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Abstract

To mitigate the harmful effects of the COVID-19 pandemic, world countries
have resorted - though with different timing and intensities - to a range of in-
terventions. These interventions and their relaxation have shaped the epidemic
into a multi-phase form, namely an early invasion phase often followed by a
lockdown phase, whose unlocking triggered a second epidemic wave, and so on.
In this article, we provide a kinematic description of an epidemic whose time
course is subdivided by mitigation interventions into a sequence of phases, on
the assumption that interventions are effective enough to prevent the suscepti-
ble proportion to largely depart from 100% (or from any other relevant level).
By applying this hypothesis to a general SIR epidemic model with age-since-
infection and piece-wise constant contact and recovery rates, we supply a uni-
fied treatment of this multi-phase epidemic showing how the different phases
unfold over time. Subsequently, by exploiting a wide class of infectiousness and
recovery kernels allowing reducibility (either to ordinary or delayed differential
equations), we investigate in depth a low-dimensional case allowing a non-trivial
full analytical treatment also of the transient dynamics connecting the different
phases of the epidemic. Finally, we illustrate our theoretical results by a fit to
the overall Italian COVID-19 epidemic since March 2020 till February 2021 i.e.,
before the mass vaccination campaign. This show the abilities of the proposed
model in effectively describing the entire course of an observed multi-phasic epi-
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demic with a minimal set of data and parameters, and in providing useful insight
on a number of aspects including e.g., the inertial phenomena surrounding the
switch between different phases.

Keywords: multi-phasic age-structured epidemics, non-pharmaceutical
interventions, social distancing, stable age distributions, linear-chain trick,
COVID-19.
2010 MSC: 92D25, 92D30,

1. Introduction

Since its detection in the city of Wuhan, China, by end December 2019, the
novel SARS-CoV-2 coronavirus has rapidly spread worldwide with a dramatic
direct disease burden (WHO situation reports 1-209 and Weekly epidemiological
updates, [1]), and a dramatic impact on the economy, health and the society5

as a whole. During the first COVID-19 pandemic wave, an increasing number
of countries worldwide have opted, following China, for massive social distanc-
ing measures - what is now universally identified as lockdown, integrated with
a range of supplementary measures such as tracing and isolation of confirmed
cases. The aim of lockdown is essentially that of abruptly bringing the basic10

reproduction number of the infection, R0, below threshold, therefore stopping
sustained transmission. If this actually occurs, and the measures are not pre-
maturely interrupted, the epidemic will be brought on a suppression path (Fer-
guson et al. [2]). The China initial experience, especially the one of the Hubei
province, has shown that a combination of severity and appropriate duration15

of intervention can achieve high degrees of suppression even for epidemics that
have reached a non-negligible scale. A somewhat different story occurred in
Western Europe, where in many cases the lockdown was declared with substan-
tial delays, with the aggravating circumstance that its implementation was done
through several steps instead than abruptly, therefore yielding much larger epi-20

demics than in China (see [1]). For example in Italy, whose Northern regions
(especially Lombardia) experienced one of the most dramatic local epidemic
worldwide, full lockdown was achieved by a long number of subsequent decrees
of the Prime Minister covering a span of more than twenty days. These delays
not only caused the epidemic to overwhelm available public health resources,25

with huge human costs, but also made eventually unavoidable to unlock long
before the achievement of adequate suppression levels, due to the dramatically
growing economic loss. Commom to several European countries, the subsequent
unlocking phase have shown prolonged honey-moon epochs of low epidemic ac-
tivity, possibly resulting from a combination of reasons such as e.g., an enduring30

the maintenance of prudent behavior, temperature effects and school holidays.
However, the unavoidable restart of epidemic activity again found the country
unprepared, generating a massive second wave ([1]). The ensuing mitigation in-
terventions, milder than the generalised lockwodwn adopted during the spring
wave possibly on trust of the announced start of the vaccination campaigns,35
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were partly successful i.e., the epidemic curve was just brought to stationarity
with the current reproduction index Rt in the region of one at the national level,
until the new variants of concern initiated their replacement of the original ones
[1], giving rise to a third wave [3], and forcing new restrictions, including re-
gional lockdowns. A number of key questions were continuously debated by the40

public during each pandemic wave about the effects of the enacted interventions
such as e.g., (i) when the effects of social distancing measures will be detectable
in the data, or when the epidemic peak of that particular phase will be achieved,
(ii) which the further epidemic growth will be, in terms of hospitalizations, and
deaths, after the measures implementation, etc.45

Previous questions have represented major concerns throughout the COVID-
19 pandemic and were responsible of widespread anxiety in the public opinion.
They therefore call for general answers, even more so in the current moment
when a third wave has started and it is clear that the benefits of vaccination -
at current rates of administration - will take time to manifest. And, obviously,50

in view of future pandemics as they are not anymore classifiable as rare events.
The COVID-19 pandemic has called for an unprecedented interest of modelers
for epidemic dynamics both per-se, to investigate the direct epidemiological
consequences of the pandemic and related mitigation measures, and also to
investigate its broader implications on society. This has led to an endless number55

of papers and preprints of which we quote here only a few focusing on COVID-
19 epidemiological modeling [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21]. Most of the cited investigations have resorted to simulation.
However, even under fairly general conditions, many of these phenomena can be
investigated in a fully analytical manner, therefore providing a range of further60

robust insights about epidemic control.
Therefore, motivated by the main feature of the COVID-19 epidemic i.e., be-

ing characterised by a sequence of phases driven by the intensity and duration of
the undertaken mitigation measures, in this paper we attempt to analyse, in an
analytical manner, the dynamics of a generic multi-phasic epidemic, much in the65

same way as we observed for COVID-19 prior the current mass vaccination cam-
paign started to deploy its main effects. These phases include an early invasion
phase, the subsequent mitigation interventions (e.g., generalised lockdown), the
unlocking/releasing phase, the second wave phase, the further mitigating inter-
ventions etc. To make the problem tractable, we assumed that the interventions70

considered are sufficiently long-lasting and effective so to prevent that the sus-
ceptible proportion of the population excessively departed from its initial value
(presumably around 100% for COVID-19) or from any other reference value.
This hypothesis can be always made valid by considering suitable observation
windows. Besides the rapid control achieved in China already by February 202075

at very low attack rates, in Italy a nation-wide large-scale serological survey
conducted during after the first wave (June-July 2020) showed that - with the
exception of Lombardy which had entire areas ravaged by the epidemic (eventu-
ally bringing attack rates around 7.5%), the national average was only slightly
in excess of 2%, with most regions only mildly attacked ([22]). And still at the80

onset of the third wave (end February 2021) the overall nation-wide proportions
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of confirmed infections was in the range of 5%. This is strongly suggestive of
the fact that the potential impact on the course of the epidemics, due to the
depletion of the susceptible population, would always be secondary with respect
to the impact due to the undertaken mitigation measures. More in general we85

expect this to be largely true in all countries and subnational settings where
social distancing arrived at a sufficiently earlier stage of the epidemic so to halt
it before it depleted the susceptible proportion. Note additionally that this ap-
proach is valid for any combination of epidemic phases where interventions are
able to approximately ”freeze” the susceptible fraction around some given level.90

In these circumstances, the analysis of a multi-phasic epidemic yields to a
linear problem which can be analysed by the tools of age-structured populations
mathematics ([23, 24, 25] and references therein). Our principal aim here will
be to provide a unified framework to multi-phase epidemics while keeping our
results as more analytical as possible. Our approach will be kinematic in the95

sense that will look at how the different epidemic phases unfold over time re-
shaping the epidemic, without minding at whether, for example, a certain value
of the current reproduction number Rt achieved during e.g., a lockdown phase,
was the mere outcome of government-enforced restrictions or was also reflect-
ing the beneficial (or harmful) effect of virtuous (resistant) behavior spread in100

the population, as would instead be the approach of behavioral epidemiologists
([26, 27]). Consistently, we will simply consider a SIR epidemic model including
class age i.e., age since infection, in the infective compartment and piece-wise
constant transmission and recovery rates over time reflecting different interven-
tion epochs. The reason why we use such a simple model (e.g., without including105

more compartments as symptomatic cases, hospitalization, deaths etc as a faith-
ful description of COVID-19 would require), is that this simple model provides
the backbone description of a general multi-phasic epidemic. This backbone can
be easily refined by adding further compartments representing delayed events
following infection [28].110

Despite its simplicity, our SIR model is general in that we consider both a
latency delay and general forms for the infectiousness and recovery processes. By
the proposed model, we first provide a general characterization of a multi-phasic
epidemic. Second, by adopting a wide class of generation time and recovery
kernels allowing reducibility to ordinary or delayed differential equations ([29]),115

we were able to provide a detailed investigation of a non-trivial low-dimensional
case allowing a full analytical treatment of the transient dynamics of a multi-
phase epidemic. Finally, we complemented our theoretical results by a number
of illustrations, using realistic parameter constellations drawn from available
estimates of COVID parameters. In particular, we fitted the model to the overall120

Italian COVID-19 epidemic since March 2020 until late February 2021. This
illustrates the abilities of the proposed model in effectively explaining the entire
course of the epidemic, including the effects of interventions, using a minimal set
of data and parameters, and in providing useful insight on a number of aspects
including e.g., the demographic inertia occurring during the switch between125

different epidemic phases.
The article is organised as follows. Section 2 develops our model for a
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multi-phasic epidemic. Section 3 reports the main theoretical results. Sec-
tion 4 presents the proposed class of reducible kernels and reports a number of
sub-cases and illustrations. Section 5 reports the application to Italian data.130

Concluding remarks follow.

2. A backbone model for a multi-phase epidemic

The model we present here is a SIR epidemic model structured by age since
infection or class age. The evolution of the epidemics over time is subdivided
into phases, each one characterized by a certain intervention intensity.135

2.1. Model specification

Our model is based on the state variable

Y (x, t), x ∈ [0, x+],

where x denotes class age, representing the (improper) age-density of the number
of infected individuals. In particular, x+ denotes the maximal age since infec-
tion and may be finite or infinite. Our main assumption is that interventions are140

early and effective enough to prevent a large depletion of the susceptible popu-
lation during the overall epidemic course i.e., the susceptible fraction does not
significantly departs from 1. Note that this hypothesis can actually be applied
at any level S of the susceptible proportion, provided subsequent interventions
are effective enough to ”freeze” the susceptible population therafter.145

In this manner, the model equations read

(
∂

∂t
+

∂

∂x

)
Y (x, t) = −γ(x, t)Y (x, t),

Y (0, t) =

∫ x+

0

β(x, t)Y (x, t)dx,

Y (x, 0) = Y 0(x).

(1)

Where

• γ(x, t) = the removal rate of infected individuals aged x at time t, that
is, the overall rate at which infected individuals aged x are removed by
any cause as, e.g., recovery or death (during an uncontrolled epidemic)150

or by screening, tracing, isolation, hospitalization etc (in the presence of
interventions).

• β(x, t) = the transmission rate of infected individuals aged x at time t,
representing the number of secondary infections caused by a single infected
aged x per unit of time in the hypothetical situation of no removal.155
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Note that, thanks to the stated hypotheses, the incidence of new infections

U(t) =

∫ x+

0

β(x, t)Y (x, t)dx

depends linearly on the infected density Y (x, t). Both rates β(t, x), γ(x, t) are
taken as functions of time as well, to reflect the possibility of interventions (e.g.,
social distancing, testing, isolating), or the removal of such measures. To mimic
the various phases of the epidemic experienced by most European countries we160

will represent these rates as piecewise function of time. Just for illustration, to
represent a 3-phase epidemic, as it might be the case for an epidemic with an
initial outbreak phase, a lockdown phase, and a subsequent release phase, we
will take

γ(x, t) = I[0,tL)(t) γ1(x) + I[tL,tR)(t) γ2(x) + I[tR,+∞)(t) γ3(x) (2)

and165

β(x, t) = c(t)β0(x) =
[
I[0,tL)(t) c1 + I[tL,tR)(t) c2 + I[tR,+∞)(t) c3

]
β0(x), (3)

where I[a,b)(t) represents the characteristic function of the interval [a, b), while
tL and tR, 0 < tL < tR, are the lockdown and unlocking times respectively. Of
course, it is possible to consider any number of epidemic phases. Specification
(2) models interventions aiming to affect the age-density of removal in the broad
sense defined above. In (3), factor c(t) denotes the number of adequate contacts170

per person and per unit time, while β0(x) tunes the (average) intrinsic infec-
tiousness of an infected individual aged x (i.e, the probability that an infected
individual aged x infects a susceptible during an adequate contact), possibly re-
lated to her/his viral load. Our formulation therefore assumes that intervention
strategies may act either on the number of adequate contacts (as is the case for175

social distancing) or the scale of transmission (e.g., by using masks), but not on
the shape of the distribution of infectiousness by age since infection. Note more-
over that the previous form describes abrupt switches between phases, reflecting
an ideal world where compliant agents suddenly adjust their behavior upon gov-
ernmental intervention. However, extension to smooth transitions over time is180

possible. Overall, the proposed model represents a non-autonomous, infinite-
dimensional, dynamical system with piecewise constant switching parameters
(see for instance [30],[31]).

2.2. Stepwise solution of the model

Within the previous framework, the model can be solved in a stepwise man-185

ner, phase by phase. For the sake of simplicity we limit the discussion to three
”representative” phases, namely an invasion (or outbreak) phase, a lockdown
phase and a release one (respectively labeled by i = 1, i = 2, i = 3), but the
analysis can continue to include successive phases.

We first note that under our hypotheses each phase of the epidemics (i =190

1, 2, 3) is characterized by a phase-specific reproduction number given by

Ri0 = ci

∫ x+

0

β0(x)Γi(x)dx, (i = 1, 2, 3)
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where

Γi(x) = e
−
∫ x

0
γi(s)ds, x ∈ [0, x+],

is the phase-specific survival-to-removal probabilities, defining the probability
that a newly infected individual is still infective by age x conditional on the
interventions undertaken during any given phase. Concerning the reproduc-195

tion numbers, we will make the assumptions (consistent with the experience of
countries which resorted to lockdown) R1

0 > 1, R2
0 < 1, R3

0 > 1 (but other
hypotheses can obviously be made). For each phase (i = 1, 2, 3) we have the
Lotka-Von Foerster problem

(
∂

∂t
+

∂

∂x

)
Yi(x, t) = −γi(x)Yi(x, t),

Yi(0, t) = ci

∫ x+

0

β0(x)Yi(x, t)dx,

Yi(x, 0) = Y 0
i (x),

(4)

where the initial age distribution of the next phase is the terminal distribution200

of the previous one
Y 0

1 (x) = Y 0(x),
Y 0

2 (x) = Y1(tL, x),
Y 0

3 (x) = Y2(tR − tL, x),

and the solution to (1) reads

Y (t, x) =

 Y1(x, t) for t ∈ [0, tL],
Y2(x, t− tL) for t ∈ [tL, tR],
Y3(x, t− tR) for t ∈ [tR,∞].

By integration along characteristic lines (see for instance [24]), each system
(4) can be transformed into an integral equation in the phase-specific incidence
Ui(t) (i = 1, 2, 3)205

Ui(t) = ci

∫ x+

0

β0(x)Yi(x, t)dx.

Namely we obtain the phase-specific renewal equation

Ui(t) = Ri0
(
Gi(t) +

∫ t

0

Ki(x)Ui(t− x)dx

)
, (5)

where

Ki(x) =
β0(x)Γi(x)∫ ∞

0

β0(x)Γi(x)dx

is a normalised kernel representing the generation time density, and

Gi(t) =

∫ ∞
t

Ki(x)
Y 0
i (x− t)

Γi(x− t)
dx,
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where all the function involved are extended as zero over the interval of definition
[0, x+].210

Once equation (5) is solved, the solution to (4) is then given by

Yi(x, t) =


Y 0
i (x− t) Γi(x)

Γi(x− t)
for t ≤ x

Ui(t− x)Γi(x) for t > x.

(6)

Note that in the case of a finite maximum age x+ < +∞ we eventually have
(for t > x+)

Yi(x, t) = Ui(t− x)Γi(x).

On the other hand, if the maximum age is not finite, which is an hypothesis com-
mon in epidemiological modeling where generation time densities are typically215

represented by infinitely-supported parametric distributions (as e.g., Gamma or
Weibull), the age-density of infectives Yi(x, t) will continue to include, at any
time, its initial distribution even if at a steadily declining ”weight”.

2.3. Analysis of single phases

Our analysis of the epidemic dynamics during each phase will be based on220

the renewal equation (5) that is well known in demography and epidemiology.
The basic theory (briefly outlined in Appendix A) states that the behaviour of
Ui(t) is related to the roots of the corresponding characteristic equation

Ri0K̂i(λ) = 1. (7)

Under generic hypotheses on kernel Ki(x) that we assume are satisfied, this
equation has one dominant real root α∗i and the other roots can be ordered in225

a sequence {αji} such that

<αj+1
i ≤ <αji < α∗i (j = 1, 2, . . .), (8)

and the solution for the incidence during the phase i has the asymptotic expan-
sion

Ui(t) = U∗i e
α∗

i t +

∞∑
j=1

U ji e
αj

i
t.

where the constants of the expansion respectively obey

U∗i =
Ĝi(α

∗
i )∫ ∞

0

xKi(x)e−α
∗
i xdx

. (9)

and230

U ji =
Ĝi(α

j
i )∫ ∞

0

xKi(x)e−α
j
i
xdx

.
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Since (8) holds, we have

lim
t→∞

e−α
∗
i t Ui(t) = U∗i . (10)

On the further assumption that the temporal duration of each phase is suf-
ficient to allow the emergence of long-term behavior, the ultimate behavior of
the incidence during the i-th phase is therefore exponential

Ui(t) ≈ U∗i eα
∗
i t,

at a Lotka’s intrinsic rate α∗i and scale constant U∗i , also termed the stable235

equivalent in demographic jargon (see [23]). The requirement that intervention
phases are sufficiently long is by no means unrealistic: during invasion phases
convergence to the exponential epidemic path is usually very fast, while for
e.g., a lockdown phase aiming to bring reproduction below threshold, it would
purely be irrational to stop the intervention before the epidemic has entered its240

exponentially declining path.
The asymptotic behavior of incidence, as stated in (10), in turn implies the

emergence of the stable age distribution (i.e., a stable age profile) of the infected
population:

Y ∗i (x) =
e−α

∗
i xΓi(x)∫ ∞

0

e−α
∗
i xΓi(x)dx

, x ∈ [0, x+], (11)

where, if x+ < +∞, in the denominator we intend that the function Γi is245

extended as 0 for x > x+ (indeed, the stable distribution arises if the function
Γi(x) is Laplace transformable at α∗i ).

Actually, based on (10), the solution of (4) [see (6)] will approach the asymp-
totic form

Y∞i (x, t) ≈ U∗i Γ̂i(α
∗
i ) e

α∗
i t Y ∗i (x).

Precisely, we have [see (6)]250

lim
t→∞

e−α
∗
i t Yi(x, t) = U∗i Γ̂i(α

∗
i ) Y

∗
i (x) (12)

where the convergence occurs pointwise in x.

2.4. Components of the stable equivalents

We briefly comment about the components of the stable equivalent U∗1 of
COVID-19 dynamics during the exponential phase. The denominator in (9)
reads255 ∫ ∞

0

xKi(x)e−α
∗
i xdx =

µi
Ri0

.

where

µi = Ri0
∫ ∞

0

xKi(x)e−α
∗
i xdx

=

∫ ∞
0

x
β0(x)Γi(x)e−α

∗
i x∫∞

0
β0(s)Γi(s)e

−α∗
i
sds

dx =

∫ ∞
0

x
β0(x)Y ∗i (x)∫∞

0
β0(s)Y ∗i (s)ds

dx
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is the average age at which infected individual produce their secondary cases,
at the stable age distribution prevailing during invasion. Therefore, the stable
equivalent can be represented as

U∗i =
Ri0Ĝi(α∗i )

µi
, (13)

Notably, at the numerator of the expression we have the product260

Ri0Ĝi(α∗i ) = Ri0
∫ ∞

0

e−α
∗
i t

∫ ∞
t

Ki(x)
Y 0
i (x− t)

Γi(x− t)
dxdt =

∫ ∞
0

Πi(x)Y 0
i (x)dx. (14)

where

Πi(x) = ci

∫ ∞
x

e−α
∗
i (s−x)β0(s)

Γi(s)

Γi(x)
ds (15)

represents, still resorting to demographic jargon, Fisher’s reproductive value of
an infected aged x ([23]). Therefore, the numerator in (13), which scales the
magnitude of the epidemic, also has a noteworthy demographic interpretation,
i.e., it represents the total reproductive value i.e., the infection potential embed-265

ded in the initial age distribution of infected individuals.

3. The dynamics of the different phases

This section summarises the main model results in distinct subsections fo-
cusing on the distinct phases (i = 1, 2, 3) of the epidemic using equations (5).
During each phase, the infected distribution evolves toward its asymptotic stable270

age distribution and provides the new initial age distribution for the subsequent
phase. Thus each phase is ultimately represented by the dominant real root α∗i
of the characteristic equation (7) and by the stable equivalent U∗i .

We discuss in greater detail the invasion phase (i=1), where no intervention
is in place, and the subsequent social distancing phase (i=2). Finally we briefly275

extend the results to the release phase (i=3).

3.1. The outbreak phase

We first consider the initial phase of the epidemic, that is the solution of
(1) in the interval [0, tL] where no control measures are in place yet. This is
governed by the solution of (4) for i = 1 with R1

0 > 1, so that the dominant real280

root α∗1 is strictly positive. Thus, whatever be the initial distribution Y 0(x),
the infected population will reach its stable age distribution [(11)]

Y ∗1 (x) =
e−α

∗
1xΓ1(x)

Γ̂1(α∗1)
, x ∈ [0, x+],

Note that, since α∗1 > 0, the function Γ1(x), being bounded, is Laplace trans-
formable at α∗1.

As known from classical mathematical demography, the stable age distri-285

bution (SAD), which here represents the relative distribution of the infected
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by (class) age, is time invariant due to the fact that the absolute numbers of
infective individuals in each age group grow at the same rate α∗1 over time.
In particular, the normalising term of the SAD, given by the reciprocal of the
Laplace transform of the survival to removal function Γ̂1(α∗1) has a clear epi-290

demiological meaning. It indeed represents the long-term per-capita birth rate
of new infective individuals - generically defined as the ratio between the rate of
new births, i.e., the incidence Ui(t), and the overall size of the infected popula-
tion I(t) - in the asymptotic regime of exponential growth of incidence defined
in (10).295

In case the age profile of the initial datum corresponds to the SAD (11),
namely if

Y 0(x) = I(0) Y ∗1 (x), (16)

where I(0) is the number of infected individuals at the beginning of the epidemic,
then

G1(t) =
I(0)

Γ̂1(α∗1)
eα

∗
1t

∫ ∞
t

K1(x)e−α
∗
1xdx

and the solution to (5) is exactly (see Appendix A)300

U1(t) =
I(0)

Γ̂1(α∗1)
eα

∗
1t. (17)

From (17), the corresponding solution to (4) reads

Y1(x, t) = I(0) eα
∗
1t Y ∗1 (x),

i.e., the age-distribution is stable at all times. The latter developments state
that if the infective population lies on its SAD already at the initial phase of
the epidemic, then the dynamics of incidence is simply given by the exponential
propagation at the intrinsic rate α∗1 of the total initial infective population I(0)305

through its stable (per-capita) birth rate 1/Γ̂1(α∗1).
Concerning the behaviour of the total number of infected during the outbreak

phase

I1(t) =

∫ x+

0

Y1(x, t)dx,

from (6) and (12) we see that it splits into two terms

I1(t) =

∫ ∞
t

Y 0(x− t) Γ1(x)

Γ1(x− t)
dx+

∫ t

0

U1(t− x)Γ1(x)dx

= I0
1 (t) + I+

1 (t)

with310

lim
t→∞

I0
1 (t) = 0, lim

t→∞
e−α

∗
1t I+

1 (t) = U∗1 Γ̂1(α∗1). (18)

Thus, the first term is a transient one accounting for the initial group of infected
people, while the second term accounts for the epidemic dynamics resulting
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from new cases generated for t > 0 which for large times converges to its stable
form. Precisely, the initial group I0

1 (t) decays at a rate related to the removal
probability Γ1(x). In fact, if x+ < +∞ we simply have315

I0
1 (t) = 0 for t > x+,

otherwise, if x+ = +∞, for any 0 < ω < −σΓ1
, where σΓ1

is the abscissa of
convergence of the Laplace transform of Γ1(x), we have

lim
t→∞

eωtI0
1 (t) = lim

t→∞

∫ ∞
0

Y 0(x)
eω(x+t)Γ1(x+ t)

eωxΓ1(x)
dx = 0. (19)

Note that the ultimate behavior of the total number of infected during the first
phase

I+
1 (t) ≈ U∗1 Γ̂1(α∗1) eα

∗
1t (20)

differs from incidence only in the scale constant, which is now given by U∗1 Γ̂1(α∗1).320

The latter represents the stable equivalent of the total infected population, which
differs from that of incidence by a multiplication for the reciprocal of the asymp-
totic birth rate of new infectives, Γ̂1(α∗1).

Finally, as regards the lapse of time necessary for observing the emergence
of the asymptotic behavior of the solution, we can estimate the approximate325

minimum time for a tolerance ε as [see (A.4)]

Tε =
ln(|U∗1 |)− ln(ε)

α∗1 −<α1
1

.

3.2. The lockdown phase

Let us now consider the implications of a sufficiently long lasting mitigation
phase starting at the time tL, when the reproduction number is abruptly set at
R2

0 < 1. Since in this case we have α∗2 < 0, if social distancing is maintained for330

a sufficiently long time, the epidemic will eventually set on an exponentially de-
clining path that we will term a suppression path. The suppression path would
eventually bring to epidemic extinction if the lockdown phase would continue
rather than being halted by unlocking. However, before setting on the suppres-
sion path, the lockdown dynamics will be somewhat articulated as it will have to335

connect the pattern of fast exponential epidemic growth inherited from the first
phase with its regime phase of exponential decline. This suggests a transient
phase resulting from the abrupt switch between dynamic regimes, which will
be dominated by the inertia inherited from the fast growth of the first phase,
and might result in an epidemic peak, after which epidemic decline will start.340

During this phase the age distribution of infective individuals will continuously
adjust, and will eventually converge to its new stable limiting form Y ∗2 (x) that
will promote the exponential decline of the suppression phase. In what follows,
we discuss the second-phase dynamics by distinguishing between the limit case
of epidemic annihilation (R2

0 = 0) from the standard case of (eventual) elimi-345

nation 0 < R2
0 < 1.
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3.2.1. Epidemic annihilation

In this case, setting R2
0 = 0, we have U2(t) ≡ 0 and

Y2(x, t) =


Y 0

2 (x− t) Γ2(x)

Γ2(x− t)
for t ≤ x

0 for t > x.

(21)

Thus, for the prevalence of infected we have only the transient component I0
2 (t)350

that either is identically 0 for t > x+ (if x+ < +∞) or goes extinct at any rate
ω such that 0 < ω < −σΓ2 [see the analogous (19)].

3.2.2. The case 0 < R2
0 < 1

If 0 < R2
0 < 1, then there is also the component I+

2 (t) and we have

lim
t→∞

e−α
∗
2tY2(t, x) = U∗2 e

−α∗
2xΓ2(x) (22)

pointwise in x. Note that, in the case x+ < +∞, we certainly have355

I+
2 (t) ≈ U∗2 Γ̂2(α∗2)eα

∗
2t, (23)

but, if x+ = +∞, since α∗2 < 0, the limit on the right hand side of (22) is
integrable if and only if α∗2 > σΓ2

. In this case (23) holds true [compare with
(20)]. However if α∗2 < σΓ2

we instead have

lim
t→∞

eωtI+
2 (t) = lim

t→∞

∫ t

0

U2(t− x)eω(t−x)eωxΓ2(x)dx

≤ lim
t→∞

∫ t

0

U2(t− x)e−α
∗
2(t−x)eωxΓ2(x)dx = U∗2 Γ̂2(−ω)

for any ω such that 0 < ω < −α∗2 < −σΓ2 , i.e., I+
2 (t) decays at the rate −ω.

3.2.3. Stable equivalents of a lockdown phase360

Much information on epidemic trend during the lockdown phase is provided
by the two parameters governing the resulting long-term declining exponential
path, namely the intrinsic rate α∗2 and the stable equivalent, where the latter
tunes the scale of the epidemic curve over the suppression path. We assume
that at the lockdown time tL, the epidemic has reached its stable form (12), so365

that the initial datum at tL is

Y 0
2 (x) = U∗1 Γ̂1(α∗1) eα

∗
1tL Y ∗1 (x) = U∗1 eα

∗
1(tL−x)Γ1(x),

implying a total number of infected individuals

I2(0) = U∗1 Γ̂1(α∗1) eα
∗
1tL .
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Here U∗1 is in general given by (13) while, if the initial population of infectious
individuals at the beginning of the epidemic was distributed according to the
stable distribution of the first phase, then [see (17)]370

U∗1 =
I(0)

Γ̂1(α∗1)
.

.
The stable equivalent of the incidence function for the lockdown phase is

[see (13) and (14)]

U∗2 =
I(0) eα

∗
1tL

µ2

∫ ∞
0

Π2(x) Y ∗1 (x)dx,

In the particular case of Γ1(x) ≡ Γ2(x), i.e. if the lockdown measures only
involve the lowering of the contact rate from its free-epidemic level c1 to c2 < c1,375

the latter quantity reads

U∗2 =
U∗1 e

α∗
1tL(R1

0 −R2
0)

µ2(α∗1 − α∗2)R1
0

.

The previous quantity encapsulates the inertial effects arising from the transi-
tion between two regimes of stable growth, namely an initial regime of expo-
nential epidemic growth and the subsequent suppression regime characterised
by asymptotic exponential decline.380

3.3. The release of social distancing

For simplicity we assume that the release of social distancing measures starts
when the stable age distribution of the suppression phase was fully established
so that we have to consider the incidence equation

U3(t) = R3
0

(
G3(t) +

∫ t

0

K3(x)U3(t− x)dx

)
with the initial datum385

Y 0
3 (x) = U∗2 eα

∗
2(tR−tL)e−α

∗
2xΓ2(x).

The analysis proceeds in the same way as the first two phases ending in a long-
term regime of exponential growth (R3

0 > 1) or decay (R3
0 < 1). In particular

the corresponding stable equivalent

U∗3 =
R3

0Ĝ3(α∗3)

µ3
.

will embed the inertial effects due to the ageing experienced by the age dis-
tribution of infection inherited from the suppression dynamics of the lockdown390

phase, on the unlocking dynamics.
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4. Illustrations and simulations

To better appreciate the general discussion above, it is worth to consider
specific parametrizations allowing a more detailed description of the epidemic
phases as well as comparisons with data. Moreover, by a parametrized descrip-395

tion of the process, we can exploit Erlang kernels allowing the reduction of
infinite-dimension systems to systems of ordinary differential equations (ODEs)
or to mixed systems of delayed and ordinary differential equations (DDE-ODE
since now on). This is a classical reduction procedure for integral equations
of Volterra type, known as the linear chain trick ([29]), that can be directly400

applied to our systems (4). We recall that the compartmental approximation
through sequences of ODEs with constant transition rates represent the easiest
way to reliably simulate the PDE systems studied here.

4.1. Reducible kernels

Our general model depends on two key age-specific epidemiological functions405

i.e., the (phase-specific) survival-to-infection function Γi(x), which tunes the age
distribution of removal, and the infection reproduction kernel Ki(x), which is
the normalised product of the infectivity kernel β0(x) and Γi(x), tuning the
generation time (age-) distribution. A wide class of reducible problems appears
if both distributions are translated Erlang densities, that is Gamma densities410

with integer index, i.e.,

i) the infectivity kernel β0(x) is a (non-proper) translated Erlang density of
order n and rate ϕ:

β0(x) = β0
ϕn(x− τ)n−1e−ϕ(x−τ)

(n− 1)!
I[τ,+∞)(x); (24)

ii) the removal rate γi(x) is taken as

γi(x) =
γmi (x− τ)m−1

(m− 1)!

m−1∑
j=0

γji (x− τ)j

j!

I[τ,+∞)(x), (25)

corresponding to the survival function of a translated Erlang density of415

order m and rate γi, that is:

Γi(x) = I[0,τ)(x) +

m−1∑
j=0

γji (x− τ)je−γi(x−τ)

j!
I[τ,+∞)(x), (26)

Under previous specifications, the phase-specific reproduction numbers are given
by

Ri0 =
ciβ0ϕ

n

θni

m−1∑
j=0

(
n+ j − 1

j

)(
γi
θi

)j
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where
θi = ϕ+ γi.

Typical shapes of both β0(x) and γi(x) functions, for different values of the420

Erlang index parameter, are reported in Fig. 1
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Figure 1: Instances of the basic age-phase specific parameters. Left panel: specific infectivity
rate β0(x), parametrized according to (24) for τ = 5 day, β0 = 1 day, ϕ = 0.3 day−1

and n = 2, 3, 4; note that increasing the order parameter n delays the growth of the function.
Right panel: removal rate γi(x), parametrized according to (25), for τ = 5 day, γi = 0.3 day−1

and m = 1, 2, 3, 4; the shape of the rate is increasing after the end of the latency phase and
converges for large ages to the constant level γi; also in this case, increasing the index smooths
the function and delays its growth.

Formulations (24) and (25) assume a latently infective phase having fixed
duration τ, (τ ≥ 0) during which infected individuals are not yet infective and
cannot be removed. In relation to COVID-19 data, we remark that although the
Gamma kernels best fitting observed data of serial intervals (taken as surrogates425

of generation times) were obviously characterised by non-integer indices ([2, 32]),
therefore implying non-reducible kernels, nonetheless integer-indexed Gamma
(i.e., Erlang-type) distributions can usefully bound observed distributions.

As we now show by means of examples, if duration τ is strictly positive, the
linear chain trick will lead to a mixed DDE-ODE system which, in the limit430

case τ = 0, will collapse into a pure ODE system.

4.2. Reduction to a 2-dimensional DDE-ODE system

To illustrate how the chosen kernels allow reduction (for each phase), we
discuss the case n = 2, m = 1 yielding

Ki(x) = I[τ,+∞)(x) θ2
i (x− τ) e−θi(x−τ),

γi(x) = γi I[τ,+∞)(x),

Ri0 =
ciβ0ϕ

2

θ2
i

,

(27)
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By considering the basic variables435

Ui(t) = Ri0
∫ ∞

0

Ki(x)yi(x, t)dx,

Ji(t) =

∫ ∞
τ

e−θi(x−τ)yi(x, t)dx,
(28)

where yi(x, t) is the scaled variable

yi(x, t) =
Yi(x, t)

Γi(x)
, (29)

we obtain (see details in Appendix B) the following DDE-ODE system having
as state variables the epidemic incidence Ui(t) and the auxiliary variable Ji(t):

d

dt
Ui(t) = −θi Ui(t) +Ri0θ2

i Ji(t)

d

dt
Ji(t) = Ui(t− τ)− θiJi(t)

(30)

Note that the variable Ji(t), that appears upon differentiation of Ui(t), con-
tributes to determine the behaviour of Ui(t) that in turn contains all the rele-440

vant information. The variable Ji(t) is an auxiliary quantity representing the
hypothetical incidence of new cases of infection that would appear if the nor-
malised infection kernel Ki would have the diminished index n − 1 instead of
n. This confers to the resulting DDE-ODE system, the classical structure of
reduced problems ([29]).445

Once Ui(t) is known, using Yi(x, t) from formula (6), other relevant epidemi-
ological quantities can be computed such as

prevalence of infected individuals: Ii(t) =

∫ ∞
0

Yi(x, t)dx,

prevalence of infective individuals: I#
i (t) =

∫ ∞
τ

Yi(x, t)dx,

prevalence of exposed individuals Ei(t) =

∫ τ

0

Yi(x, t)dx.

For these variables we can also state additional equations that can be added to
system (30). Indeed, proceeding as before we obtain

d

dt
I#
i (t) = Ui(t− τ)− γiI#

i (t),

d

dt
Ei(t) = Ui(t)− Ui(t− τ),

d

dt
Ii(t) = Ui(t)− γiI#

i (t).

17



The previous equations explicitly show the underyling SEIR structure im-450

plicit in the present reduced model, which can indeed be described as a SEIR
model with fixed-duration latency time τ .

If in particular τ = 0, the delayed system (30) reduces to the 2-dimensional
ODE system455

d

dt
Ui(t) = −θi Ui(t) +Ri0θ2

i Ji(t)

d

dt
Ji(t) = Ui(t)− θiJi(t).

(31)

and Ii(t) (note that, since τ = 0, it holds Ii(t) = I#
i (t), landing on an SIR

structure) satisfies the additional equation

d

dt
Ii(t) = Ui(t)− γiIi(t). (32)

In this case, the model solution can be calculated explicitly through the roots
of the characteristic equation [compare with (7)]

(λ+ θi)
2

= Ri0θ2
i ,

yielding460

α∗i = θi

(√
Ri0 − 1

)
, α1

i = −θi
(√
Ri0 + 1

)
and, for each phase

Ui(t) = A+
i e

α∗
i t +A−i e

α1
i t

Ji(t) =
1√
Ri0θi

(
A+
i e

α∗
i t −A−i e

α1
i t
)

where

A±i =
1

2

(
Ui(0)± Ji(0)

√
Ri0 θi

)
.

From these, we finally calculate Ii(t) through (32). Note that if the initial
distribution is assumed to be the stable one (16), then for the first phase we
have465

U1(t) = I(0)(α∗1 + γ1)eα
∗
1t,

J1(t) =
I(0)(α∗1 + γ1)

α∗1 + θ1
eα

∗
1t,

I1(t) = I(0)eα
∗
1t.

Next, for the second phase (the ”‘lockdown”’) we have (note this holds for any
subsequent phase)

I2(t) = I0
2 (t) + I+

2 (t) (33)
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where
I0
2 (t) = I(0)eα

∗
1tLe−γ2t

I+
2 (t) =

(
B0e−γ2t +B+eα

∗
2t +B−eα

1
2t
)

with

B0 =
R2

0θ
2
2

R1
0θ

2
1

(R1
0θ

2
1 − φ2)

(φ2 −R2
0θ

2
2)
I(0)eα

∗
1tL ,

B± =
1

2

√
R2

0θ2

R1
0θ

2
1

(
√
R1

0θ1 − φ)(
√
R1

0θ1 ±
√
R2

0θ2)

(
√
R2

0θ2 ∓ φ)
I(0)eα

∗
1tL ,

and, in particular,470

B0 +B+ +B− = 0.

The first term in (33) is due to the prevalence of infected individuals at the
beginning of the second phase, which decays at a rate γ2 (compare with (18)).
The second term accounts for transmission events occurred during the lockdown
phase. In this case, since α∗2 < 0, the asymptotic behaviour of I+

2 (t) depends
on α∗2 + γ2. Indeed we have475

If α∗2 + γ2 > 0 then I+
2 (t) ≈ B+ eα

∗
2t

If α∗2 + γ2 < 0 then I+
2 (t) ≈ B0 e−γ2t

Some interesting demographic remarks can be made about the dynamics of
the infective population I2(t) during the lockdown phase (see (33)) depending
on the sign of α∗2 + γ2. On the one hand, for α∗2 + γ2 > 0 it is immediate
to see that I2(t) asymptotically behaves as U2(t)/(α∗2 + γ2) where (α∗2 + γ2)
has a clear demographic meaning i.e., it represents the instantaneous per-capita480

birth rate of the infective population. That is to say, the infective population
asymptotically evolves in a stable regime of exponential decline (given that
α∗2 < 0 as resulting from the hypothesis R2

0 < 1) where each infective individual
produces on average (α∗2 +γ2) new births (i.e., secondary cases) per unit of time.

On the other hand, for α∗2+γ2 < 0, I2(t) asymptotically behaves as e−γ2t(I0
2−485

U0
2 /(α

∗
2 + γ2)). The interpretation for this case is that for α∗2 + γ2 < 0 the

infection reproductivity R2
0 is brought by the lockdown to such a low level that

- essentially - the infective population generated at any time t > tL does not
differ significantly from the sum of the initial infective population present at
the beginning of the lockdown phase I0

2 , plus their new infective cases (given490

by −U0
2 /(α

∗
2 + γ2) as in this case the per-capita birth rate is exactly given by

−(α∗2 + γ2)) that decay over time at the removal/mortality rate γ2. In other
words, in this case subsequent new infections generated at any time t > tL
are so few that they are hardly distinguishable from the case of a population
lacking reproductive power (i.e., havingR0 = 0), despite we specifically assumed495

R2
0 > 0. The separation between these two cases occur for α∗2 +γ2 = 0, to which

19



it corresponds a reproduction number given by

R2,∗
0 =

ϕ2

(ϕ+ γ2)2
(34)

The latter expression is informative about the role played by the two functions
shaping the generation time kernel during the second phase, K2(x). If ϕ = 0
i.e., if the transmission rate β0(x) is just an increasing power function, then500

R2,∗
0 = 0. On the other hand, if ϕ > 0 thenR2,∗

0 > 0 i.e., it becomes a non trivial
threshold. This peculiar situation is due to the fact that in our formulation
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Figure 2: Illustration of the transition (initiated at the lockdown time tL = 30 day) from the
outbreak phase to the lockdown phase, through the solution of the ODE model (31). Param-
eter values are: τ = 0 day, R1

0 = 2, tL = 30 day, R2
0 = 0.7, φ = 0.2 day−1, γ1 = 0.1 day−1,

γ2 = 0.1 day−1. Left panel: plot of the two components U(t), J(t) of the solution to system
(31), together with the prevalence function I(t); note that the incidence is discontinuous at
tL. Right panel: plot of the prevalence I(t); for the second phase I2(t) is splitten into its
two components I02 (t) and I+2 (t) as in (33); the parameter choice implies α∗

2 + γ2 > 0 so that

I+2 (t) eventually behaves as B+eα
∗
2(t−tL); the two components I02 (t) and I+2 (t) are plotted

together with I2(t) and B+eα
∗
2(t−tL).

declining infectivity (occurring at the rate ϕ > 0) and removal (occurring at the
rate γ2 > 0) act as additive and independent causes of infection removal.

4.3. Numerical illustrations505

Figure 2 illustrates, for the ODE system (31), the behavior of the main
variables U(t), J(t), I(t) when the change from phase 1 (invasion) to phase
2 (lockdown) occurs. The left panel shows the discontinuity of the incidence
function U(t) at the switching time tL, resulting from the massive abrupt change
in infection reproduction ratios (fromR1

0 = 2.0 toR2
0 = 0.7). On the right panel510

we analyze the prevalence I(t) and the two separated terms I0
2 (t) and I+

2 (t) for
the lockdown phase. We reported only a case with α∗2 + γ2 > 0, the other case
with α∗2 + γ2 < 0 being very similar.

The left panel of Fig. 3 illustrates the transition pattern of the prevalence
function I(t) for the DDE system (30) considering different values of the re-515

production number R2
0 relative to the lockdown phase. This nicely shows the
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Figure 3: Further analysis of the transition of the prevalence function I(t) from the outbreak
phase to the lockdown phase based on the DDE system (30). Baseline parameter values are:
τ = 2 day and R1

0 = 3 day−1, γ1 = 0.09 day−1, γ2 = 0.09 day−1. Left panel: comparison
of trends of prevalence I(t) for different values of R2

0. Right panel: comparison between
the stable distribution Y ∗

1 (x) emerging in the first phase and the corresponding distributions
Y ∗
2 (x) emerging in the lockdown phase for the different values of R2

0.

.

intrinsic demographic inertia of the infective population. We termed this type
of inertia as ”demographic inertia” because it exactly represents the type of in-
ertia that arises in an age-structured population as a consequence of the switch
between two stable dynamic regimes caracterized by their SAD’s. This concept520

is analogous to the concept of momentum by Keyfitz [23]. In our model this iner-
tia is marked at relatively high values of R2

0 (say, in the range 0.85 < R2
0 < 1.0),

where prevalence may continue to grow for weeks after the lockdown implemen-
tation. This demographic inertia represents the key component of COVID-19
inertia following mitigation interventions, which can be further increased by525

the characteristic delays arising for COVID-19 (e.g., those due to diagnosis and
cases confirmation). At lower values of R2

0 this inertia is obviously mitigated.
The right panel of the same figure compares the stable age distributions Y ∗1 (x)
emerging during the invasion phase to those relative to the second phase (still
considering different values of R2

0). The difference between these stable age dis-530

tributions are the ultimate responsible of the transient phase leading from the
stable asymptotic behaviour during phase 1 to that of phase 2. Notably, during
the first phase the stable age distribution is a piecewise-declining exponential
function reflecting only epidemic growth (at rate α∗1 > 0) at ages x < τ (where
no removal is in place) and the additional effect of removal at ages larger than535

τ , when also removal starts occurring. On the other hand, during the second
phase, the stable distribution is increasing at ages x < τ , reflecting the ageing
of the infective population, which is asymptotically declining at the rate α∗2 < 0.
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Figure 4: Dependence of the model solution on the latency delay τ . Left panel: demonstrative
solution curves (outbreak and lockdown phases), for different values of τ ; baseline parameters
are: R1

0 = 2, R2
0 = 0.7, φ = 0.2 day−1, γ1 = 0.1 day−1, γ2 = 0.1 day−1, tL = 30 day.

Right panel: characteristic roots of equation (35) for τ ∈ [0, 2.5]; baseline parameters as in
left panel; the leading root α∗

1(τ) is positive and decreases as τ varies from 0 to 2.5 day; the
root α1

1(τ) is real and decreasing for τ ∈ [0, 0.94], then it splits into two complex conjugate
roots; a third real root α2

1(τ) comes from the left, meets α1
1(τ) at τ ≈ 0.94 and disappears.

.

Concerning the dependence of the DDE system (30) on the latency delay τ ,540

the left panel of Figure 4 compares the model solution for infected prevalence
I(t) for τ = 0 (the unlagged case) with those resulting from different positive
values of τ > 0. In the latter case, the characteristic equation is transcendental
and reads

(λ+ θi)
2

= Ri0θ2
i e
−λτ . (35)

Thus, we may have infinitely many roots, though we are mainly interested in545

the leading root which is real. In the right panel of Figure 4 we plot the first
roots of (35) as a function of τ .

Finally, Fig. 5 reports the halving time of the various epidemic curves in
the stable regime of the lockdown phase versus the reproduction number R2

0,
for different combinations of values of the latency delay τ and of the removal550

rate γ2. Note that, given the value of R2
0, an increase of τ produces an increase

of the halving time while an increase of the removal rate γ2 has the opposite
effect. Interestingly, the shape of the relationship in Fig. 5 indicates that the
greatest part of the decline in the halving time of the suppression path - which is
the most straighforward measure of the speed at which the community controls555

the epidemic - is achieved for R2
0 values up to say 0.7. Beyond that point,

further substantial achievements in decreasing the halving time would require
further substantial decreases in R2

0. This would in turn require a dramatic
strenghtening of the social distancing conditions, possibly causing an explosion
in the epidemic social and economic costs. This effect should primarily be a560
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Figure 5: Halving time H for the lockdown phase versus the reproduction number R2
0, with

φ = 0.1 day−1 and for different combinations of τ and γ2 .

.

consequence of the specific steepness of the involved curve whose shape depends
on the generation time kernel adopted. Indeed, in the case τ = 0 the halving
time is given by

H =
log 2

θ2

(
1−

√
R2

0

) .
From the latter standpoint, Fig. 5, even if not including social costs, is illus-
trative of the main societal tradeoff of a generalised lockdown. On one hand,565

brute-force epidemic suppression requires to bring R2
0 strongly below one (per-

haps below the threshold R2,∗
0 stated in (34)). This would require a dramatic

haltening of socio-economic activity, with large temporary costs, but at the ad-
vantage of getting rid of the epidemic much faster. On the other hand, the
attempt to keep the maximum feasible of socio-economic activities opened i.e.,570

bringing R2
0 just slightly below (or about) 1, allows the epidemic to continue for

long time, with a persistently large and slowly declining incidence and preva-
lence.

5. Application to COVID-19 in Italy

Though our model was mainly theoretical and aiming to investigate the basic575

mechanisms of a multi-phasic epidemic, it is nonetheless interesting to try to fit
the model to COVID-19 data in order to highlight the potential and limits of
such a simple tool with real data. Before passing to results we report a short
summary of the Italian epidemic as observed so far.

The Italian COVID-19 epidemics has been officially documented since Febru-580

ary 24, 2020, with the first 229 cases reported by the devoted Govermental unit
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Protezione civile. Since then, data have been updated daily on a dedicated
site (https://github.com/pcm-dpc/COVID-19) providing information on some
main stock/flows (confirmed cases, hospitalised cases, ICU occupancy, deaths
and tests) at a regional level. However, more detailed data such as those on585

contact tracing and symptom onset used to compute the weekly figures of the
reproduction number Rt by more sophisticated methods were not made avail-
able until very late. This makes it of interest an analysis as the present one also
for comparing with Governmental estimates.

After a number of purely local measures, such as the creation of hotspots in590

most affected Northern Italy areas since February 20, the full national lockdown
was completed on March 25, when only essential activities and services were
allowed to be continued. This was preceded by a number of earlier Government
measures including the national closure of all schools grades and universities
since March 4, 2020, and continued on March 11 by the first nation-wide closure595

of non-fundamental economic activities. Pairwise, though the lockdown was
declared officially over by May 5th, some measures were continued till July 3
in the light of the still critical situation of hospitals, thereby maintaining some
degrees of social distancing and individual protection.

However, by the start of holidays (August 2020), the Government publicly600

encouraged people to avoid international travels and to spend vacations in Italy,
contributing to spread optimism and confidence that the epidemic was over, pos-
sibly bringing a decline in individuals’ attentions. This decline, documented by
the press in an endless list of episodes and partly captured by google mobility
data, led to a growing pool of new infections clusters that were the premise for605

the second wave once workplaces and schools re-opened since the beginning of
September. The subsequent collapse of the tracing system and the ensuing ac-
celeration of the epidemic, brought to further social distancing measures since
the second half of October 2020. These measures were, as a rule, aimed to
avoid further generalised global lockdowns by local-level targeted interventions610

informed by local figures such as the current reproduction number Rt, the in-
cidence of confirmed cases, and the hospital pressure. Such interventions were
able to downturn the second wave and to bring the Rt in the region of 1 dur-
ing January and February 2021, but proved insufficient when the alpha ”UK”
variant became predominant initiating a third epidemic wave [3].615

In order to fit reported data with the simplest versions of our model, namely
those analysed in Section 4.2 using parametrization (27), we made a few sim-
plifying assumptions. First, we considered data at the National level. This is
not inappropriate for the phases after the first one where epidemic circulation
involved the entire country, possibly it is not for the first phase where the epi-620

demic was localised in a few provinces of a few regions. Moreover, being our
model highly stylised with a minimal parametrization, it does not include fur-
ther epidemiological compartments (e.g., isolation, hospitalizations, ICU, and
deaths) which are necessary for realistic epidemic modeling. Therefore, we sim-
ply used daily reported new cases to compute daily prevalences. The time series625

Dn of daily reported data was smoothed by a 7 days moving average, in or-
der to remove weekly oscillations due to the sudden fall in the number of tests
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Figure 6: Data set for daily reported cases, smoothed by a 7 days moving average. Left
panel: the number of daily reported cases showing the onset of the epidemics starting with
February 24 (day n=0) and the subsequent phase of lockdown, officially starting on March
25 (n=30) and ending on May 5 (n=71), followed by new distancing measures on October 15
(day n=234). Right panel: same data in semi-log scale showing linear traits corresponding to
the exponential behavior of the epidemics.

.

observed every week-end (Fig.6). We deliberately did not detrend data by us-
ing the time series of tests actually carried out. Assuming, quite crudely, that
newly confirmed cases are isolated and therefore removed from the active in-630

fective population, newly reported cases are considered as removed individuals
Ri(t), satisfying the equation

d

dt
Ri(t) =

∫ ∞
0

γi(x)Yi(x, t)dx = γi

∫ ∞
τ

Yi(x, t)dx = γiI
#
i (t).

We therefore can use the formula:

infective prevalence =
1

γi
× daily new (confirmed) cases,

where γi is the removal rate of the corresponding phase, getting a sequence In
to be fitted against the theoretical prevalence I#(t) provided by the model.635

The generation time kernel Ki(x) (27) was chosen based on available esti-
mates of the generation time distribution for COVID-19 in Italy [32]. In that
study, data on observed serial intervals (i.e., the distance between symptoms
in primary infectors and symptoms in their secondary cases), were fitted by a
Gamma kernel with shape parameter equal to 1.87 and rate 0.28 day−1, yield-640

ing a mean generation time of 6.6 day. By sticking on their estimated mean
generation time, our stylised kernel K1(x) in (27) provided an extremely good
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Figure 7: Graphic comparison between the generation Gamma kernel estimated for Italy in [32]
vs two possible Erlang approximation with index 2 namely (i) the mean preserving Erlang
distribution used in our application in this section, (ii) the best fitting Erlang distribution
computed by a least squares criterion.

approximation of it (see Fig. 7), by simply taking (an analogous approach was
used in [33])

θ1 = 0.30 day−1.

To fit our model throughout the various epidemic phases (Fig.6, left panel),645

we checked in the data for evidence of the presence of the key model feature,
namely the emergence of epochs of stable exponential behavior eventually result-
ing from the implementation (or the relaxation) - for a sufficiently long period
of time - of mitigation interventions. This is clear from the log-scale diagram
in the right panel of Fig. 6 where we could well identify at least four phases650

characterised by an initial transient dynamics which eventually approaches an
exponential trend. These four phases are represented by (i) the initial phase
of epidemic growth (roughly days 0-19), (ii) the declining phase after the peak
induced buy the lockdown (roughly days 80-100), (iii) the phase of exponential
increase during the second wave (days 210-250), (iv) the phase of the exponen-655

tial decline resulting from the measures adopted to mitigate the second wave
(days 275-290).

This shape in turn suggests a 2-stage fitting procedure, to be repeated for
each phase transition, where: (i) in the first stage the characteristic root α∗i
for the particular phase considered is estimated, (ii) in the second stage the660

remaining parameters (τ , γi, ti.) are adjusted conditional on α∗i (actually τ is
fitted only once because it is a biological constant pertaining to the infection
and it will not plausibly change through the different phases). In what follows,
we detail the adopted approach for the first two phases and briefly summarise
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it for the remaining ones.665

5.1. The outbreak phase

As discussed in Section 4.2, we assume that the epidemic was initiated by an
initial cohort of infective individuals distributed according to the corresponding
stable age distribution of the invasion phase. Consequently, the initial growth
of the epidemic curve is expected to be exponential since initial time with rate670

α∗1. This parameter was estimated by a (least squares) exponential fit chosing
the data window yielding the highest value of the determination coefficient R2.
This yielded

I0 = 181 α∗1 = 0.15 day−1,

over the period from day n = 0 to n = 19, with R2 ≈ 0.99. The fact that
including further data points beyond n = 19 day always worsened the fit, may675

be interpreted as due to the onset of social distancing gradually showing its
effect soon after time n = 19 day, that is since March 15.

5.2. The lockdown phase

At a crude glance, the lockdown phase might seem to display its effects on
the epidemic curve from day n = 27 to n = 170. However, we eventually selected680

the period from n = 80 to n = 105, showing a markedly exponential pattern, to
identify α∗2, obtaining

α∗2 = −0.05 day−1 (R2 ≈ 0.99)

Adjusting the remaining model parameters by a conditional fit we obtained

τ = 2 day, γ1 = γ2 = 0.09 day−1, tL = 22 day,

yielding in particular a latency delay of about two days. Thus we could compute

φ = θ1 − γ1 = 0.21 day−1, θ2 = 0.30 day−1.

This in turn allowed to also estimate the reproduction number R1
0 of the first685

phase

R1
0 = eτα

∗
1

(
1 +

α∗1
θ1

)2

≈ 3.06,

as well as that of the second phase:

R2
0 = eτα

∗
2

(
1 +

α∗2
θ2

)2

≈ 0.61.

The overall fit of the model (30) over the first two phases is shown in the
left panel of Fig. 8. Though the overall quality might seem acceptable, there690

is a clear loss of fit around the transition time tL. This is the consequence
of the abrupt change of the reproduction number from R1

0 to R2
0 causing a
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Figure 8: The transition from the outbreak phase to the lockdown phase fitted by the proposed
model (30) (parameter estimates as described in Subsections 5.1 and 5.2). Left panel: observed
vs fitted prevalence I(t) under our baseline assumption that transition between phases occurs
instantaneously; in this case the predicted curve shows a cuspid at the transition time tL, due
to the discontinuity of the incidence function U(t). Right panel: fit obtained through a slight
modification of the model allowing a smooth transition.

.

sharp discontinuity in the incidence U(t) function. A correction of the model
to remove the lack of realism of the hypothesis of abrupt transition, obtained
through a continuous exponential decline of R2

0 distributed over a time span695

of two weeks is shown (8, right panel) to remarkably correct the lack of fit
previously commented. In this experiment, we considered

R2
0(t) = R1

0e
−δ(t−tL) where δ = (1/∆) ln(R1

0/R2
0)

and run the modified model obtaining tL = 17.3 and ∆ = 10.5, suggesting
that the decline in the reproduction number R2

0 of the second phase realistically
occurs through a time span of about 10 days.700

5.3. Further phases

Concerning the subsequent phases, namely (i) the second wave phase which
started due to the relaxation of most measures adopted during the lockdown,
(ii) the subsequent mitigation phase with the so-called ”multicolor strategy” [3]
based on locally targeted (typically: at the regional level) measures in view of the705

documented seriousness of the local situation, up to (iii) the current emergence
of more transmissible variants of the virus, we used the same procedure detailed
above. The results are reported in Table 1 and Figure 9.

The estimates of the phase-specific reproduction numbers Ri0 are systemat-
ically close to the nation-wide figures of the current reproduction number Rt710

estimated weekly by the Governmental unit [3].
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phase α∗ R0 start end

I (outbreak) 0.15 3.06 t=0 t=22
II (lockdown) -0.05 0.63 t=23 t=156
III (release) 0.09 2.01 t=157 t=250
IV (re-lock) -0.035 0.73 t=251 t=289
V1 (multi-color) – 0.8 t=290 t=351
V2 (multi-color) – 1.05 t=352 –

Table 1: Summary of model parameters resulting from the fitting procedure. Common pa-
rameters to all phases are φ = 0.21, τ = 2, γ =0.09.

Fig. 9, provides a summary view of the explanatory power of the model
(30), by comparing its solution with the data over the entire course of the
epidemic observed in Italy so far. Note that we deliberately avoided to include
generalised smooth transitions between phase specific reproduction numbers715

just for purposed of obtaining better-looking fits. Note also that the poorer fit
over the last two phases is the consequence of their short duration compared
to phases I-IV, preventing the emergence of any meaningful stable exponential
phase.

6. Discussion720

To sum up, the overall fit in Figure 9 was very good almost everywhere but
in the most recent phases, despite the little information used, namely the data
from the sole exponential windows in each phase. Essentially, prior to the recent
period made complicated by the emergence of the new variants, there are only
two periods where some lack of fit emerges, namely a portion of the declining725

trend during the lockdown phase and the first epoch of the re-opening phase.
This mostly lies in (i) the minimalistic structure of our model which does not
explicitly include any compartment directly comparable with real data, (ii) the
stylised hypothesis by which switches from one phase to the successive one occur
abruptly. Refined data explanations would require to add a number of further730

compartments to account for the delayed processes of the disease pathways,
testing, isolation, hospitalization etc, and to amend our homogenous mixing
framework to include heterogeneities in transmission and disease (over age and
space) and testing.

This said, the fitted model is the simplest setup illustrating the naturally735

embedded demographic inertia of COVID-19 dynamics despite the lack of any
delayed dimensions (such as ICU and deaths). Here, by ”demographic inertia”
we mean the natural tendency of a multi-phasic epidemic to display its true
phase-specific trends with a temporal delay compared to the moment when that
particular phase was initiated, for example due to the activation of a mitigation740
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Figure 9: Overall fit by the proposed model to the entire course of the COVID-19 epidemic
in Italy (parameter estimates as described in the present section 5)

.

intervention. This demographic inertia is to be distinguished from other com-
ponents of COVID-19 observed inertia that are due to the fact that its main
public health outcomes e.g., cases confirmations (not to say of hospitalizations
and deaths) arise with substantial time-delays with respect to the time when
transmission occurred. This natural demographic inertia can be macroscopic or745

negligible, other parameters being equal, depending on the relative magnitude
of the reproduction numbers Ri0,Ri+1

0 that are characteristic of two successive
phases. This was illustrated in the left panel of Fig. 3.

Therefore, looking at Fig. 9 we can say that: (i) the continued growth in
prevalence after the first lockdown declaration is largely attributable to delayed750

patterns rather than to demographic inertia (as can be understood from the
model lack of fit at the switch between the first two phases). The reason is that
the lockdown brought the reproduction number representative of the second
phase down to a quite low level. On the other hand, the continued decline in
prevalence for a very long time beyond the lockdown official end-date at May755

5 (about time n = 80 day) can be partly explained by demographic inertia
exactly due to the very low level of Ri0 eventually achieved during the lockdown
phase. Borrowing from a language typical of vaccination programs, the latter
prolonged honey-moon period likely surely contributed to the generation of an
optimism wave in the public opinion that eventually was responsible for the760

second pandemic wave.
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7. Concluding remarks

Based on a simple hypothesis, namely that the depletion of the susceptible
population remains contained over time, in this manuscript we have proposed
a minimal SIR model for the overall dynamics of an epidemic evolving in a765

multi-phasic form due to a sequence of epochs of mitigation intervention and
their relaxations, as has been the case for the COVID-19 epidemic. Our model
provides, first of all, a unified representation of such multi-phasic epidemics,
describing how the different epidemic phases unfold over time as a consequence
of the interplay between the transmission process and intervention responses.770

Second, by using a wide class of generation time kernels allowing reducibility
(either to ordinary or delayed differential equations), we investigated in depth
a low-dimensional case allowing a non-trivial full analytical treatment also of
the transient dynamics connecting the different epidemic phases. The latter
model provided an excellent fit to the entire course of the epidemic observed in775

Italy since February 2020, despite its parsimonious parametric structure, not in-
cluding any disease compartments and using minimal data. Last, the proposed
model represents the simplest setup illustrating the intrinsic demographic com-
ponent of the inertia of COVID-19 dynamics. This demographic inertia adds
to the one due to the various delayed phenomena characteristic of COVID-19780

to determine the overall COVID-19 inertia. The limitations of the proposed
model lie in its parsimonious structure and in its kinematic nature. As for the
first drawback, this can be easily overcome by simply adding disease-related and
other relevant compartments, as well as by introducing relevant heterogeneities,
as those due to chronological age such as, e.g., in the onset of symptoms and785

serious disease. This however represents only a part of the story of COVID-19
which is clearly more complicated than described by simple models. For exam-
ple, we described the incoming story of the second COVID-19 wave, debuted in
Italy since the start of September 2020, in a short report (Iannelli et al. [34])
where we correctly predicted that the observed epidemic was dramatically ac-790

celerating since the beginning of October, with Rt shifting upward, and would
continue to do so for a while, due to the overwhelming of the testing-tracing
system by epidemic growth. We also suggested that the subsequent epidemic
increase would have continued up to a maximum corresponding to the reproduc-
tion number generated in the preceding weeks by the behavior of risky groups,795

and would have halted or slowed down once the more prudent population groups
would be reached. This is suggestive of the fact that, at a fine scale, the epi-
demic description requires to account for a number of further dimensions. These
include saturation effects, as the finiteness of tracing resources, capable - if alone
- to slow-down the epidemic but only for a while, as well as to go beyond the800

kinematic representation to include a number of behavioral aspects. Behavioral
effects are numerous but - just for illustrative purposes - one of these is surely
understandable as a consequence of the inertia phenomenon that we termed
the post-lockdown honey-moon period. This prolonged period of low epidemic
activity surely contributed to the generation of the optimism wave in the Ital-805

ian public that contributed to the drop of prudent behaviors, and eventually
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accelerated the second pandemic wave. This calls for behavioral epidemiology
explanations ([26, 27]). Learning from such aspects is of dramatic importance
also in prospective terms, namely the control of future pandemic events.

Appendix A. Survey of results from the renewal equation theory810

Here we recall some results from the theory of the renewal equation

u(t) = F (t) +

∫ t

0

K(x)u(t− x)dx, (A.1)

and nomenclature coming from the demographic theory of the stable population.
Under rather general assumption such as

• F (t) ≥ 0 (t ∈ [0,∞)) is continuous and absolutely Laplace transformable,

• K(x) ≥ 0 (x ∈ [0,∞)) is absolutely Laplace transformable,815

equation (A.1) has a unique continuous non-negative solution u(t) (t ∈ [0,∞))
whose asymptotic behaviour has been extensively discussed by Feller [35] and is
related (under some general assumption that we suppose fulfilled by the equation
coming from our model) to the roots of the characteristic equation

K̂(λ) = 1.

where we use symbol f̂ to denote the Laplace transform of the function f .820

Following Feller [35], it is known that this equation has one and only one
leading root α∗, which is real, simple and strictly positive (negative) if the

condition K̂(0) > 1 (respectively K̂(0) < 1) is satisfied. Precisely we have the

sequence α∗,
{
αj
}j=∞
j=1

such that

<αj+1 ≤ <αj < α∗ (j = 1, 2, . . .)

and the solution has the asymptotic expansion825

u(t) = u∗eα
∗t +

∞∑
j=1

ujeα
jt. (A.2)

This means that, for any integer N , u(t) can be written as

u(t) =

u∗eα∗t +

N∑
j=1

ujeα
jt

 (1 + Ω(t)),

with
lim
t→∞

Ω(t) = 0.

32



As for the coefficients uj we have

uj =
F̂ (αj)∫ ∞

0

xK(x)e−α
jxdx

.

In the particular case of

F (t) = ceα
∗t

∫ ∞
t

K(x)e−α
∗xdx,

then the expansion (A.2) reduces to the first term830

u(t) = u∗eα
∗t, u∗ = c.

In any other case such a solution is reached asymptotically as we have

lim
t→∞

e−α
∗tu(t) = u∗. (A.3)

We can estimate the speed of this convergence by truncating the asymptotic
expansion (A.2) at the second term

u(t) ≈ u∗eα
∗t + u1 eα

1t,

to have ∣∣∣e−α∗tu(t)− u∗
∣∣∣ ≤ ∣∣u1

∣∣ e(<α1−α∗)t

so that835

Tε =
ln(|u1|)− ln(ε)

α∗ −<α1
. (A.4)

is an estimate of the minimum time required to get the limit (A.3) reached
within a tolerance ε.

Appendix B. The linear chain-trick

Reduction of the main system (4) to a cascade of ODE-DDE equation is
allowed by the special form of the basic parameters (24), (25). Here we illustrate840

the method through the special case (27).
The starting point are the variables (28) and (29). From (4) we see that the

latter satisfy the reduced system

(
∂

∂t
+

∂

∂x

)
yi(x, t) = 0,

yi(0, t) = Ri0

∫ x+

0

Ki(x)yi(x, t)dx,

yi(x, 0) =
Y 0
i (x)

Γi(x)
.

(B.1)
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then

d

dt
Ui(t) = Ri0

∫ ∞
τ

Ki(x)
∂yi
∂t

(x, t)dx = −Ri0
∫ ∞
τ

Ki(x)
∂yi
∂x

(x, t)dx

and, integrating by parts, we have845

d

dt
Ui(t) = Ri0θ2

i

∫ ∞
τ

(1− θi(x− τ)) e−θi(x−τ)yi(x, t)dx = Ri0θ2
i Ji(t)− θiUi(t).

Analogously

d

dt
Ji(t) = yi(τ, t)− θi

∫ ∞
τ

e−θi(x−τ)yi(x, t)dx = Ui(t− τ)− θiJi(t),

where we have used (6) to express yi(τ, t), and Ui(t) is extended to the interval
[−τ, 0] by

Ui(t) = y0
i (−t), t ∈ [−τ, 0].

Thus we obtain system (30), endowed with the initial data

U1(t) = y0
1(−t), t ∈ [−τ, 0],

J1(0) =

∫ ∞
τ

e−θ1(x−τ)y0
1(x)dx,

U2(t) = U1(tL + t) t ∈ [−τ, 0],

J2(0) = J1(tL),

U3(t) = U2(tR − tL + t) t ∈ [−τ, 0],

J3(0) = J2(tR).

When the initial distribution Y 0(x) is assumed to be the stable one (11) then850

U1(t) =
α∗1(α∗1 + γ1)

α∗1 + γ1(1− e−α∗
1τ)

I0e
α∗

1t, t ∈ [−τ, 0]

J1(0) =
e−α

∗
1τ

α∗1 + θ1
U1(0).

The previous reduction procedure, can be applied to any choice of the functions
(24), (25), and leads to a cascade of equations where several auxiliary variables
are necessary in order to complete the chain.
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