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Maternal anthropometric variables 
and clinical factors shape neonatal 
microbiome
Riccardo Farinella1,6, Cosmeri Rizzato2,6*, Daria Bottai 1, Alice Bedini3, 
Federica Gemignani1, Stefano Landi1, Giulia Peduzzi1, Sara Rosati3, Antonella Lupetti2, 
Armando Cuttano3,4, Francesca Moscuzza3, Cristina Tuoni3, Luca Filippi5, 
Massimiliano Ciantelli3,4,7, Arianna Tavanti 1,7 & Daniele Campa1,7

Recent studies indicate the existence of a complex microbiome in the meconium of newborns that 
plays a key role in regulating many host health-related conditions. However, a high variability 
between studies has been observed so far. In the present study, the meconium microbiome 
composition and the predicted microbial metabolic pathways were analysed in a consecutive cohort 
of 96 full-term newborns. The effect of maternal epidemiological variables on meconium diversity 
was analysed using regression analysis and PERMANOVA. Meconium microbiome composition 
mainly included Proteobacteria (30.95%), Bacteroidetes (23.17%) and Firmicutes (17.13%), while for 
predicted metabolic pathways, the most abundant genes belonged to the class “metabolism”. We 
observed a significant effect of maternal Rh factor on Shannon and Inverse Simpson indexes (p = 0.045 
and p = 0.049 respectively) and a significant effect of delivery mode and maternal antibiotic exposure 
on Jaccard and Bray–Curtis dissimilarities (p = 0.001 and 0.002 respectively), while gestational age 
was associated with observed richness and Shannon indexes (p = 0.018 and 0.037 respectively), and 
Jaccard and Bray–Curtis dissimilarities (p = 0.014 and 0.013 respectively). The association involving 
maternal Rh phenotype suggests a role for host genetics in shaping meconium microbiome prior to 
the exposition to the most well-known environmental variables, which will influence microbiome 
maturation in the newborn.

Until recently, it was believed that the fetus develops in a completely sterile  environment1. Therefore, microbial 
colonization of the newborn gastrointestinal tract was thought to begin at birth, through the exposure to micro-
organisms deriving from maternal vaginal or skin  bacteria2, and from environmental sources such as the type of 
feeding (breastfeeding or artificial)3. However, recent technological advancements in the field of metagenomics 
based on Next Generation Sequencing (NGS) allowed the identification of microbial DNA in the  placenta4,5, in 
the amniotic  fluid6,7 and in the  meconium1,8, suggesting the hypothesis that microbial colonization could occur 
in  utero7.

Meconium is the first excretion product of newborn mammals, and it mainly consists of bile acids, pancreatic 
secretions, epithelial cells, and the residue of swallowed amniotic  fluid9. Despite the fact that bacterial presence 
in meconium samples has been confirmed by several  studies8,10, it is still unknown how early gut microbiome 
develops and which are the potential sources of maternal microorganism contributing to the fetal gut microbiome 
 development1. It is believed that the maternal  gut1,  oral4,  vaginal11 and uterine  microbiomes12 are key sources 
for meconium microbiome development. However, it is still not completely clear how maternal microorganisms 
can reach the fetal gut and colonize it.

The composition of the meconium microbiome is variable among newborns and since the gut microbiome is 
an important regulator for a plethora of developmental physiological  processes13,14, alterations of the microbiome 
composition during the prenatal, perinatal and neonatal stages can lead to short- and long-term  consequences15, 
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such as inflammatory bowel  disease16,  asthma17,  allergies18 and altered immunological  development19,20, and 
central nervous system  disorders21. Despite its suggested involvement in short- and long-term health conditions, 
the actual knowledge on meconium microbiome is still limited and many fundamental questions still lack clear 
answers, such as which factors could influence its composition and  diversity11.

Since the fetus is exposed to a limited number of stimuli and its development occurs in a relatively homoge-
neous and stable environment, the neonatal microbiome is characterized by a minor diversity than in  adults22. 
Nonetheless, some factors are thought to influence the microbiome during the prenatal period or during delivery, 
shaping the microbiome in terms of both abundance and  composition2. Among these factors the most investi-
gated are maternal  diet23, maternal  stress24, maternal antibiotic exposure during  pregnancy25,26, delivery  mode11 
and gestational  age27. However, contrasting results have been observed in different studies, probably due to the 
small average sample size and to different statistical methods  employed28.

In addition, despite increasing evidence on host genetics role in shaping the adult gut  microbiome29, only 
one small study, conducted on twins, considered the potential effects of genetics on the meconium microbiome 
diversity and  composition30. The aim of this study was to explore the meconium microbiome composition and 
the effect of maternal epidemiological factors on alpha and beta diversity indexes, in a homogeneous cohort of 
consecutively collected newborns.

Results
Study population. The study population consisted of 96 subjects, 42 females and 54 males, with a mean 
gestational age of 39.74 ± 1.18 and 39.58 ± 1.06 weeks, respectively (Supplementary figure SF1). The number of 
vaginally delivered (VD) and caesarean-section delivered (CSD) newborns was respectively 54 and 42.

Delivery mode and maternal antibiotic exposure were strongly associated (Fisher’s exact test p-value < 2*10–16).
All relevant information of the population in study are reported in Table 1.

Sequencing and taxonomical assignment. Prokaryotic DNA was extracted and amplified in all 96 
first pass meconium samples, and no DNA amplification was observed in PCR negative controls. Sequencing 
produced an average of 12,420 reads per sample, (standard deviation of 5546), of which a total of 5913 different 
16S Amplicon Sequence Variants (ASVs) were identified. The analysis of meconium microbial composition was 
restricted from phylum to genus since the percentages of taxonomical assignments were greater than 75% in 
these taxonomical groups.

Bacterial domain consisted in most of the meconium microbiome. In fact, the average relative abundance of 
bacterial was 99.43%, ranging from a maximum of 100% (for 51 samples) to a minimum of 94.86%. Focusing only 
on the univocally assigned reads, the following numbers of taxa were obtained: 31 bacterial and 3 archaeal phyla; 
65 bacterial and 5 archaeal classes; 187 bacterial and 10 archaeal orders; 291 bacterial and 7 archaeal families; 
449 bacterial and 7 archaeal genera. A brief description of the Archaea taxa detected in meconium samples is 
reported in the following paragraph while the most common and abundant bacterial taxa are reported in the 
“Core microbiome” paragraph.

For Archaea, DNA was detected in 45/96 samples. The Nanoarchaeaeota phylum dominated the archaeal 
microbiome component with a prevalence of 100% and a relative abundance of 98.64 ± 5.68%, while Dia-
pherotrites and Euryarchaeota phyla were only detected in two samples each, with relative abundances of 
0.54% and 0.82% respectively. At the genus level, the dominant taxon was Candidatus Pacearchaeota archaeon 
CG1_02_32_21 (prevalence of 15/45 samples and relative abundance of 21.50 ± 52.71%), followed by Candidatus 
Pacearchaeota archaeon RBG_19FT_COMBO_34_9 (prevalence of 4/45, relative abundance of 4.38 ± 21.26%). 
Five taxa were detected in only one sample (archaeon GW2011_AR10, Methanobacterium, Candidatus Dia-
pherotrites archaeon ADurb.Bin253, Candidatus Pacearchaeota archaeon CG1_02_31_27 and Nanoarchaeota 
archaeon SCGC AAA011-D5 with relative abundances of 0.08%, 0.73%, 0.36%, 0.42% and 0.21% respectively), 

Table 1.  Epidemiological variables of the population in study. a—refers to the number of couples mother-
newborn for which data were available for each epidemiological variable; b—“CSD” stands for caesarean 
delivery, while “VD stands for vaginal delivery.

Variables Na Mean Standard deviation

Gestational age (weeks) 96 39.65 1.16

Maternal age (years) 96 34.72 5.25

Gravidic weight increase (kilograms) 93 12.66 4.32

Sex Male: 54
Female:42 – –

Maternal Rh factor Positive: 85
Negative: 10 – –

Maternal diabetes Yes: 24
No: 72 – –

Maternal antibiotic exposure Untreated : 46
Treated: 49 – –

Delivery  modeb CSD : 42
VD: 54 – –
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while the remaining taxa, which made about the 72.33 ± 54.48% of archaeal microbiome in terms of abundance, 
resulted unclassified.

Core microbiome. Seven taxa were selected at phylum level, corresponding on average to the 97.07 ± 2.25% 
of the entire microbiome in terms of relative abundance and ranging from a minimum of 90% to a maximum 
of 100% (for 12 samples). The Bacterial microbiome composition was mainly comprised of Proteobacteria 
(30.95 ± 23.52%), Bacteroidetes (23.17 ± 14.21%), Firmicutes (17.13 ± 25.87%), Patescibacteria (16.47 ± 13.42%), 
Actinobacteria (7.26 ± 7.84%), Verrucomicrobia (1.16 ± 1.76%) and Planctomycetes (0.94 ± 1.27%). Descending 
along the taxonomical classification to genus level, meconium microbiome core was composed of nine bac-
terial genera that made up about the 42.37 ± 22.93% of bacterial meconium microbiome. These were Flavo-
bacterium (16.21 ± 12.54%) Escherichia-Shigella (14.11 ± 27.34%), Staphylococcus (5.13 ± 15.38%), Streptococcus 
(1.76 ± 5.88%), Acinetobacter (1.55 ± 3.33%), Corynebacterium 1 (1.11 ± 2.06%), Fluviicola (0.85 ± 1.18%), Limno-
habitans (0.83 ± 11.17%) and Cutibacterium (0.82 ± 1.57%). Detailed information on the core microbiome com-
position from phylum to genus level is reported in Supplementary table ST1.

Metabolic pathways prediction. A total of 367 microbial pathways were recognized in the KEGG Orthol-
ogy database. At the third level of classification six pathways were identified, with the most abundant labelled 
as “metabolism”, which had a relative abundance of 71.76 ± 16.36%, followed by “environmental information 
processing” (10.63 ± 20.77%) and “cellular processes” (5.49 ± 7.94%). The second level of classification identified 
48 pathways with “carbohydrate metabolism” as the most frequent (relative abundance = 10.62 ± 17.83%), fol-
lowed by “membrane transport” (6.43 ± 21.07%) and “signal transduction” (4.19 ± 5.68%). Each of these three 
metabolic categories contained several metabolic functions. In particular, 15 pathways belonged to “carbohy-
drates metabolism”, 25 to the “signal transduction”, and three to the “membrane transport” categories. The most 
abundant functions related to carbohydrate metabolism were “amino sugar and nucleotide sugar metabolism” 
(1.24 ± 0.49), “pyruvate metabolism” (1.18 ± 0.12) and “glycolysis” (1.12 ± 0.29). Among the most abundant path-
ways involved in signal transduction there were “two-component system” (3.76 ± 0.61), “HIF-1 signaling path-
way” (0.10 ± 0.03) and “MAPK signaling pathway” (0.1 ± 0.02), while only the three pathways “ABC transporters” 
(4.68 ± 0.89), “phosphotransferase system” (1.19 ± 1.35) and “bacterial secretion system”(0.57 ± 0.14) belonged 
to the “membrane transport” category. The complete list of the 367 metabolic pathways is reported in the Sup-
plementary table ST2.

A general homogeneity was observed in terms of pathway composition among samples as reported in 
Supplementary figures SF2 and SF3. This was confirmed by comparing the Pielou’s evenness index calcu-
lated on both taxa and predicted metabolic pathways. The latter had a statistically significant higher mean 
(p-value = 1.794 ×  10–6) and a minor interquartile range.

Maternal contribution to meconium alpha diversity. Gestational age resulted significantly associated 
with observed richness and Shannon index (p-values of 0.018 and 0.037 respectively), while a borderline effect 
was observed on Inverse Simpson index (p-value = 0.075). The three estimated beta coefficients were all negative, 
indicating a reduction in microbial diversity with the increasing gestational age.

Maternal diabetic status showed a borderline association with all three diversity indexes, with p-values of 
0.086, 0.091 and 0.065 for observed richness, Shannon and Inverse Simpson indexes, respectively. The negative 
estimated beta coefficients suggested a trend for which newborns delivered by diabetic mothers had a lower alpha 
diversity than newborns from non-diabetic mothers.

Newborns having Rh negative mothers showed an alpha diversity reduction compared to newborns from 
Rh positive mothers, with p-values of 0.045 and 0.049 for Shannon and Inverse Simpson index respectively. 
For observed richness, a borderline association was observed (p-value = 0.078). All the results are reported 
in Fig. 1 and Table 2. Following the investigation at the taxonomical level, seven microbial genera had higher 
abundances in Rh positive samples: Pseudarcicella (0.25 ± 0.45%), Acinetobacter (1.56 ± 3.34%), Polynucleobacter 
(0.30 ± 0.46%), Cutibacterium (0.83 ± 1.58%), Enterococcus (7.40 ± 22.40%), Paracoccus (0.78 ± 3.75%) and Bacte-
roides (2.97 ± 8.84%). However, none of their distributions remained statistically different after multiple testing 
correction. The box plots are reported in the Supplementary figure SF4.

Maternal contribution to meconium beta diversity. The PCoA plot of Bray–Curtis and Jaccard dis-
similarities indexes showed a tendency towards clustering by delivery mode and maternal antibiotic exposure 
(Fig.  2). The PERMANOVA test detected a significant effect of delivery mode, maternal antibiotic exposure 
and gestational age on both indexes as reported in Table 3 and Fig. 2. None of the other variables had a sig-
nificant effect on neither index. The fraction of variance explained by delivery mode, antibiotic exposure and 
gestational age was generally low for both dissimilarity measures, ranging from a minimum R2 of 2.5% to a 
maximum R2 of 5.1% (Table 3). A significant effect of antibiotic exposure on both Bray–Curtis and Jaccard dis-
similarities was detected even when restricting the sample to VD newborns only (R2 = 0.041, p-value = 0.044; 
R2 = 0.035, p-value = 0.048 respectively). Additionally, both delivery mode and antibiotic exposure were signifi-
cant when included in the same PERMANOVA sequential test, while they explained a different proportion of 
variance (Table 4). The significance of marginal effects for each of the two variables was further confirmed by 
distance-based redundancy analysis, after controlling in turn for the other variable (p-values of 0.012 and 0.031 
for delivery mode and antibiotic exposure using Bray–Curtis, and 0.014 and 0.025 using Jaccard dissimilarity 
respectively).

When including the three significant variables in the same PERMANOVA model, gestational age was not 
significant unless it was introduced in the model prior to the other two covariates.
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Discussion
Sequencing results indicated that the Bacteria domain represented the vast majority of the meconium microbi-
ome. Most microorganisms were however rare, with a prevalence of less than 10%, so a microbial core defined as 
the overall taxa with a prevalence of at least 50% was determined at each taxonomical level to identify the most 
prevalent prokaryotic microorganisms.

The first bacterial colonizers of gut microbiome are thought to be facultative anaerobes, like Escherichia-
Shigella  species1, which as aerotolerant microorganisms, are believed to be implicated in the oxygen’s level reduc-
tion into the intestine, shaping the neonatal gut environment and contributing to the successive proliferation of 
anaerobic  bacteria31. Accordingly, in our study the genus Escherichia-Shigella was observed as one of the most 
common one (78/96, 81.3%), and one of the most abundant (relative abundance of 14.11%). The findings of this 
research are consistent with previous  studies22,32,33.

Figure 1.  Box plots of alpha diversity by maternal Rh factor. The three panels (a), (b) and (c) report the 
observed richness index, Shannon index and Inverse Simpson index respectively.

Table 2.  Association between clinical and anthropometric variables and alpha diversity indexes. All analyses 
were adjusted for the DNA extraction batch used. Significant values are in bold.

Independent variable

Outcome

Observed Richness Shannon index Inverse Simpson index

Coeff. (95%CI) p-value Coeff. (95%CI) p-value Coeff. (95%CI) p-value

Delivery mode 6.823(−1.805–15.451) 0.125 0.285(−0.096–0.665) 0.143 1.074(−0.316–2.464) 0.130

Maternal diabetics  statusa −8.546(−18.307–1.215) 0.086 −0.371(−1.018–0.433) 0.091 −1.476(−3.044–0.092) 0.065

Sexa 2.950(−5.558–11.459) 0.498 0.157(−0.217–0.531) 0.411 0.370(−1.002–1.742) 0.597

Gestational  agea −4.270(−7.805–0.736) 0.018 −0.167(−0.323–0.010) 0.037 −0.524(−1.100–0.052) 0.075

Maternal  agea −0.558(−1.358–0.242) 0.175 −0.002(−0.033–0.037) 0.918 0.025(−0.105–0.155) 0.704

Gravidic weight  increasea 0.165(−0.847–1.176) 0.750 0.009(−0.036–0.053) 0.703 0.023(−0.140–0.186) 0.782

Maternal antibiotic exposure 3.072(−5.705–11.849) 0.494 0.174(−0.210–0.558) 0.377 0.623(−0.788–2.034) 0.389

Maternal Rh  factora −8.503(−18.137–1.130) 0.078 −0.571(−1.130–0.011) 0.045 −1.688(−3.372–0.004) 0.049
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Few studies provided information on the archaeal component of meconium  microbiome32, even though 
the metabolic importance of some archaeal taxa, such as gut methanogens, has been already reported in adult 
 humans34,35. Accordingly to a recent work by Wampach and  colleagues32, our results indicated a very low archaeal 
contribution to the microbial composition and diversity in terms of both abundance and prevalence. Notably, 
most of the archaeal taxa resulted as taxonomically unclassified, underlying the poor human knowledge of 
archaeal genomes, even though they are considered as ubiquitous members of the adult gastrointestinal  tract36.

In addition to the taxa’s phylogenetic distributions, we assessed the composition of meconium samples in 
terms of predicted biochemical pathways. To the best of our knowledge, this is the larger study in terms of 
sample size after that of Dong and  colleagues37 to characterize the metabolic potential of meconium prokary-
otic community. Most predicted genes were involved in metabolic functions (about the 80% of 367 pathways), 
comprising both catabolism and anabolism. More precisely, carbohydrate metabolism was the most important 

Figure 2.  Ordination plot for the first two principal coordinates based on Bray–Curtis (upper plots) and 
Jaccard (lower plots) dissimilarities reported by, from left to right, maternal antibiotic exposure (a, d), delivery 
mode (b, e) and gestational age (c, f). For simplicity of graphical representation, gestational age is reported using 
quartiles.

Table 3.  Results of the PERMANOVA test using Bray–Curtis and Jaccard dissimilarities. Significant values are 
in bold. a The sequential test was done adjusting for the used DNA extraction batch.

Bray–Curtis Jaccard

R2 p-value R2 p-value

Sexa 0.011 0.322 0.01 0.369

Maternal  diabetesa 0.009 0.436 0.009 0.469

Gestational  agea 0.030 0.013 0.025 0.014

Delivery  modea 0.051 0.001 0.037 0.001

Maternal  agea 0.007 0.678 0.007 0.748

Gravidic weight  increasea 0.005 0.858 0.007 0.807

Maternal antibiotic exposure 0.044 0.002 0.034 0.002

Maternal Rh  factora 0.018 0.143 0.015 0.155

Table 4.  Results of the PERMANOVA test using both delivery mode and antibiotic exposure. Both sequential 
tests were adjusted for DNA extraction batch as first covariate. In the first test, maternal antibiotic exposure 
was added as covariate prior to delivery mode, while in the second test their order was inverted. Significant 
values are in bold.

First sequential test

Bray–Curtis Jaccard

Second sequential test

Bray–Curtis Jaccard

R2 p-value R2 p-value R2 p-value R2 p-value

Maternal antibiotic exposure 0.044 0.001 0.034 0.001 Delivery mode 0.5 0.002 0.037 0.001

Delivery mode 0.028 0.01 0.022 0.014 Maternal antibiotic exposure 0.022 0.025 0.019 0.022
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component in terms of abundance, among the general category of metabolic functions. Despite the differences in 
the composition of the microbial community, the general homogeneity of pathways distribution among samples 
highlights the importance of function preservation, even if it may involve different bacteria. This discrepancy 
between pathways homogeneity and microbial heterogeneity is in agreement with previous  observations38,39.

Since there is still a limited understanding of which factors affect meconium microbial composition, we 
investigated whether some of the most important maternal factors could impact microbial diversity. To express 
microbial diversity, we selected the most common within-samples diversity indexes (observed richness, Shan-
non and Inverse Simpson indexes) and the most common between-samples diversity measures (Bray–Curtis 
and Jaccard dissimilarities).

For alpha diversity, our results suggest an association between maternal Rh antigen phenotype (negative or 
positive) and alpha diversity, with a significant reduction in microbial diversity in newborns from Rh negative 
mothers compared to those from Rh positive mothers. Despite blood groups antigens were already known for 
their association with altered susceptibility to  infections40 and were recently investigated in association studies 
in the  adult29,41,42, this is the first study to report the association between the Rh phenotype and the microbial 
alpha diversity in meconium samples.

A recent study carried out in a very large population reported a genome-wide association between the ABO 
gene and two bacterial  genera29. However, only adult individuals were enrolled, while in newborns this associa-
tion still remains to be tested.

Since the ABO glycosylation pattern based on its phenotype has an effect on symbiotic bacterial  adhesion43,44, 
it is worth noting in this context that the Rh complex offers several glycosylation  sites45, which could be second-
ary binding targets for bacterial adhesion  structures46.

During pregnancy the maternal intestinal barrier may be subjected to variations in  permeability47. This event 
could facilitate maternal microbes in reaching the bloodstream or translocating into the lymphatic vessels to get 
to the placenta from the maternal  gut11. Another mechanism for bacterial translocation has been proposed in an 
interesting study by Rescigno and colleagues, for which dendritic cells directly sample bacteria from the gut by 
using the dendritic  processes48. After reaching the lymphatic system, bacteria could exploit circulating  cells6,49 
to reach different anatomical locations and colonization sites, such as the fetal  gut11. The possibility for bacteria 
to use the bloodstream to move into the host was already described during  pregnancy50, while it was reported 
in animal models that bacteria could reach the amniotic fluid from the  gut6.

The association between Rh phenotype and alpha diversity suggests a role for genetic variation in determining 
the early composition and variability of the microbiome prior to the exposition to the post-natal environment. 
However, further investigations are needed to validate the association and address the molecular mechanism 
involved.

A significant effect of gestational age was observed on both alpha and beta diversity. The importance of 
gestational age as a conditioning factor for the neonatal gut microbiome progression and development has 
been highlighted in several  studies51,52, but its contribution in explaining meconium diversity at birth only in 
term newborns has never been specifically investigated. In fact, the majority of the studies focused on the dif-
ferences between term and preterm newborns, or between early- and late-preterm  newborns53,54, while in our 
study all neonates were born at term. For beta diversity, we observed a significant effect of delivery mode on 
both Jaccard and Bray–Curtis dissimilarities. This is in line with the results of Wong and  colleagues25, a study 
based on a comparable sample size (n = 106) and with other smaller-sized  studies33,53. However, such result is in 
contrast with other reports, some of which based on larger sample  sizes37,55 that however considered different 
beta diversity indexes, like phylogeny-based weighted and unweighted Unifrac distances- and other studies with 
smaller sample  sizes22,56. So, the hypothesis for which the different newborn’s exposure during vaginal delivery or 
caesarean section leads to an altered microbial diversity and composition at birth is still a controversial aspect, 
and further studies are needed to fully address this point.

Antibiotic exposure can affect the microbial colonization in early  life57 but less is known about the effects 
of antibiotic-based treatments on the first-meconium microbial content. In our study we found evidence for a 
potential effect of maternal antibiotic exposure on meconium beta diversity in vaginally-delivered newborns only, 
as well as in the whole sample, as confirmed in two recent  studies25,58. Moreover, our results suggest that the effect 
of delivery mode on meconium microbiome within the first hours after birth is mainly (but not totally) due to the 
maternal antibiotic exposure preceding birth. Notably, this does not exclude an effect of delivery mode: basing 
on our findings, they both influence the meconium microbiome composition. However, since gestational age and 
delivery mode are not completely independent, there may be a complex interplay between delivery mode, mater-
nal antibiotic exposure and gestational age. One of the main causes of between-studies variability in microbiome 
research is the absence of standardized protocols and pipelines. Therefore, different studies could introduce bias 
according to the type of methodology and statistical analysis used. In contrast with most of the studies analysing 
the meconium microbiome composition, we performed all analyses on non-rarefied data to avoid a decrease 
in sensitivity and the omission of valid  data59. To control for contamination and correctly estimate community 
diversity, we used several positive and negative controls in PCR and all statistical analyses were adjusted for the 
batch used for DNA extraction, while a unique sequencing batch was used for all samples. However, meconium 
is a very complex matrix, which is characterized by a low biomass and by the contemporary presence of many 
PCR inhibitors. These conditions are considered important in the light of potential microbial contamination. 
Despite several precautions were taken to eliminate cross-contamination, we did not include negative controls 
for the extraction process. However, by adjusting all analyses by the DNA extraction batch used, we were able 
to avoid that potential microbial contaminants in the extraction reagents could significantly affect our results.

A potential limitation of our study lies in the methodological approach that we adopted: despite 16S ampli-
fication is a widely diffused technique for clinical microbial and microbiome studies, there may be some issues 
related to potential mutations occurring in the amplification procedure, that in our study was repeated twice. 
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However, this potential bias can be limited by setting optimal PCR conditions for the amplification process and 
by removing chimeric sequences with bioinformatic tools. Anyway, a method that can completely remove arti-
facts of this kind still need to be  developed60,61. Another limitation is the absence of maternal and environmental 
samples, whose analysis could have provide additional information on meconium microbial content. Despite 
this potential limitation, we obtained results very similar to those of other studies and thus it is unlikely that our 
estimates and inferences were totally driven by environmental contamination. In conclusion, our results suggest 
an association between maternal Rh factor and alpha diversity, and an effect of maternal antibiotic exposure and 
delivery mode on beta diversity, while gestational age resulted associated with both alpha and beta diversity of 
meconium. However, the fact that a large proportion of microbial diversity was essentially unexplained despite 
the use of most well-studied clinical and anthropometric  variables27 clearly suggests that other factors may have 
a role in shaping meconium microbiome diversity. In particular, the interesting association between the geneti-
cally determined maternal Rh factor and alpha diversity indexes suggests that host genetics could have a role 
in newborn meconium microbiome composition, an intriguing finding that merits further characterization.

Materials and methods
Study population. A cohort of 96 newborns was enrolled between 2018 and 2020. All first pass meconium 
samples were collected after spontaneous expulsion in delivery room or within the first 24 h after birth, at the 
Neonatology Division of Santa Chiara Hospital of the Azienda Ospedaliera Universitaria Pisana AOUP. Each 
sample was collected from diaper using sterile swabs and put into sterile polypropylene tubes.

For each couple mother-newborn, anthropometric data (maternal age, gravidic weight increase) and clinical 
variables (gestational age, delivery mode, maternal Rhesus factor –Rh, maternal antibiotic exposure and maternal 
diabetic status) were collected.

Mothers in the VD group were treated with antibiotics in case of Group B Streptococcus detection in the birth 
canal and/or rectum, or in case of failed induction after more than 18 h since the rupture of the membranes. 
Prophylactic antibiotics were instead administered to all mothers in the CSD group prior to delivery.

All mothers were healthy subjects, with no diagnosis of chorioamnionitis, pre-eclampsia and/or eclampsia 
and no clinical diagnosis potentially impacting the meconium microbial community was reported at the Santa 
Chiara Hospital.

Only healthy term-newborns with a gestational age of at least 37 weeks and with a minimum Apgar score 
of 7 were included. In addition, a written informed consent was voluntarily subscribed by the parents of each 
newborn.

Exclusion criteria were preterm birth, suspected genetic syndrome or metabolic disease, an Apgar score lower 
than 7 and parents’ refusal to subscribe the informed consent.

The ethical committee of Meyer Pediatric Hospital in Florence, which is the elected IRB for all the pediatric 
studies in the Tuscany region of Italy, approved this study. The study was performed according to the ethical 
standards of the Declaration of Helsinki (1964).

DNA extraction and amplification. Meconium samples were collected using sterile instruments and 
sterile lab equipment. After collection, meconium samples were stored at -20 °C. DNA extraction was performed 
using QIAamp Fast DNA Stool Mini Kit (QIAGEN). For sample amplification hot start PCR was performed on 
the V3-V4 285 bp sub-regions belonging to the 16S ribosomal gene, using the PRO341F and PRO805R set of 
universal primers for prokaryotic detection. Positive and negative controls were included in PCR reactions. For 
each sample, the extracted DNA was amplified using 0.2 µl Platinum Polymerase at a final concentration of 2U/
reaction, in a reaction volume of 25 µl, which included Buffer without  Mg2+(2.5 µl, 10x),  MgSO4 (1 µl, 50 mM), 
dNTPs (0.5 µl, 5 mM), PRO341F (1 µl, 1 µM) and PRO805R (1 µl, 1 µM) primers. A standard thermic profile 
was used (1 cycle at 94˚C for 2’, 30 cycles at 94˚C for 30’’, 56˚C for 30’’ and 72˚C for 45’’ and 1 final cycle at 72˚C 
for 7’). Due to the low biomass of meconium samples, a second PCR round was repeated on the amplicons from 
the previous amplification step. Additional data on the amplification procedures are reported in Supplementary 
note. Then, amplicons were separated by electrophoretic runs at 120 V for 25 min in ethidium bromide 2% 
agarose gel and visualized at the BioDoc-It Imaging System (UVP, USA). Positive and negative controls were 
included during PCR reactions and electrophoretic runs. Additional details on the primer sequences are pro-
vided in Supplementary table ST3.

DNA purification, sequencing and taxonomic assignment. Amplified DNA was checked by electro-
phoresis, as a prerequisite for the V3-V4 region sequence purification, which was performed by GeneAll Expin 
Combo GP (GeneAll Biotechnology) following the manufacturer’s instructions. Purified DNA quantification 
was carried out using NanoDrop Lite UV–Vis Spectrophotometer (TermoFisher Scientific). The average DNA 
concentration yield was 11.11 ± 7.33 ng/µl. Samples were then stored at -20˚C until sequencing.

Sequencing was performed using a unique batch for all samples on a Mi-Seq platform with a MiSeq kit by 
Bio-Fab Research (Bio Fab Research srl, Rome, Italy). Quality control on raw sequence data in fastq format was 
performed using FastQC v0.11.9, and dada2 plugin of QIIME2 (available at https:// qiime2. org/) was used for 
denoising, merge and chimera detection, while for secondary analysis BBMap version 38.79 was used (https:// 
sourc eforge. net/ proje cts/ bbmap/).

Amplicon sequence variants (ASVs) were obtained as output. Then, taxonomic assignment based on 16S 
rRNA gene profiling was made using QIIME2 and SILVA v132 reference database (available at https:// www. 
arb- silva. de/).

https://qiime2.org/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://www.arb-silva.de/
https://www.arb-silva.de/
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Meconium core microbiome. In this study only taxa present in at least 50% of the samples were included 
in the analysis and their relative abundances were used to evaluate the composition of meconium microbiome 
at different taxonomical levels of classification. The 50% threshold chosen in this study is in line with recent data 
by Wang and colleagues, in which a similar sample size was  analysed62. Taxa abundances were reported using 
mean ± standard deviation.

Prediction of metabolic pathways. The pathways of metabolic activity of the meconium microbial com-
munity were predicted using Tax4Fun2 (downloaded as an R package: GitHub- bwemh eu/ Tax4F un2), which 
is a recently developed bioinformatic tool that allows functional prediction from 16S gene  sequences63. The 
algorithm blasts 16S fasta sequences to NCBI-RefSeq database, and then extracts metabolic and functional 
information from KEGG orthology database (https:// www. genome. jp/ kegg/ ko. html). Contextually, using the 
abundance-related data, provided as an OTU-table, the algorithm computes the functional profile of each sam-
ple. The heterogeneity of metabolic composition was analysed and compared to that of the taxonomical com-
position using the Mann–Whitney-Wilcoxon rank sum test on Pielou’s evenness  index64. Pathway abundances 
were reported using mean ± standard deviation.

Association between clinical and anthropometric variables and alpha diversity. Observed rich-
ness, Shannon index and Inverse Simpson index were selected as alpha diversity  measures65 and were calculated 
using R’s vegan package (https:// CRAN.R- proje ct. org/ packa ge= vegan).

Normalization of raw data was performed prior to alpha diversity indexes calculations by dividing reads 
counts by the corresponding sample size and multiplying by the size of the smaller  sample66. The effect of the 
most relevant clinical and anthropometric factors –selected from  literature27- and alpha diversity indexes was 
explored with a regression analysis using the generalized linear model. Gestational age, maternal age, gravidic 
weight increase, maternal Rh factor, maternal diabetic status, maternal antibiotic exposure, delivery mode and sex 
were used as independent variables, with the first three expressed as continuous variables and the others as binary 
factors, while diversity indexes were used as outcome variables. Even though all DNA samples were isolated with 
the same method, the analyses were adjusted also for DNA extraction kit batch used to avoid confounding bias.

Since an association was found between maternal Rh and alpha diversity, taxonomic differences by Rh fac-
tor were investigated applying the Wilcoxon rank sum test on all bacterial genera with a prevalence of at least 
a quarter of the sample size. P-values were adjusted using FDR correction (Benjamini–Hochberg method) to 
account for multiple comparison.

Association between clinical and anthropometric variables and beta diversity. To measure beta 
diversity, Jaccard and Bray–Curtis  dissimilarities67, were calculated using R’s vegan package (https:// CRAN.R- 
proje ct. org/ packa ge= vegan), while principal coordinates analysis (PCoA) was used to explore the association 
between the epidemiological variables listed above and beta diversity. To test the statistical significance the PER-
MANOVA test was employed using the R’s adonis function (vegan package) with 1000 permutations. All analysis 
were adjusted for DNA extraction batch used.

Data availability
The datasets generated and analysed during the current study will made available to researchers who submit a 
reasonable and detailed request to the corresponding author, conditional to approval of the Ethics Commission 
of the Meyer Children Hospital of Florence which is the appointed IRB for all the pediatric study in the Tuscany 
region. Data will be stripped from all information allowing identification of study participants. Sequencing 
data have been made publicly available through FASTQ files submission to Sequence Read Archive with project 
accession number PRJNA779839.

Code availability
RStudio software version 4.0.3 (2020–10-10) was used for statistical analysis.
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