Shape-based approach for solar sail trajectory optimization

Andrea Caruso, Alessandro A. Quarta*, Giovanni Mengali

Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Italy

Matteo Ceriotti

James Watt School of Engineering, University of Glasgow, Scotland, United Kingdom

Abstract

The analysis of the optimal control law that steers a solar sail-based spacecraft from a given initial condition
toward a final target state is typically carried out using either indirect or direct approaches. Both these methods
are usually time-consuming and require good initial guesses of costates or state vector. This paper presents a
procedure requiring minimum user-computer interaction to compute an approximate three-dimensional optimal
trajectory using a shape-based approach. To that end, novel shaping functions are introduced to describe the
time evolution of the spacecraft state vector. The optimization problem is solved using a genetic algorithm,
in which a set of shape coefficients and the initial and final spacecraft position are computed while enforcing
suitable constraints on the magnitude and direction of the propulsive acceleration vector. Numerical simulations
of transfers from Earth to potentially hazardous asteroids show that this method provides good estimates of solar
sail trajectories, which can be used as guesses for more refined direct optimization approaches.
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Nomenclature

a = propulsive acceleration, [ mm/s?]

a = semimajor axis, [ AU]

Qe = characteristic acceleration, [ mm/s?]

max = maximum magnitude of propulsive acceleration, [ mm/s?|

ay = radial component of a, [mm/s?]

ay transverse component of a, [mm/s?]
Qpy Ap,Dp shape parameters of p

Ah kO 0k, Ank s Ohk shape parameters of h and k

e = eccentricity
.9 = in-plane equinoctial elements
h.k = out-of-plane equinoctial elements
i = inclination, [deg]
L = true longitude, [deg]
N = number of discretization arcs
Nrev = number of revolutions around the Sun
i = outward normal unit vector
P = semilatus rectum, [ AU]
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T = Sun-spacecraft distance, [ AU]

r = position vector, [ AU]

7 = radial unit vector

T2 Ty Tz = components of r in Cartesian coordinates, [ AU]
Ta = reference distance, 1 AU

s = success rate

T = flight time, [ TU]

t = time, [ TU]

A = dimensionless error in the flight time

€,€¢ = tolerance value

Afgr®fg = shape parameters of f and g

Mo = Sun’s gravitational parameter, [ AU?/TU?
v = true anomaly, [deg]

I3 = state vector

Q = right ascension of the ascending node, [deg]
w = argument of pericenter, [deg]

Subscripts

0 = initial time

f = final time

ind = refers to indirect method

MS = refers to multiple-shooting method

SB = refers to shape-based method

Superscripts

= time derivative

1. Introduction

Solar sailing is an innovative and fascinating form of propulsion that requires no propellant consumption
to produce thrust, which, instead, is generated exploiting the solar radiation pressure [1]. Due to its pro-
pellantless nature, a solar sail-based spacecraft can be used to perform advanced space missions that would
be difficult to carry out with traditional chemical thrusters, such as maintenance of artificial equilibrium
points [2, 3], generation of (non-Keplerian) displaced orbits [4], and asteroid tour [5, 6].

Optimization of solar sail trajectories is usually carried out using either indirect or direct approaches [7].
Indirect methods use the analytical necessary conditions from the calculus of variation and Pontryagin’s
maximum principle to formulate a two-point boundary value problem, whose solution gives the optimal
control law capable of transferring the spacecraft from a given initial condition toward a final target state [8].
This approach has the advantage that the optimal control law can be usually determined analytically [9,
10], but the nonlinearity of the problem induces a high sensitivity to the initial guess of costates. Direct
methods, instead, transcribe a continuous optimal control problem into a nonlinear programming problem
by partitioning in time the state vector and the control law. The latter are usually simpler to implement
than the indirect ones, but give approximate optimal solutions only and require a good initial estimate to
find optimal transfers [11].

To overcome the disadvantages of both the above approaches, new methods have been developed, able
to generate fast approximations of spacecraft trajectories for a preliminary evaluation of the required flight
time or to be used as initial guesses for a direct approach. Shape-based methods describe a low-thrust
trajectory with analytical expressions [12, 13, 14], which are functions of a suitable set of parameters. After
having calculated the time derivative of the position vector, it is possible to retrieve the spacecraft velocity
and acceleration, while the propulsive acceleration history is obtained by exploiting the equations of motion.
Suitable constraints may be also enforced on the propulsive acceleration to get feasible trajectories. Other
authors have also proposed to use finite Fourier series [15, 16] or Bézier curves [17, 18] to shape the spacecraft
trajectory, or to use deep neural networks to estimate the transfer time [6]. The shape-based method has



also been proved to be effective in producing good initial guesses to more complex and refined optimization
techniques [19].

Recently, methods for rapid generation of solar sail trajectories have been developed. An example is the
shape-based approach introduced by Peloni et al. [5] for the design of multiple near-Earth-asteroid missions,
in which the spacecraft state evolution, described using modified equinoctial elements, is expressed as a
function of four design parameters. However, the approach described in [5] presents some limitations. First
of all, it is valid for coplanar transfer scenarios only. Moreover, the constraint that relates the direction and
magnitude of the propulsive acceleration is not considered in the optimization problem, so that the shaped
trajectory can be different from that actually tracked by a solar sail. For this reason, the procedure of [5]
uses the error between the final state obtained by numerical integration and the final desired state as its
objective function.

The aim of this paper is to illustrate a procedure that generates an initial estimate of a solar sail
trajectory by generalizing the method discussed in [5] to the case of three-dimensional transfer scenarios.
Moreover, to avoid the need of numerical integrations, an analysis is carried out to identify a suitable
set of constraints (which also take into account the relation between the sail attitude and the propulsive
acceleration components) to obtain a trade-off solution between approximation accuracy and computational
effort. The proposed method is validated considering both orbit-to-orbit and rendezvous transfer heliocentric
scenarios. The introduction of new shape functions and of constraint equations that model the physics of
solar sails allows better estimate of sail trajectories to be obtained when compared to previous shape-based
methodologies existing in the literature. Notably, the proposed approach requires a minimum user-computer
interaction and, as such, it is more suited than either an indirect approach or the recent method by Caruso
et al. [16] to deal with those cases when a large number of flight scenarios needs to be investigated.

2. Mathematical model

Consider a heliocentric orbit-to-orbit transfer of a solar sail-based spacecraft, in which the initial and
final orbits are described by the Keplerian elements {a,e,i,Q,w}, where a is the semimajor axis, e is the
eccentricity, 4 is the inclination, € is the right ascension of the ascending node, and w is the argument of
pericenter. Assuming a flat sail without degradation effects [20] and using an ideal force model [21], the sail
propulsive acceleration vector is

a=a, (L@)Z(ﬁ-m?ﬁ, (1)

r

where 7 is the Sun-spacecraft distance, # is the Sun-spacecraft unit vector, v is the unit vector normal to
the sail surface in the direction opposite to the Sun, and a. is the characteristic acceleration, defined as the
propulsive acceleration magnitude produced by a Sun-facing sail (i.e. when 7 = ) at a reference distance
re 2 1 AU. The value of a. is assumed as a constant of motion, because in this work the uncertainties due
to solar irradiance fluctuations [22] are neglected. The time variation of a is usually obtained as the solution
of an optimal control problem, in which the solar sail-based spacecraft heliocentric equation of motion is

= —%'r +a (2)
where pi is the Sun’s gravitational parameter, and r = r # is the spacecraft position vector. The next section

describes a procedure able to generate a rapid estimate of the time-variation of the propulsive acceleration
vector in an assigned (heliocentric) mission scenario using a shape-based approach.



2.1. Trajectory shape functions

Assume that the sail state is described using modified equinoctial elements [23, 24], that is, the state
vector is € = [p, f, g, h, k, L]*, with

p=a(l —e?)
f=ecos(Q+w)

g = esin(Q + w)

h = tan(i/2) cos(Q2)
k = tan(i/2) sin(Q)
L=Q+4w+v

=2 =~

A~ N N N/~
T D D T

where v is the true anomaly, and L is the true longitude. The variation of the modified equinoctial elements
{p, [, g, h, k} with the true longitude L is modelled through the following shape functions that extend the
expressions proposed in [5] to a three-dimensional mission scenario

p(L) = po + py(L — Lo) + ap(L — Lo)* + Apsin(L — Lo + ¢,) (9)
F(L) = fo+ fr(L = Lo) + Aggsin(L — Lo + ¢y,) (10)
9(L) = go+ gs(L — Lo) — Agcos(L — Lo + ¢y4) (11)
h(L) = ho + hf(L — Lo) + an exp[bn(L — Lo)] + Ak sin[2(L — Lo) + dni] (12)
k(L) = ko + k(L — Lo) + ag explbr(L — Lo)] — Ank cos[2(L — Lo) + dni) (13)

where Lg is the value of the true longltude at the initial time tg, while a,, A\p, ¢p, Apg, @ g, an, bp, ar, bry Ak,
®hk, Pos Dfs fo, ff G0, Gy, ho, hf, ko, and kf are design parameters. The capability of Egs. (9)—(13) to describe
an orbit-to-orbit (optimal) heliocentric transfer trajectory has been investigated in a number of test cases. In
particular, classical interplanetary transfers (toward Mars, Venus, and Mercury), and transfers toward a set
of near Earth asteroids (of which the orbital elements are listed in Table 1) have been analyzed. Recall that
there exist more than 22000 known near Earth asteroids, each one with peculiar orbital characteristics. To
reduce such a huge amount of possible scenarios, this study deals with transfers toward near Earth asteroids
with ¢ < 20deg and e < 0.4 only. The four celestial bodies in Table 1 have been considered to represent
different possible scenarios toward orbits with high or low values of inclination and eccentricity. Moreover,
two values of characteristic acceleration have been considered, that is, a. = {0.2, 0.6} mm/s?, which are
representative of low- or high-performance solar sails, respectively.

Celestial body a (AU) e 1 (deg) | Q (deg) | w (deg)

2011 CG2 1.177 | 0.1586 2.76 293.23 | 283.85
2009 CQ5 0.9328 | 0.0915 | 18.68 278.69 118.2
1992 FE 0.9287 | 0.406 4.71 311.93 82.61

1620 Geographos | 1.245 | 0.3354 | 13.34 337.2 276.92

Table 1: List of target asteroids and their orbital elements.

In each test case, a reference (optimal) orbit-to-orbit transfer trajectory has been obtained with an
indirect approach by adapting the procedure described in [8]. Note that, in this study, the indirect method
has been used to obtain the reference trajectory in a few test cases only. In fact, solving an optimal control
problem using an indirect approach usually requires a complex (and time-consuming) procedure to guess
the initial values of the adjoint variables [7, 25]. However, in the initial phase of mission design, when a
large number of transfer scenarios has to be analyzed (consider, for example, a multiple-asteroid mission [6]),
minimum user-computer interaction is desired to automate the whole procedure, so that an indirect method-
based procedure is typically unsuitable.

Using the results of an indirect optimization, in terms of L-variation of the modified equinoctial elements
{p, f,g,h,k}, the value of each design parameter in Eqgs. (9)—(13) has been determined through a fitting
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procedure with a nonlinear least square method, using the MATLAB Curve Fitting toolbox. The quality of
the fit is reassumed in Table 2, in terms of sum of squares due to error (SSE) and coefficient of determination
(R~square). In particular, the closer the value of SSE (or R-square) to zero (or one), the better the analytical
expressions of Eqgs. (9)—(13) fit the results obtained through an indirect approach.

Target orbit | a. (mm/s?) P f g h k

2011 CG2 0.2 6 x 10-%/0.991 1.7x 1072/0.964 | 6 x10-%/0.989 | 8 x10-6/0.976 | 2 x 10-°/0.985
2011 CG2 0.6 1x1075/1 8 x 107%/0.999 1x107°/0.999 | 9x1075/0.985 | 2 x 107°/0.996
2009 CQ5 0.2 3x107%/0.997 | 2.8 x1072/0.854 | 9x107%/0.884 | 5x1076/0.998 | 1 x 107%/0.999
2009 CQ5 0.6 3.5 x 1073/0.989 0.1058/0.522 0.024/0.727 6 x107°/0.987 | 3 x 107*/0.998
1992 FE 0.2 5 x 1074/0.996 1.8 x 1072/0.995 | 1.6 x 1073/0.99 | 9 x1075/0.995 | 3 x 107°/0.999
1992 FE 0.6 1.5 x 1072/0.996 | 3.7 x 1073/0.99 1x1072/0.976 | 3x107°/0.991 | 4 x 107¢/0.999
Geographos 0.2 1x1073/0.987 | 1.6 x 1073/0.931 | 2.5 x 1073/0.992 | 7 x 107°/0.998 | 7 x 107°/0.988
Geographos 0.6 1.9 x 1072/0.983 | 2.3 x 1072/0.979 | 5.3 x 107°/0.99 | 4 x 107%/0.995 | 3.7 x 107%/0.977
Mars 0.2 7x107%/0.999 | 1.6 x 1072/0.956 | 1.7 x 1072/0.904 | 3 x 107°/0.99 6 x 107%/0.983
Mars 0.6 4x107%/1 1x107°/1 7x107%/1 9x107%/0.986 | 1 x107°/0.976
Venus 0.2 2 x 1075/0.999 9 x 107%/0.999 3x107°/0.998 | 4x1077/0.997 | 8 x 1076/0.998
Venus 0.6 4 x 107°/0.999 2 x 107°/0.999 1 x 107°/0.999 2 x 107°/0.979 1x107%/0.98

Mercury 0.2 1 x 1074/0.999 3x107%/0.979 | 5.6 x 1072/0.907 | 9 x 1076/0.998 | 1 x 107°/0.998
Mercury 0.6 3 x 107%/0.999 6 x 107*/0.998 0.022/0.899 4x107°/0.994 | 1x107%/0.987

Table 2: Statistical values of fit (SSE/R-square).

The values in Table 2 are consistent with the results of [5], which have been obtained in a two-dimensional
scenario. Accordingly, the shape functions given by Egs. (9)—(13) are used in the procedure described in
the next section, which allows the optimal (three-dimensional) solar sail transfer trajectory to be obtained
using a shape-based approach.

2.2. Trajectory optimization using shape-based method

The optimization of the sail transfer trajectory consists in evaluating the subset of design parameters a,,
Aps Ppy Mg, Dfgs Qns by ak, br, Ank, dnk, and the initial and final true longitude, Lo and Ly, that minimize
the flight time T given by [13]

Er at | 2
T:/ LdL ~ ( b ) dL (14)
L, dL Lo VHop \1+ fcosL +gsinL

with the constraints

mtax(||a|| — Umax) <0 15

mtin(ar) >0 16

max(|a, - ac(re/r) (A 7)) < € 17

2

(15)
(16)
(17)
m?x(|at —ac(re/r) (A - )2 |7 x n]) < e (18)
where amax = ac(rg /r)2 is the maximum magnitude of the propulsive acceleration at a distance r from the
Sun, a, (or a;) are the components of a along the radial (or transverse) direction, and € is a given (small)
tolerance value. Note that Eqs. (17)-(18) are not considered in [5], and their introduction allows a more
accurate approximation of a feasible solar sail trajectory to be obtained. In Eqgs. (15)—(18), an expression of
a as a function of the modified equinoctial elements can be obtained from Eq. (2) by adapting the procedure

described in [13]. To that end, the cartesian components of the sail position vector r = [ry,ry,r.]T are



written as

_ plcos L + (h? — k?) cos L + 2hk sin L]

z = p 1
(14 fcosL +gsinL)(1 + h2 + k2) (19)
_ plsin L — (h* — k?)sin L + 2hk cos L] (20)
"T 0t feosL + gsin L)(1 + k2 + k2)
i 2p[hsin L — k cos L] (21)
* (14 fcosL + gsin L)(1 + h2 + k2)
The first and the second derivatives of  are then obtained as
. dr dL
. drdL
with )
dL 1+ fcosL + gsinL
o = VHoP ( » ) (24)
and
dr Ordp OJrdf Ordg Ordh Ordk Or
— = Y 25
dL ~ opdL " ofoL T agor T onoL T okoL | oL (25)
A 0F0p 0705 00y | 0FOL 0ROk OF o)
dL  OpOL  OfO0L 0gOL 0OhOL 0kOL = OL
where
dp
a1~ Pr + 2a,(L — Lo) 4+ Apcos(L — Lo + ¢p) (27)
af =
o = 1 T Argcos(L = Lo + ¢g) (28)
99 _ . .
ar = 9 +Argsin(L — Lo + ¢ 1) (29)
oh -
871/ = hf + ahbh exp[bh(L - LO)} + 2>\hk COS[?(L - Lo) + gf)hk] (30)
ok - .
C{)T = kf + aby, eXp[bk(L — LQ)] + 2k Sln[Q(L — LO) + ¢hk] (31)

Finally, the values of the (remaining) coefficients po, Py, fo, ff, Gos Gf ho, izf, ko, and ];'f are obtained by
enforcing the initial and final conditions on the position and velocity vectors [13].

The optimization problem is solved using the Augmented Lagrangian Genetic Algorithm [26, 27, 28]
implemented in MATLAB. The output of the genetic algorithm is further refined using a local optimizer
based on the built-in function fmincon. In the optimization process, a population size of 20 individuals
has been used for the genetic algorithm, whereas fmincon uses an active-set algorithm with a maximum
number of function evaluation equal to 3000; other options are set to their default values. A scaled problem
is considered in the numerical simulations, so that a unit of length is defined as 1 AU, and the Sun’s
gravitational parameter is u, = 1. As a result, a unit of time is TU ~ 58.13 days.



3. Numerical Simulations

The shape-based procedure described in the preceding section is now applied to some sample mission
scenarios to generate solar sail feasible transfer trajectories. In particular, three different approaches are
compared: 1) a method that uses the shape functions (9)—(13) and considers the constraints (15)-(18) in the
optimization process; 2) a simplified method that uses the shape functions (9)—(13) with constraints (15)-
(16) only; 3) a method that uses the linear-trigonometric shape functions defined in [13] and considers only
a constraint on the maximum value of the propulsive acceleration magnitude.

The method 2 is considered to assess the effect of the constraint equations (17)-(18) on the generation
of a good guess of a solar sail trajectory. Indeed, an approach that only takes into account Egs. (15)-
(16) is able to significantly decrease the required computational time, as will be shown in the succeeding
discussion. The third method, instead, is analyzed to make a comparison with an approach that (similarly
to this manuscript) describes the spacecraft state vector using a set of analytical expressions for the modified
equinoctial elements, but does not include any constraint on the sail propulsive acceleration.

Two transfer scenarios are analyzed departing from the Earth’s orbit toward those of potentially haz-
ardous asteroids. Such asteroids have been thoroughly observed and studied because of their high collision
probability with the Earth [29] and to characterize their physical and dynamical properties in order to choose
a suitable strategy to deflect or destroy the small celestial body. For this reason, the recent literature [5, 6]
has also proposed them as candidate targets of space missions. In particular, the asteroids 2002 DU3 [30]
and 2007 MK13 [31] have been considered in this manuscript to quantify the performance of the shape-based
method in the case of a transfer toward target orbits with non-negligible final eccentricity or high inclination;
see Table 3. In these examples, a solar sail with a, = 0.3 mm/s? has been considered, and the bounds of the
shape parameters defined in Eqs. (9)—(13) are specified in Table 4.

celestial body | a (AU) e i (deg) | Q (deg) | w (deg)
Earth 1 0.0167 0 0 102.94
2002 DU3 1.145 | 0.2382 8.7 0.69 245.53
2007 MK13 1.025 | 0.1398 | 19.88 95.09 259.96

Table 3: Orbital parameters of Earth, asteroid 2002 DU3 and asteroid 2007 MK13.

Parameter | lower bound | upper bound
Ap 0 0.1
Atg 0 0.3
Ahk 0 0.1
d)p? ¢fgv Ok 0 27
ap 0 0.01
ap, bh -0.3 0.3
ag, bk -0.3 0.3

Table 4: Lower and upper bounds for the design parameters.

For each transfer scenario, methods 1-3 have been executed 100 times, and a success rate ssg has been
computed, which corresponds to the number of times the shape-based method is able to converge towards a
feasible optimal solution. Then, all the 100 solutions of methods 1-3 (even the unfeasible ones) have been
used as initial guesses for a direct method, and a success rate syg has been computed. To that end, a direct
multiple-shooting technique [7] has been used, which partitions the whole trajectory into N € N arcs of
equal duration and N + 1 nodes. The spacecraft state is propagated along each arc by numerical integration
of the equation of motion (2) using a fourth order Runge-Kutta integration scheme. Boundary conditions and
continuity of the states at the nodes are finally enforced to obtain a feasible solar sail trajectory. The resulting
nonlinear programming problem is solved using CasADi software package [32] and TPOPT solver [33]. All
the numerical simulations have been carried out on a personal computer with an Intel processor Core i7-4770
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CPU at 3.40 GHz and with 16 GB of RAM. Note that a number of discretization points equal to 100 has
been considered for the direct multiple-shooting method.

In the case of method 1, the success rate is shown in Figs. 1(a) and 1(c) as a function of the tolerance
value € = {1072,5 x 1073,1072,1.7 x 1072,5 x 1072,107} AU/TU?; see Eqgs. (17)-(18).
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(b) 2002 DU3: computational time.
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(c) 2007 MK13: success rate. (d) 2007 MK13: computational time.

Figure 1: Success rate and mean computational time of method 1 as a function of ¢, for an orbit-to-orbit transfer from Earth
to asteroids 2002 DU3 or 2007 MK13 with a. = 0.3 mm/sQ.

When a feasible solution is found, the smaller the value of €, the better the approximation of the sail
transfer trajectory. However, the numerical simulations have shown that finding a feasible solution for the
shape-based method with very small values of ¢ is difficult (see the low success rate sgg in Figs. 1(a) and
1(c)). Nevertheless, the values of € for which the success rate sys is maximized are between 1073 and
1072 AU/TUZ2. This is because, even if most of the solutions of the shape-based method do not satisfy the
constraint equations (15)—(18), the numerical simulations have shown that these solutions are really close
to be feasible and represent better approximations of solar sail trajectories than those obtained in the case
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of higher values of e. This can also be observed by analyzing the mean computational time required by the
direct multiple-shooting approach shown in Figs. 1(b) and 1(d). Indeed, when high values of € are used, the
mean computational time of the direct method tends to increase, and this is probably due to the fact that
the starting point provided to the nonlinear programming solver is worse than that produced with smaller
values of e.

The results obtained using method 2 and 3 are reported in Table 5. Both methods 2 and 3 are char-
acterized by higher computational time and lower success rate of the direct multiple-shooting method with
respect to method 1 with a low value of €. In particular, the results obtained by method 2 tend to resemble
those obtained by method 1 with high values of e. Finally, method 3 seems unsuitable for producing good
initial guesses of solar sail-based trajectories.

Target orbit | Method | sgp | Comp. Time (shape-based) | sys | Comp. Time (multiple-shooting)
2002 DU3 2 93 58s 38 104 s
2002 DU3 3 50 52s 16 187s
2007 MK13 2 100 458 46 221s
2007 MK13 3 100 16s 2 284 s

Table 5: Success rate and mean computational time of method 2 and 3 for an orbit-to-orbit transfer from Earth to asteroids
2002 DU3 or 2007 MK13.

The solutions obtained using the direct multiple-shooting approach are local minimum solutions, which
depend on the guess generated by the shape-based approach. Therefore, for comparative purposes, the two
scenarios have been also analyzed with an indirect method [8]. The minimum flight time obtained by the
indirect approach is Tinq ~ 14 TU for the transfer toward 2002 DU3, and Ti,q ~ 25.1 TU when considering
a transfer to 2007 MK13. A dimensionless error Ayg (or Agg) in the flight time between the indirect and
the direct (or shape-based) method has been evaluated as

Tvs — Tind Tsp — Tind

Anis Ty Asp T (32)
where Tys and Tgp are the minimum flight times obtained by the direct multiple-shooting and shape-based
method, respectively. Figure 2 reports the values of the errors Ayg for all the solutions of the direct multiple-
shooting approach and the corresponding errors Agg of the guesses generated by the shape-based method
(even those unfeasible) when ¢ = 1072 AU/TU?. The error Ayg reported in Fig. 2(b) and 2(d) is close to
zero for most of the solutions, that is, the solution of the direct method is close to that found by the indirect
approach. Instead, the error Agp is larger, and in some cases the flight time can be underestimated (when
Agp takes negative values, see Fig. 2(a)). Therefore, the proposed shape-based method can provide good
initial guesses for the direct multiple-shooting approach, but it may not be able to produce a good estimate
of the optimal flight time in many cases.

3.1. Rendezvous scenarios

The shape-based method described above for orbit-to-orbit transfers can be easily extended to the case
of ephemeris-constrained rendezvous problems. In this case, the optimization parameters are the shape
parameters in Eqgs. (9)—(13), the departure date tg, the flight time T and the number of revolutions around
the Sun n..,. Note that the initial and final spacecraft position and velocity vectors must coincide with
those of the departure and target celestial bodies, respectively. The optimization problem can be solved
using the proposed shape-based procedure, in which the performance index is still the flight time T, and the
constraints are given by Eqs. (15)—(18) and

Lr
/ T

<e (33)
L, dL t

where dt/dL can be expressed as a function of the shape functions using Eq. (24), and ¢; has been set equal
to 2% of T in accordance with [13].
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Figure 2: Error Apgs of the ith solution obtained by the direct method and error Agp of the corresponding initial guess
computed with the shape-based approach.

This procedure has been applied to rendezvous problems from Earth to the asteroids 2002 DU3 and 2007
MK13, using a solar sail with a, = 0.3mm/s? and a departure date between the 1st of January 2025 and
1st of January 2027. The same bounds as those reported in Table 4 are used for the shape parameters. The
flight time T is constrained to assume values within the interval [5, 20] TU (or [10, 30] TU) for the transfer
toward 2002 DU3 (or 2007 MK13), whereas nyey € [1, 3] (o Nyev € [4, 7]). As in the orbit-to-orbit case, a
comparison of the three previously described methods has been performed, and the solutions of the shape-
based approach have been used as initial guesses for the direct multiple-shooting approach. The results, in
terms of success rates (ssp and syg) and computational time, are reported in Table 6, in which the results
of method 1 have been obtained using ¢ = 1072 AU/TU2.

These results show that the success rate syg of method 1 is higher than that of methods 2 and 3 also
in the case of rendezvous scenarios. As a result, the best approach to solve the rendezvous problem seems
to be the use of method 1 with a small value of € (for example, a value ¢ < 1072 AU/TU?), and a direct
multiple-shooting approach that uses the approximate shaped solution as its initial estimate.
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Method

Target body ssp | Comp. Time (shape-based) | spms | Comp. Time (multiple-shooting)
2002 DU3 1 5 105 52 166s
2002 DU3 2 58 98s 34 164s
2002 DU3 3 0 61s 9 110s
2007 MK13 1 19 105s 51 1355
2007 MK13 2 89 65 7 158s
2007 MK13 3 0 64s 22 183s

Table 6: Success rate and mean computational time of method 1, 2 and 3 for Earth to 2002 DU3 and 2007 MK13 transfers.

3.2. Multiple-target missions

The shape-based method is now applied to estimate the optimal sequence of encounters in a multiple-
asteroid mission starting from the Earth’s orbit. In particular, three asteroids are considered as in the
scenario discussed in [34]. Their orbital characteristics are reported in Table 7, and the transfer is analysed
considering a solar sail with a. = 0.75mm/s?. A simplified analysis has been carried out, in which each

celestial body | a (AU) e i (deg) | Q (deg) | w (deg)
1219 Britta 2.2130 | 0.1246 4.41 42.52 24.08
1831 Nicholson | 2.2393 | 0.1277 | 5.63 72.60 183.48
4 Vesta 2.3614 | 0.0887 7.14 103.81 150.73

Table 7: Orbital parameters of asteroid 1219 Britta, 1831 Nicholson and 4 Vesta.

single trajectory leg has been computed separately assuming an orbit-to-orbit (ephemeris-free) transfer.

The optimal transfer times between any pair of celestial bodies (obtained by the shape-based method and
further refined using the direct multiple-shooting approach) are reported in Table 8, whereas Table 9 shows
that the most promising sequence of encounters is Earth-Britta-Nicholson-Vesta. The total computational
time required to solve all the optimization problems listed in Table 8 is about 13.5 minutes. The total
transfer time obtained using this simplified method is about 2010.5 days, a value lower than that reported in
Ref. [34]. Of course, a second phase of mission analysis should consider the ephemeris-constrained rendezvous
problem.

Scenario T (days)
Earth-Britta 992.8
Earth-Nicholson 1019.8
Earth-Vesta 1210.6
Britta-Nicholson 497.5
Britta-Vesta 894.8
Nicholson-Britta 514.5
Nicholson-Vesta 520.1
Vesta-Britta 845.5
Vesta-Nicholson 553.9

Table 8: Optimal transfer times between any pair of celestial bodies listed in Table 7.

3.8. Comparison with other methods

This subsection presents a comparison between the proposed approach and other methods existing in the
literature. The first one is the method adapted from Ref. [13] that has been already analyzed in the previous
section. It has been shown how the absence of constraints modelig the solar sail propulsive acceleration leads
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Scenario T (days)
Earth-Britta-Nicholson-Vesta 2010.5
Earth-Vesta-Nicholson-Britta 2279.1
Earth-Nicholson-Vesta-Britta 2385.4
Earth-Nicholson-Britta-Vesta 2429.1
Earth-Britta-Vesta-Nicholson 2441.6
Earth-Vesta-Britta-Nicholson 2553.6

Table 9: Estimate of the total flight time required by any possible sequence of encounters.

to solutions that do not represent good estimates of solar sail-based trajectories nor good initial points for
direct methods; see the results of Method 3 in Table 5.

The second approach here considered is the method proposed by Taheri and Abdelkhalik [15], which
shapes the sail trajectory using finite Fourier series and takes into account the constraints equations (15)—
(18). The number of Fourier series coefficients has been chosen in such a way that the total number of
unknowns is equal to that of the method proposed in this work. However, the numerical simulations have
shown that the genetic algorithm is unable to find any feasible solution with such an approach.

Very accurate solutions can instead be obtained using the procedure described in Ref. [16] or [17].
However, these methods are characterized by a high number of unknown variables that prevent the genetic
algorithm from converging toward feasible solutions. Indeed, the techniques of Ref. [16, 17] make use of
a nonlinear programming solver, and, as such, they require good starting points to find a local minimum
solution. Moreover, the user is required to choose a suitable number of discretization points and Fourier
series coefficients when dealing with the method of Ref. [16], or the order of the Bezier curve function for
the approach of Ref. [17], which may depend on the particular mission scenario. This implies a higher user-
computer interaction with respect to the proposed method. The strength of the approach here discussed,
instead, is that it can automate the whole optimization procedure, and, therefore, it is especially advisable
when a large number of mission cases must be investigated.

Other methods exist to obtain fast estimates of the flight time between two arbitrary orbits, such as that
proposed in [6], based on the use of deep neural networks. However, unlike the method proposed in this
paper, such an approach does not provide the solar sail optimal transfer trajectory nor the optimal control
law. Moreover, the method of Ref. [6] has been applied only to scenarios that consider a solar sail with
characteristic acceleration of 0.75 mm/s?. Finally, other approaches based on the use of homotopy methods
can find very accurate solutions. An example is given in Ref. [35], which, anyway, requires an initialization
with the solution of a low-thrust transfer problem. In other terms, an initial guess of costates of the low-thrust
transfer solution is required to start the homotopy method, although their estimate in a large number of flight
scenarios may be a difficult and time-consuming task. Moreover, Ref. [35] only considers simple coplanar
circle-to-circle transfers or rendezvous toward celestial bodies with moderate values of orbital inclination
and eccentricity, whereas the shape-based approach here proposed is able to deal with more involved cases
without requiring any initializing solution.

4. Conclusions

This work presented a shape-based method able to generate approximate optimal solar sail-based tra-
jectories for heliocentric transfer scenarios. Novel shape functions have been introduced that describe the
evolution of modified equinoctial elements for three-dimensional transfers, whose analytical expressions have
been chosen by analyzing actual (optimal) transfer trajectories. An optimization problem has been formu-
lated, which consists in computing a set of shaping coefficients to obtain a minimum-time orbit transfer.
Also, a set of nonlinear constraint equations has been enforced on the propulsive acceleration vector in order
to get solutions that are as close as possible to feasible solar sail-based trajectories.

The proposed method has been validated using three-dimensional orbit-to-orbit and rendezvous transfer
scenarios. Extensive numerical simulations have shown that although the shape-based method is not always
able to give an accurate estimate of the optimal (minimum) transfer time, the solutions it finds out are still
better approximations of solar sail trajectories than those obtained using other shape-based methods existing
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in the literature, which usually provide general low-thrust trajectories that do not satisfy the classical solar
sail (physical) limitations. Finally, the proposed approach is also usually effective in providing good initial
guesses for direct methods.
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