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 Background: The progression of ovarian cancer seems to be related to HDAC1, HDAC3 and HDAC6 

activity. A possible strategy for improving therapies for treating ovarian carcinoma, minimizing the 

preclinical screenings, is the repurposing of already approved pharmaceutical products as inhibitors of 

these enzymes.  

Objective: This work was aimed to implement a computational strategy for identifying new HDAC 

inhibitors for ovarian carcinoma treatment among approved drugs. 

Method: The CHEMBL database was used to construct training, test and decoys sets for performing 

and validating HDAC1, HDAC3 and HDAC6 3D-QSAR models obtained by using FLAP program. 

Docking and MD simulations were used in combination with the generated models to identify novel 

potential HDAC inhibitors. Cell Viability Assays and Western Blot Analyses were performed on 

normal and cancer cells for a direct evaluation of the anti-proliferative activity and an in vitro 

estimation of HDAC inhibition of the compounds selected through in silico screening. 

Result: The best quantitative prediction was obtained for the HDAC6 3D-QSAR model. The 

screening of approved drugs highlighted a new potential use as HDAC inhibitors for some 

compounds, in particular nitrofuran derivatives, usually known for their antibacterial activity, and 

frequently used as antimicrobial adjuvant therapy in cancer treatment. Experimental evaluation of 

these derivatives highlighted a significant antiproliferative activity against cancer cell lines 

overexpressing HDAC6, and an increase in acetylated alpha-tubulin levels. 

Conclusion: Experimental results support the hypothesis of a potential direct interaction of nitrofuran 

derivatives with HDACs. In addition to the possible repurposing of already approved drugs, this work 

suggests the nitro group as a new zinc binding group, able to interact with the catalytic zinc ion of 

HDACs. 
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1. INTRODUCTION 

 Histone deacetylases (HDACs) regulate many biological 
processes, by removing an acetyl group from histones. Their 
ability to bind many transcription factors influence cell 
proliferation, differentiation and development. [1] HDACs 
inhibition has multiple potential therapeutic applications, 
such as the treatment of neurological and inflammatory 
disorders, HIV, cystic fibrosis and cancer. [2-4] Different 
classes of histone deacetylase (HDAC) inhibitors endowed 
with anticancer activity are known among synthetic and 
natural compounds [5,6], and various representatives are 
involved in several preclinical experiments and clinical 
studies [7]. In particular, in vitro analysis performed on 
several ovarian carcinoma cell lines showed that knockdown 
of HDAC1 inhibits proliferation and tumorigenicity, 
knockdown of HDAC3 reduces cell migration and HDAC6 
inhibition selectively promotes apoptosis of ARID1A-
inactivated cells, supporting the use of HDAC6 inhibitors in 
the ovarian cancer treatment [8]. At present, two HDAC 
inhibitors completed clinical trials for the treatment of 
advanced ovarian epithelial cancer: vorinostat and belinostat 

[9,10]. Although both inhibitors have been considered pan-
HDAC inhibitors, they showed a certain selectivity for 
HDAC1, HDAC3 and HDAC6 subtypes in enzyme inhibition 
fluorometric assays [11,12], thus suggesting a particular role 
of these three HDAC isoforms in the development and 
progression of ovarian cancer. In this context, we performed 
a computational study on HDACs, focusing our interest on 
HDAC1, HDAC3 and HDAC6. Our aim was the 
development of a computer-aided drug repurposing strategy 
focused on the identification of new anti-cancer compounds, 
based on the inhibition of HDAC1, HDAC3 and HDAC6, 
among drugs approved for different indications, thus 
suggesting novel therapeutic activities for some traditional 
medicinal compounds. Our work started with the 
development of 3D-QSAR models for the quantitative 
prediction of HDAC inhibitory activity [13,14], which were 
validated using hydroxamic inhibitors with known activities 
on HDAC1, HDAC3 and HDAC6. Good results were 
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obtained in particular for the HDAC6 model, showing 
satisfying validation metrics. The three models were used to 
screen the approved drugs included in the CHEMBL database 
[15], identifying new compounds potentially able to stably 
bind HDACs. Molecular dynamics simulation, reflecting the 
time dependent conformational changes of protein-ligand 
complexes [16], confirmed the stability of our hit compounds 
in complex with HDAC6. 

2. MATERIALS AND METHODS  

2.1 Docking Studies 

The available 13 crystal structures of all human HDACs co-
crystallized with a hydroxamic inhibitor, with no missing 
significant sequence tracts, were selected from the Protein 
Data Bank (PDB) [17] for the docking procedure 
optimization (see Table S1). A cross-docking calculation in 
HDAC4 (PDB codes: 2VQM [18], 4CBT, 4CBY [19] and 
5A2S [20]) and HDAC8 (PDB codes: 1T64, 1T69, 1VKG, 
[21] 3F0R and 3F07[22]), and a redocking in the unique 
crystal structure available for HDAC-1,2,6 and 7 subtypes 
(PDB codes: 5ICN [23], 4LXZ [24], 5EDU [25], 3C10 [26], 
respectively) were performed using all the fitness function 
available in the GOLD docking software [27] (ChemScore, 
GoldScore, ChemPLP and ASP). The ligands were extracted 
from the X-ray complexes and then subjected, after a 
minimization step, to a conformational search of 1,000 steps 
in a water environment (using the generalized-Born/surface-
area model) by means of Macromodel [28] software to 
prevent the influence of the starting ligand geometry. The 
algorithm used was the Monte Carlo method with the 
MMFFs force field and a distance-dependent dielectric 
constant of 1.0. Missing hydrogens were added to the protein 
according to the predicted protonation state at the 
physiological pH, 7.0. Asn and Gln residues were absent in 
the range of interest for the direct contacts of docking; flip 
corrections were necessary only for the histidines involved in 
the zinc coordination, which were protonated in such a way 
to expose the lone pair towards the zinc atom. In view of 
testing the influence of a ZBG constraint on the disposition of 
the inhibitor tail, the docking calculations were performed 
taking the ligand completely free, or introducing a scaffold 
match constraint on the hydroxamate position deduced from 
the crystallographic ligand structures, with two different 
strength of the constraint: 5 as the default constraint and 0.5 
as a light constraint. The region of interest for docking was 
defined in GOLD in such a manner that every protein 
contained all the residues within 10 Å from its co-crystallized 
ligand. The ‘allow early termination’ command was 
deactivated. All ligands were submitted to 40 Genetic 
Algorithm runs, clustering the output orientations using a 
RMSD cut-off of 1.5 Å. The metal coordination of the zinc 
ion was set in octahedral geometry, as in the crystallographic 
structures. The default GOLD parameters were used for all 
other settings. The resulting binding poses were compared 
with that observed in the X-ray crystal structure containing 
the ligands, through the calculation of the RMSD between 
them. The usual classification of results identifies the poses 
as best, medium and poorest fit as well as RMSD < 2Å, 
2≤RMSD≤3 and RMSD > 3Å, respectively. Further docking 
calculations of CHEMBL ligands in the X-ray structures of 
HDAC1, HDAC3 and HDAC6 co-crystallized with 
hydroxamic acids (PDB codes 5ICN [23], 4A69 [29] and 
5EDU [25], respectively) were carried out using the same 

procedure identified as the best through preliminary cross- 
and re-docking studies, by means of ASP as fitness function. 

2.2. 3D-QSAR Modeling 

2.2.1. Training Set Definition 

A CHEMBL database [15] query for detecting HDAC1, 
HDAC3 and HDAC6 known inhibitors with molecular 
weight within 250 and 400 g/mol (the common size of 
classical HDACs inhibitors) was run. The query results were 
further analyzed in view to filter only compounds whose IC50 
data were known for all the three subtypes. The resulting 362 
molecules were optimized through the Omega2 program of 
Openeye suite [30], setting the torsion driving parameters 
values of ewindow to 0.5 kcal/mol and rms to 2 Å. The 
lowest-energy conformer of each compound was subjected to 
docking into HDAC1, HDAC3, and HDAC6 using the above 
reported procedure. Due to the scaffold match constraint, all 
compounds lacking of at least two atoms shared with the 
hydroxamic moiety were rejected; the retained compounds 
were used as training set for generating a 3D-QSAR model.  
Five compounds among the best HDAC inhibitors 
(Vorinostat, Panobinostat, Dacinostat, Belinostat and Cudc-
101) already FDA approved or included in clinical trials, 
were removed from the training set and successively used to 
validate the results. 

2.2.2. 3D-QSAR model construction 

The docking conformations of known HDACs inhibitors 
were used to construct a FLAP [9] database for each enzyme. 
FLAP is able to compare molecules using fingerprints. The 
fingerprints are derived from the GRID molecular interaction 
fields (MIFs) [31] and/or the GRID atom types, and are 
characterized as quadruplets of pharmacophoric features. The 
MIFs produced by the GRID force-field describe the type, 
strength and direction of the interactions owing to a molecule 
[32]. The quantitative examination of the MIF contributions 
to the activity for a set of aligned structures allows the 
construction of 3D-QSAR models [33]. In this context, the 
GOLD docking conformer for each ligand was imported in 
the FLAP database, setting to 0 the number of additional 
conformers to be generated. MIFs were then calculated using 
the acceptor (O), donor (N1), hydrophobic (DRY), and shape 
(H) probes, as implemented in FLAP, and using a grid 
resolution of 0.75Å. The interaction point energies were 
defined as independent variables, while the activity of the 
inhibitors, expressed as pIC50, was set as the dependent 
variable. So, the docked dataset of compounds was used as 
training set to construct 3D-QSAR models, analyzing through 
Partial Least Squares (PLS) the combinations of descriptors 
that best explain the activity. The models were cross-
validated using the LOO method, and analyzed in terms of R2 
and Q2. The optimal number of latent variables was chosen 
for each model, and the prediction capability of the models 
against each inhibitor was examined.  

2.2.3. External Set Definition, Screening and Validation 

A CHEMBL database query for retrieving all approved drugs 
was run, downloading a database of up to 11000 compounds. 
The subsequent removal of non-small molecule drugs 
reduced the number to less than 6380 compounds. All these 
compounds were retrieved as sdf file and optimized through 
the Omega2 program of Openeye[30] suite, setting the 
torsion driving parameters values of ewindow to 0.5 kcal/mol 
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and rms to 2 Å. The lowest-energy conformer of each 
compound was subjected to docking into HDAC1, HDAC3, 
and HDAC6 using the above reported procedure. The 
retained compounds in the resulting docking poses (filtered 
by the scaffold match constraint) were used as an enriched 
dataset for a 3D-QSAR screening. In fact, among the 88 
drugs survived to the scaffold match constraint, 9 compounds 
were known actives ligands of HDAC1, HDAC3 and 
HDAC6, one compound was selectively active against 
HDAC6 and inactive against HDAC1 and HDAC3, while the 
remaining 78 compounds could be considered as “decoys” 
(see Table S2 and Results and Discussion for more details). 
The known HDAC ligands were used to validate the model 
and the potential HDAC inhibitory activity of the decoys was 
predicted through our 3D-QSAR model. The screening 
results were assessed using the enrichment factor (EF) and 
the receiver operator characteristic (ROC) curve profile [14]. 
The EF measures the enrichment of the method compared 
with random selection:  

EF = [tp/(tp + fn)](NCtot/NC) 

where tp is the number of known active ligands retrieved 
(true positives); fn is the number of known active ligands 
discarded during the VS filtering (false negatives); NCtot is 
the total number of compounds of the database; NC is the 
total number of molecules obtained by the VS protocol. The 
ROC curve profile graphically emphasizes the performance 
of each model on enrichment, suggests if early recognition 
has been achieved by the three models and which fraction of 
the molecular dataset corresponds to the best EF. The hits 
were analyzed in view of their structure, therapeutic use and 
activity on known targets, being not usual “decoys” but 
actual drugs (see Table 2). The performance of the screening, 
in this case, could also be influenced by the presence of true 
active compounds such as remetinostat, whose inhibition 
values were not reported. The hits common to HDAC1, 
HDAC3 and HDAC6 were evaluated for choosing the best 
candidates to submit for biological testing.  

2.3. Molecular Dynamics Simulations 

Nitrofurazone and nitrofurantoin were subjected to molecular 
dynamics in HDAC1, HDAC3 and HDAC6. Complexes were 
derived from their best docking pose within the enzyme 
binding and the simulation was performed using AMBER 14 
[34]. The complexes were placed in a rectangular 
parallelepiped water-box, an explicit solvent model for water 
(TIP3P) was used; the complexes were solvated with a 10 Å 
water cap. Sodium ions were added as counterions to 
neutralize the system. Prior to MD simulations, three steps of 
minimization were carried out, first optimizing the solvent, 
then relaxing the complex and the ligand. Particle mesh 
Ewald electrostatics and periodic boundary conditions were 
used in the simulation. The MD trajectories were run using 
the minimized structures as the starting conformations. The 
time step of the simulations was 2.0 fs with a cutoff of 10 Å 
for the non-bonded interaction, and SHAKE was employed to 
keep all bonds involving hydrogen atoms rigid. Constant-
volume periodic boundary MD was carried out for 500 ps, 
during which the temperature was raised from 0 to 300 K. 
Then, 9.5 ns of constant-pressure periodic boundary MD was 
carried out at 300 K by using the Langevin thermostat to 
maintain the temperature of our system constant, constraining 
all the α carbons, catalytic Zn and ligand with 10 kcal of 
harmonic force constant in the first 1600 ps; then the ligand 

was relaxed and the last 6.3 ns of simulation were performed 
without any constraint. General Amber force field (GAFF) 
parameters were assigned to the ligands, while partial charges 
were calculated using the AM1-BCC method. The MD 
trajectories were analyzed by using the MD Movie tool of 
Chimera, and through the cpptraj module of Amber14 [35] 
(see Fig S1). 

2.4. Cell Viability Assay  

OVCAR3, MDA-231 and MRC5 were maintained at 37 °C in 
a humidified atmosphere containing 5% CO2 according to the 
supplier (LGC Standards, Milan, Italy, EU). Normal (1.5 × 
104) and cancer (5 × 102) cell lines were plated in 96-well 
culture plates. The day after seeding, vehicle or compounds 
were added at different concentrations to the medium. The 
compounds Nitrofurantoin, Nitrofurazone (both from Sigma-
Aldrich, with Purity >98%) and Ricolinostat (from 
Selleckchem, with 99.89% purity) were solubilized in DMSO 
and added to the cell culture at a concentration ranging from 
200 to 0.02 μM. Cell viability was measured with Cell Titer-
Glo (G7571) after 96 h according to the supplier (Promega, 
Madison, WI, US) with a Tecan M1000 instrument. IC50 
values were calculated from logistical dose response curves 
[36]. Averages and standard deviations were obtained from 
triplicate experiments. 

2.5. Western Blot Analysis 

Cancer cells were pelleted and resuspended into RIPA buffer 
(10mM Tris-Cl (pH 8.0), 1% NP-40, 0.1% sodium 
deoxycholate, 0.1% SDS, 140 mM NaCl.) supplemented with 
a protease inhibitor mixture (Complete-EDTA, Roche, 
Switzerland) for protein extraction [37]. The amount of total 
proteins was measured with the Bradford method and 50 μg 
of proteins were loaded and run on a 4-12% TruPAGE™ 
Precast Gel utilizing the TruPAGE™ TEA-Tricine SDS 
Running Buffer (Sigma-Aldrich, St. Louis, MO, US). The 
proteins were separated for approximately one hour at 100 V. 
After electrophoresis, the proteins were transferred on a 
nitrocellulose membrane (Whatman International Ltd., UK), 
utilizing a TruPAGE™ Transfer Buffer (Sigma-Aldrich, St. 
Louis, MO, US) with 20% methanol for 1 hour at 100 V and 
1 hour at 70 V in ice. The membranes were blocked with 5% 
(w/v) skim milk in Tris-buffered saline Tween 20 solution 
(TBS-T) for 30 minutes and incubated overnight at 4 °C on a 
shaker with HDAC6 (Proteintech Group, Rosemont, IL, US; 
12834-1-AP), α-Tubulin (acetyl k40) (Abcam, Cambridge, 
UK; ab179484) and HSP70 (Santa Cruz, CA, US; sc-24) 
primary antibodies in 5% skim milk TBS-T [38]. The 
membranes were washed 3 times in agitation with TBST for 
5 minutes, incubated for 1 hour with secondary antibodies in 
5% milk TBS-T at RT, developed with enhanced 
chemiluminescence (ECL) solution, and visualized with 
ChemiDoc Imager instrument (Bio-Rad Laboratories, CA, 
US). 

3. RESULTS AND DISCUSSION 

3.1. Docking reliability studies 

In order to evaluate the best docking procedure for simulating 
the binding of different compounds into HDAC1, 3 and 6, a 
self- and cross-docking evaluations [39] were carried out by 
considering all crystal structures of human HDACs co-
crystallized with a hydroxamic inhibitor (see Table S1 in the 
Supporting Information), deposited in Protein Data Bank. For 
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HDAC4 and HDAC8 a cross-docking evaluation was 
possible (due to the presence of four ligand-protein 
complexes for each subtype) whereas, due to the limited 
number of ligand-protein complexes, for HDAC1, 2, 6 and 7 
a self-docking analysis was carried out. GOLD docking 
software was used applying ASP, ChemPLP, ChemScore and 
GoldScore fitness scoring functions [40] and considering also 
the possibility of applying a scaffold match constraint on the 
hydroxamate moiety deduced from the crystallographic 
ligand structures [41]. As shown in Fig. 1, measuring the 
root-mean-square deviation (RMSD) of the position of the 
docked ligands with respect to their experimentally 
determined disposition, the use of the ASP scoring function 
applying the scaffold match constraint was the procedure that 
showed the best results, with an average RMSD of 3.2 Å, and 
was therefore applied for further calculations.  

Fig. 1: RMSD results of cross-docking and self-docking analyses using the 

four GOLD docking procedures, in presence and absence of the scaffold 

match constraint. 

3.2. 3D-QSAR Modeling 

The CHEMBL web server [15] was inspected to obtain 
structures and activity data of molecules already tested 
against HDAC1, HDAC3 and HDAC6. The study was 
restricted to compounds with molecular weights between 250 
and 400 g/mol. Among the 1718 compounds with known 
activities on HDAC1, 428 on HDAC3 and 954 on HDAC6, 
just the 362 molecules which were tested against all three 
subtypes were considered. Among them, the five HDAC 
inhibitors that were in different stages of clinical trials 
(Vorinostat, Panobinostat, Dacinostat, Belinostat and Cudc-
101) were removed from this set and subsequently used for 
enriching an external database. The 357 compounds were 
submitted to docking studies into the X-ray structures of the 
three HDAC isoforms (PDB codes 5ICN [23], 4A69 [29] and 
5EDU [25] for HDAC1, HDAC3 and HDAC6, respectively) 
employing the ASP fitness scoring function. By applying the 
scaffold match constraint, all compounds matching less than 
two out of the four atoms of the hydroxamic moiety of the 
HDAC co-crystallized ligands were discarded. As a result, 
only 217 ligands survived the docking step. These 
compounds were then aligned and used as a training set for 
generating 3D-QSAR models through FLAP program 
(Fingerprints for Ligands And Proteins) [13]. The activities 
extrapolated from the CHEMBL database were imported in 
FLAP as pIC50 and this step produced some small fluctuation 

in the training set composition. In fact, some activities were 
not reported in the CHEMBL database as precise values and 
this required the elimination of 10 compounds from the 
HDAC1 training set and 14 from the HDAC3 one, thus 
resulting in 193 compounds. The software FLAP generated 
the Molecular Interaction Fields (MIFs) for the training set 
ligands using default probes; subsequently, the obtained 
MIFs were correlated with the corresponding ligands’ 
activities through a PLS calculation [42]. In Table 1, the 
statistical results in terms of correlation coefficients relative 
to a Leave One Out (LOO) cross validation are reported. The 
results were adequate to the system environment. In fact, the 
variability in the training set was very high and the binding 
site location allowed a very different disposition of docked 
compounds on the protein surface, in agreement with the 
experimental structures available through X-ray 
crystallography. In this context, the results showed a 
correlation higher than 0.9 and the cross-validation term 
indicated a good prediction (Q2 > 0.5). In particular, the best 
model was generated for the most populated training set of 
HDAC6, reaching a Q2 value of 0.67. 

Table 1. Statistical results of the 3D-QSAR calculation. 

 HDAC1 HDAC3 HDAC6 

R2 0.91 0.90 0.94 

Q2 0.56 0.54 0.67 

SDEP ext 0.82 0.69 0.57 

 

The good predictivity of the three HDAC models allowed 
their use for further calculations in virtual screening or 
activity predictions. 

3.3. External Evaluation and Virtual Screening Study 

A new dataset of compounds belonging to ChEMBL database 
was created for validating the 3D-QSAR models and to 
search for possible HDAC inhibitors among already known 
drugs. The dataset of approved drugs was used for the 
validation of our models as an enriched database in which 
known HDAC inhibitors were considered as true actives and 
all other compounds, with biological activity against other 
targets, were considered as decoys (see the Material and 
methods section in the Supporting Information). A CHEMBL 
query of approved small-molecule drugs retrieved a database 
of 6380 compounds that were subjected to the docking 
protocol already described. A docking result could be 
generated only for the 88 molecules that sufficiently matched 
the hydroxamate scaffold and thus passed the docking 
restraint, rarely with unfavorable steric clash forced by the 
constraint (e.g. Filanesib in HDAC1). The best docking poses 
of these compounds (some representative results, restricted to 
most interesting non-hydroxamic compounds, are reported in 
Figs. S2-S4) were used as an external test set for validating 
the three models, which also included 10 known HDAC 
inhibitors. Among these, Cudc-101 [43], Dacinostat [44], 
Panobinostat [45], Vorinostat [44] and Belinostat [45] were 
previously removed from the training set, being the best 
candidates as external test compounds due to their 
overcoming of many clinical trials. Moreover, Ricolinostat 
[46], which completed two clinical trials on multiple 
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myeloma patients and on healthy subjects [47], was not 
comprised in the training set because of its molecular weight 
of 434 g/mol. For these six reference ligands, IC50 values of 
HDAC1, HDAC3 and HADC6 were reported and their 
activities could be thus predicted quantitatively through our 
models. The remaining four known HDAC inhibitors 
included in our test set were not used for the training set 
because they lacked of IC50 data annotations. In particular, 
for Quisinostat and Abexinostat Ki values of inhibition were 
reported [48], indicating good activity especially against 
HDAC1 and lesser potency on HDAC6, but these values 
could not be used in the quantitative prediction due to lack of 
homogeneity among data. For Nicoxamat [49] only the 
activity/inactivity in a Western blot analysis was reported. 
Finally, no details about the selectivity profile of 
Remetinostat were known, in spite of its efficacy in reducing 
cutaneous T-cell lymphoma skin lesions in the Phase II trial 
[50]. Although Remetinostat was predicted to interact with 
HDAC8, HDAC6 and HDAC3 at 1 µM concentration with 
full score [15], we had no precise experimental information 
about its effect on these HDAC isoforms and its activity on 
HDAC1. However, we could still consider it as a reference 
inhibitor and check the behavior of this compound during the 
screening.  Therefore, our external database consisted of 78 
decoys and 10 known inhibitors.  

The database was screened through the HDAC1, HDAC3 and 
HDAC6 models; the predicted activities of all screened 
compounds are reported in Table S2. By just looking at the 
top-ranked ligands, it would seem that the HDAC3 model 
was the best in qualitatively discriminating actives from 
decoys, since 7 out of the first 10 compounds were known 
HDAC inhibitors. Nevertheless, the evaluation in terms of 
global quantitative prediction showed different results: the 
SDEP calculated on the six known ligands was 0.82 for 
HDAC1, 0.69 for HDAC3 and 0.57 for HDAC6, showing a 
better quantitative prediction for HDAC6 inhibition (see 
Table 1).  

An evaluation of the screening power of our model was 
performed through the ROC plots reported in Fig. 2 and 
calculating the enrichment factor (EF). For HDAC3, the ROC 
plot showed a classical behavior reaching the plateau after 
25% of database filtration, corresponding to an EF value of 
3.5. For HDAC6, the screening had weak efficiency, 
although better than a random performance, reaching the 
plateau after 40% of database filtration, with an EF of 2.2. 
Very peculiar was the trend of HDAC1 screening: 30 decoys 
were ranked between the 3rd and 4th active compound, 
causing a stationary trend of the ROC plot, which increased 
its slope in the 40 - 45% range of database filtration. The 
definitive plateau of the curve was reached around 50% of 
the ranked database, corresponding to an EF value of 1.6. In 
addition to these parameters, we checked the early-filtered 
decoys for better analyzing the performance of these models. 
For example, Remetinostat was considered an early-filtered 
decoy for HDAC1 and HDAC3, but it was an actual HDAC 
inhibitor without information about subtype activity [50]. 
Bufexamac, an early-filtered decoy for HDAC6 model, was 
found to exhibit HDAC activity with moderate selectivity for 
HDAC6 [51], while Benurestat was a urease inhibitor [52], 
but was predicted as HDAC1 and HDAC6 inhibitor in the 
CHEMBL target predictions section. Some early-filtered 
decoys were MMP inhibitors (Marimastat, Apratastat, 
Prinomastat), which share with HDAC inhibitors the zinc 

binding groups [53]. Interestingly, a dual HDACs/MMPs 
inhibition was recently suggested as a mechanism to improve 
the response rate in treating tumors [54], and this would 
inspire interesting further studies on these decoys in a 
separate context. Overall, all three models were able to 
discriminate actives from decoys; despite the lower EF 
registered for the HDAC1 model, this performed significantly 
better than random selection and was able to early-filter 
decoys that are most likely to be HDAC inhibitors. 

Fig. 2: ROC curves of the VS. FLAP receptor-based filtering results 

obtained for the CHEMBL drugs database vs known HDACs inhibitors 

Hit compounds that survived the screening filter in HDAC1, 
HDAC3 and HDAC6 models (see Table S2) were analyzed to 
further assess their potential HDAC inhibition activity. 
Among these compounds, nine were predicted as potential 
active against all three analyzed HDACs. This requirement, 
the surviving in all three HDACs, in addition to FLAP 
prediction, allowed to discard potential false positives like 
Filanesib. As shown in Table 2, hits comprised Ricolinostat, 
Cudc-101, Dacinostat and Panobinostat, which are known 
HDACs inhibitors, and four nitrofuran derivatives 
(Nidroxyzone, Nifurdazil, Nifurtoinol and Nitrofurantoin). 
The most evident result of this work was that the nitro group, 
not emerged from previous large-scale studies [55], was 
highlighted as a possible ZBG for HDACs. Actually, some 
preliminary evidence of inhibitory activity against other 
metalloenzymes was already shown for Nifursol and 
Nitrofurantoin: on DRUGMATRIX database [56], an 
inhibition of the enzymatic activity (below 50%) of CA 
(carbonic anhydrase) II, MMP (metalloproteinase) 1, MMP9 
and ACE (angiotensin-converting-enzyme inhibitor) was 
reported for these compounds, tested at a concentration of 10 
µM. However, no evidence of HDACs inhibitory activity has 
ever been reported for these compounds. An ADMET [57] 
properties evaluation of these compounds has been performed 
using the SwissADME website. No Lipinski rule violations, 
no CYP inhibition or ability to be a substrate of Pgp have 
been detected for all nitrofuran derivatives. The commercial 
availability and the structural similarity of these four 
compounds were analyzed: Nidroxyzone, presenting a free 
hydrazinecarboxamide moiety instead of the cyclic analogues 
of the other hits, was not available in stock. For this reason, 
we checked the most similar candidates among the first 
discarded decoys. Nifurethazone, predicted as the best 
potential HDAC6 inhibitor but not shared with HDAC1 and 
HDAC3, was also not available. Nitrofurazone, which passed 
the screening of HDAC1 and HDAC3 models, and was 
predicted to be slightly less active with respect to Nicoxamat 
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against HDAC6, was available. Therefore, we analyzed the 
stability of its predicted binding mode into HDAC1, HDAC3 
and HDAC6 using molecular dynamics (MD) simulations; 
the same analysis was also performed for Nitrofurantoin, the 
only common hit available in stock that shared 60% of 
Tanimoto similarity with Nifurdazil and Nifurtoinol.  

Table 2. VS hits and their common therapeutic use. 

Hits Structure Activity 
[a] 

Ricolinostat 

 

Epigenetic  

regulator 

Benurestat 

 

Urease 

inhibitor 

Cudc-101 

 

Epigenetic  

regulator 

Dacinostat 

 

Epigenetic  

regulator 

Panobinostat 

 

Epigenetic  

regulator 

Nidroxyzone 

 

Anti-

infective 

Nifurdazil 

 

Anti-

infective 

Nifurtoinol 

 

Anti-

infective 

Nitrofurantoin 

 

Anti-

infective 

[a] Ref. [15] 

 

3.4. Molecular Dynamics Evaluation 

Molecular dynamics simulation provides several 
conformations of a protein to sample the thermodynamically 
viable flexibility of residues [16]. This is very helpful in a 
variety of application, such as model refinement, allosteric 
regulation, identification of transition states in a 
complexation [58], homology modelling [59,60] or 
assessment of the stability of docking complexes [61].   
Nitrofurazone and Nitrofurantoin in complex with HDAC1, 
HDAC3 and HDAC6, were studied through 10 ns of 
molecular dynamics simulation and the reliability of their 
predicted binding modes were analyzed. As reported in Fig. 
S1, all complexes showed a remarkable stability during the 
simulation, with only a small fluctuation of the protein α 

carbons in terms of RMSD from the starting coordinates 
(dark RMSD plot). The docking pose of Nitrofurantoin was 
well retained in HDAC6: just a deviation of 2.0 Å was 
registered for the ligand before reaching the equilibrium pose. 
In HDAC1 (Figs. 3a and S5a) the whole zinc coordination 
environment was subjected to a shift toward the inner part of 
the protein, highlighted by ligand RMSD values of about 5.0 
Å after 4 ns of simulation. The zinc coordination was anyway 
guaranteed in both cases by a distance O2N–Zn of 2.3 and 2.5 
Å, respectively (see Figs. 3c and 3a, S5c and S5a). In 
HDAC3, the rotation of the furan ring moved the nitro group 
of the ligand away from the metal ion (see Figs. 3b and S5b). 
Therefore, the ligand lost their interactions with zinc, 
although it occupied the binding site. Nitrofurazone was less 
stable during the simulation; in HDAC1 and HDAC3 
complexes the O2N–Zn distance  

Fig. 3: Disposition after MD simulations of Nitrofurantoin in HDAC1 (a), 

HDAC3 (c) and HDAC6 (e), and of Nitrofurazone in HDAC1 (b), HDAC3 

(d) and HDAC6 (f). 

reached a value of about 6 Å, nevertheless values of 4.5 and 
5.6 Å were measured in the minimized average structure 
(Figs. 3d and 3e, S5d and S5e). In HDAC6 the system 
showed a considerable fluctuation of both O2N–Zn distance 
and ligand RMSD, around an average value of 3.0 Å; 
nevertheless, the ligand maintained its binding mode and its 
interactions with the zinc ion. In fact, the minimized average 
structure of Nitrofurazone in complex with HDAC6 (Figs. 3f 
and S5f) showed a distance between the oxygen and the zinc 
ion corresponding to 2.8 Å, which could be considered as the 
threshold distance for metal coordination. Differently, the 
minimized average structure of nitrofurantoin in complex 
with HDAC6 highlighted a more stable zinc coordination 
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complex with an oxygen of the ligand nitro group interacting 
with the zinc ion at a distance of 2.3 Å and the other nitro 
oxygen forming an H-bond with His610, thus further 
stabilizing the ligand-protein complex. 

Compared to classical hydroxamate inhibitors, which use 
carbonyl and hydroxamate oxygen atoms for zinc 
coordination, the nitro group loses one coordination point. 
The interaction between Asp742 and zinc becomes a 
bidentate-like coordination and His610 is still involved in the 
inhibitor stabilization. A similar role of the nitro group was 
already reported in the zinc coordination of 2-benzyl-3-
nitropropanoic acid in the carboxypeptidase A [62] (PDB 
code 2RFH). With regards to the nitrofurantoin tail, it was 
highly stabilized on the binding pocket surface through a 
strong stacking interaction formed among the ligand 
imidazolidinedione moiety (well-known to establish such 
interactions) [63], Phe620 and Phe680 (Fig. 3c). These 
interactions surely contributed to stabilize the binding mode 
of nitrofurantoin during the MD simulation. The metal 
coordination in HDAC6–nitrofurazone complex was more 
susceptible to some MD fluctuation, which strongly 
depended on the tail plasticity of the inhibitor. The polar and 
water exposed semicarbazone group was highly flexible 
during the simulation and allowed a significant shift in the 
ligand position. During the MD simulation, the nitro group of 
nitrofurazone competed with His610 for zinc coordination, 
reaching a total displacement after about 7 ns of MD. After 
this peak, the inhibitor returned to the binding site and 
restored the coordination, keeping it for next 2 ns (Fig. S1). 
The fluctuation could be an indication of the poor stability of 
the system, but the inhibitor propensity to restore the 
coordination after leaving the binding site suggested the 
presence of strong interactions with HDAC6 residues and 
catalytic zinc. 

3.5. Western Blot Analysis and Cell Viability Test 

Based on the MD results, nitrofurantoin and nitrofurazone 
were tested to evaluate their HDAC6 inhibitory activity. The 
classical biochemical assay for measuring HDAC6 activity is 
based on a fluorogenic substrate, which produces a 
fluorophore that can be measured using a fluorescence reader. 
Both nitrofurantoin and nitrofurazone are yellow powders 
that can absorb light in the region of detection and affect the 
readout. Therefore, fluorescence-based assays could not be 
used to test our hits for HDAC6 inhibitory activity. For this 
reason, the two compounds were directly evaluated for their 
anticancer activities on ovarian (OVCAR-3), breast (MDA-
231) cancer and normal MRC5 cells, using ricolinostat (a 
highly selective HDAC6 inhibitor) as a positive control. 
Modest cytotoxicity was already registered for nitrofurantoin, 
used as a reference compound, on some human cancer cell 
lines in studying cytotoxic and antibacterial activities of new 
heteroaryl-acrylonitriles [64]. More recently, because 
nitrofurans are a class of compounds that is poorly explored 
with respect to their anticancer potential, Andrade et al. 
investigated the anticancer effects on HL-60 leukemia cells 
of a nitrofurantoin derivative, n-pentyl-nitrofurantoin (NFP), 
which resulted in about 4 fold more cytotoxic against HL-60 
leukemia cells than against normal cells [65]. Also 
nifuroxazide produced an effective decrease in the viability 
of multiple myeloma cells, due to inhibition of STAT3 [66], 
which was successively discovered to be modulated by 
HDAC inhibition [67]. In order to test the anticancer 

activities in cell lines that express HDAC6 high protein level, 
a western blot analysis was carried out. As shown in Fig. 4, 
HDAC6 protein is abundant in all cancer cell lines tested. 

Fig. 4: Protein expression of HDAC6 in different cancer cell lines. Heat 

shock protein (HSP)70 antibody was utilized as control. 

Nitrofurantoin caused a significant inhibition of cell viability, 
with IC50 values of 21.1 and 54.2 μM for the OVCAR-3 and 
MDA-231 cell lines, respectively, whereas it proved to be 
inactive against noncancerous human fibroblast lung cells 
MRC5 (p-values << 0.001 for both cancer cell lines). Same 
trend, but slightly weaker activities, were registered for 
nitrofurazone, in agreement with the lower stability of its 
HDAC6 complex compared to nitrofurantoin. The results 
showed an activity just three times weaker than ricolinostat in 
OVCAR-3 cells (Fig. 5), which could be consistent with the 
weaker zinc coordination of the nitro group with respect to 
the hydroxamate group. 

Fig. 5: Cell growth inhibitory activities (IC50) of nitrofurantoin and 

nitrofurazone. 

The optical interference precluded the application of 
fluorescence-based methods, which could provide clear and 
definitive information on the affinity of nitrofuran derivatives 
for HDAC6. With the aim to provide further data to confirm 
this hypothesis, OVCAR3 cell protein extracts were prepared 
and the relative levels of acetylated alpha-tubulin (HDAC6’s 
target) were determined by Western blot using an anti–
acetylated tubulin antibody. Although no major changes in 
protein expression were observed for HDAC6 in the presence 
of Nitrofurazone and Ricolinostat, there is a reduction of 
HDAC6 protein level in the presence of Nitrofurantoin (Fig. 
6). For all the compounds, the western blot analysis 
demonstrates an increase in acetylated alpha-tubulin in 
OVCAR3 cells. This result confirms the ability of 
Nitrofurantoin and Nitrofurazone to be novel substrates for 
HDAC6. The PLS pseudocoefficient plot of the 3D-QSAR 
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model (see Fig. S6) appears to mainly correlate the activity 
with the descriptors derived from the DRY and N1 MIFs, 
which are related to the furan and carbonyl moieties of 
Nitrofurantoin, respectively. 

Fig. 6: Effect of nitrofurazone, nitrofurantoin and ricolinostat on the 

expression of HDAC6, acetylated alpha-tubulin in OVCAR3 cells. Heat 

shock protein (HSP)70 antibody was utilized as control. 

The ingrained interaction between nitrofuran derivatives and 
the catalytic zinc ion that emerged in this study represents a 
first attempt to use nitro groups as ZBGs in the design of 
novel HDAC inhibitors. Furthermore, the cellular growth 
reduction observed for the two compounds in cancer cell 
lines overexpressing HDAC6, and the increased expression 
of acetylated alpha-tubulin in the presence of both 
compounds, corroborated the possible drug repositioning of 
well-known nitrofuran derivatives as HDAC6 inhibitors, 
working for ameliorating their pharmacokinetic profile. The 
inactivity of the compounds against noncancerous human 
cells suggested their potential applications in anticancer 
therapy, not correlated to their anti-infective function. 

4. CONCLUSION 

In the present work, a docking/3D-QSAR-based virtual 
screening approach was developed with the aim of 
identifying new antitumor agents, potentially active in 
ovarian cancer treatment, among drugs already registered for 
other indications. The applied computational workflow 
suggested as potential HDAC1/HDAC3/HDAC6 inhibitors 
nitrofuran derivatives, known as anti-infective drugs. Among 
these, nitrofurantoin and nitrofurazone also showed good 
stability in complex with HDAC6, based on MD simulations 
studies, maintaining the coordination with the catalytic zinc 
ion. The role of the nitro group as ZBG was occasionally 
reported for other enzymes [62], but not for HDACs. In 
addition to the potential identification of a new ZBG, this 
study suggested a new secondary role of nitrofuran 
derivatives as HDAC6 inhibitors. The experimental studies 
herein reported, revealed significant anticancer activity 
against cancer cell lines overexpressing HDAC6, 
corroborating a possible direct involvement in anticancer 
activity. Furthermore, the increased expression of acetylated 
alpha-tubulin in OVCAR3 cells in the presence of our 
nitrofuran derivatives is coherent with the inhibition of 
HDAC6, suggesting a further repurposing of these anti-
infective drugs. The inactivity of nitrofurantoin against 
noncancerous human cells encouraged potential applications 
in anticancer therapy. 

List of Abbreviations: EF, Enrichment Factor; HDAC, 
Histone Deacetylase; LOO, Leave One Out; MD, Molecular 
Dynamics; MIF, Molecular Interaction Field; MMP, Matrix 
Metalloproteinase; PDB, Protein Data Bank; PLS, Partial 
Least Squares; RMSD, root mean square deviation; R2, 
correlation coefficient; SAR, Structure−activity relationship; 
SDEP, Standard Deviation of prediction errors; VS, Virtual 
Screening; ZBG, Zinc Binding Group. 
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