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Single-Tone Frequency Estimation by Weighted
Least-Squares Interpolation of Fourier Coefficients

Michele Morelli, Marco Moretti and A. A. D’Amico

Abstract—Frequency estimation of a single complex expo-
nential signal embedded in additive white Gaussian noise is a
major topic of research in many engineering areas. This work
presents further investigations on this problem with regards
to the fine estimation task, which is accomplished through a
suitable interpolation of the discrete Fourier transform (DFT)
coefficients of the observation data. The focus is on fast real-
time applications, where iterative estimation methods can hardly
be applied due to their latency and complexity.

After deriving the analytical expression of the Cramér-Rao
bound (CRB) for general values of the system parameters,
we present a new DFT interpolation scheme based on the
weighted least-squares (WLS) rule, where the optimum weights
are precomputed through a numerical search and stored in the
receiver. In contrast to many existing alternatives, the proposed
method can employ an arbitrary number of DFT samples so
as to achieve a good trade-off between system performance and
complexity. Simulation results and theoretical analysis indicate
that, at sufficiently high signal-to-noise ratios, the estimation
accuracy is close to the relevant CRB at any value of the
frequency error. This provides some advantage with respect to
non-iterative competing schemes, without incurring any penalty
in processing requirement.

Index Terms—Frequency estimation, least-squares methods,
DFT interpolation.

I. INTRODUCTION

Frequency estimation of a complex sinusoidal signal em-
bedded in white Gaussian noise plays a major role in many
technological areas, including radar applications [1], power
grid systems [2] and biomedical signal processing. In wireless
communication systems, fast and accurate frequency recovery
is a fundamental task for carrier synchronization and for com-
pensating large Doppler shifts arising in transmissions with
high-speed trains, flying vehicles and low earth orbit satellites.
The maximum likelihood (ML) solution to this problem was
derived in [3] and involves maximizing the periodogram of the
observed data with respect to the unknown frequency. Since no
closed-form expression is available to locate the maximum of
the periodogram, a suboptimal approach is typically adopted
which operates in two steps: a coarse search followed by
a fine-tuning stage. In the first step, DFT analysis is used
to evaluate a set of uniformly spaced samples of the signal
spectrum, and the DFT coefficient with the highest magnitude
is selected. The subsequent fine-tuning step tries to refine the
coarse frequency estimate through a dichotomous search or a
suitable interpolation of the DFT samples. A common feature
of any frequency estimator (operating either in the time or in
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the frequency domain) is the presence of large errors, called
outliers, that may occasionally occur at low signal-to-noise
ratios (SNRs).

Single-tone frequency estimation through DFT interpolation
is a well investigated subject and many solutions are currently
available. In general, they can be divided into two categories:
direct methods [4]-[17] and iterative schemes [18]-[25]. The
former employ a few DFT coefficients obtained from the
initial coarse search and provide the final frequency estimate
with negligible additional cost. For this reason, they are
particularly attractive for fast real-time applications, including
voice communications, carrier synchronization and tracking
of moving radar targets. In general, their accuracy is non-
uniform over the entire search range and, quite surprisingly,
the worst case occurs when the signal frequency corresponds
to one of the DFT bins. Iterative methods operate in a recursive
fashion, where the refined estimate of an earlier iteration is
treated as the coarse estimate of the next until convergence.
At each new iteration, two DFT samples are typically re-
computed from the received discrete-time observations, with
the DFT frequencies being symmetrically placed around the
frequency estimate obtained from the previous iteration. This
operation requires off-line signal processing, which makes
such schemes unsuitable for real-time applications. Compared
to direct methods, they achieve improved uniform performance
at the expense of an increased computational load.

Among the direct methods, it is worth mentioning the
parabolic interpolation of the periodogram [4] and the inter-
polator presented in [5], which was later extended to multi-
sinusoidal signals in [6]. These schemes only exploit the
amplitude of the DFT samples and exhibit poor performance.
The phase component was considered in [7] and [8], where
the maximum DFT coefficient and its two adjacent neighbours
are used for fine frequency tuning. Macleod in [9] modified
the interpolator of [8] and also proposed a five-sample inter-
polator. A scheme that can utilize an arbitrary number of DFT
coefficients is presented in [10] to further improve the system
performance. The authors of [11] suggest a modification of the
parabolic interpolator based on empirical considerations. Its
analytical derivation, together with an improved bias-corrected
version, is presented by Candan in [12] and [13]. Further
results on the bias correction problem can be found in [14],
where a new set of unbiased estimators is derived by looking
for the analytical relationship between the frequency error and
the DFT samples. Alternative methods presented in [15], [16]
and [17] employ two DFT coefficients placed midway between
the DFT peak and its neighbours. This results into a finer
frequency grid, which improves the system performance with
a remarkable penalty in terms of processing requirement.
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The iterative approach can employ a dichotomous search
[18], the Newton algorithm [19] or other specific methods
to retrieve the fractional frequency error. In [20], Aboutanios
and Mulgrew presented two asymptotically unbiased iterative
schemes with a uniform variance that is only 1.0147 times
the classical Cramer-Rao bound (CCRB) computed in [3].
At each new iteration, two DFT coefficients are evaluated by
applying a shift of ±0.5∆f to the frequency estimate obtained
from the previous stage, where ∆f is the distance between
adjacent DFT bins. By resorting to the fixed-point theorem,
it is shown that such schemes achieve convergence after two
iterations, thereby requiring the calculation of four additional
DFT coefficients placed at midpoint frequencies. Methods to
save the calculation of two auxiliary DFT coefficients at the
first iteration, which can still achieve the same accuracy of
[20], are presented in [21]-[23]. More recently, it was reported
in [24] that using fractional shifts other than ±0.5∆f may
lead to improved system performance. Following this idea, the
authors of [25] derived a novel scheme that needs computation
of four auxiliary spectral lines and asymptotically attains the
CCRB after two iterations.

In this paper we further investigate the DFT interpolation
task for fast frequency estimation in real-time applications. In
doing so, we concentrate on the class of direct interpolation
schemes, which provide the final estimate without computing
any other DFT coefficient in addition to those already available
from the coarse search stage. One fundamental question is
related to the best possible performance achievable by a
frequency estimator belonging to this class. The answer is
provided by the relevant CRB when only a reduced set of
DFT coefficients is employed as observation variables. In that
connection, a first contribution of our work is the analytical
derivation of such a bound, which is different from the CCRB
presented in [3]. In particular, the latter cannot be applied to
direct interpolation methods as it was obtained assuming that
all the DFT samples are involved in the frequency recovery
task. Although plots of the novel CRB as a function of the
residual frequency error have been previously shown in [9] in
a few specific scenarios, no analytical formulation is available
in the literature for the general case. The novel expression
of the CRB is exact and holds true with any set of system
parameters, including the residual frequency error, the number
of selected DFT coefficients and the length of the data record.
In this regard, it generalizes some known asymptotic results
presented in [8] and [20], which are only suitable for large
data sets. After a thorough review of the existing literature,
we noted that available direct DFT interpolators are not able
to achieve the new CRB for any value of the frequency
error. This suggests that some improvement of the system
performance is still possible, thereby motivating the search for
some novel scheme that can attain the bound. Regarding this
issue, the second contribution of our study is the derivation
of a new non-iterative DFT interpolation algorithm based on
the weighted least square (WLS) optimization criterion. In
contrast to most existing methods which can only interpolate
among two or three samples of the signal spectrum, the
proposed scheme can utilize an arbitrary number of DFT bins.
Theoretical analysis conducted in the high SNR regime is

used for the design of the optimal weighting coefficients. For
this purpose, we use an exhaustive grid-search which does
not affect the complexity of the proposed scheme, since the
weights can be computed in advance and stored in the receiver.
The resulting estimator can be used for real-time frequency
recovery and exhibits the best accuracy within the class of
direct interpolation methods. Compared to iterative schemes,
it allows substantial computational saving while achieving
comparable performance through a judicious choice of the
number of interpolated DFT coefficients.

The remainder of the paper is organized as follows. The
next section provides the signal model and introduces basic
notations. In Sect. III, we present the analytical expression of
the CRB when a restricted set of DFT samples is observed
for frequency recovery. The new interpolator is derived in
Sect. IV, where a criterion for the design of the optimum
weighting coefficients is also formulated. Simulation results
are illustrated in Sect. V, while some conclusions are drawn
in Sect. VI.

II. SYSTEM MODEL

We consider a single discrete-time complex exponential
signal embedded in white Gaussian noise (WGN). The data
samples are given by

x(n) = Aej(nω+ϕ) + w(n) n = 0, 1, . . . , N − 1 (1)

where N is the observation length, while (A,ω, ϕ) are
unknown parameters which specify the amplitude, angular
frequency and initial phase of the signal component. The
noise terms {w(n)} are modeled as circularly-symmetric and
statistically independent Gaussian random variables with zero
mean and variance σ2 =E{|w(n)|2}. Accordingly, the SNR is
defined as A2/σ2.

Our goal is the estimation of the angular frequency ω ∈
[−π, π) in the presence of the unknown quantities (A,ϕ),
which are treated as nuisance parameters. This problem has
application in many technological areas and represents a
classical topic in signal processing. In wireless communication
systems, it mainly arises in the context of carrier synchro-
nization for coherent demodulation of the received waveform.
Consider, for example, a pilot-assisted digital transmission,
where a sequence of known symbols with unit amplitude
{dn} is periodically inserted in the transmitted data stream.
After passing through the matched filter, the incoming signal
is sampled at proper timing instants, yielding

y(n) = Adne
j(nω+ϕ) + η(n) n = 0, 1, . . . , N − 1 (2)

where {η(n)} is a white Gaussian process with variance
σ2. Multiplying y(n) by d∗n and observing that {d∗nη(n)}
is statistically equivalent to {w(n)}, we eventually get the
observation variables specified in (1).

The estimation of ω from the time series {x(n)} was
originally studied by Rife and Boorstyn in [3], where it is
shown that the ML solution is the value ω̂ML maximizing the
periodogram

Γ(ω̃) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jnω̃

∣∣∣∣∣
2

(3)
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with respect to the continuous variable ω̃ ∈ [−π, π). The ML
estimator is asymptotically unbiased and attains the CCRB,
which is expressed by

CCRB =
6(SNR)−1

N(N2 − 1)
. (4)

Unfortunately, locating the maximum of the periodogram in
(3) is computationally demanding as it requires a grid search
over the set spanned by ω̃. A popular reduced-complexity
approach relies on the following expression of the angular
frequency ω

ω =
2π(kp + ε)

N
(5)

where kp is an integer-valued parameter referred to as integer
frequency offset (IFO) and ε ∈ [−0.5, 0.5) is the residual
fractional frequency offset (FFO). The maximization process
is thus split into two successive stages. The first step (coarse
search) employs the N−point DFT of {x(n)}, i.e.,

X(k) =

N−1∑
n=0

x(n)e−j2πnk/N k = 0, 1, . . . , N − 1 (6)

and provides the IFO estimate k̂p as the location where
|X(k)| achieves its global maximum. The second step (fine
search) makes an interpolation between the peak DFT sample
X(k̂p) and a specified number of neighbours to get the FFO
estimate ε̂. At low SNR values, the maximum of |X(k)| may
occasionally occur far from kp as a consequence of noise-
induced distortions. When this happens, the estimator makes
large errors, known as outliers, which deteriorate the system
performance. The SNR value below which the outliers start to
occur is called the threshold of the estimator. Such a peculiar
phenomenon is typical of any nonlinear estimation problem
and also appears in the true ML scheme that looks for the
maximum of Γ(ω̃). In the context of DFT interpolation, there
is a common belief that the SNR threshold can be reduced
by adopting the zero-padding strategy so as to obtain a finer
frequency resolution during the coarse search. As shown in
[3], however, zero-padding has only a marginal impact on the
insurgence of outliers and, for this reason, it is not considered
in the foregoing discussion. The only viable way to reduce the
SNR threshold is to enlarge the observation set using higher
values of N . In practice, N must be properly designed so that
the estimator can operate well above its SNR threshold.

Our work is focused on the DFT interpolation stage, assum-
ing that the coarse search has been successfully completed,
which amounts to putting k̂p = kp. Since we are interested
in fast frequency recovery for real-time applications, we only
concentrate on the direct approach to DFT interpolation, so as
to avoid the need for computing any auxiliary DFT coefficient
in addition to those evaluated during the initial coarse search.
Observing that the accuracy of direct methods cannot attain
the CCRB shown in (4) as a consequence of the reduced
number of observations, it is important to firstly establish
the best accuracy that can be achieved by any direct DFT
interpolator. This may reveal useful to check whether some
improvement of the system performance is possible or not
with respect to existing schemes. For this purpose, we start

our study by deriving the CRB for the estimation of ω when
a small set of contiguous DFT samples, selected from {X(k);
k = 0, 1, . . . , N − 1} and placed around X(kp), are the only
available observation variables. This bound has been plotted
in [9] as a function of ε, but without providing its analytical
formulation. Asymptotic expressions for large block lengths
can be found in [8] in a few specific cases. To the best of our
knowledge, no analytical expression of this CRB is available
for the general case. Next, we show how the selected DFT
samples can be exploited to get a frequency estimator that
performs close to the relevant CRB for any value of the FFO.

III. CRAMÉR-RAO BOUND FOR DFT INTERPOLATORS

We assume ideal knowledge of the IFO kp and investigate
the ultimate accuracy achievable in the estimation of ω when
a specified number L of contiguous DFT samples are used
as signal measurements. The latter are placed around the
DFT peak X(kp) and are collected into a vector XL =
{X(kp + k);−L1 ≤ k ≤ L2}, where L1 and L2 are non-
negative integer parameters. Intuitively, the best performance
is attained when the L DFT bins used for interpolation are
those closest to the signal frequency ω. This implies that L1

is chosen according to the rule

L1 =

 (L− 1)/2
L/2− 1
L/2

if L odd
if L even and ε ≥ 0
if L even and ε < 0

(7)

and L2 is consequently set to L2 = L − L1 − 1. It is worth
observing that, when L is even, the optimal selection of the
DFT samples specified in (7) requires prior knowledge of the
polarity of ε.

The entries of XL are found by substituting (1) into (6).
This yields

X(kp + k) = SL(k) +WL(k) − L1 ≤ k ≤ L2 (8)

where {WL(k)} are circularly-symmetric and statistically in-
dependent Gaussian random variables with zero mean and
variance σ2

W = Nσ2, while SL(k) is expressed by

SL(k) = (CR + jCI)

N−1∑
n=0

ejnωe−j2πn(k+kp)/N (9)

with CR and CI being the real and imaginary parts of Aejϕ,
respectively. Our goal is to find the CRB for the estimation
of ω based on the observation vector XL and in the presence
of the nuisance parameters {CR, CI}. The following theorem
summarizes the main result of this section.

Theorem 1: The CRB for ω based on XL is

CRB(L, ε) =
(SNR)−1

2N
· ‖α‖2

‖α‖2 ‖β‖2 −
∣∣∣βHα

∣∣∣2 (10)

where α = {α(k);−L1 ≤ k ≤ L2} and β = {β(k);−L1 ≤
k ≤ L2} are L−dimensional vectors whose entries are
reported in (46) and (47).

Proof : see Appendix A.
In (10), the notation CRB(L, ε) explicitly indicates the

dependence of the CRB on parameters L and ε, while the
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dependence on N is omitted for notational simplicity. The
entries of α and β depend on the FFO ε and can also be
expressed in a more compact form as

α(k) =
1− ej2πε

N [1− e−j2π(k−ε)/N ]
(11)

and

β(k) =
(N − 1)ej2π[(N+1)ε−k]/N −Nej2πε + e−j2π(k−ε)/N

N [1− e−j2π(k−ε)/N ]2
.

(12)
It is worth noting that, in general, CRB(L, ε) is greater than
the CCRB shown in (4) as a consequence of the reduced
number of observation measurements. Clearly, the two bounds
coincide when L = N . A simplified expression of CRB(L, ε)
is possible when ε = 0, as specified in the following corollary.

Corollary: For ε = 0, the bound (10) takes the form

CRB(L, ε = 0) =
2(SNR)−1

N
∑
k∈A

1
sin2(πk/N)

(13)

where A collects all integers k such that −L1 ≤ k ≤ L2, with
k 6= 0.

Proof : see Appendix A.
For any value of L, the right-hand-side of (13) achieves

a minimum when L1 is chosen according to (7). This cor-
roborates the idea that the rule expressed in (7) represents
the optimal selection strategy of the DFT coefficients used
for interpolation. At this stage, it is interesting to assess the
loss incurred in the estimation of ω when XL is taken as
the observation vector instead of the entire set of N DFT
coefficients. The loss can be quantified through the following
normalized CRB

NCRB(L, ε) =
CRB(L, ε)

CCRB
(14)

which is expressed by

NCRB(L, ε) =
N2 − 1

12
· ‖ α‖2

‖α‖2 ‖β‖2 −
∣∣∣βHα

∣∣∣2 . (15)

Fig. 1 illustrates NCRB(L, ε) as a function of L for three
different FFO values and N = 64. As is seen, the penalty
incurred from using a reduced set of DFT samples for FFO
recovery monotonically decreases with L and is rather small
when L ≥ 3. For ε = 0.5, the penalty virtually disappears
even with L = 2, despite the fact that this situation causes
maximum leakage in the DFT spectrum.

Similar conclusions can be drawn by inspection of Fig. 2,
where NCRB(L, ε) is shown versus ε ∈ [0, 0.5] with L as a
parameter and N = 64. For each value of L, the loss with
respect to the full ML estimator is maximum when ε = 0
and monotonically decreases with ε. For ε > 0.3, such a loss
depends weakly on L and becomes vanishingly small as ε
approaches 0.5. These plots are also reported in [9] for the
two cases L = 3 and L = 5, but without providing their
mathematical formulation. Bearing in mind (13), for ε = 0
we have

NCRB(L, ε = 0) =
N2 − 1

3
∑
k∈A

1
sin2(πk/N)

(16)
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Fig. 1. NCRB(L, ε) as a function of L for three different FFO values and
N = 64.

which demonstrates how the loss can be reduced by increasing
L. It is worth mentioning that the analytical expression (16)
is not available in the literature and can be applied with any
value of L and N . In this sense, it generalizes some known
results obtained with a few specific values of L and assuming
large data blocks. For example, letting L = 2 and L = 3 in
(16) yields

NCRB(L = 2, ε = 0) =
N2 − 1

3
sin2

( π
N

)
(17)

NCRB(L = 3, ε = 0) =
N2 − 1

6
sin2

( π
N

)
(18)

which, for large data sets, approach the asymptotic values π2/3
and π2/6 reported in [8]. Furthermore, putting ε = 0.5 and
L = 2 into (15), after some manipulations we get

NCRB(L = 2, ε = 0.5) =
N2(N2 − 1) sin4

(
π
2N

)
6 cos2

(
π
2N

) (19)

which asymptotically attains the value π4/96 cited in [8] and
[20].

IV. FREQUENCY ESTIMATION THROUGH WEIGHTED
LEAST-SQUARES

Previous methods for frequency recovery through DFT
interpolation are mostly based on suboptimal heuristic rea-
soning and do not obey to any specific optimality criterion.
Some of them employ suitable approximations of the non
linear relationship between the FFO and the DFT coefficients,
which result into an estimation bias. Computer simulations
presented later indicate that none of the existing direct DFT
interpolators can attain the CRB given in (10). This prompted
us to investigate whether some alternative scheme, which
is optimal in some sense, can be found to improve the
performance of existing methods. The result of our study
is a novel fast frequency recovery scheme that belongs to
the class of direct DFT interpolators. As shown later, its
accuracy is close to the relevant CRB for any value of ε.
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Fig. 2. NCRB(L, ε) vs. ε ∈ [0, 0.5] with L as a parameter and N = 64.

Furthermore, it can interpolate an arbitrary number of DFT
samples, thereby allowing to achieve the desired trade-off
between complexity and estimation accuracy. In particular, it
can approach the performance of iterative DFT interpolators,
but with a remarkable reduction of the processing load and
latency.

A. Problem formulation

We still assume that the IFO has been correctly estimated
during the coarse search and the DFT coefficients selected
for fine frequency recovery are collected into the observation
vector XL. Its entries are denoted by XL(k) = X(kp+k) for
−L1 ≤ k ≤ L2, where L1 is chosen as specified in (7) and
L2 = L−L1−1. The mathematical model of XL(k) is given
in (8) and (9). In particular, after evaluating the summation in
the right-hand-side of (9), it can be reformulated as

XL(k) =
b

1− ae−j2π(k+kp)/N
+WL(k) (20)

where WL(k) is the noise term and we have used the notation
b = Aejϕ(1− ej2πε) and a = ejω. Multiplying both sides of
(20) by 1− ae−j2π(k+kp)/N and rearranging, yields

XL(k) = ae−j2π(k+kp)/NXL(k) + b+ nL(k) (21)

with nL(k) = WL(k)[1 − ae−j2π(k+kp)/N ]. The expression
(21) can eventually be put in matrix notation as

XL = P

[
a
b

]
+ nL (22)

where nL = [nL(k);−L1 ≤ k ≤ L2]T is the noise vector and

P = [yL uL] (23)

is an (L×2)− dimensional matrix, whose columns yL and uL
have entries yL(k) = e−j2π(k+kp)/NXL(k) and uL(k) = 1 for
−L1 ≤ k ≤ L2, respectively.

B. Estimation algorithm

We use the signal model (22) to get an estimate (â, b̂)
of the unknown parameters (a, b), from which the angular
frequency is subsequently retrieved as ω̂ = arg{â}. For this
purpose, we observe that the variance of the noise terms
nL(k) depends on a. This makes the ML solution difficult to
implement, since the maximization of the related likelihood
function would require a computationally demanding grid-
search over the set spanned by (a, b). Such a difficulty is
overcome by resorting to the least-squares (LS) concept, which
makes no assumption on the noise statistics and can provide a
closed-form solution to the estimation of (a, b). However, since
each DFT sample is characterized by a different SNR value,
better results are expected by adopting the WLS approach.
This offers the opportunity to emphasize the contributions of
those data that are deemed to be more reliable through a
suitable design of the weighting coefficients. The latter are
denoted by {c(k);−L1 ≤ k ≤ L2} and are collected into
an L−dimensional diagonal matrix C = diag{c(k)}. Hence,
letting

γc =

L2∑
k=−L1

c(k) (24)

we can state the following theorem.
Theorem 2: The WLS estimator of (a, b) based on the model

(22) is given by

ω̂ = arg

{
L2∑

k=−L1

c(k)X∗L(k)

×

[
γcXL(k)−

L2∑
n=−L1

c(n)XL(n)

]
ej2π(k+kp)/N

}
.

(25)
Proof : Applying the WLS estimation principle to the signal

model (22), yields [26][
â

b̂

]
= (PHCP)

−1
PHCXL. (26)

Then, bearing in mind the structure of P shown in (23), we
can reformulate (26) as[

â

b̂

]
=

1

∆

[
γc −yHLCuL

−uHLCyL yHLCyL

] [
yHLCXL

uHLCXL

]
(27)

with
∆ = γc(y

H
HCyH)−

∣∣uHLCyL
∣∣2 . (28)

The angular frequency is eventually estimated as ω̂ = arg{â}.
This produces

ω̂ = arg{γcyHLCXL − yHLCuLu
H
LCXL} (29)

which is equivalent to (25), thereby concluding the proof of
the theorem.

From this point onwards, we call (25) the WLS estimator
(WLSE) of ω. The peculiar case in which the weighting
coefficients are all equal is referred to as the LS estimator
(LSE). It is worth noting that for L = 2 the LSE reduces to
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ω̂ = arg

{
XL(0)−XL(±1))

XL(0)−XL(±1)e∓j2π(1+kp)/N

}
(30)

and is mathematically equivalent to the DFT interpolator pro-
posed by Bertocco et al. in [7]. Furthermore, when all the DFT
samples are involved in the estimation process (i.e., L = N ),
after lengthy computations the LSE can be reformulated in the
time-domain as

ω̂ = arg

{
N−1∑
n=1

x(n)x∗(n− 1)

}
(31)

and corresponds to the linear prediction estimator analyzed by
Lank et al. in [27]. Its variance is given by

var{ω̂} =
(SNR)−1

(N − 1)2
(32)

and the loss with respect to the CCRB is

var{ω̂}
CCRB

=
N(N + 1)

6(N − 1)
. (33)

For large data records, the ratio (33) approaches the asymptotic
value N/6 and the related loss can be substantial. This
suggests how a judicious design of the weights {c(k)} can
let WLSE to perform much better than LSE.

C. Theoretical analysis of WLSE

In order to identify the weighting coefficients that optimize
the performance of WLSE, it is important to theoretically
assess their impact on the estimation accuracy. Although the
analysis can be conducted with any value of L ≥ 2, in the fore-
going discussion we assume that L is odd and let L2 = L1 =
(L − 1)/2. Such a situation leads to a somewhat simplified
mathematical notation and, more importantly, allows to select
the L DFT samples from (7) without any prior knowledge of
the FFO polarity. Since the entries of the observation vector
XL = {X(kp+k);−L1 ≤ k ≤ L1} are symmetrically placed
around the DFT peak X(kp), it is reasonable to use weighting
coefficients {c(k);−L1 ≤ k ≤ L1} with a symmetric shape
around k = 0. This amounts to putting c(−k) = c(k) for
k = 1, 2, . . . , L1, while c(0) can be arbitrarily set to unity
since the estimate ω̂ in (25) is not affected if the weights are
multiplied by a common normalization coefficient. It follows
that only the weighting vector c = [c(1), c(2), . . . , c(L1)]T is
needed for the full design of WLSE.

The accuracy of ω̂ is assessed in terms of its normalized
mean square error (MSE), which is a measure of the loss
incurred with respect to the CCRB. Such an indicator depends
on (c, L, ε) and is expressed by

ρWLSE(c, L, ε) =
E{(ω̂ − ω)2}

CCRB
(34)

with the dependence on N still being omitted for simplicity.
Theoretical analysis conducted in Appendix B leads to the
following theorem.

Theorem 3: In the high SNR region, WLSE is unbiased and
its normalized MSE is found to be

ρWLSE(c, L, ε) =
N(N2 − 1)

6Γ2(ξ)

×

{
N−1∑
n=1

|γ(n, ξ)|2 −<e
N−2∑
n=1

γ(n, ξ)γ∗(n+ 1, ξ)

}
(35)

where ξ = 2πε/N , while Γ(ξ) and {γ(n, ξ); 1 ≤ n ≤ N − 1}
are given by

Γ(ξ) =

N−1∑
n1=1

N−1∑
n2=1

ejξ(n1−n2)GL(n1, n2) (36)

and

γ(n, ξ) =

N−1∑
`=1

ejξ(n−`)GL(n, `). (37)

The quantities GL(m1,m2) depend on c and are expressed
by GL(m1,m2) = γcFL(m1 −m2)− FL(m1)FL(m2), with

FL(n) = 1 +

L1∑
k=1

c(k) cos(2πkn/N). (38)

Proof : see Appendix B.

D. Design of the weighting coefficients

At first sight, the minimization of ρWLSE(c, L, ε) with
respect to c may appear a good criterion for the design of
the WLSE weights. This approach, however, is not useful in
practice. The reason is that it would generate a different set
of weights for each value of ε, thereby optimizing the system
performance only for a specific value of the FFO. Since we
are interested in a solution that can operate effectively over
the entire FFO uncertainty range, the optimization process
should be based on an integral performance indicator rather
than on a point-wise design criterion. Observing that var{ω̂} ≥
CRB(L, ε) for any unbiased estimator, the normalized CRB
defined in (14) represents a lower bound for ρWLSE(c, L, ε).
Hence, a reasonable approach for the design of c is to look for
the minimum of the p-norm distance between ρWLSE(c, L, ε)
and NCRB(L, ε) over the full range |ε| ≤ 0.5. This results into
the following optimization problem

copt = arg min
c


1/2∫
−1/2

[ρWLSE(c, L, ε)− NCRB(L, ε)]
p
dε


(39)

where popular choices of p are 1, 2 or infinity. Unfortunately,
we were not able to find any explicit expression for copt
in (39). Hence, the optimal weights are found through an
exhaustive search over the set Ω = {c ∈ RL1 : 0 ≤ c(k) ≤ 1
for 1 ≤ k ≤ L1}. The results obtained with L = 3, 5, 7 using
the 2-norm distance are reported in Table I.

As is seen, the optimum weighting coefficients rapidly de-
cay as L1 increases. For example, we have copt(L1) = 0.0567
when L = 7, thereby revealing that there is little to gain by
using values of L greater than 7. An intuitive explanation
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TABLE I
OPTIMAL WEIGHTING COEFFICIENTS FOR VARIOUS VALUES OF L1 .

L c = [c(1), c(2), . . . , c(L1)]T

3 c = [0.6969]
5 c = [0.6338, 0.1347]T

7 c = [0.6138, 0.1300, 0.0567]T

of such a behaviour is that most of the energy of the DFT
of a cisoid is concentrated in the peak sample and its two
neighbours, while less than 15% of the total energy is collected
in the remaining DFT samples [9].
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Fig. 3. NCRB(L, ε), ρWLSE(copt, L, ε) and ρLSE(L, ε) vs. ε ∈ [0, 0.5]
with L = 3 and N = 64.

Fig. 3 illustrates NCRB(L, ε) and ρWLSE(copt, L, ε) as a
function of ε ∈ [0, 0.5] for L = 3. For comparison, we
also report the normalized MSE of LSE, say ρLSE(L, ε),
which is obtained from ρWLSE(c, L, ε) letting c(k) = 1 for
1 ≤ k ≤ L1. It is worth noting how a good selection of
the weighting coefficients allows the WLSE to perform very
close to the normalized bound at any FFO value. In contrast,
the LSE attains the bound only for |ε| ≤ 0.3, with a significant
discrepancy occurring around ε = 0.5. Fig. 4 shows the same
results obtained with L = 5. As is seen, the WLSE curve
is still close to the bound. Compared with the case L = 3,
however, the MSE is approximately reduced by a factor 1.25
(corresponding to nearly 1 dB) at small FFO values, while it
remains more or less the same in the proximity of ε = 0.5.
Results obtained with L = 7 confirm this trend, thereby
revealing how parameter L can be exploited to improve the
estimation accuracy. As for LSE, it exhibits a significant loss
with respect to the bound and performs even worse than with
L = 3. This suggests how a good design of the weights c is
fundamental to achieve satisfactory performance.

Having established that WLSE is able to approach the bound
to the accuracy of any direct DFT interpolator, the question
arises as to whether some strong motivation exists for its use,
given that iterative estimators, such as those reported in [25],
can perform close to the CCRB. One possible answer comes
from the complexity analysis presented below.
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Fig. 4. NCRB(L, ε), ρWLSE(copt, L, ε) and ρLSE(L, ε) vs. ε ∈ [0, 0.5]
with L = 5 and N = 64.

TABLE II
COMPUTATIONAL REQUIREMENTS OF DIFFERENT ESTIMATORS

Estimators Number of flops Case study, N = 64
WLSE 5N log2N + 20L− 10 1910 + 20L

QE 5N log2N + 17 1937
ME (L = 3) 5N log2N + 21 1941
ME (L = 5) 5N log2N + 28 1948

CE 5N log2N + 14 1934
QSE 5N log2N + 48N + 33 5025

AHSE 5N log2N + 32N + 22 3990

E. Complexity analysis

In assessing the processing requirement of WLSE, we
observe that the N-point DFT employed in the coarse search
needs (N/2) log2N complex products and N log2N complex
additions. Since a complex product amounts to four real
products plus two real additions, while a complex additions is
equivalent to two real additions, a total of (5N) log2N floating
point operations (flops) are required for the initial DFT. Then,
assuming that the weights c have been precomputed, additional
20L−10 flops are eventually needed to compute ω̂ from (25).

The overall complexity of WLSE is summarized in the first
row of Tab. II for a general value of N (first column) and for
N = 64 (second column). For comparison, we also report the
complexity of other non-iterative DFT interpolation methods,
including the bias-removed version of the estimators proposed
by Quinn [8], Macleod [9] and Candan [12]. For notational
conciseness, we denote these schemes as QE, ME and CE,
respectively. While QE and CE can only use the DFT peak
and its two neighbours (L = 3), ME can be implemented with
either L = 3 or L = 5. The results of Tab. II indicate that
direct interpolation methods entail negligible additional cost
with respect to the initial DFT operation. This may not be true
with iterative schemes, especially for relatively small values
of N . Indeed, computing two extra DFT coefficients at each
new iteration requires 2N complex products and 2(N − 1)
complex additions, for a total of 16N − 4 flops. In the last
two rows of Tab. II we report the overall complexity of
two recently proposed iterative interpolators, i.e., the q-shift
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estimator (QSE) and the hybrid A&M and q-shift estimator
(HAQSE) presented in [25]. The former scheme requires three
iterations to achieve convergence, while the latter converges
after two iterations. In any case, they are much more compu-
tationally demanding then direct interpolation alternatives. In
particular, for N = 64 we see that computing the extra DFT
coefficients needs more flops than the initial N -point DFT. A
further disadvantage of iterative schemes is that they must re-
elaborate the entire time series {x(n)} at each new iteration
to obtain the extra DFT coefficients. This operation cannot be
performed in real-time, which makes them unsuitable for those
applications where frequency estimation must be accomplished
fast and efficiently, in compliance with the time constraints
of the system. In contrast, WLSE can be put in a condition
to perform similarly to iterative schemes without the need for
computing any additional DFT coefficient. In fact, it is enough
to increase L so as to achieve the desired accuracy at the price
of a marginal increment of the processing load, which still
remains negligible with respect to the cost of the initial DFT.

It is worth recalling that WLSE in only suited for single-
tone frequency recovery, while in some situations the received
signal can be plagued by harmonic interference. In these
applications, using a relatively large value of L might be
a bad choice, as interference is more likely to be included
in the estimation process. However, since in this work the
number of interpolated DFT coefficients is limited to a few
units, the WLSE explores a narrow bandwidth around the DFT
peak, where the probability of finding harmonic interference
is expected to be low.

V. NUMERICAL RESULTS

Computer simulations have been run to assess the perfor-
mance of WLSE and to check the analytical results reported
in Sect. IV.C. In all the presented experiments, the number
of data samples is N = 64 while the IFO is set to kp = 10.
Comparisons are made between WLSE and other non-iterative
DFT interpolation methods, such as QE, ME and CE. We also
consider the FFO recovery algorithm suggested by Orguner
(OE) in [10], although we limit its application to the first
iteration stage. The reason is that in this study we are only
interested to the class of direct DFT interpolators, which
operate in a non-iterative fashion.

Fig. 5 illustrates the MSE of the frequency estimate ω̂/(2π)
as a function of the SNR. The number of interpolated DFT
coefficients is L = 3 and the FFO is uniformly distributed
over the interval [−0.5, 0.5]. The CCRB given in (4), divided
by 4π2, is also shown as a benchmark. As it is seen, when
the SNR decreases all the curves show an abrupt increase,
which reflects the insurgence of outliers. The SNR at which
the increase begins establishes the estimator threshold, which
occurs at nearly 0 dB. When operating above the threshold,
WLSE and ME have the best performance and their accuracy
is approximately 1.5 dB far from the CCRB. The loss increases
to 2.5 dB when using QE and becomes nearly 4 dB with CE
and OE. Other simulations (not shown) indicate that all the
considered schemes provide unbiased estimates over the full
range [−0.5, 0.5].
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Fig. 5. MSE of the frequency estimate ω/2π vs. SNR with L = 3 and
N = 64.

Fig. 6 plots the normalized MSE defined in (34) versus
ε ∈ [0, 0.5] for WLSE (with optimized weighting coefficients),
LSE, ME and OE. In this experiment we have L = 3 and
the SNR is fixed to 20 dB. It is worth noting how the
proposed WLSE is close to the normalized CRB given in
(15) over the entire range of FFO values, while LSE exhibits
a certain performance degradation for ε > 0.3. The ME is
characterized by a good accuracy, with only a marginal loss
with respect to WLSE in the region ε ∈ [0.1, 0.4]. As for OE,
its normalized MSE deviates substantially from the bound and
the loss increases with ε. Such a behaviour is also documented
in [10], where an SNR gap of nearly 5 dB with respect to the
bound was found at the end of the first iteration for FFO values
close to ±0.5.
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Fig. 6. Normalized MSE vs. ε ∈ [0, 0.5] with L = 3, N = 64 and SNR =
20 dB.

The MSE of the frequency estimates obtained through
interpolation of L = 5 DFT coefficients is shown in Fig. 7
as a function of the SNR. In this figure, WLSE is compared
with ME and OE, which are the only non-iterative schemes
available in the literature that can operate with more than
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L = 3 DFT samples. The trend is similar to what is reported in
Fig. 5. In particular, the best accuracy is achieved by WLSE
(with optimized weights) and ME, for which the gap with
respect to the CCRB is now reduced to only 1 dB. In contrast,
OE exhibits a significant loss compared to the bound. It is
worth observing that when L = 5 the ME presented in [9]
is based on a heuristic formula that is not supported by any
theoretical argument. Hence, it is important to check whether
the resulting FFO estimates are biased or not. The result of this
study is illustrated in Fig. 8, where the bias of the investigated
schemes is shown as a function of ε in the absence of noise.
As it is seen, ME provides FFO estimates with a bias that can
be greater than 2× 10−5, while WLSE and OE are found to
be unbiased.
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Fig. 7. MSE of the frequency estimate ω/2π vs. SNR with L = 5 and
N = 64.
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Fig. 8. Bias of the frequency estimate ω/2π vs. ε ∈ [0, 0.5] in absence of
noise with L = 5 and N = 64.

Fig. 9 illustrates the normalized MSE for the investigated
DFT interpolators as a function of ε when L = 5 and SNR
= 20 dB. Similarly to the L = 3 case, the best accuracy
is obtained with WLSE, which closely follows the normalized

CRB curve at any FFO value, with only a marginal discrepancy
in the proximity of ε = 0.5. The ME still exhibits satisfactory
performance, even though the loss with respect to the bound in
the region ε ∈ [0.1, 0.4] is larger than in Fig. 6. As expected,
the accuracy of OE deteriorates as ε approaches the boundary
values ±0.5, while LSE is far from the bound over the full
FFO interval.
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Fig. 9. Normalized MSE vs. ε ∈ [0, 0.5] with L = 5, N = 64 and SNR =
20 dB.

VI. CONCLUSIONS

We have discussed the problem of fine frequency recovery
for a single discrete-time spectral line through DFT interpo-
lation methods. The focus was on fast non-iterative schemes
that avoid the need for computing extra DFT coefficients in
addition to those available from the initial coarse search stage.
A first contribution of this work is the analytical formulation
of the CRB for this class of methods, which only exploit a
reduced set of DFT coefficients to complete the fine estimation
process. The resulting expression has general applicability and
can be used with any value of the system parameters. It extends
some known results that were previously obtained in a few
specific scenarios under the assumption of large data records.
The second contribution is the derivation of a novel DFT inter-
polation scheme (WLSE) based on the weighted least-squares
approach. Theoretical analysis indicates that an appropriate
design of the weighting coefficients leads to an estimation
accuracy close to the relevant CRB at any value of the residual
frequency error. This suggests that there is very little room
for further improvement of the estimation accuracy through
direct DFT interpolation techniques. Numerical simulations
have been used to corroborate such a conjecture. In particular,
it was found that WLSE has the best accuracy among existing
non-iterative methods, which makes it the preferred scheme for
fast real-time frequency recovery. In contrast to most available
methods, which only use the DFT peak and its two neighbours,
WLSE has the capability of interpolating an arbitrary number
L of DFT coefficients. Assuming that no harmonic interference
is present in the explored signal bandwidth, this offers the
opportunity, through a judicious design of L, to approach the
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performance of iterative DFT interpolators, with a significant
reduction of the computational load and processing time.
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VIII. APPENDIX A

In this Appendix, we compute the CRB for the estimation
of the angular frequency ω using the observation vector XL.
The presence of the nuisance parameters {CR, CI} requires
evaluation of the Fisher information matrix (FIM) for the set
ζ = {CR, CI , ω}. For this purpose, we rewrite (8) in vector
notation as

XL = SL + WL (40)

where SL = {SL(k);−L1 ≤ k ≤ L2} collects the quantities
reported in (9), while WL = {WL(k);−L1 ≤ k ≤ L2} is a
Gaussian vector with zero mean and covariance matrix CW =
σ2
W IL. The entries of the FIM for a complex-valued vector SL

embedded in white Gaussian noise are evaluated in Appendix
15C of [26] and are given by

[F]i,j = 2<e
{
∂SHL
∂ζi

C−1W
∂SL
∂ζj

}
1 ≤ i, j ≤ 3 (41)

where we have used the notation ζ1 = CR, ζ2 = CI and
ζ3 = ω. Then, expanding the vector multiplication in the right-
hand-side of (41), produces

[F]i,j =
2

σ2
W

L2∑
k=−L1

<e
{
∂S∗L(k)

∂ζi
· ∂SL(k)

∂ζj

}
1 ≤ i, j ≤ 3.

(42)
The derivatives of SL(k) with respect to the unknown param-
eters are easily computed from (9) as

∂SL(k)

∂CR
= Nα(k) (43)

∂SL(k)

∂CI
= jNα(k) (44)

∂SL(k)

∂ω
= jNAejϕβ(k) (45)

where α(k) and β(k) depend on the FFO ε and are expressed
by

α(k) =
1

N

N−1∑
n=0

e−j2πn(k−ε)/N (46)

β(k) =
1

N

N−1∑
n=0

ne−j2πn(k−ε)/N . (47)

Substituting these results into (42) yields the FIM

F =
2N

σ2

 ‖α‖2 0 µI
0 ‖α‖2 µR
µI µR A2 ‖β‖2

 (48)

where µ = µR + jµI is given by

µ = Ae−jϕ(βHα) (49)

and we have defined the L−dimensional vectors α =
{α(k);−L1 ≤ k ≤ L2} and β = {β(k);−L1 ≤ k ≤ L2}.
Letting F−1 be the inverse of F, the CRB for the estimation of
ω is [F−1]3,3. This is computed from (48) through a standard
matrix inversion operation, yielding

CRB(L, ε) =
σ2

2NA2
· ‖α‖2

‖α‖2 ‖β‖2 −
∣∣∣βHα

∣∣∣2 (50)

where the notation CRB(L, ε) is used to explicitly indicate
the dependence of the bound on the parameters L and ε. A
simplified expression of the CRB is obtained when ε = 0. In
such a case, from (46) and (47) it follows that α(k) is one
only for k = 0 and it is zero otherwise, while

β(k) =

{
1/(e−j2πk/N − 1)

(N − 1)/2
if k 6= 0
if k = 0.

(51)

Consequently, we have ‖α‖2 = 1, βHα = (N − 1)/2 and

‖β‖2 =
(N − 1)2

4
+
∑
k∈A

1∣∣e−j2πk/N − 1
∣∣2 (52)

where A is the set of integers k such that −L1 ≤ k ≤ L2 and
k 6= 0. Substituting these results into (50), produces

CRB(L, ε) =
2σ2

NA2
∑
k∈A

1
sin2(πk/N)

. (53)

IX. APPENDIX B
In this Appendix, we highlight the major steps leading to

the theoretical performance of WLSE. We begin by rewriting
(25) as

ω̂ = arg {γcA1 −A2} (54)

where

A1 =

L2∑
k=−L1

c(k) |XL(k)|2 ej2π(k+kp)/N (55)

and

A2 =

L2∑
k=−L1

c(k)X∗L(k)ej2π(k+kp)/N
L2∑

m=−L1

c(m)XL(m).

(56)
Our first objective is to find a time-domain representation of
A1 and A2. For this purpose, we replace the DFT coefficients
XL(k) in (55) and (56) by

XL(k) =

N−1∑
n=0

x(n)e−j2πn(k+kp)/N . (57)

After standard manipulations, this yields

A1 =

N−1∑
n1=0

N∑
n2=1

x(n1)x∗(n2−1)e−jπK(n1−n2)/NFL(n1−n2)

(58)
and

A2 =

N−1∑
n1=0

N∑
n2=1

x(n1)x∗(n2 − 1)

× e−jπK(n1−n2)/NFL(n1)FL(n2)

(59)
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where K = 2kp+L2−L1, while FL(n) is a real-valued even
function of n expressed by

FL(n) =

L2∑
k=−L1

c(k)e−jπ(2k−L2+L1)n/N (60)

which depends on the selected weights {c(k)}. Substituting
(58) and (59) into (54), produces

ω̂ = arg

{
N−1∑
n1=0

N∑
n2=1

x(n1)x∗(n2 − 1)

×e−jπK(n1−n2)/NGL(n1, n2)
} (61)

where

GL(n1, n2) = γcFL(n1 − n2)− FL(n1)FL(n2) (62)

is a real-valued function. Finally, observing that GL(0, n2) =
GL(n1, N) = 0, we can rewrite (61) as

ω̂ = arg

{
N−1∑
n1=1

N−1∑
n2=1

x(n1)x∗(n2 − 1)

× e−jπK(n1−n2)/NGL(n1, n2)
} (63)

which can be interpreted as the time-domain formulation of
WLSE. Such expression is now used to assess the accuracy
of ω̂. For this purpose, it is convenient to put the time series
{x(n)} in the equivalent form

x(n) = Aej(ωn+ϕ)[1 + µ(n)] n = 0, 1, . . . , N − 1 (64)

where {µ(n) = w(n)e−j(ωn+ϕ)/A} are statistically indepen-
dent noise terms with zero mean and variance σ2

µ = σ2/A2.
Then, after substituting (64) into (63), we find

ω̂ = arg

{
ejω

N−1∑
n1=1

N−1∑
n2=1

[1 + µ(n1)]

× [1 + µ∗(n2 − 1)]ejξ(n1−n2)GL(n1, n2)

} (65)

where ξ is related to the FFO ε by the following relationship

ξ =
π

N
(2ε− L2 + L1). (66)

To simplify the analysis, we assume that the SNR is large
enough to make the Noise×Noise term µ(n1)µ∗(n2 − 1)
negligible (with high probability) with respect to µ(n1) or
µ∗(n2 − 1). In such a case, the estimate (65) can reasonably
be approximated as

ω̂ = arg
{
ejωΓ(ξ) [1 +D(ξ)]

}
(67)

where Γ(ξ) is a real-valued positive quantity given by

Γ(ξ) =

N−1∑
n1=1

N−1∑
n2=1

ejξ(n1−n2)GL(n1, n2) (68)

while D(ξ) is found to be

D(ξ) =
1

Γ(ξ)

N−1∑
n=1

[µ(n)γ(n, ξ) + µ∗(n− 1)γ∗(n, ξ)] (69)

with

γ(n, ξ) =

N−1∑
`=1

ejξ(n−`)GL(n, `). (70)

Observing that Γ(ξ) ∈ R+, we can rewrite (67) as

ω̂ = arg
{
ejω [1 +D(ξ)]

}
. (71)

Accordingly, since when the SNR is large the real and imag-
inary components of D(ξ), say DR(ξ) and DI(ξ), are much
less than unity, from (71) we have

ω̂ ≈ ω +DI(ξ) (72)

which says that WLSE is unbiased because D(ξ) is a zero-
mean random variable. The estimation variance is given by

var{ω̂} ≈ E{D2
I (ξ)} (73)

and can eventually be computed making use of the noise
statistics

E{µ(n1)µ∗(n2)} =

{
σ2/A2

0
if n1 = n2
otherwise (74)

and E{µ(n1)µ(n2)} =E{µ∗(n1)µ∗(n2)} = 0. After lengthy
standard computations, we find

var{ω̂} =
σ2

A2Γ2(ξ)

×

{
N−1∑
n=1

|γ(n, ξ)|2 −<e
N−2∑
n=1

γ(n, ξ)γ∗(n+ 1, ξ)

}
.

(75)
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