
This paper has appeared at IEEE PIMRC 2020, DOI 10.1109/PIMRC48278.2020.9217177

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Using Simu5G as a Realtime Network Emulator

to Test MEC Apps in an End-To-End 5G Testbed

Giovanni Nardini, Giovanni Stea, Antonio Virdis

Dipartimento di Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

{name.surname}@unipi.it

Dario Sabella

Intel Deutschland GmbH

dario.sabella@intel.com

Purvi Thakkar

Intel Corporation

purvi.thakkar@intel.com

Abstract—Multi-access Edge Computing (MEC) allows users

to run applications on demand near their mobile access points.

MEC applications will exploit 5G infrastructure, and they will

have to be designed by taking into account the characteristics of

5G mobile networks. This work describes how to use a system-level

simulator of 5G networks – namely Simu5G, which evolves the

popular 4G network simulator SimuLTE – as a real-time 5G net-

work emulator. This allows designers of networked applications –

and MEC ones in particular – to use it as a testbed during the de-

ployment. We describe the system setup of Simu5G as an emula-

tor, and its emulation capabilities and scale. Moreover, we present

a case study of a MEC testbed using Intel’s Open Network Edge

Services Software (OpenNESS) toolkit, based on a recent demon-

stration in 5GAA (5G Automotive Association).

Keywords—Simulation, Emulation, Multi-access Edge Compu-

ting, SimuLTE, Simu5G

I. INTRODUCTION

Fifth-generation (5G) cellular networks will bring significant
changes to the wireless networking landscape. In fact, they will
enable unprecedented ICT-based services, such as smart cities,
autonomous vehicles, augmented reality and Industry 4.0. Most
of these services will be composed of both communication and
computation, thanks to the deployment of computing and storage
capabilities at the edge of the mobile network. An independent,
but complementary innovation is in fact represented by Multi-
access Edge Computing (MEC), which will endow the mobile
network with cloud-computing capabilities, to allow mobile us-
ers to leverage the power of complex algorithms such as those
based on artificial intelligence. While MEC is independent of the
underlying technology (it can already coexist with the current 4G
networks, in fact), it is foreseen that the progressive deployment
of 5G will be an enabler for more powerful MEC capabilities.

The MEC infrastructure is expected to host third-party dis-
tributed applications, which will open a market segment for ME
app developers. These developers have a pressing need for in-
struments for fast prototyping and credible performance evalua-
tion. In fact, some of the services that they will be developing
may have stringent latency constraints, such as autonomous
driving or factory automation. For these, changes in the network
configuration or deployment may have a drastic impact on their

timing properties. When engineering apps, developers need to
know in advance what to expect from a 5G network in terms of
bandwidth and latency, at the very least. On the other hand,
MEC infrastructure owners (often 5G operators themselves) will
need to assess the performance of the services they are hosting
in a controlled environment, so as to, e.g., evaluate alternative
deployments or network functions partitioning. There is there-
fore a need for instruments that allow one to quickly setup a
testbed, where the two sides of MEC apps exchange traffic
through a 5G network. Unfortunately, 5G network testbeds are
hard to come by, especially for developers.

The authors of this paper recently developed Simu5G, a sys-
tem-level simulator of 5G New Radio networks based on OM-
NeT++, which evolves from the well-known SimuLTE simula-
tor of LTE/LTE-A networks. In this paper, we show how to con-
figure Simu5G to run as a network emulator, allowing a user to
test the performance of real applications when they communi-
cate via a 5G network. These applications can be, for instance,
the two counterparts of a MEC app, one running on a 5G User
Equipment (UE) in mobility and the other on a MEC host con-
nected to the 5G infrastructure. This allows application develop-
ers to test the performance of their software on a 5G network,
under controlled conditions (e.g., as for load, channel quality,
mobility, etc.) in a pre-production environment, so as to obtain
confidence regarding their performance. We describe the setup
of Simu5G as an emulator, which includes some non-trivial con-
figurations of the OS networking functions, and we analyze the
performance of the emulation, identifying the limiting factors in
a network-emulation scenario - e.g., the maximum number of
simultaneous users that can be simulated in a scenario, or the
maximum traffic throughput that can be carried. Moreover, we
describe the setup and configuration of an end-to-end MEC/5G
testbed, where Intel’s Open Network Edge Services Software
(OpenNESS) is used as a MEC host, running applications that
interact with the end-user apps on the UE through an emulated
5G network.

The rest of the paper is organized as follows: Section II de-
scribes Simu5G and shows how to configure a system to run it
as an emulator. Section III evaluates the emulation capabilities
of Simu5G on a standard desktop computer. Section IV presents
a comprehensive testbed involving Simu5G and MEC applica-
tions running on the Intel OpenNESS toolkit. Finally, Section V

http://dx.doi.org/10.1109%2FPIMRC48278.2020.9217177

draws conclusions and highlights directions for future work.

II. SIMU5G

A. Description of the simulator

Simu5G [3][4] is the evolution of the well-known SimuLTE
4G network simulator [1][2] towards 5G NewRadio access. It is
based on OMNeT++ [5] and it incorporates models from the
INET library [6], which allows users to construct end-to-end
TCP/IP scenarios, involving routers and end hosts. Simu5G sim-
ulates the data plane of both the core and the access networks.

As far as the core network (CN) is concerned, it allows users
to instantiate a User Plane Function (UPF) or Packet GateWay
(PGW) and an arbitrary topology, where forwarding occurs us-
ing the GPRS tunneling protocol (GTP). As far as the radio ac-
cess is concerned, it allows one to instantiate gNBs and UEs,
which interact using a model of the New Radio protocol stack.
gNBs can be either connected to the CN directly, as shown in
Fig. 1 (left), in the so-called StandAlone (SA) deployment. Al-
ternatively, a gNB can operate in an E-UTRA/NR Dual Connec-
tivity (ENDC) deployment, shown in Fig. 1 (right), where LTE
and 5G coexist. This last deployment is expected to be the most
common in the early phases of 5G deployment. In this last con-
figuration, the gNB works as a Secondary Node (SN) for an LTE
eNB, which acts as Master Node (MN) connected to the CN.
The eNB and the gNB are connected through the X2 interface
and all NR traffic traverses the eNB first. UEs have a dual stack
(LTE and NR), with a Packet Data Convergence Protocol in
common to allow in-sequence delivery to the higher layer.

As far as the physical layer is concerned, Simu5G follows
the approach already used by SimuLTE, i.e. to model the effects
of propagation on the wireless channel at the receiver, without
modelling symbol transmission and constellations. When a
sender sends a MAC PDU to a receiver, the two OMNeT++
modules exchange a message. On receipt of said message the
receiver performs a series of operations, summarized as follows:

- compute the reception power of the signal on each Resource
Block (RB) 𝑥 occupied by the MAC PDU, starting from the
transmission power at the sender and applying a channel
model to model pathloss, fading and shadowing;

- compute the interference by summing up the power received
by all the other senders that interfere on the same RBs (using
the same transformation as above);

- compute the SINR on each RB 𝑥, using obvious algebra;

1 In this paper, we refer to version 3.6.4 of the INET library

- ∀𝑥, compute 𝑃𝑥 = 𝐵𝐿𝐸𝑅(𝑀𝐶𝑆, 𝑆𝐼𝑁𝑅𝑥), the error probabil-
ity for that RB given the Modulation and Coding Scheme
(MCS) used by the sender and the received SINR. This is
done by using Block Error Rate (BLER) curves, obtained
from link-level simulators (e.g., [8]);

- compute 𝑃 = 1 − ∏ (1 − 𝑃𝑥)𝑥 , the error probability of the
whole MAC PDU, extract a sample of a uniform random
variable, and test its value against 𝑃 to check if the reception
was correct.

It is shown in [7] that the above modeling reduces the com-
putational complexity of the decoding operation, hence the sim-
ulation running time, it improves evolvability, making it easy
e.g. to add new modulations, and it still allows arbitrary channel
models to be used.

Simu5G simulates radio access on multiple carriers, in both
Frequency- and Time-division duplexing (FDD, TDD). Differ-
ent carrier components can be configured with different FDD
numerologies and different TDD slot formats. Moreover, differ-
ent carrier components can have different channel models.
Moreover, it incorporates functionalities already modelled in
SimuLTE, e.g. UE handover and network-controlled device-to-
device (D2D) communications, both one-to-one and one-to-
many. Being based on OMNeT++, it allows one to incorporate
models from other OMNeT++ libraries, such as user mobility
(e.g., through VEINS [9] or LIMOSIM [10]).

B. Real-time emulation

OMNeT++ is a discrete-event simulation framework, where
time advances because events are processed: every event carries
a firing time, and events are sorted by firing time into an event
queue. When the next future event is extracted from the queue,
the current simulated time is advanced to that event’s firing time.
However, OMNeT++ allows one to use (among others) a real-
time event scheduler, according to which the flow of simulated
time is slowed down to the pace of real (wall-clock) time. This
is only possible if simulated time flows faster than the real time,
i.e. if the density of events and their processing time are not such
as to overload the system processing capacity. The above condi-
tion depends on the hardware/software system, on how a simu-
lator is coded, but also on the particular scenario being run. Typ-
ically, there will be a scale in terms of number of UEs, gNBs, or
traffic transmitted within a 5G network, after which a given sim-
ulation will not be able to run in real time.

Moreover, the INET library1 comes with modules that act as
a bridge between the simulation environment and the real net-
work interfaces in the host operating system. Packets received
by the real interfaces appear in the simulation, whereas simu-
lated packets sent to the latter are sent out on the real network
interface. To do this, the INET library provides a network inter-
face module, called ExtInterface, which has to be added to the
simulated network devices that need to receive/send packets
from/to the host operating system. The ExtInterface modules
capture packets using the PCAP library [11], which makes a
copy of packets entering the real network interfaces and stores
them into a buffer. An emulation-enabled real-time scheduler is
responsible for fetching such packets from the PCAP buffers, to
convert them into the equivalent C++ object representation used

Fig. 1: SA (left) and ENDC (right) deployment

Figure 1 - SA (left) and ENDC (right) deployment

in the simulation, and to add them to the event queue, where they
are processed like other events generated within the simulation.
However, the real-time scheduler fetches new packets from the
PCAP buffer only when the simulation time is in line (hence-
forth, coherent) with wall-clock time. When the simulation time
is slower than the wall-clock time, real packets stay in the PCAP
buffer and accumulate delay, until coherence is resumed. More-
over, if real packets arrive faster than the rate at which the sched-
uler drains the PCAP buffer, the latter fills up and new packets
are discarded. When packets need to be sent outside the simula-
tion environment, they are transmitted to the real network using
raw sockets. The above features provided by OMNeT++ and the
INET library allow one to use Simu5G as a network emulator,
that transports packets of real applications, delaying them the
way a 5G network would.

C. Configuring a system to run Simu5G as an emulator

We now describe the actions needed to configure a system
to make Simu5G capture packets from real network interfaces
and run a network emulation.

Without loss of generality, we refer to the simple architec-
ture shown in Fig. 2, where Host A runs Simu5G and is physi-
cally connected to two hosts, namely hosts B and C, forming two
different IP networks. More complex configurations can also be
envisaged like, e.g., having one of the hosts located remotely
and reachable using a public IP address. The aim is to configure
a testbed where the network traffic between two applications
running on, respectively, hosts B and C flows through a Simu5G
instance running on Host A.

In order to let packets flow between B and C, we need to
configure A’s operating system (OS) to enable forwarding of IP
packets. Moreover, the appropriate routes have to be added to
the hosts’ IP routing tables so as to forward packets towards the
correct outgoing network interface. In more complex scenarios,
also new Network Address Translation (NAT) rules may be
needed if it is necessary to exit to the public Internet.

Once the traffic path has been set, we need to have packets
that reach Host A traverse Simu5G. Since packets captured by
Simu5G are copied, rather than redirected, to the emulation, we
have to prevent the original packets from following the direct
path between the two interfaces, as shown in Fig. 2. This is ac-
complished by adding packet-discard rules to the OS firewall.

We also need to configure Simu5G so that it captures packets
from the real network interfaces and routes them within the em-
ulated network. Considering the simple network in Fig. 2, pack-
ets coming from Host B are injected into the router module of
the running instance of Simu5G, whereas packets coming from
Host C are injected into the ue module. To do this, router and ue
modules are both equipped with an ExtInterface submodule. The
latter has two configuration parameters to be specified: i) the
name of the interface the packets are captured from, and ii) which
packets need to be captured, i.e. based on their 5-tuple. Further

implementation details can be found on the Simu5G website [4].

III. PERFORMANCE ANALYSIS OF SIMU5G EMULATION

As anticipated in the previous section, real-time emulation is
only possible if event processing occurs faster than the real time.
This depends on the scenario being simulated: for instance, the
more UEs are simulated in the scenario, the more events will be
triggered just due to their CQI reporting alone. In this section,
we evaluate the performance of Simu5G emulation, with the aim
to identify which factors constrains the emulation capabilities,
and what a user can expect to be able to run on an off-the-shelf
desktop computer. To do so, we setup a system where two hosts
run a distributed request-response application, whose packets
are forwarded through an intermediate host running the emu-
lated 5G network using Simu5G. In particular, one side of the
communication acts as a UE of the 5G network, receiving re-
quests from a remote server and sending back responses.

Ideally, to ascertain if and when the emulation is coherent,
we should log the system time 𝑇𝑖 and the simulated time 𝑡𝑖
whenever the event “beginning of TTI 𝑖” is fired. When 𝑇𝑖 −
𝑇0 > 𝑡𝑖 − 𝑡0 + 𝛿, with 𝛿 being the measurement tolerance, the
emulation can be impaired. Unfortunately, with TTIs being at or
below 1 ms, measuring this is impossible in practice – it would
imply that the host machine would be serving system calls to
obtain the wall-clock time instead of advancing the emulation.
Performing the same test at longer periods (say, every 𝑁 TTIs,
𝑁 ≫ 1) is certainly feasible, but inconclusive, since it does not
guarantee coherence at each TTI. For the above reasons, we ex-
ploit an indirect measurement technique, which is both non-in-
vasive and sufficiently reliable. As discussed in section II.B, a
characteristic of OMNeT++, un-documented to the best of our
knowledge, is that packets from real host’s interfaces are delayed
– and eventually discarded – whenever the emulation is not co-
herent. Therefore, by simply counting transmitted/received IP
packets at the interfaces and verifying their RTT we can have an
indirect coherence assessment: when the emulation is not coher-
ent, the number of transmitted packets will be strictly larger than
the number of received packets and/or the RTT will diverge. We
are aware that this only implies that the emulation was coherent
at the time of arrival of packets at the interfaces, which does not
necessarily warrant that it was at any other (unobserved) time;
however, arrival times at the interfaces are those when coherence
matters the most, which makes this method quite reliable.

A. Experimental configuration

The setting of the testbed is shown in Fig. 3 and is composed
of three general-purpose computers, namely Host A, B and C,
whose hardware details are as follows:

• Host A is a desktop computer equipped with an Intel
Core(TM) i7 CPU at 3.60 GHz, with 16 GB of RAM and
a Linux Kubuntu 16.04 OS. It is endowed with two 1Gb/s
Ethernet NICs which connect it to Hosts B and C;

• Host B is a desktop computer running a Linux Ubuntu
18.04 OS on an Intel CoreTM i7 CPU at 3.60 GHz, with 16
GB of RAM and one 1Gb/s Ethernet NIC;

• Host C is an Apple MacBook Pro with a macOS 10.15.3
(Catalina) OS, equipped with an Intel Core(TM) i5 CPU at

Fig. 2: Simu5G as emulator

2.40 GHz, 8 GB of RAM and one Thunderbolt-2 NIC en-
dowed with an Ethernet adapter.

The computers are physically connected via Ethernet cables
as shown in Fig. 3. In particular, Host B and C are connected to
Host A’s interfaces called eth0 and eth1, respectively. The
Simu5G network emulation is run on Host A, which installs
OMNeT++ version 5.3 and the INET library version 3.6.4. The
emulated network scenario is depicted in Fig. 6 and includes one
gNB and one UE, called realUe in the figure. The latter is the
counterpart of Host C in the emulation as it is endowed with an
ExtInterface module to capture packets coming from Host C on
eth1. Likewise, the router has one ExtInterface module that
captures packets coming from Host B on eth0. With this con-
figuration, packets sent by Host B appear into the emulation at
the router and are forwarded towards the UE, which in turn sends
them outside the emulation. Then, Host A’s OS takes care of
forwarding them towards Host C. The reverse path is traversed
by packets sent by Host C and directed to Host B. Moreover, a
number of simulated UEs are added to the network to create a
more realistic scenario: these UEs communicate with the simu-
lated server, generating traffic that remains within the simulator.

The real network traffic is generated by an application,
coded in C++, composed of a sender and a receiver side running
on Host B and C, respectively. The two endpoints establish a
TCP connection using a socket pair, then the sender generates
and transmits periodic request messages. For each request, the
receiver replies with a response message. Each request message
is tagged with a sequence number and a timestamp so that the
Round-Trip Time (RTT) of the communication can be measured
upon reception of the associated response. The size 𝐿𝑟𝑒𝑞 and
𝐿𝑟𝑒𝑠𝑝 of both request and response messages can be configured,
as well as the requests’ sending interval 𝑇.

In order to run the testbed, the receiver application on Host
C can be launched at any time, since it will remain idle, listening
to incoming connections. On the other hand, the sender applica-
tion on Host B needs to start the traffic only after the network
emulation on Host A has been started. In order to automatize the
process, we created a script launcher to be run on Host A, coded
in Perl, that performs the operations depicted in Fig. 4. It accepts
parameters such as the number of simulated UEs, the number of
RBs and NR numerology index, and writes them to an INI con-

figuration file. Then, it launches Simu5G, which sets up the net-
work scenario according to the parameters found in the INI file
and starts the emulation. Five seconds after the emulation has
started, the launcher script sends a message via a socket to a lis-
tener script running on Host B, and the latter triggers the sender
application to start the real traffic.

B. Experiments results

In the following experiments, we make sure that the number
of packets sent and received is the same, and we measure the
RTT to understand when the emulation starts struggling, de-
pending on the scenario. We first need to infer a baseline RTT
to understand when this happens. To do so, we assess the over-
head introduced by the OMNeT++ framework to capture pack-
ets from the real host’s interface and injecting them into the
emulation. To do this, we compare the two scenarios depicted in
Fig. 5: one (called direct path) where Host B communicates with
Host C via Host A, which only acts as a router, i.e. it forwards
data packets between its two interfaces without running any user
application. In the other one (called emulation baseline) Host A
runs a very simple OMNeT++ emulation, consisting of an INET
router that forwards packets between its two infinite-speed in-
terfaces. Since the emulated network is minimal, the perfor-
mance penalty incurred by running the emulation baseline is
limited, hence differences between the two scenarios should be
accountable to the capturing of packets by OMNeT++. We com-
pare the RTT measured in the two scenarios, by computing the
average of the RTT of 300 requests, considering a sending inter-
val 𝑇 = 1𝑠. Since the measured RTT is considerably smaller

Fig. 3: Testbed setup

Fig. 4: Launching the testbed

Fig. 5: Baseline configurations

Fig. 6: Emulated network scenario on Host A

TABLE 1 - MAIN NETWORK PARAMETERS

Parameter Name Value

Carrier frequency 2 GHz

Number of RBs 10

Fading + shadowing Enabled

gNB Tx Power 46 dBm

gNB antenna gain 8 dBi

gNB noise figure 5 dB

UE antenna gain 0 dBi

UE noise figure 7 dB

CQI reporting period 80 TTIs

Path loss model [12]

UE mobility Static

Traffic type Req-resp

than 𝑇, we can assume that the obtained values are independent
and that TCP congestion control plays no significant role. We
also set 𝐿𝑟𝑒𝑞 = 1000𝐵 and 𝐿𝑟𝑒𝑠𝑝 = 4𝐵. The results are shown
in Fig. 7. The average overhead introduced by the capture mech-
anism is ∆𝑒= 𝑅𝑇𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑅𝑇𝑇𝑑𝑖𝑟𝑒𝑐𝑡 = 0.494 𝑚𝑠. The 95%
confidence intervals, shown in the figures, are negligible, which
testifies that the RTT variability is small.

As a second step, we validate the testbed by verifying that
real packets injected into the emulation are treated the same way
as packets generated within the emulation, i.e. they experience
the same latency when traversing the emulated 5G network. To
accomplish this, we run a simulation where the same request-
response application is implemented within Simu5G. With ref-
erence to Fig. 6, the sender is on the server, whereas the receiver
is on one simulated UEs. We compare the RTT measured in this
simulated scenario and the one obtained by running the whole
testbed with the real application and Host A running Simu5G.
The main parameters of the cellular network are shown in Table
1. Fig. 8 and Fig. 9 show the RTT obtained using numerology
index 𝜇 = 0 and 𝜇 = 1, respectively. In the scenario with 𝜇 =
0, the RTT differs by ∆𝜇=0= 0.874 𝑚𝑠, whereas for 𝜇 = 1, the
lag is ∆𝜇=1= 1.312 𝑚𝑠. Clearly, the larger RTT for the emula-
tion is due to packets traversing the emulated network and being
captured by the emulation: ∆𝜇=0 and ∆𝜇=1 are in fact compara-
ble to the 𝑅𝑇𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 measured before. Thus, we can assume
that running the emulation does not introduce significant distor-
tions, other than the time required for capturing and injecting
packets into Simu5G.

We can now assess the scalability of the testbed with respect
to various factors. We first show that the coherence of the emu-
lation is preserved across a large interval of sending rates for the
emulated and simulated traffic. We consider UEs (both the real
and the simulated ones) receiving 1000B-request packets, ini-
tially one per second. We fix 𝜇 = 0 (i.e., a TTI of 1ms), the
number of simulated UEs to 5 and the number of RBs to 10,
whereas we vary, the load of the real and simulated traffic, and
the CQI reporting period. The left chart in Fig. 10 shows that
increasing the rate of the traffic injected by the emulated UE

does not affect the complexity of the simulation until we get to
1600 kbps, since the RTT values remain constant. The mid chart
of Fig. 10, instead, shows that increasing the total offered load
of simulated traffic increases the RTT when we get to 800kbps.
This is because we have multiple simulated UEs in the scenario,
which add more complexity to the emulation with respect to
having only the emulated UE. The right part of Fig. 10 shows
that the CQI reporting period affects the coherence more tangi-
bly: when UEs report their CQI every 10ms, the RTT of the em-
ulated traffic is increased. As a matter of fact, computation of
the CQI in Simu5G is a complex task that requires each UE to
evaluate the interference of the channel for all the RBs.

To better assess the impact of UEs, we vary the number of
simulated UEs and the number of RBs, using a CQI reporting
period of 80ms. As shown in Fig. 11, when the number of RBs is
small, i.e. 10 RBs, the RTT stays constant while the number of
UEs is less than 8, whereas we can use at most 5 UEs when RBs
are 25 and at most 3 when RBs are 50. However, we cannot main-
tain coherence when 100 RBs are used. Results for 𝜇 = 1 are
shown in Fig. 12. Since 𝜇 = 1 means shorter TTIs (i.e. 0.5ms
long), the emulation becomes more challenging - Simu5G han-
dles in fact twice as many events per unit of time - and coherence
is only preserved for a small number of RBs and simulated UEs.

The above results are promising for at least two reasons.
First, they prove that it is actually possible to run a 5G emulation
on a desktop machine, in an environment with a gNB and several
UEs, whose entire protocol stacks are modeled. We are not
aware of similar results in the literature. As far as the number of
UEs is concerned, the fact that only few of them can be instan-
tiated in an emulation while maintaining coherence should not
be misconstrued as a severe limitation. On one hand, a loss of
coherence does not make the emulation worthless: if the RTT
stays bounded, the only net effect is that the timing properties of
the emulated traffic may not be accurate at the TTI level, but
they are still fairly reliable. On the other, the purpose of having
a large number of UEs and/or a large overall sending rate in an
emulated scenario is usually to saturate a cell, so as to add radio-
access delay to the real traffic. The same result can be achieved

Fig. 7: Emulation overhead

Fig. 8: RTT comparison, 𝜇 = 0

Fig. 9: RTT comparison, 𝜇 = 1

Fig. 10: RTT with varying a) sending interval of real traffic, b) sending interval of simulated traffic, c) CQI reporting period

more economically by modeling the impact on the number of
available RBs of the simulated UEs, without the need of actually
including them (or their traffic) in the scenario. All it takes is to
modify the scheduler in Simu5G, so that the number of RBs
made available to the scheduler on each TTI obeys some custom
distribution, which mimics the occupancy of an arbitrary num-
ber of simulated UEs. This requires a negligible overhead, irre-
spective of the number of simulated UEs or their traffic. More
to the point, Simu5G already comes with External Cells (Ex-
tCell) to enable modeling multi-cell scenario at a low complex-
ity. These are simplified gNBs, which do not run the full NR
protocol stack, but only occupy a number of RBs of the DL sub-
frame on each TTI, so as to produce inter-cell interference. They
enable us to produce a configurable level of interference without
incurring the overhead of real gNBs and their served UEs. To
show this, we add six interfering cells to the scenario of Fig. 6,
deployed on a 500m-radius circumference, centered at the gNB,
each occupying the whole available bandwidth. Again, we con-
sider five simulated UEs, 10 RBs and 𝜇 = 0. Fig. 13 shows the
RTT of the real traffic when activating an increasing number of
ExtCells. The RTT does increase with their number, but this is
only due to the effects of interference on the emulated UE, and
not to the emulation being increasingly more complex. In fact,
the interference reduces the CQIs, which in turn causes the gNB
to use more RBs to serve the same traffic. This means that a sin-
gle application packet is segmented and transmitted in multiple,
subsequent TTIs. This is reflected in the larger delay that packets
suffer at the RLC level of the NR protocol stack, whose evolu-
tion has the same shape as the RTT curve.

IV. A PROOF-OF-CONCEPT SETUP WITH INTEL OPENNESS

This section describes a proof-of-concept setup of an end-to-
end testbed where MEC apps communicate through an emulated
5G network, in a scenario that was demonstrated at the 5GAA
workshop in Turin in November 2019 [16]. The MEC hosting is
realized using Intel OpenNESS [13]. The latter is an open-source
MEC software toolkit that enables highly optimized and perfor-
mant edge platforms to on-board and manage applications and
services with cloud-like agility across any type of network, facil-
itating development and deployment of the edge platform. Its fea-
tures include (see Fig. 14):

• Network complexity abstraction: it allows any data plane,
container network interfaces and access technologies;

2 Since a video is inherently VBR, we cannot instruct VLC to set a constant or

capped bitrate.

• Cloud-native capabilities: it supports cloud-native ingredi-
ents for resource orchestration, telemetry & service mesh;

• HW/SW optimizations for best performance and ROI: it pro-
vides node feature discovery and optimal placement of
apps/services by exposing underlying edge hardware and en-
abling control/management of hardware accelerators includ-
ing dynamic programming, configuration and orchestration.

The main component of the OpenNESS toolkit is the Edge
Host, which implements the whole functionalities of a MEC
Host, e.g. MEC platform, traffic steering etc., and includes a vir-
tualization infrastructure for running the MEC Apps. The latter
are Docker containers that are installed to the MEC Host and
started via the GUI provided by the OpenNESS Controller,
which acts as MEC Orchestrator.

The high-level representation of the implemented testbed is
shown in Fig. 15 and it is composed of a client, a server running
the OpenNESS software and the Simu5G emulated network in
between. The considered application involves the client request-
ing a video-stream, hosted by the MEC Host, whose video qual-
ity can be changed dynamically, e.g. according to the quality of
the radio channel in the emulated network. The MEC App is a
video streaming application that applies real-time transcoding to
a video file provided as input, i.e. converts “on the fly” the video
to H264 format using the x264 encoder, and makes the output of
the transcoding process available for network streaming via
HTTP on the well-known TCP port 8080. We do this using the
open-source VideoLan Converter (VLC) software v4.0 [14]. We
modified the x264 module within the VLC package so that the
average bitrate2 of the video can be changed when notified by
an external source. In our implementation, VLC receives the
trigger via telnet commands. This allows us to change the bitrate
dynamically, e.g. according to the condition of the underlying
network, emulated through Simu5G. We compiled and installed
the modified version of the VLC software on a Linux Ubuntu
18.04 Docker container and uploaded it to the OpenNESS Edge
Host. When the Docker is started, it streams an excerpt of the
720p version of the “Big Buck Bunny” movie [15], whose aver-
age bitrate is about 1.4 Mbps. On the client side, the original
VLC player is used for streaming the video from the network.

We emulate the same single-cell scenario in Fig. 6. The UE
is located 50m far from the gNB, i.e., having a good channel
quality in absence of interference. The available bandwidth is
limited to five RBs, so as to reach a saturation condition quickly.
To observe the effects of varying network conditions on the

Fig. 11: RTT with increasing simulated UE, 𝜇 = 0

Fig. 12: RTT with increasing simulated UE, 𝜇 = 1

Fig. 13: RTT, RLC-level delay and reported

CQI with increasing number of interfering cells

quality of the video stream, we use one ExtCell located 70m far
from the UE. The ExtCell starts occupying 100% of the band-
width after 25 seconds of simulation. In this scenario, the CQI
reported by the UE instantaneously drops from 15 to 6, increas-
ing the number of required RBs to satisfy the traffic. Initially,
the video is streamed at its maximum bitrate. When the ExtCell
starts generating interference at 𝑡 = 25𝑠 and the CQI drops to 6,
the air frame fills, hence larger delays occur and the video at the
client side presents impairments and interruptions. For this rea-
son, before reaching the network saturation, we can send a com-
mand to the MEC app to reduce the bitrate. This way, the video
goes on without interruptions, albeit at a lower quality, occupy-

ing fewer RBs. Fig. 16 shows the quality of the video before and
after reducing the bitrate. The above proof of concept shows that
Simu5G is a powerful tool for testing services like MEC-assisted
video streaming, allowing one to assess the effects of a realistic
network environment on the application.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the real-time emulation ca-
pabilities of Simu5G, a novel 5G New Radio simulator based on
OMNeT++ and INET. We have shown how to setup a testbed
where real applications communicate through an emulated 5G
network. We have validated the testbed and profiled it to assess
its scalability with respect to various factors. We found that the
limiting factor seems to be the number of internally simulated
UEs and their CQI reporting period, due to the interference com-
putation, which has to be repeated as many times as the UEs.
This is not a big limitation, since the effects of many UEs on the
air-frame occupancy can be modeled without modeling the UE
themselves. We have also reported about the use of Simu5G to
demonstrate MEC apps, in conjunction with the Intel Open-
NESS toolkit, based on a recent demonstration in 5GAA.

At the time of writing, we are actively pursuing the follow-
ing extensions to this work: re-factoring the physical layer in
Simu5G to take advantage of GPU parallel computation; adding
MEC services within Simu5G, e.g. location and radio-network
information or, so that a MEC app running (e.g.) on OpenNESS
could leverage the latter to build advanced services.

ACKNOWLEDGMENTS

Work partially supported by the Italian Ministry of Educa-
tion and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence). The subject matter of this
paper includes description of results of a joint research project
carried out by Intel Corporation and the University of Pisa. Intel
Corporation reserves all proprietary rights in any process, pro-
cedure, algorithm, article of manufacture, or other results of said
project herein described.

REFERENCES

[1] A. Virdis, G. Stea, G. Nardini, "Simulating LTE/LTE-Advanced
Networks with SimuLTE", DOI 10.1007/978-3-319-26470-7_5, in

Advances in Intelligent Systems and Computing, Vol. 402, pp. 83-105,

Springer, ISBN 978-3-319-26469-1, 15 January 2016.

[2] SimuLTE Website. http://simulte.com, accessed April 2020

[3] G. Nardini, G. Stea, A.Virdis, D. Sabella, “Simu5G: a system-level
simulator for 5G networks”, Simultech 2020, online conf., 8-10 July 2020

[4] Simu5g website, http://simu5g.org

[5] OMNeT++ Website: https://omnetpp.org, accessed April 2020.

[6] INET Library Website. https://inet.omnetpp.org, accessed April 2020.

[7] G. Nardini, A. Virdis, G. Stea, "Modeling network-controlled device-to-

device communications in SimuLTE", MDPI Sensors, 18(10), 3551, DOI:
10.3390/s18103551, 2018

[8] C. Mehlfuerer, et al., “Simulating the long term evolution physical layer”,
in Proc. 17th EUSIPCO, Glasgow, UK, 2009

Fig. 14: OpenNESS capabilities

Fig. 15: Proof-of-concept setup

Fig. 16: Quality of the received video with high (top) and low (bottom) bitrate

[9] C. Sommer et al., "Bidirectionally Coupled Network and Road Traffic
Simulation for Improved IVC Analysis," IEEE Transactions on Mobile
Computing (TMC), vol. 10 (1), pp. 3-15, January 2011

[10] B. Sliwa, C. Wietfeld, "LIMoSim: A Framework for Lightweight

Simulation of Vehicular Mobility in Intelligent Transportation Systems",

in: A. Virdis, M. Kirsche, (eds.) "Recent Advances in Network
Simulation", Springer, Cham, pp. 183-214, May 2019

[11] https://www.tcpdump.org/

[12] 3GPP TR 36.873 v12.7.0, "Study on 3D channel model for LTE", Dec.
2017

[13] https://www.openness.org/

[14] https://www.videolan.org/

[15] https://peach.blender.org/

[16] https://5gaa.org/news/5gaa-live-demos-show-c-v2x-as-a-market-reality/

