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Abstract—Multi-access Edge Computing (MEC) allows users 

to run applications on demand near their mobile access points. 

MEC applications will exploit 5G infrastructure, and they will 

have to be designed by taking into account the characteristics of 

5G mobile networks. This work describes how to use a system-level 

simulator of 5G networks –  namely Simu5G, which evolves the 

popular 4G network simulator SimuLTE – as a real-time 5G net-

work emulator. This allows designers of networked applications – 

and MEC ones in particular – to use it as a testbed during the de-

ployment. We describe the system setup of Simu5G as an emula-

tor, and its emulation capabilities and scale. Moreover, we present 

a case study of a MEC testbed using Intel’s Open Network Edge 

Services Software (OpenNESS) toolkit, based on a recent demon-

stration in 5GAA (5G Automotive Association).   

Keywords—Simulation, Emulation, Multi-access Edge Compu-
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I. INTRODUCTION  

Fifth-generation (5G) cellular networks will bring significant 
changes to the wireless networking landscape. In fact, they will 
enable unprecedented ICT-based services, such as smart cities, 
autonomous vehicles, augmented reality and Industry 4.0. Most 
of these services will be composed of both communication and 
computation, thanks to the deployment of computing and storage 
capabilities at the edge of the mobile network. An independent, 
but complementary innovation is in fact represented by Multi-
access Edge Computing (MEC), which will endow the mobile 
network with cloud-computing capabilities, to allow mobile us-
ers to leverage the power of complex algorithms such as those 
based on artificial intelligence. While MEC is independent of the 
underlying technology (it can already coexist with the current 4G 
networks, in fact), it is foreseen that the progressive deployment 
of 5G will be an enabler for more powerful MEC capabilities.  

The MEC infrastructure is expected to host third-party dis-
tributed applications, which will open a market segment for ME 
app developers. These developers have a pressing need for in-
struments for fast prototyping and credible performance evalua-
tion. In fact, some of the services that they will be developing 
may have stringent latency constraints, such as autonomous 
driving or factory automation. For these, changes in the network 
configuration or deployment may have a drastic impact on their 

timing properties. When engineering apps, developers need to 
know in advance what to expect from a 5G network in terms of 
bandwidth and latency, at the very least. On the other hand, 
MEC infrastructure owners (often 5G operators themselves) will 
need to assess the performance of the services they are hosting 
in a controlled environment, so as to, e.g., evaluate alternative 
deployments or network functions partitioning. There is there-
fore a need for instruments that allow one to quickly setup a 
testbed, where the two sides of MEC apps exchange traffic 
through a 5G network. Unfortunately, 5G network testbeds are 
hard to come by, especially for developers.  

The authors of this paper recently developed Simu5G, a sys-
tem-level simulator of 5G New Radio networks based on OM-
NeT++, which evolves from the well-known SimuLTE simula-
tor of LTE/LTE-A networks. In this paper, we show how to con-
figure Simu5G to run as a network emulator, allowing a user to 
test the performance of real applications when they communi-
cate via a 5G network. These applications can be, for instance, 
the two counterparts of a MEC app, one running on a 5G User 
Equipment (UE) in mobility and the other on a MEC host con-
nected to the 5G infrastructure. This allows application develop-
ers to test the performance of their software on a 5G network, 
under controlled conditions (e.g., as for load, channel quality, 
mobility, etc.) in a pre-production environment, so as to obtain 
confidence regarding their performance. We describe the setup 
of Simu5G as an emulator, which includes some non-trivial con-
figurations of the OS networking functions, and we analyze the 
performance of the emulation, identifying the limiting factors in 
a network-emulation scenario - e.g., the maximum number of 
simultaneous users that can be simulated in a scenario, or the 
maximum traffic throughput that can be carried. Moreover, we 
describe the setup and configuration of an end-to-end MEC/5G 
testbed, where Intel’s Open Network Edge Services Software 
(OpenNESS) is used as a MEC host, running applications that 
interact with the end-user apps on the UE through an emulated 
5G network. 

The rest of the paper is organized as follows: Section II de-
scribes Simu5G and shows how to configure a system to run it 
as an emulator. Section III evaluates the emulation capabilities 
of Simu5G on a standard desktop computer. Section IV presents 
a comprehensive testbed involving Simu5G and MEC applica-
tions running on the Intel OpenNESS toolkit. Finally, Section V 
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draws conclusions and highlights directions for future work. 

II. SIMU5G 

A. Description of the simulator 

Simu5G [3][4] is the evolution of the well-known SimuLTE 
4G network simulator [1][2] towards 5G NewRadio access. It is 
based on OMNeT++ [5]  and it incorporates models from the 
INET library [6], which allows users to construct end-to-end 
TCP/IP scenarios, involving routers and end hosts. Simu5G sim-
ulates the data plane of both the core and the access networks.  

As far as the core network (CN) is concerned, it allows users 
to instantiate a User Plane Function (UPF) or Packet GateWay 
(PGW) and an arbitrary topology, where forwarding occurs us-
ing the GPRS tunneling protocol (GTP).  As far as the radio ac-
cess is concerned, it allows one to instantiate gNBs and UEs, 
which interact using a model of the New Radio protocol stack. 
gNBs can be either connected to the CN directly, as shown in 
Fig. 1 (left), in the so-called StandAlone (SA) deployment. Al-
ternatively, a gNB can operate in an E-UTRA/NR Dual Connec-
tivity (ENDC) deployment, shown in Fig. 1 (right), where LTE 
and 5G coexist. This last deployment is expected to be the most 
common in the early phases of 5G deployment. In this last con-
figuration, the gNB works as a Secondary Node (SN) for an LTE 
eNB, which acts as Master Node (MN) connected to the CN. 
The eNB and the gNB are connected through the X2 interface 
and all NR traffic traverses the eNB first. UEs have a dual stack 
(LTE and NR), with a Packet Data Convergence Protocol in 
common to allow in-sequence delivery to the higher layer. 

As far as the physical layer is concerned, Simu5G follows 
the approach already used by SimuLTE, i.e. to model the effects 
of propagation on the wireless channel at the receiver, without 
modelling symbol transmission and constellations. When a 
sender sends a MAC PDU to a receiver, the two OMNeT++ 
modules exchange a message. On receipt of said message the 
receiver performs a series of operations, summarized as follows: 

- compute the reception power of the signal on each Resource 
Block (RB) 𝑥 occupied by the MAC PDU, starting from the 
transmission power at the sender and applying a channel 
model to model pathloss, fading and shadowing; 

- compute the interference by summing up the power received 
by all the other senders that interfere on the same RBs (using 
the same transformation as above); 

- compute the SINR on each RB 𝑥, using obvious algebra; 

                                                           
1 In this paper, we refer to version 3.6.4 of the INET library 

- ∀𝑥, compute 𝑃𝑥 = 𝐵𝐿𝐸𝑅(𝑀𝐶𝑆, 𝑆𝐼𝑁𝑅𝑥), the error probabil-
ity for that RB given the Modulation and Coding Scheme 
(MCS) used by the sender and the received SINR. This is 
done by using Block Error Rate (BLER) curves, obtained 
from link-level simulators (e.g., [8]); 

- compute 𝑃 = 1 − ∏ (1 − 𝑃𝑥)𝑥 , the error probability of the 
whole MAC PDU, extract a sample of a uniform random 
variable, and test its value against 𝑃 to check if the reception 
was correct. 

It is shown in [7] that the above modeling reduces the com-
putational complexity of the decoding operation, hence the sim-
ulation running time, it improves evolvability, making it easy 
e.g. to add new modulations, and it still allows arbitrary channel 
models to be used. 

Simu5G simulates radio access on multiple carriers, in both 
Frequency- and Time-division duplexing (FDD, TDD). Differ-
ent carrier components can be configured with different FDD 
numerologies and different TDD slot formats. Moreover, differ-
ent carrier components can have different channel models. 
Moreover, it incorporates functionalities already modelled in 
SimuLTE, e.g. UE handover and network-controlled device-to-
device (D2D) communications, both one-to-one and one-to-
many. Being based on OMNeT++, it allows one to incorporate 
models from other OMNeT++ libraries, such as user mobility 
(e.g., through VEINS [9] or LIMOSIM [10]). 

B. Real-time emulation 

OMNeT++ is a discrete-event simulation framework, where 
time advances because events are processed: every event carries 
a firing time, and events are sorted by firing time into an event 
queue. When the next future event is extracted from the queue, 
the current simulated time is advanced to that event’s firing time. 
However, OMNeT++ allows one to use (among others) a real-
time event scheduler, according to which the flow of simulated 
time is slowed down to the pace of real (wall-clock) time. This 
is only possible if simulated time flows faster than the real time, 
i.e. if the density of events and their processing time are not such 
as to overload the system processing capacity. The above condi-
tion depends on the hardware/software system, on how a simu-
lator is coded, but also on the particular scenario being run. Typ-
ically, there will be a scale in terms of number of UEs, gNBs, or 
traffic transmitted within a 5G network, after which a given sim-
ulation will not be able to run in real time.  

Moreover, the INET library1 comes with modules that act as 
a bridge between the simulation environment and the real net-
work interfaces in the host operating system. Packets received 
by the real interfaces appear in the simulation, whereas simu-
lated packets sent to the latter are sent out on the real network 
interface. To do this, the INET library provides a network inter-
face module, called ExtInterface, which has to be added to the 
simulated network devices that need to receive/send packets 
from/to the host operating system. The ExtInterface modules 
capture packets using the PCAP library [11], which makes a 
copy of packets entering the real network interfaces and stores 
them into a buffer. An emulation-enabled real-time scheduler is 
responsible for fetching such packets from the PCAP buffers, to 
convert them into the equivalent C++ object representation used 
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in the simulation, and to add them to the event queue, where they 
are processed like other events generated within the simulation. 
However, the real-time scheduler fetches new packets from the 
PCAP buffer only when the simulation time is in line (hence-
forth, coherent) with wall-clock time. When the simulation time 
is slower than the wall-clock time, real packets stay in the PCAP 
buffer and accumulate delay, until coherence is resumed. More-
over, if real packets arrive faster than the rate at which the sched-
uler drains the PCAP buffer, the latter fills up and new packets 
are discarded. When packets need to be sent outside the simula-
tion environment, they are transmitted to the real network using 
raw sockets. The above features provided by OMNeT++ and the 
INET library allow one to use Simu5G as a network emulator, 
that transports packets of real applications, delaying them the 
way a 5G network would. 

C. Configuring a system to run Simu5G as an emulator 

We now describe the actions needed to configure a system 
to make Simu5G capture packets from real network interfaces 
and run a network emulation. 

Without loss of generality, we refer to the simple architec-
ture shown in Fig. 2, where Host A runs Simu5G and is physi-
cally connected to two hosts, namely hosts B and C, forming two 
different IP networks. More complex configurations can also be 
envisaged like, e.g., having one of the hosts located remotely 
and reachable using a public IP address. The aim is to configure 
a testbed where the network traffic between two applications 
running on, respectively, hosts B and C flows through a Simu5G 
instance running on Host A.  

In order to let packets flow between B and C, we need to 
configure A’s operating system (OS) to enable forwarding of IP 
packets. Moreover, the appropriate routes have to be added to 
the hosts’ IP routing tables so as to forward packets towards the 
correct outgoing network interface. In more complex scenarios, 
also new Network Address Translation (NAT) rules may be 
needed if it is necessary to exit to the public Internet. 

Once the traffic path has been set, we need to have packets 
that reach Host A traverse Simu5G. Since packets captured by 
Simu5G are copied, rather than redirected, to the emulation, we 
have to prevent the original packets from following the direct 
path between the two interfaces, as shown in Fig. 2. This is ac-
complished by adding packet-discard rules to the OS firewall. 

We also need to configure Simu5G so that it captures packets 
from the real network interfaces and routes them within the em-
ulated network. Considering the simple network in Fig. 2, pack-
ets coming from Host B are injected into the router module of 
the running instance of Simu5G, whereas packets coming from 
Host C are injected into the ue module. To do this, router and ue 
modules are both equipped with an ExtInterface submodule. The 
latter has two configuration parameters to be specified: i) the 
name of the interface the packets are captured from, and ii) which 
packets need to be captured, i.e. based on their 5-tuple. Further 

implementation details can be found on the Simu5G website [4]. 

III. PERFORMANCE ANALYSIS OF SIMU5G EMULATION  

As anticipated in the previous section, real-time emulation is 
only possible if event processing occurs faster than the real time. 
This depends on the scenario being simulated: for instance, the 
more UEs are simulated in the scenario, the more events will be 
triggered just due to their CQI reporting alone. In this section, 
we evaluate the performance of Simu5G emulation, with the aim 
to identify which factors constrains the emulation capabilities, 
and what a user can expect to be able to run on an off-the-shelf 
desktop computer. To do so, we setup a system where two hosts 
run a distributed request-response application, whose packets 
are forwarded through an intermediate host running the emu-
lated 5G network using Simu5G. In particular, one side of the 
communication acts as a UE of the 5G network, receiving re-
quests from a remote server and sending back responses. 

Ideally, to ascertain if and when the emulation is coherent, 
we should log the system time 𝑇𝑖  and the simulated time 𝑡𝑖 
whenever the event “beginning of TTI 𝑖” is fired. When 𝑇𝑖 −
𝑇0 > 𝑡𝑖 − 𝑡0 + 𝛿, with 𝛿 being the measurement tolerance, the 
emulation can be impaired. Unfortunately, with TTIs being at or 
below 1 ms, measuring this is impossible in practice – it would 
imply that the host machine would be serving system calls to 
obtain the wall-clock time instead of advancing the emulation. 
Performing the same test at longer periods (say, every 𝑁 TTIs, 
𝑁 ≫ 1) is certainly feasible, but inconclusive, since it does not 
guarantee coherence at each TTI. For the above reasons, we ex-
ploit an indirect measurement technique, which is both non-in-
vasive and sufficiently reliable. As discussed in section II.B, a 
characteristic of OMNeT++, un-documented to the best of our 
knowledge, is that packets from real host’s interfaces are delayed 
– and eventually discarded – whenever the emulation is not co-
herent. Therefore, by simply counting transmitted/received IP 
packets at the interfaces and verifying their RTT we can have an 
indirect coherence assessment: when the emulation is not coher-
ent, the number of transmitted packets will be strictly larger than 
the number of received packets and/or the RTT will diverge. We 
are aware that this only implies that the emulation was coherent 
at the time of arrival of packets at the interfaces, which does not 
necessarily warrant that it was at any other (unobserved) time; 
however, arrival times at the interfaces are those when coherence 
matters the most, which makes this method quite reliable. 

A. Experimental configuration 

The setting of the testbed is shown in Fig. 3 and is composed 
of three general-purpose computers, namely Host A, B and C, 
whose hardware details are as follows: 

• Host A is a desktop computer equipped with an Intel 
Core(TM) i7 CPU at 3.60 GHz, with 16 GB of RAM and 
a Linux Kubuntu 16.04 OS. It is endowed with two 1Gb/s 
Ethernet NICs which connect it to Hosts B and C; 

• Host B is a desktop computer running a Linux Ubuntu 
18.04 OS on an Intel CoreTM i7 CPU at 3.60 GHz, with 16 
GB of RAM and one 1Gb/s Ethernet NIC; 

• Host C is an Apple MacBook Pro with a macOS 10.15.3 
(Catalina) OS, equipped with an Intel Core(TM) i5 CPU at 
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2.40 GHz, 8 GB of RAM and one Thunderbolt-2 NIC en-
dowed with an Ethernet adapter. 

The computers are physically connected via Ethernet cables 
as shown in Fig. 3. In particular, Host B and C are connected to 
Host A’s interfaces called eth0 and eth1, respectively. The 
Simu5G network emulation is run on Host A, which installs 
OMNeT++ version 5.3 and the INET library version 3.6.4. The 
emulated network scenario is depicted in Fig. 6 and includes one 
gNB and one UE, called realUe in the figure. The latter is the 
counterpart of Host C in the emulation as it is endowed with an 
ExtInterface module to capture packets coming from Host C on 
eth1. Likewise, the router has one ExtInterface module that 
captures packets coming from Host B on eth0. With this con-
figuration, packets sent by Host B appear into the emulation at 
the router and are forwarded towards the UE, which in turn sends 
them outside the emulation. Then, Host A’s OS takes care of 
forwarding them towards Host C. The reverse path is traversed 
by packets sent by Host C and directed to Host B.  Moreover, a 
number of simulated UEs are added to the network to create a 
more realistic scenario: these UEs communicate with the simu-
lated server, generating traffic that remains within the simulator. 

The real network traffic is generated by an application, 
coded in C++, composed of a sender and a receiver side running 
on Host B and C, respectively. The two endpoints establish a 
TCP connection using a socket pair, then the sender generates 
and transmits periodic request messages. For each request, the 
receiver replies with a response message. Each request message 
is tagged with a sequence number and a timestamp so that the 
Round-Trip Time (RTT) of the communication can be measured 
upon reception of the associated response. The size 𝐿𝑟𝑒𝑞  and 
𝐿𝑟𝑒𝑠𝑝 of both request and response messages can be configured, 
as well as the requests’ sending interval 𝑇. 

In order to run the testbed, the receiver application on Host 
C can be launched at any time, since it will remain idle, listening 
to incoming connections. On the other hand, the sender applica-
tion on Host B needs to start the traffic only after the network 
emulation on Host A has been started. In order to automatize the 
process, we created a script launcher to be run on Host A, coded 
in Perl, that performs the operations depicted in Fig. 4. It accepts 
parameters such as the number of simulated UEs, the number of 
RBs and NR numerology index, and writes them to an INI con-

figuration file. Then, it launches Simu5G, which sets up the net-
work scenario according to the parameters found in the INI file 
and starts the emulation. Five seconds after the emulation has 
started, the launcher script sends a message via a socket to a lis-
tener script running on Host B, and the latter triggers the sender 
application to start the real traffic.   

B. Experiments results 

In the following experiments, we make sure that the number 
of packets sent and received is the same, and we measure the 
RTT to understand when the emulation starts struggling, de-
pending on the scenario. We first need to infer a baseline RTT 
to understand when this happens. To do so, we assess the over-
head introduced by the OMNeT++ framework to capture pack-
ets from the real host’s interface and injecting them into the 
emulation. To do this, we compare the two scenarios depicted in 
Fig. 5: one (called direct path) where Host B communicates with 
Host C via Host A, which only acts as a router, i.e. it forwards 
data packets between its two interfaces without running any user 
application. In the other one (called emulation baseline) Host A 
runs a very simple OMNeT++ emulation, consisting of an INET 
router that forwards packets between its two infinite-speed in-
terfaces. Since the emulated network is minimal, the perfor-
mance penalty incurred by running the emulation baseline is 
limited, hence differences between the two scenarios should be 
accountable to the capturing of packets by OMNeT++. We com-
pare the RTT measured in the two scenarios, by computing the 
average of the RTT of 300 requests, considering a sending inter-
val 𝑇 = 1𝑠. Since the measured RTT is considerably smaller 
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Fig. 6: Emulated network scenario on Host A 

TABLE 1 - MAIN NETWORK PARAMETERS 

Parameter Name Value 

Carrier frequency 2 GHz 

Number of RBs  10 

Fading + shadowing Enabled 

gNB Tx Power 46 dBm 

gNB antenna gain 8 dBi 

gNB noise figure 5 dB 

UE antenna gain 0 dBi 

UE noise figure 7 dB 

CQI reporting period 80 TTIs 

Path loss model [12] 

UE mobility Static 

Traffic type Req-resp 

 



than 𝑇, we can assume that the obtained values are independent 
and that TCP congestion control plays no significant role. We 
also set 𝐿𝑟𝑒𝑞 = 1000𝐵 and 𝐿𝑟𝑒𝑠𝑝 = 4𝐵. The results are shown 
in Fig. 7. The average overhead introduced by the capture mech-
anism is ∆𝑒= 𝑅𝑇𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑅𝑇𝑇𝑑𝑖𝑟𝑒𝑐𝑡 = 0.494 𝑚𝑠. The 95% 
confidence intervals, shown in the figures, are negligible, which 
testifies that the RTT variability is small. 

As a second step, we validate the testbed by verifying that 
real packets injected into the emulation are treated the same way 
as packets generated within the emulation, i.e. they experience 
the same latency when traversing the emulated 5G network. To 
accomplish this, we run a simulation where the same request-
response application is implemented within Simu5G. With ref-
erence to Fig. 6, the sender is on the server, whereas the receiver 
is on one simulated UEs. We compare the RTT measured in this 
simulated scenario and the one obtained by running the whole 
testbed with the real application and Host A running Simu5G. 
The main parameters of the cellular network are shown in Table 
1. Fig. 8 and Fig. 9 show the RTT obtained using numerology 
index 𝜇 = 0 and 𝜇 = 1, respectively. In the scenario with 𝜇 =
0, the RTT differs by ∆𝜇=0= 0.874 𝑚𝑠, whereas for 𝜇 = 1, the 
lag is ∆𝜇=1= 1.312 𝑚𝑠. Clearly, the larger RTT for the emula-
tion is due to packets traversing the emulated network and being 
captured by the emulation: ∆𝜇=0 and ∆𝜇=1 are in fact compara-
ble to the 𝑅𝑇𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 measured before. Thus, we can assume 
that running the emulation does not introduce significant distor-
tions, other than the time required for capturing and injecting 
packets into Simu5G. 

We can now assess the scalability of the testbed with respect 
to various factors. We first show that the coherence of the emu-
lation is preserved across a large interval of sending rates for the 
emulated and simulated traffic. We consider UEs (both the real 
and the simulated ones) receiving 1000B-request packets, ini-
tially one per second. We fix 𝜇 = 0 (i.e., a TTI of 1ms), the 
number of simulated UEs to 5 and the number of RBs to 10, 
whereas we vary, the load of the real and simulated traffic, and 
the CQI reporting period. The left chart in Fig. 10 shows that 
increasing the rate of the traffic injected by the emulated UE 

does not affect the complexity of the simulation until we get to 
1600 kbps, since the RTT values remain constant. The mid chart 
of Fig. 10, instead, shows that increasing the total offered load 
of simulated traffic increases the RTT when we get to 800kbps. 
This is because we have multiple simulated UEs in the scenario, 
which add more complexity to the emulation with respect to 
having only the emulated UE. The right part of Fig. 10 shows 
that the CQI reporting period affects the coherence more tangi-
bly: when UEs report their CQI every 10ms, the RTT of the em-
ulated traffic is increased. As a matter of fact, computation of 
the CQI in Simu5G is a complex task that requires each UE to 
evaluate the interference of the channel for all the RBs. 

To better assess the impact of UEs, we vary the number of 
simulated UEs and the number of RBs, using a CQI reporting 
period of 80ms. As shown in Fig. 11, when the number of RBs is 
small, i.e. 10 RBs, the RTT stays constant while the number of 
UEs is less than 8, whereas we can use at most 5 UEs when RBs 
are 25 and at most 3 when RBs are 50. However, we cannot main-
tain coherence when 100 RBs are used. Results for 𝜇 = 1 are 
shown in Fig. 12. Since 𝜇 = 1 means shorter TTIs (i.e. 0.5ms 
long), the emulation becomes more challenging - Simu5G han-
dles in fact twice as many events per unit of time - and coherence 
is only preserved for a small number of RBs and simulated UEs.  

The above results are promising for at least two reasons. 
First, they prove that it is actually possible to run a 5G emulation 
on a desktop machine, in an environment with a gNB and several 
UEs, whose entire protocol stacks are modeled. We are not 
aware of similar results in the literature. As far as the number of 
UEs is concerned, the fact that only few of them can be instan-
tiated in an emulation while maintaining coherence should not 
be misconstrued as a severe limitation. On one hand, a loss of 
coherence does not make the emulation worthless: if the RTT 
stays bounded, the only net effect is that the timing properties of 
the emulated traffic may not be accurate at the TTI level, but 
they are still fairly reliable. On the other, the purpose of having 
a large number of UEs and/or a large overall sending rate in an 
emulated scenario is usually to saturate a cell, so as to add radio-
access delay to the real traffic. The same result can be achieved 
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Fig. 8: RTT comparison, 𝜇 = 0 

 

 

Fig. 9: RTT comparison, 𝜇 = 1 

 

 

Fig. 10: RTT with varying a) sending interval of real traffic, b) sending interval of simulated traffic, c) CQI reporting period 

 



more economically by modeling the impact on the number of 
available RBs of the simulated UEs, without the need of actually 
including them (or their traffic) in the scenario. All it takes is to 
modify the scheduler in Simu5G, so that the number of RBs 
made available to the scheduler on each TTI obeys some custom 
distribution, which mimics the occupancy of an arbitrary num-
ber of simulated UEs. This requires a negligible overhead, irre-
spective of the number of simulated UEs or their traffic. More 
to the point, Simu5G already comes with External Cells (Ex-
tCell) to enable modeling multi-cell scenario at a low complex-
ity. These are simplified gNBs, which do not run the full NR 
protocol stack, but only occupy a number of RBs of the DL sub-
frame on each TTI, so as to produce inter-cell interference. They 
enable us to produce a configurable level of interference without 
incurring the overhead of real gNBs and their served UEs. To 
show this, we add six interfering cells to the scenario of Fig. 6, 
deployed on a 500m-radius circumference, centered at the gNB, 
each occupying the whole available bandwidth. Again, we con-
sider five simulated UEs, 10 RBs and 𝜇 = 0. Fig. 13 shows the 
RTT of the real traffic when activating an increasing number of 
ExtCells. The RTT does increase with their number, but this is 
only due to the effects of interference on the emulated UE, and 
not to the emulation being increasingly more complex. In fact, 
the interference reduces the CQIs, which in turn causes the gNB 
to use more RBs to serve the same traffic. This means that a sin-
gle application packet is segmented and transmitted in multiple, 
subsequent TTIs. This is reflected in the larger delay that packets 
suffer at the RLC level of the NR protocol stack, whose evolu-
tion has the same shape as the RTT curve.  

IV. A PROOF-OF-CONCEPT SETUP WITH INTEL OPENNESS 

This section describes a proof-of-concept setup of an end-to-
end testbed where MEC apps communicate through an emulated 
5G network, in a scenario that was demonstrated at the 5GAA 
workshop in Turin in November 2019 [16]. The MEC hosting is 
realized using Intel OpenNESS [13]. The latter is an open-source 
MEC software toolkit that enables highly optimized and perfor-
mant edge platforms to on-board and manage applications and 
services with cloud-like agility across any type of network, facil-
itating development and deployment of the edge platform. Its fea-
tures include (see Fig. 14): 

• Network complexity abstraction: it allows any data plane, 
container network interfaces and access technologies; 

                                                           
2 Since a video is inherently VBR, we cannot instruct VLC to set a constant or 

capped bitrate. 

• Cloud-native capabilities: it supports cloud-native ingredi-
ents for resource orchestration, telemetry & service mesh; 

• HW/SW optimizations for best performance and ROI: it pro-
vides node feature discovery and optimal placement of 
apps/services by exposing underlying edge hardware and en-
abling control/management of hardware accelerators includ-
ing dynamic programming, configuration and orchestration. 

The main component of the OpenNESS toolkit is the Edge 
Host, which implements the whole functionalities of a MEC 
Host, e.g. MEC platform, traffic steering etc., and includes a vir-
tualization infrastructure for running the MEC Apps. The latter 
are Docker containers that are installed to the MEC Host and 
started via the GUI provided by the OpenNESS Controller, 
which acts as MEC Orchestrator.  

The high-level representation of the implemented testbed is 
shown in Fig. 15 and it is composed of a client, a server running 
the OpenNESS software and the Simu5G emulated network in 
between. The considered application involves the client request-
ing a video-stream, hosted by the MEC Host, whose video qual-
ity can be changed dynamically, e.g. according to the quality of 
the radio channel in the emulated network. The MEC App is a 
video streaming application that applies real-time transcoding to 
a video file provided as input, i.e. converts “on the fly” the video 
to H264 format using the x264 encoder, and makes the output of 
the transcoding process available for network streaming via 
HTTP on the well-known TCP port 8080. We do this using the 
open-source VideoLan Converter (VLC) software v4.0 [14]. We 
modified the x264 module within the VLC package so that the 
average bitrate2 of the video can be changed when notified by 
an external source. In our implementation, VLC receives the 
trigger via telnet commands. This allows us to change the bitrate 
dynamically, e.g. according to the condition of the underlying 
network, emulated through Simu5G. We compiled and installed 
the modified version of the VLC software on a Linux Ubuntu 
18.04 Docker container and uploaded it to the OpenNESS Edge 
Host. When the Docker is started, it streams an excerpt of the 
720p version of the “Big Buck Bunny” movie [15], whose aver-
age bitrate is about 1.4 Mbps. On the client side, the original 
VLC player is used for streaming the video from the network. 

We emulate the same single-cell scenario in Fig. 6. The UE 
is located 50m far from the gNB, i.e., having a good channel 
quality in absence of interference. The available bandwidth is 
limited to five RBs, so as to reach a saturation condition quickly. 
To observe the effects of varying network conditions on the 

 

Fig. 11: RTT with increasing simulated UE, 𝜇 = 0 

 

 

Fig. 12: RTT with increasing simulated UE, 𝜇 = 1 

 

 

Fig. 13: RTT, RLC-level delay and reported 

CQI with increasing number of interfering cells 

 



quality of the video stream, we use one ExtCell located 70m far 
from the UE. The ExtCell starts occupying 100% of the band-
width after 25 seconds of simulation. In this scenario, the CQI 
reported by the UE instantaneously drops from 15 to 6, increas-
ing the number of required RBs to satisfy the traffic. Initially, 
the video is streamed at its maximum bitrate. When the ExtCell 
starts generating interference at 𝑡 = 25𝑠 and the CQI drops to 6, 
the air frame fills, hence larger delays occur and the video at the 
client side presents impairments and interruptions. For this rea-
son, before reaching the network saturation, we can send a com-
mand to the MEC app to reduce the bitrate. This way, the video 
goes on without interruptions, albeit at a lower quality, occupy-

ing fewer RBs. Fig. 16 shows the quality of the video before and 
after reducing the bitrate. The above proof of concept shows that 
Simu5G is a powerful tool for testing services like MEC-assisted 
video streaming, allowing one to assess the effects of a realistic 
network environment on the application. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented the real-time emulation ca-
pabilities of Simu5G, a novel 5G New Radio simulator based on 
OMNeT++ and INET. We have shown how to setup a testbed 
where real applications communicate through an emulated 5G 
network. We have validated the testbed and profiled it to assess 
its scalability with respect to various factors. We found that the 
limiting factor seems to be the number of internally simulated 
UEs and their CQI reporting period, due to the interference com-
putation, which has to be repeated as many times as the UEs. 
This is not a big limitation, since the effects of many UEs on the 
air-frame occupancy can be modeled without modeling the UE 
themselves. We have also reported about the use of Simu5G to 
demonstrate MEC apps, in conjunction with the Intel Open-
NESS toolkit, based on a recent demonstration in 5GAA.  

At the time of writing, we are actively pursuing the follow-
ing extensions to this work: re-factoring the physical layer in 
Simu5G to take advantage of GPU parallel computation; adding 
MEC services within Simu5G, e.g. location and radio-network 
information or, so that a MEC app running (e.g.) on OpenNESS 
could leverage the latter to build advanced services.  
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