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Abstract—Optical see-through head-mounted displays (HMD)
enable optical superposition of computer-generated virtual data
onto the user’s natural view of the real environment. This
makes them the most suitable candidate to guide manual tasks,
as for augmented reality (AR) guided surgery. However, most
commercial systems have a single focal plane at around 2-
3 m inducing “vergence-accommodation conflict” and “focal
rivalry” when used to guide manual tasks. These phenomena
can often cause visual fatigue and low performance. In this
preliminary study, ten subjects performed a precision manual
task in two conditions: with or without using the AR HMD.
We demonstrated a significant deterioration of the performance
using the AR-guided manual task. Moreover, we investigated the
autonomic nervous system response through the analysis of the
heart rate variability (HRV) and electrodermal activity (EDA)
signals. We developed a pattern recognition system that was able
to automatically recognize the two experimental conditions using
only EDA and HRV data with an accuracy of 75%. Our learning
algorithm highlighted two different physiological patterns com-
bining parasympathetic and sympathetic information.

Index Terms—Head mounted displays (HMDs), optical see-
through (OST), vergence-accommodation conflict (VAC), auto-
nomic nervous system (ANS), heart rate variability (HRV),
electrodermal activity (EDA), support vector machine (SVM)
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I. INTRODUCTION

Head mounted displays (HMDs) implementing optical see-
through (OST) paradigm are at the leading edge of wearable
augmented reality (AR) research [1]–[3]. Surgical training,
medical imaging, vision-related research, teleoperation, and
virtual prototyping are some of the large number of HMDs
application fields.

The great advantage of these AR systems is the possibility
of also providing the operator with a natural view of the
real world, characterized by its own full resolution. For
instance, this integration of virtual and natural views allows
the determination of the hand location during the execution
of manual tasks. However, recent studies have highlighted
several possible perceptual and technological limitations such
as device obtrusiveness, low luminance, small field of view,
and the perceptual conflict between 2D virtual image on the
surface of projection and three-dimensional (3D) real world.
Particularly, the current generation of commercial OST-HMDs
typically display virtual reality content on a fixed focal plane
positioned at around 2 to 3 m apparent distance or more
(infinite). Therefore, when such devices are improperly used
within the peripersonal space (e.g to guide manual tasks) the
virtual content is projected outside the user’s eye depth of
field leading to two issues: the ”focal rivalry” (FR) [4] and
the vergence-accommodation conflict (VAC) [5], which hinder
the visual comfort.



VAC and FR are major problems in precision manual tasks,
e.g., AR guided surgery [6], [7], where VR data must be
accurately aligned to the real target. Indeed, several previous
studies have already shown the negative effects of FR and
VAC conflicts on visual fatigue and fusion failure [8]–[11],
showing also a reduction of these effects once focus cue
correction has been performed [9]. Moreover, a recent study
has demonstrated a significant effect of the perceived visual
discomfort and mental workload on the user’s performance
during the execution of AR guided manual task using the
Microsoft HoloLens [5]. User’s performance was found to be
significantly better during the naked eye tests than during AR-
guided tasks. In such previous studies, the effect of VAC has
been commonly assessed through questionnaires. These have
the great disadvantage to be prone to all common pitfalls of
subjective measures. The study of the physiological response
to visual discomfort has mostly focused on EEG/ERP and
oculomotor response analyses, in the context of passive 3D
viewing experience and virtual reality (VR) [12]–[14]. Instead,
whether the perceived visual discomfort in the AR tasks and
the consequent performance deterioration reflect also on the
activity of the autonomic nervous system (ANS) has been
only marginally investigated [7], [15], [16]. However, the ANS
plays a crucial role in stress, mental fatigue and workload [17],
[18], and it would be a very interesting source of information
to investigate.

Accordingly, in this preliminary study, we have analyzed
two of the most used ANS correlates, such as heart rate vari-
ability (HRV) and electrodermal activity (EDA), to measure
physiological responses in subjects using OST-HMD during
AR-guided precision tasks. Particularly, both statistical and
classification analyses have been performed to automatically
discriminate between the same manual task executed with
or without the Microsoft HoloLens display. In addition, the
performance of the manual task executed in both conditions
has been evaluated.

II. MATERIALS AND METHODS

A. Subject recruitment and experimental protocol

Twelve right-handed volunteers (age 25 ± 2.85, 5 males)
gave their informed consent to take part to the study,
self-reporting no history of clinical cardiovascular and
mental diseases. All participants declared to have normal
vision acuity or corrected-to-normal visual acuity using
contact lenses. Visual acuity was verified for monocular and
binocular vision, using the Digital Acuity LogMAR Charts
from Chart2020. Two subjects data were discarded due to
excessive artifact movements.
The experimental protocol was divided into two sessions:

• AR-guided binocular test to evaluate the effect of the FR
and VAC

• Binocular Naked eye test
Each participant was asked to repeat three times each of the
above mentioned tests, for a total of six trials for each subject
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Fig. 1. Exemplary timeline of the experimental protocol.

Fig. 2. Exemplary execution of the AR-guided manual task.

enrolled in the study. Each test session was preceded by a
resting-state of two minutes (Figure 1). The order of the two
tasks were randomized among the subjects.

The manual task was designed in order not to require the
accurate superimposition of the virtual and physical scenarios.
The task consisted of connecting a sequence of numbered dots,
drawing lines on a A4 paper positioned on a vertical physical
support as shown in Figure 2. A custom Vuforia Image Target
(an image with features that Vuforia SDK can detect and track)
was used to anchor and display the virtual content at a fixed
position in the space as in [2].

During all AR tasks, the numbered dots were projected on
a white paper and the subject was asked to draw lines to
connect them. During these tasks, the user’s eye was forced
to be focused on both virtual content (numbered dots) and
real objects (pen, ruler, and paper) at the same time. During
the naked-eye task, the numbered dots were printed on the



Fig. 3. Example of a task performed with AR. On the left, the virtual content
visualized by the subject; on the right, lines drawn by the subject processed
to evaluate the performance: the endpoints (Starti, Endi) of each line are
represented with black stars.

paper and the subject was asked to draw lines on an overlaying
tracing paper.
Considering that the spatial distribution of the numbered dots
was changed at each task, a total of six different “connect-
the-dots” sequence (CDS) was designed. The difficulty of the
tasks was standardized, according to the following criteria:
• connecting lines cannot intersect each-other;
• the distance of two consecutive dots is not fixed, thus

connective lines are of different lengths [L1, L2, ... , L14];
• the sequence of distances [L1, L2, . . . , L14] is the same

for all the CDS.
Each CDS presented a square area of 15 cm × 15 cm and
consists of fifteen dots. Each CDS sequence was randomly
associated with each task and the randomization was repeated
for each subject.
Before starting the experiment, each participant was asked
to calibrate the HoloLens, using the Calibration app (by
Microsoft). During the whole experiment, the ECG and the
EDA signals were continuously acquired using the BIOPAC
MP150 system, which is a 16-Channel data acquisition and
analysis system set up at a sampling rate of 500 Hz. Moreover,
the EEG signal was recorded using the Geodesic EEG System
(EGI), The EEG signal has not been analyzed in this study.

B. Performance evaluation

Each CDS sequence was analyzed to measure subject’s
performance in connecting dots. Given that eye-to-display
calibration errors may lead to a distortion of the perceived
virtual content, these can play a major role in the misper-
ception of line lengths. The performance was evaluated in
term of gaps (Gij) between the end (Endi) and the starting
points (Startj) of each pair (i,j) of consecutive lines. This
measure indeed cannot be related to calibration inaccuracies.
The line endpoints were automatically detected with the Harris
Corner Detector, as described in [5], processing the image
drawn by the subject with MATLAB Version R2017b. For each
trial the following parameters were calculated: maximum gap
(GMAX), mean gap (GMEAN), and total gap (GTOT), i.e. the
sum of all the gaps (Gij) measured in the trial.

C. EDA analysis

ECG and EDA dynamics are directly modulated by the
ANS activity and, therefore, are considered ideal non-invasive
physiological signals to investigate the ANS dynamics. The
EDA signal measures the activity of eccrine sweat glands on
the hand surface. Since sweat glands are directly innervated
by the sympathetic branch of the ANS (and in particular the
sudomotor nerve), the EDA analysis is considered one of the
best ways to monitor the sympathetic activity. EDA is consid-
ered as the superposition of two main components, phasic and
tonic, which differ for their time scales and relationships with
the external stimuli [19]. In this study, we adopted the well-
known cvxEDA model [20] to decompose the EDA signal and
extract informative and effective features form both the phasic
and tonic signals.

Specifically, EDA algorithm based on Bayesian estimation
and convex optimization provides a decomposition of the EDA
robust to noise, and enables the estimation of the neural bursts
of the sudomotor nerve activity (SMNA), providing a window
on the sympathetic nerve activity.

After the application of the cvxEDA model, we extracted
several features in order to quantify the activity of the sym-
pathetic nervous system. Particularly, from the SMNA esti-
mated activity signal we calculated the maximum SMNA peak
(SMNA peak) during each trial, the number of the SMNA
peaks (SMNA peak freq) and the sum of all amplitudes
within the trial time window (EDA AmpSum). From the slow-
varying tonic component, we computed the mean and standard
deviation within the trial time window (MeanTonic and std-
Tonic). Finally, we estimated the power spectrum within the
frequency range of 0.045 and 0.25Hz (EDAsymp), which has
been demonstrated to be strongly correlated to the sympathetic
nervous system activity.

D. HRV analysis

From each ECG signal, the interbeat (RR) series was
extracted using the Pan-Tompkins algorithm [21]. Artifacts
removal was processed through the use of Kubios HRV
software [22].
In order to analyze HRV signals related to time windows of
the same length, we chose a duration of 25 seconds according
to the shortest task execution.

A total amount of eighteen features was extracted from
HRV series, in the time and frequency domains, and applying
nonlinear analysis in the phase space. In the time-domain, the
following four features were calculated for each RR series
[23]:

• the mean value of RR intervals (RR mean);
• the standard deviation of RR intervals (RR std);
• the root mean square of successive RR interval differ-

ences (RMSSD)
• the relative number of successive RR interval pairs that

differ more than 50 msec, expressed as a percentage of
the total number of RR intervals (pNN50).



Frequency domain analysis comprised eight features, which
were calculated from the Power Spectral Density (PSD) anal-
ysis [23]. Two main spectral bands were considered: low
frequency (LF) band, ranging between 0.04 and 0.15 Hz, and
high frequency (HF) band, comprising frequencies between
0.15 to 0.4 Hz. Then, the following features were computed:

• the power values in LF and HF band (LF power and HF
power);

• the power in LF band and HF band normalized to the
sum of the LF and HF power (LF nu and HF nu);

• the power in LF band and HF band expressed as per-
centage of the total power (LF power % and HF power
%);

• the ratio between LF power and HF power (LF/HF).

Fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)
were used to investigate the irregularity of RR series and the
spatial complexity of the related attractors, respectively. Each
phase space was reconstructed by setting the time delay and
the embedding dimension to τ = 1 and m = 2. Starting
from a RR series [rr(i), rr(i + 1), ..., rr(N)] of N samples,
N −m+ 1 embedded vectors in Rm were constructed. Each
embedding vector x(i) in the phase space was computed
as x(i) = [rr(i), rr(i+ 1), ..., rr(i+m− 1)], where i goes
from 1 to N −m+ 1. The Chebyshev distance di,j between
each pair of vectors xi and xj was calculated excluding self-
matches, and the parameter Fm(r) was calculated as follows:

Fm(r) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
i=1,i6=j

Γ(r − di,j)) (1)

where Γ is the function assigning a membership degree to
the distances between each pair of vectors, as follows [24]:

Γ(di,j , n, r) = e−d
fp
i,j/r (2)

The power of the fuzzy function fp was set to 2, in
accordance with previous studies [25], [26]. The parameter r
is the margin of tolerance used as threshold in the comparison
between the vector distances, and in this study was set equal
to the 20% of the standard deviation of each series. Increasing
the embedding dimension from m to m + 1, Fm+1(r) was
calculated. Finally, the FuzzyEn value was computed as:

FuzzyEn(m,r,N) = − ln
Fm+1

Fm
(3)

DistEn quantifies the complexity of the spatial distribution
of the vectors in the phase space [27]–[29]. All the Chebyshev
distances dij among all pairs of embedded vectors in the phase
space were found without taking into account the self-matches.
Then, the related empirical probability distribution was com-
puted using the histogram approach [27]. The number of bins
B was set to 256 [29]. The probability pb associated to each
bin b (b = 1, ..., B) was calculated, i.e., pb = count in bin b

total elements in D ,
and DistEn is computed as follows:

DistEn(m,B) = − 1

log2(B)

B∑
t=1

pblog2(pb) (4)

Furthermore, five features were extracted to quantify the
shape of Poincaré map obtained plotting the lagged RR inter-
val series, RRn+1, against the series RRn. According to the
ellipse-fitting technique, the following geometrical parameters
were calculated [30], [31]:
• the standard deviation of the points calculated along the

direction perpendicular to the line-of-identity RRn+1 =
RRn(SD1);

• SD2: the standard deviation of the points along the line-
of-identity RRn+1 = RRn(SD2);

• the ratio between SD1 and SD2 (SD12).
Other two Poincaré Plot quantifiers were determined to

minimize the loss of information by accounting for the phase
space points lying outside the ellipse: namely, the mean (Md)
and the standard deviation (Sd) of the euclidean distances
between all the points and the centroid [29].

E. Statistical and classification analysis

Each feature was averaged among the three repetitions of
each modality and normalized by subtracting the value com-
puted in the related previous resting session. Wilcoxon non-
parametric statistical test was used to compare each feature
between the two tasks (i.e., Naked-eye and AR-guided). False
discovery rate was controlled through the Benjamini-Yekuteli
correction for multiple testing.

Moreover, a dataset with all features was used as the
input of a support vector machine (SVM) algorithm to auto-
matically recognize the AR-mediated physiological response
from the Naked-eye one. In addition, given the large number
of features compared to the small observation, the SVM
was combined with a feature selection (FS) strategy based
on the Recursive Feature Elimination (RFE) algorithm. The
RFE is an embedded FS approach, i.e., it is integrated in
the SVM model building the so-called SVM-RFE algorithm.
Particularly, RFE is a backward selection strategy, which ranks
the features computing an importance score for each feature
and recursively removing the least important one. At each
RFE iteration, the learning model was validated through a
leave-one-subject-out (LOSO) cross-validation strategy, which
cyclically trains the model on a set made up of the observations
of all the subjects except one and tests it on the remaining
subject’s data. Results of the sub-feature-set that achieved the
most accurate classification will be shown.

III. RESULTS

A. Performance Results

All the subjects did not experience any perceivable jit-
ter/drift of the virtual content, and successfully completed
the six tasks. Mean and standard deviation values of GMAX,
GMEAN and GTOT are reported in Table I, showing that,
on average, subjects performed better during the Naked-eye
sessions. The Wilcoxon signed-rank test showed significant



TABLE I
PERFORMANCE EVALUATION RESULTS

Feature Naked-eye AR p-valuesMean STD Mean STD
GMAX [mm] 0.2 0.1 0.3 0.1 0.013
GMEAN [mm] 0.1 0.5 0.1 0.1 0.011
GTOT [mm] 0.8 0.5 1.8 0.8 0.004

differences in subject performance depending on the test
modalities (p-value<0.05).

B. Statistical comparison and Classification Results

The statistical analysis compared each feature of both HRV
and EDA between the two tasks. No statistically significant
differences were shown considering the single feature individ-
ually. However, when mixing EDA and HRV in a multivairate
learning model such as the SVM, the classification model was
able to automatically discriminate the AR-guided performance
from the naked-eye with an average accuracy of 75% (see
Figure 4). Moreover, the RFE algorithm selected only three
features to reach the maximum accuracy values reducing the
risk of overfitting. The features selected were the SD12 of
the HRV, the maximum peak of the SMNA response and
EDAsymp.

IV. DISCUSSION AND CONCLUSIONS

In this preliminary study, we investigated the ANS response
of 10 healthy subjects performing an AR-guided manual task
compared to those related to the same task executed without
the aid of the AR technology.
We induced participants to use Microsoft HoloLens device
wrongly, i.e., without respecting the minimum focal distance,
generating the effects known as VAC and FR (i.e., the inability
to see simultaneously in focus the virtual and real content).
Our study confirmed previous results [5] that these perceptual
issues cause a significant worsening of the performance of
precision manual tasks when using AR. This bad performance
can be associated with a different autonomic physiological
response. Indeed, the classification analysis using features
extracted from two of the main used ANS correlates such
as HRV and EDA, showed good accuracy (i.e., 75%) in
distinguishing the manual tasks executed in the two modalities
(i.e., with or without the AR help).
Interestingly, the three selected features were extracted from
both the EDA and HRV signals. Moreover, while SD12 is
considered an index of the parasympathetic activity, both
EDAsymp and SMNA peak measure the activity of the sym-
pathetic nervous system. Therefore, although at speculation
level, we can infer that the visual discomfort induced by
the AR HMD lead to a different sympathovagal balance in
healthy subjects. Note that after a univariate statistical analysis
no significant differences were found, instead, combining the
feature information into a multivariate learning model two
different autonomic patterns have been identified. This is a
further confirmation that a multivariate-multiorgan analysis
can lead to a better characterization of the ANS dynamics.

This study comes with limitations that make the results just
preliminary. Particularly, the low number of subjects perform-
ing the study brings the natural consequence of a low statistical
power that might hide possible statistical differences. The
poor number of observations could also reflect a high risk
of overfitting, however the LOSO validation as well as the
RFE algorithm, which selected only three features should
have mitigated such risk. Moreover, another issue could be
related to subjects’ degree of pre-learning/familiarity with AR.
Indeed, each subject was familiar with the ”connecting-the-
dots” task in the NK condition, but could not be the same in
AR environment.
Future works will strongly increase the number of participants
and will combine information coming from the parasympa-
thetic (HRV) and sympathetic (EDA, HRV) nervous systems
with those extracted at cortical level thanks to the use of the
EEG, in order to build a model that explains the VOC and FR
physiological effects. Moreover, possible confounding factors
such as the familiarity of the task will be also study
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