1109/TNSRE.2020.2981991
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.jneumeth.2009.01.006
https://doi.org/10.1016/j.jneumeth.2009.01.006
https://doi.org/10.1007/BF01128870
https://doi.org/10.1007/BF01128870
https://doi.org/10.3389/fnhum.2012.00288
https://doi.org/10.3389/fnhum.2012.00288
https://doi.org/10.1093/chemse/bjy025
https://doi.org/10.1093/chemse/bjy025
https://doi.org/10.1093/chemse/bjv081
https://doi.org/10.1093/chemse/bjv081
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1371/journal.pone.0046938
https://doi.org/10.1371/journal.pone.0046938
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2009.12.050
https://doi.org/10.1016/j.neuroimage.2009.12.050
https://doi.org/10.1109/TBME.2015.2481482
https://doi.org/10.1109/TBME.2015.2481482
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.3389/fnins.2017.00180
https://doi.org/10.3389/fnins.2017.00180
https://doi.org/10.1007/s004229900137
https://doi.org/10.1007/s004229900137
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1155/2011/130714
https://doi.org/10.1155/2011/130714
https://doi.org/10.1016/j.bbr.2014.12.032
https://doi.org/10.1016/j.bbr.2014.12.032
https://doi.org/10.1016/S0925-4927(98)00036-5
https://doi.org/10.1016/S0925-4927(98)00036-5
https://doi.org/10.1196/annals.1401.026
https://doi.org/10.1196/annals.1401.026
https://doi.org/10.1016/S1053-8119(03)00388-4
https://doi.org/10.1016/S1053-8119(03)00388-4


J. Neural Eng. 18 (2021) 056050 A L Callara et al

[55] Frank DW, Costa V D, Averbeck B B and Sabatinelli D 2019
Directional interconnectivity of the human amygdala,
fusiform gyrus and orbitofrontal cortex in emotional scene
perception J. Neurophysiol. 122 1530–7

[56] Maren S 1999 Long-term potentiation in the amygdala: a
mechanism for emotional learning and memory Trends
Neurosci. 22 561–7

[57] Rolls E T 2005 Reward-spatial view representations and
learning in the primate hippocampus J. Neurosci.
25 6167–74

[58] Price J L 2010 Connections of Orbital Cortex (Oxford: Oxford
University Press) pp 1–20

[59] Carmichael S T P J 1996 Connectional networks within the
orbital and medial prefrontal cortex of macaque monkeys 29

[60] Martin G N 1998 Human electroencephalographic Ž EEG
response to olfactory stimulation: two experiments using the
aroma of food 16

[61] Zhao G, Zhang Y and Ge Y 2018 Frontal EEG asymmetry
and middle line power difference in discrete emotions Front.
Behav. Neurosci. 12

[62] TatumWO 2013 Handbook of EEG Interpretation (New
York: Demos Medical Publication) 2013 OCLC: 841495449

[63] Brunet D, Murray MM and Michel C M 2011
Spatiotemporal analysis of multichannel EEG: CARTOOL
Comput. Intell. Neurosci. 2011

[64] Bastos A M and Schoffelen J M 2016 A tutorial review of
functional connectivity analysis methods and their
interpretational pitfalls Front. Syst. Neurosci. 9

[65] Jung T P 2000 Removing electroencephalographic artifacts
by blind source separation Psychophysiology
37 163–78

[66] Artoni F, Delorme A and Makeig S 2018 Applying dimension
reduction to EEG data by principal component analysis
reduces the quality of its subsequent independent
component decomposition NeuroImage 175 176–87

[67] Zeman P M, Till B C, Livingston N J, Tanaka J W and
Driessen P F 2007 Independent component analysis and
clustering improve signal-to-noise ratio for statistical
analysis of event-related potentials Clin. Neurophysiol.
118 2591–604

[68] Bensafi M, Rouby C, Farget V, Bertrand B, Vigouroux M and
Holley A 2002 Autonomic nervous system responses to
odours: the role of pleasantness and arousal Chemi. Senses
27 703–9

[69] Liu Y, Toet A, Krone T, van Stokkum R, Eijsman S and van
Erp J B 2020 A network model of affective odor perception
PLoS One 15 e0236468

[70] Laing D G 1983 Natural sniffing gives optimum odour
perception for humans Perception 12 99–117

[71] Laing D G 1982 Characterisation of human behaviour
during odour perception Perception 11 221–30

[72] Dalal S S, Rampp S, Willomitzer F and Ettl S 2014
Consequences of EEG electrode position error on ultimate
beamformer source reconstruction performance Front.
Neurosci. 8

[73] Brodbeck V 2011 Electroencephalographic source imaging: a
prospective study of 152 operated epileptic patients Brain
134 2887–97

[74] Zanow F and Peters M J 1995 Individually shaped volume
conductor models of the head in EEG source localisation
Med. Biol. Eng. Compt. 33 582–8

[75] Rolls E T 2019 Taste and smell processing in the brain
Handbook Clin. Neurol. 164 97–118

[76] Soudry Y, Lemogne C, Malinvaud D, Consoli S M and
Bonfils P 2011 Olfactory system and emotion: common
substrates Eur. Ann. Otorhinolaryngol. Head Neck Diseases
128 18–23

[77] Bao X, Raguet L L, Cole S M, Howard J D and Gottfried J A
2016 The role of piriform associative connections in odor
categorization Elife 5 e13732

15

https://doi.org/10.1152/jn.00780.2018
https://doi.org/10.1152/jn.00780.2018
https://doi.org/10.1016/S0166-2236(99)01465-4
https://doi.org/10.1016/S0166-2236(99)01465-4
https://doi.org/10.1523/JNEUROSCI.1481-05.2005
https://doi.org/10.1523/JNEUROSCI.1481-05.2005
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1016/j.neuroimage.2018.03.016
https://doi.org/10.1016/j.neuroimage.2018.03.016
https://doi.org/10.1016/j.clinph.2007.09.001
https://doi.org/10.1016/j.clinph.2007.09.001
https://doi.org/10.1093/chemse/27.8.703
https://doi.org/10.1093/chemse/27.8.703
https://doi.org/10.1068/p120099
https://doi.org/10.1068/p120099
https://doi.org/10.1068/p110221
https://doi.org/10.1068/p110221
https://doi.org/10.1093/brain/awr243
https://doi.org/10.1093/brain/awr243
https://doi.org/10.1007/BF02522518
https://doi.org/10.1007/BF02522518
https://doi.org/10.1016/B978-0-444-63855-7.00007-1
https://doi.org/10.1016/B978-0-444-63855-7.00007-1
https://doi.org/10.1016/j.anorl.2010.09.007
https://doi.org/10.1016/j.anorl.2010.09.007
https://doi.org/10.7554/eLife.13732
https://doi.org/10.7554/eLife.13732

	Cortical network and connectivity underlying hedonic olfactory perception
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Stimuli
	2.3. Experimental protocol
	2.4. EEG acquisition setup
	2.4.1. EEG analysis

	2.5. IC selection and network identification
	2.6. GFP analysis
	2.7. Causality analysis
	2.8. Statistical analysis

	3. Results
	3.1. GFP
	3.2. Network identification and EEG causal interactions

	4. Discussion
	Acknowledgments
	References


