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Abstract

The aim of this paper is to evaluate the effect of a maximum admissible value of the sail cone angle on the transfer
performance of a solar sail-based spacecraft in an interplanetary mission scenario. The proposed approach models
the possible constraint on the maximum Sun angle of the solar panels, when thin film solar cells are attached to
the flat solar sail exposed area. In particular, transfers towards Mars and Venus are investigated in a simplified
circle-to-circle, two-dimensional mission scenario. This study is carried out by analyzing the transfer problem in
a systematic way, by considering both the sail characteristic acceleration and the Sun angle of the solar panels as
the independent parameters that define the mission performance in terms of flight time.
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Nomenclature

a = propulsive acceleration vector, [mm/s2]
ac = characteristic acceleration, [mm/s2]
ar = radial propulsive acceleration, [mm/s2]
at = transverse propulsive acceleration, [mm/s2]
h = angular momentum vector, [au2/TU�]

{̂i, ĵ, k̂} = unit vectors along {x, y, z}
{̂iO, ĵO, k̂O} = unit vectors along {xO, yO, zO}
n̂ = outward unit vector normal to the sail plane
O = Sun’s center-of-mass
r = position vector, [au]
r̂ = radial unit vector
r = Sun-spacecraft distance, [au]
r⊕ = radius of Earth’s heliocentric orbit, [au]
r♂ = radius of Mars’ heliocentric orbit, [au]
r♀ = radius of Venus’ heliocentric orbit, [au]
S = spacecraft center-of-mass
T (O; x, y, z) = heliocentric-ecliptic reference frame
TO(S;xO, yO, zO) = radial-tangential-normal reference frame
t̂ = transverse unit vector
t = time, [days]
v = velocity vector, [au/TU2

�]
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u = radial component of the spacecraft velocity, [km/s]
v = transverse component of the spacecraft velocity, [km/s]
α = cone angle, [deg]
αa = auxiliary control angle, [deg]
αmax
a = maximum value of αa, [deg]

∆t = constrained minimum fight time, [days]
∆tu = unconstrained minimum fight time, [days]
δ = clock angle, [deg]
ϕ = Sun angle of the solar panels, [deg]
ϕmax = maximum value of ϕ, [deg]

1. Introduction

Solar sailing is a fascinating form of propulsion concept that differs from other kinds of systems typically
used to generate the thrust necessary to accomplish a given space mission [1, 2]. The distinguishing feature
that makes this propulsive form unique is that its thrust is not produced by ejecting propellant from the
spacecraft, but exploiting the momentum exchange between a large reflective membrane and the solar
photons [3]. Because it uses an unlimited source of energy (the Sun), a solar sail-based spacecraft can
theoretically be propelled indefinitely and with continuity, the only limit being the service life of the sail
reflective material [4, 5, 6].

Solar sails enable a number of advanced space missions that would be difficult to carry out with traditional
propulsion systems [7, 8, 9, 10], such as mission to Kuiper Belt objects [11], multi-asteroid rendezvous [12],
asteroid de-spin and deflection [13], debris removal from geostationary orbit [14] . A typical reference mission
that is often used to quantify the performance of a solar sail-based spacecraft is an orbit-to-orbit (that is,
ephemeris-free), interplanetary transfer towards inner planets [15, 16, 17]. In that case, the transfer is
usually studied assuming the spacecraft to be subjected only to the gravitational attraction of the Sun and
to the propulsive acceleration provided by the solar sail. In particular, the transfer trajectory is conveniently
analyzed within an optimal framework, by looking for the control law that minimizes the flight time required
to transfer the vehicle from the Earth’s heliocentric orbit to that of the target planet [18, 19, 20]. This
amounts to calculating the time histories of the cone and the clock angles that define the orientation of the
sail thrust vector with respect to an orbital reference frame [21]. These two control angles may range within
an interval that models the physical constraint on the thrust vector direction [22], which cannot be oriented
such as to point towards the Sun.

Actually, the whole spacecraft (and so the solar sail) attitude must also take into account other factors
such as, for example, the angle of incidence of the sunlight, which may influence the generation of the
electric power (through photovoltaic panels that may cover a portion of the sail total area), the vehicle
thermal control [23, 24], and the efficiency of the thrust generation caused by the reduced area exposed to
solar radiation pressure. Moreover, when considering solar sails with large surface area, substantial attitude
variations may be challenging to obtain due to the spacecraft large moment of inertia, and a failure in the
attitude control system may prevent certain attitude change maneuvers from being performed during (a part
of) the transfer phase. These considerations reduce, in practice, the admissible range of variation of the sail
cone angle.

The aim of this work is to model, with a simplified mathematical approach, these additional constraints
on the direction of the thrust vector and to investigate optimal solar sail trajectories with reduced admissible
range of the sail cone angle. Such a problem was first faced by He et al. [25], who studied a classical Earth-
Mars interplanetary transfer, and a transfer from Earth to Asteroid 68278, considering three possible values
of the maximum admissible sail cone angle. Their work [25] also reported the optimal control law, and the
optimization problem was solved using an indirect approach. Starting from the results described in Ref. [25],
this paper provides a systematic analysis for quantifying the impact of the sail cone angle constraints on
both the thrust direction and the transfer performance of an orbit-to-orbit interplanetary mission. In
particular, transfers towards Mars and Venus are investigated in a simplified (that is, circle-to-circle and
two-dimensional) mission scenario [26, 27]. This study is carried out by considering both the solar sail
characteristic acceleration and the Sun angle of the solar panels as the independent parameters that define
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the transfer performance in terms of flight time. This work also highlights some interesting features, such
as the conditions (in terms of characteristic acceleration and maximum Sun angle) for which the constraint
on the maximum admissible value of the cone angle is inactive, and, therefore, the results of the constrained
and unconstrained transfer problems coincide.

The paper is organized as follows. The next section illustrates the mathematical model that describes
the propulsive acceleration vector of an ideal solar sail and the additional constraint on the control angle.
Section 3 reports the numerical results, whereas the final section draws the conclusions of this work.

2. Mathematical Model

Consider a solar sail-based spacecraft S, and introduce a heliocentric-ecliptic inertial reference frame
T (O; x, y, z) of unit vectors {̂i, ĵ, k̂}, in which the origin coincides with the Sun’s center-of-mass O, the
x-axis points towards the vernal equinox, and the z-axis points towards the north ecliptic pole; see Fig. 1,
where r (or r̂) is the spacecraft position vector (or unit vector).
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Figure 1: Inertial reference frame T (O; x, y, z) and sail cone angle α.

In a preliminary and simplified mission analysis, a flat sail and an ideal force model [3] may be assumed,
so that the solar sail is approximated as a rigid mirror that specularly reflects all the incident light. A
succeeding and more refined analysis, which includes the real thermo-optical characteristics of the reflective
film material [21], or the sail billowing [28, 29, 30], represents a straightforward problem. The spacecraft
propulsive acceleration vector a is written as [21]

a = ac

(r⊕
r

)2
cos2 α n̂ (1)

where r is the Sun-spacecraft distance (with r⊕ , 1 au), n̂ is the unit vector normal to the sail nominal plane
in the direction opposite to the Sun, and α ∈ [0, 90] deg is the sail cone angle, that is, the angle between the
Sun-spacecraft line and the direction of n̂; see Fig. 1. A sail cone angle α = 0 (or α = 90 deg) corresponds to
a solar sail whose nominal plane is perpendicular (or parallel) to the incident light. In particular, α = 90 deg
is the only value of the sail cone angle that allows the propulsive acceleration to be set to zero, such as to
introduce a coasting arc in the transfer trajectory. In Eq. (1), ac is the spacecraft characteristic acceleration,
defined as the maximum propulsive acceleration magnitude ‖a‖ at a reference Sun-sail distance of 1 au. The
characteristic acceleration is a typical performance parameter and its value depends on the solar sail design
characteristics (such as its side length or the reflective film areal density), and the spacecraft mass budget
(payload and mass of the subsystems).

The sail attitude, as well as the components of a, are conveniently described by introducing a radial-
tangential-normal orbital reference frame TO(S;xO, yO, zO) of unit vectors {̂iO, ĵO, k̂O}. The origin S co-
incides with the spacecraft center-of-mass, the zO-axis is along the Sun-spacecraft line, while the yO-axis is
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directed along the spacecraft specific angular momentum vector h , r×v, where v is the spacecraft inertial
velocity; see Fig. 2(a). More precisely, the unit vectors {̂iO, ĵO, k̂O} are defined as

k̂O = r̂ , r/r , ĵO =
r̂ × v̂

‖r̂ × v̂‖
, îO = ĵO × k̂O (2)

Note that yO is undefined when r̂×v̂ = 0, that is, when the spacecraft covers a rectilinear orbit [31, 32, 33, 34]
which is therefore excluded from the analysis. With the aid of Fig. 2(b), the components of the sail normal
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Figure 2: Orbital reference frame TO(S;xO, yO, zO) and sail attitude angles {α, δ}.

unit vector n̂ in TO can be written as a function of the cone angle α and the clock angle δ ∈ [0, 360) deg,
defined as the angle measured counterclockwise from the xO-axis to the projection of n̂ on the (xO, yO)
plane, viz.

n̂ = sinα cos δ îO + sinα sin δ ĵO + cosα k̂O (3)

The components of the propulsive acceleration vector may be written in the orbital reference frame by
substituting Eq. (3) into Eq. (1). The result is

a = ac

(r⊕
r

)2
cos2 α

(
sinα cos δ îO + sinα sin δ ĵO + cosα k̂O

)
(4)

The propulsive acceleration vector can also be conveniently expressed in terms of radial (that is, along the
Sun-spacecraft line) and transverse acceleration as

a = ar r̂ + at t̂ (5)

where ar (or at) is the radial (or transverse) component of the propulsive acceleration, that is

ar , ac
(r⊕
r

)2
cos3 α (6)

at , ac
(r⊕
r

)2
cos2 α sinα (7)
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while t̂ is the transverse unit vector [21] defined as

t̂ , cos δ îO + sin δ ĵO (8)

The function ar = ar(at) is drawn in Fig. 3, which shows the so-called “force bubble” of the ideal solar
sail [35].
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Figure 3: Shape of the ideal sail force bubble.

Usually, the solar sail trajectory is the result of a suitable time-variation of both cone and clock angles,
obtained as the solution of an optimization problem in which the flight time is the performance index to be
minimized. With such an approach to trajectory analysis, the two attitude angles are found with the only
constraint that the sail thrust vector (i.e., the normal unit vector n̂, see Eq. (1)) is to be oriented away from
the Sun. In mathematical terms, this constraint can be written as α ≤ 90 deg, which imposes an upper limit
on the sail cone angle. In addition, the solar sail thrust may be freely set to zero by orienting n̂ orthogonal
to the Sun-sail line, that is, by selecting α = 90 deg. However, when thin film solar cells are attached to the
sail exposed area, as in the demonstrator spacecraft IKAROS [23], see Fig. 4(a), a high value of α implies a
high value of ϕ, the latter being the Sun angle of the solar panels; see Fig. 4(b). As a result, a high value of
α is likely to decrease the electric power level of a subsystem based on solar arrays. In that case, an upper
limit on the maximum value of ϕ, in the form ϕmax , max(ϕ) < 90 deg, should be considered during the
analysis and optimization of the spacecraft transfer trajectory.

Because the ideal sail is approximated with a flat and rigid reflecting surface, the Sun angle of the solar
panels coincides with the sail cone angle, that is, ϕ ≡ α. The additional constraint ϕ ≤ ϕmax can be
therefore rewritten in terms of control angles as

α ∈ [0, ϕmax] with ϕmax < 90 deg (9)

in which ϕmax can be considered as a given parameter that depends on the minimum acceptable level of
the electric power. As a consequence of Eq. (9), an ideal solar sail cannot set the propulsive acceleration
magnitude to zero, that is, coasting arcs are forbidden during the transfer. From a geometrical point of
view, the effect of the presence of ϕmax on the solar sail thrust vector can be appreciated in Fig. 5, which
shows the constrained ideal sail force bubble for ϕmax = {30, 60} deg. In particular, the shaded area of
Fig. 5 gives the pairs {ar, at} for which ϕ > ϕmax. Note that, according to Fig. 5, for a given value of r,
the characteristic acceleration ac defines the size of the sail force bubble, whereas the value of ϕmax gives its
actual shape.

In other terms, taking into account Eq. (4), the propulsive acceleration vector a at a given Sun-spacecraft
distance r is a function of the two control angles {α, δ} and the two design parameters {ac, ϕmax}, where
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Figure 4: Conceptual scheme of IKAROS spacecraft and Sun angle ϕ of solar panels.
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Figure 5: Shape of the ideal sail force bubble as a function of ϕmax = {30, 60}deg.

ϕmax limits the maximum admissible value of the sail cone angle. The effects of ϕmax on the solar sail
performance are quantified in two typical mission cases, that is, an Earth-Mars and an Earth-Venus inter-
planetary transfer, as is discussed in the next section. In particular, the constrained trajectory optimization
has been conducted by adapting the mathematical model discussed in Ref. [37] with the introduction of the
additional constraint given by Eq. (9).

3. Case Study and Simulation Results

Consider a simplified Earth-Mars and Earth-Venus interplanetary transfer in which the heliocentric
orbits of Earth, Mars, and Venus are all coplanar and circular with radius r⊕ , 1 au, r♂ , 1.523 au , and
r♀ , 0.723 au, respectively. Assume all planetary orbits to belong to the (x, y) plane of the inertial reference
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frame T ; see Fig. 1. In such a two-dimensional case, the yO-axis of the orbital frame coincides with the
z-axis of the inertial frame, that is, ĵO = k̂; see Fig. 2(a). Therefore, the normal unit vector n̂ belongs to
the (x, y) plane and the sail clock angle assumes two values only, either δ = 0 or δ = 180 deg. As a result,
the solar sail attitude can be described by a single auxiliary control angle αa defined as

αa , sign (cos δ) α (10)

where sign (�) ∈ {−1, 1} is the signum function. Three different values of characteristic acceleration are
used in the simulations, that is, ac = {0.1, 1, 2}mm/s2, which are representative of a low-performance
(ac = 0.1 mm/s2), a medium-performance (ac = 1 mm/s2), and a high-performance (ac = 2 mm/s2) solar
sail. The unconstrained minimum flight times ∆tu for an ideal flat sail, that is, the minimum transfer
times obtained when ϕmax = 90 deg, are reported in Tab. 1, while the (dimensionless) time variation of the
optimal control law αa = αa(t) is drawn in Fig. 6. Finally, Fig. 7 shows the polar plots of the optimal
transfer trajectories in the two mission scenarios.

target planet
ac [mm/s2] Mars Venus

0.1 2661.5 1161.3
1 407.7 204.7
2 323.9 163.6

Table 1: Minimum flight time ∆tu [days] for a coplanar, circle-to-circle, interplanetary transfer without solar panel angle
constraints.

When the additional constraint on ϕmax is included in the trajectory optimization, the minimum flight
time becomes larger than the value of ∆tu reported in Tab. 1. More precisely, Fig. 8 shows the curve levels of
the dimensionless minimum flight times ∆t = ∆t(ac, ϕmax) for the two mission scenarios when the maximum
value of ϕ is varied in the range ϕmax ∈ [30, 90] deg.

Figure 8 clearly shows that the constraint on the maximum value of the cone angle has a substantial
impact on the time of flight, especially in the case of a high performance solar sail and a small value of ϕmax.
For example, when ac = 2 mm/s2 and ϕmax = 30 deg, the flight time of an Earth-Venus (or Earth-Mars)
transfer is about 225 days (or 431 days), which corresponds to an increment of 38% (or 33%) with respect
to the unconstrained case ∆tu; see Tab. 1. In particular, for a fixed value of the characteristic acceleration,
the function ∆t = ∆t(ϕmax) shows a similar trend for both the mission cases in the investigated range of
angle ϕmax .

An interesting feature can be observed in Fig. 8, which shows that beyond a certain value of ϕmax,
the time of flight ∆t tends to the value ∆tu of the unconstrained scenario. This behaviour can be simply
explained by observing that, for some values of ac, the optimal control law αa = αa(t) for the unconstrained
case has a maximum value lower than 90 deg, that is, αmax

a , max(|αa|) ≤ 90 deg; see Figs. 6(a) and
6(b). In particular, the variation of αmax

a with ac is drawn in Fig. 9 for an unconstrained scenario. Note
that αmax

a = 90 deg only when the characteristic acceleration is beyond the canonical value of 1 mm/s2. In
other terms, Fig. 9 shows that a coasting arc (i.e. a phase in which the sail is oriented edgewise to the Sun)
appears in the optimal transfer trajectory towards Mars or Venus when a medium-high performance solar sail
is considered [38]. For example, when ac = 0.1 mm/s2, αmax

a ' 37.3 deg (or αmax
a ' 38.5 deg) for an Earth-

Venus (or an Earth-Mars) transfer. This behaviour is consistent with the results of Ref. [26], which reports
the solar sail optimal flight times, obtained in closed form with a semi-analytical model, corresponding to
a heliocentric orbit raising (or lowering) case. In fact, the value of αmax

a ' 37.3 deg (or αmax
a ' 38.5 deg) is

close to α̃a , arcsin(
√

3/3) ' 35.2 deg, for which the component of propulsive acceleration in the transverse
direction is maximized. Therefore, if ϕmax ≥ αmax

a , the constraint on ϕmax is always inactive, and the results
of the optimization process for the constrained and unconstrained cases coincide.

When αmax
a > ϕmax, the constraint on ϕmax significantly affects the optimal control law. For example

assume ϕmax = 45 deg, as in the case of IKAROS mission [39]. If the characteristic acceleration is chosen
to be ac = 1 mm/s2, the optimal control law for both cases is shown in Fig. 10. The latter is much different
from that computed in the unconstrained case; compare Figs. 10(a) and 10(b) with Figs. 6(c) and 6(d),
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(a) Earth-Venus, ac = 0.1 mm/s2.

0 0.2 0.4 0.6 0.8 1
32

33

34

35

36

37

38

39

40

t/"tu

,
a

[d
eg

]

(b) Earth-Mars, ac = 0.1 mm/s2.
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(c) Earth-Venus, ac = 1 mm/s2.
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(d) Earth-Mars, ac = 1 mm/s2.
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(e) Earth-Venus, ac = 2 mm/s2.
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(f) Earth-Mars, ac = 2 mm/s2.

Figure 6: Optimal control law for an unconstrained (i.e., ϕmax = 90 deg) interplanetary transfer.
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(a) Earth-Venus, ac = 0.1 mm/s2.
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(b) Earth-Mars, ac = 0.1 mm/s2.
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(c) Earth-Venus, ac = 1 mm/s2.
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(d) Earth-Mars, ac = 1 mm/s2.
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Figure 7: Optimal trajectory for an unconstrained (i.e., ϕmax = 90 deg) interplanetary transfer.
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Figure 8: Minimum (dimensionless) flight time ∆t for a coplanar, circle-to-circle, constrained interplanetary transfer as a
function of ϕmax.

respectively. From the numerical simulations, a very small increment of the time of flight is observed with
respect to the unconstrained case, with a difference of 3% (or 2%) of ∆tu for the Earth-Venus (or Earth-Mars)
scenario; see Fig. 8.

In fact, for the chosen values of {ac, ϕmax}, the transfer trajectories in the constrained case are very
similar to those obtained in the unconstrained scenario, as can be deduced by comparing Figs. 11(a) and
11(b) with 7(c) and 7(d), respectively. In particular, Fig. 11 shows the interval within which the cone angle-
constraint is active during the interplanetary transfer (grey tick line in the trajectory polar curve). The
differences between constrained and unconstrained case may be appreciated with the aid of Fig. 12, which
shows the time-variation of the spacecraft state variables, i.e., the Sun-spacecraft distance r, and the radial
and transverse components of the spacecraft velocity (u and v, respectively).
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Figure 9: Variation of αmax
a with ac for an unconstrained (i.e., ϕmax = 90 deg) scenario.
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(a) Earth-Venus transfer.
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Figure 10: Optimal control law when ac = 1 mm/s2 and ϕmax = 45 deg.

4. Conclusions

This paper has analyzed the effect of an additional constraint on the maximum value of the cone angle
on the performance of an ideal solar sail in a two-dimensional, circle-to-circle, interplanetary transfer. The
numerical simulations have shown that the minimum time of flight increases significantly with respect to the
unconstrained reference case when a high performance solar sail (that is, with a high value of characteristic
acceleration) is considered, and the maximum admissible value of the cone angle is sufficiently low. Moreover,
the constraint on the maximum value of the cone angle implies a pronounced variation in the optimal control
law, even if the flight time and the optimal trajectory are very close to those of the reference unconstrained
case. Similar results are also to be expected in three-dimensional interplanetary transfers, or when dealing
with non-ideal solar sails. Those investigations are left to future research.
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Figure 11: Optimal transfer trajectory when ac = 1 mm/s2 and ϕmax = 45 deg.
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