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Abstract 

A revision of late Palaeozoic tectonics recorded in Tuscany, Calabria and Corsica is here presented. We propose that, in 
Tuscany, upper Carboniferous-Permian shallow-marine to continental sedimentary basins, characterized by uncon-
formities and abrupt changes in sedimentary facies, coal-measures, red fanglomerate deposits and felsic magmatism, 
may be related with a transtensional setting where upper-crustal splay faults are linked with a mid-crustal shear zone. 
The remnants of the latter can be found in the deep-well logs of Pontremoli and Larderello-Travale in northern and 
southern Tuscany respectively. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section 
is exposed, where the lower-crustal portion mainly includes granulites and migmatitic paragneisses, together with 
subordinate marbles and metabasites. The mid-crustal section, up to 13 km-thick, includes granitoids, tonalitic to 
granitic in composition, emplaced between 306 and 295 Ma. They were progressively deformed during retrograde 
extensional shearing, with a final magmatic activity, between 295 ± 1 and 277 ± 1 Ma, when shallower dykes were 
emplaced in a transtensional regime. The section is completed by an upper crustal portion, mainly formed by a 
Palaeozoic sedimentary succession deformed as a low-grade fold and thrust belt, and locally overlaying medium-
grade paragneiss units. As a whole, these features are reminiscent of the nappe zone domains of the Sardinia Vari-
scan Orogen. In Corsica, besides the well-known effusive and intrusive Permian magmatism of the “Autochthonous” 
domain, the Alpine Santa Lucia Nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, exhibit-
ing many similarities to the Ivrea Zone. The distinct Mafic and Granitic complexes characterizing this crustal domain 
are juxtaposed through an oblique-slip shear zone named Santa Lucia Shear Zone. Structural and petrological data 
witness the interaction between magmatism, metamorphism and retrograde shearing during Permian, in a tempera-
ture range of c. 800–400 °C. We frame the outlined paleotectonic domains within a regional-scale, strain–partitioned, 
tectonic setting controlled by a first-order transcurrent/transtensional fault network that includes a westernmost fault 
(Santa Lucia Fault) and an easternmost one (East Tuscan Fault), with intervening crustal domains affected by exten-
sional to transtensional deformation. As a whole, our revision allows new suggestions for a better understanding of 
the tectonic framework and evolution of the Central Mediterranean during the late Palaeozoic.
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1 Introduction
The distribution of pre-Mesozoic rocks in the Central 
Mediterranean is uneven (Fig. 1), with the most relevant 
exposures in the Alps, and only scattered outcrops, or 
shallow-crustal subsurface occurences known so far, 
in and around the Italian peninsula (Rau and Tongiorgi 
1981; Cassinis et  al. 2000 2012; Vai 2001; Scisciani and 
Esestime 2017).
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The Variscan basement and upper Carboniferous-Per-
mian successions are exposed in the Alpine chain (for an 
overall view see: Dal Piaz 1993; von Raumer and Neu-
bauer 1993, Vai 2001; Guillot et al. 2009; Spies et al. 2010; 
von Raumer et al. 2013; Cassinis et al. 2018; Ballevre et al. 
2018), witnessing continental crustal segments of the 
different Variscan paleotectonic domains, later involved 
and deformed, at various crustal levels, during the Alpine 
evolution. Considering these, recent contributions have 
focused on the role of upper Carboniferous-Permian 
tectonics, its relationships with the Variscan mountain 
building and collapse, and with the proto-Alpine Tethyan 
rifting (e.g. Schaltegger and Brack 2007; Schuster and 
Stüwe 2008; Froitzheim et  al 2008; Cassinis et  al. 2012; 
Kunz et  al. 2017; Bergomi et  al. 2017; Festa et  al. 2018; 
Ballevre et  al. 2018; Pohl et  al 2018; Roda et  al. 2018). 
Despite noteworthy exceptions (Padovano et  al. 2012; 
Cassinis et  al. 2018) the conclusions of these works 

overlooked the large region corresponding to the Ital-
ian peninsula and surroundings, because of the scattered 
occurrences of pre-Mesozoic rocks, as well as of their 
poor exposure and strong involvement in Central Medi-
terranean Tertiary tectonics.

In this paper, we revise the pre-Alpine tectonic evolu-
tion of some pre-Mesozoic crustal fragments exposed in 
Tuscany, Calabria and Corsica. By combining data col-
lected by our group in the last 15 years with a reappraisal 
of recently published literature, we intend to frame the 
role and importance of upper Carboniferous-Permian 
tectonics and its relationship, if any, with the history 
of the Variscan orogen and Alpine Tethyan rifting. Dif-
ferently from other regional reviews of the southern 
Europe-Mediterranean area, which have mainly focused 
on the upper crustal records (e.g. volcanics or sedimen-
tary history of basins, Cassinis et  al. 2018), we include 
here data from the deeper crustal levels, giving a more 

Fig. 1 Exposure or shallow subsurface (minor than 6 km) occurences of pre-Mesozoic covers and basements in Central Mediterranean. The colors 
in the map are related to their Alpine framework and respectively referred to the Adria, Briançonnais /AlKaPeCa and European/Iberian domains 
(Schmid et al. 2004; Handy et al. 2010). The main tectonic zones (with arrows indicating the tectonic transport directions) are reported for the 
Sardinia-Corsica Variscan orogen as also figured in the general and schematic cross-section after Rossi et al. (2009). Google image
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complete overview of the processes affecting the investi-
gated regions during the late Palaeozoic.

Following former suggestions (e.g. Bard 1997; Vai 2001; 
Alvarez and Shimabukuro 2009; Patacca and Scandone 
2011), we will use the Sardinia-Corsica Variscan frame-
work to examine and compare the basement units and 
Permo-Carboniferous successions of Tuscany, Calabria 
and Corsica. This will allow us to constrain their relative 
paleotectonic positions and relationships, as well as the 
role of some late Palaeozoic structures. Moreover, our 
study areas include three crustal domains (Santa Lucia 
in Corsica, the Calabria Crystalline and the lost External 
Ligurian of the Northern Apennines), which share with 
the Ivrea Zone of the Southern Alps many first order 
features, including amphibolite to granulite-facies for-
mations (kinzigites), as well as mafic underplated units 
(mafic complexes), therefore providing a direct record 
of the late Palaeozoic evolution of the lower to mid-
dle continental crust. Finally, considering that in terms 
of the Alpine tectonic framework our study areas may 
be referred to the former Europe, AlKaPeCa (Alboran-
Kabilie-Peloritani-Calabria) and Adria domains respec-
tively (Handy et  al. 2010), a better knowledge of their 
original relationships may add further constraints to the 
Mesozoic and Tertiary tectonic history of the Central 
Mediterranean region.

2  The Variscan orogenic template and its remnants 
in Sardinia and Corsica

In central Mediterranean, pre-Mesozoic continental 
units are well known and exposed in Sardinia and Cor-
sica. These units were, before the Tertiary history of the 
region i.e. in the Alpine framework, part of the Iberian-
European domain (Dewey et al. 2009; Handy et al. 2010; 
van Hinsbergen et  al. 2020). Sardinia and Corsica (with 
the exception of the its easternmost part, the so-called 
Alpine Corsica) were only slightly involved in the Alpine 
orogenic evolution, thus preserving the overall tectonic 
architecture of the southernmost segment of the Variscan 
orogen (Carmignani et al. 1979, 1994; Rossi et al. 2009).

2.1  Zonation of the Variscan belt in Sardinia‑Corsica
Four different structural zones may be distinguished by 
combining data from Sardinia and Corsica (Carmignani 
et al. 1979, 1994; Lardeaux et al. 1994; Elter and Pandeli 
2005; Helbing et  al. 2006; Rossi et  al. 2009; Edel et  al. 
2014):

1. An external southern zone covering the southwestern 
part of Sardinia and consisting of a subgreenschist 
facies fold-and-thrust belt, affecting a sedimentary 
succession ranging in age from upper Vendian to 
lower Carboniferous (Funedda 2009);

2. A nappe zone affected by greenschist facies meta-
morphism (Conti et al. 2001) and consisting of a con-
tinental arc-related volcanic suite of Middle Ordovi-
cian age (Oggiano et  al. 2013), embedded within a 
thick Palaeozoic metasedimentary succession;

3. An inner or axial zone characterized by medium- 
to high-grade metamorphic rocks locally including 
metabasites with a MORB geochemical signature 
and relicts of eclogite facies metamorphism (Cap-
pelli et al. 1992; Palmeri et al. 2004; Giacomini et al. 
2008; Cruciani et al. 2015) intruded by late Variscan 
granitoids. Similarly to NE Sardinia, most of Cor-
sica shows intrusive late Variscan and post Variscan 
plutons and volcano/sedimentary successions (see 
below) with relict septa of the host rocks. These 
rocks show similarity to those of the axial zone of 
Sardinia (Rossi et al. 2009; Casini et al. 2015), and are 
bounded, in NE Corsica, by;

4. Hinterland Armorica (?)-like block and north-
east vergent retrowedge stack in which Panafrican 
micaschists and a very low-grade Palaeozoic meta-
sedimentary cover may be recognized (Rossi et  al. 
1995; 2009; Faure et al. 2014).

2.2  Tectonic history of the Variscan belt in Sardina‑Corsica
For the Variscan belt in Sardinia-Corsica some major 
tectonic issues represent still hotly debated topics, for 
instance the occurrence, location, and vergence of the 
suture zone tracking the early stages of the oceanic sub-
duction and accretion, together with the type of the con-
tinent (Armorica microplate, Hun terrane or Brunia) 
involved in the collision with Gondwana (e.g. Cappelli 
et al. 1992; Carmignani et al. 1994; Matte 2001; Stampfli 
et al. 2002; Franceschelli et al. 2004; Helbing et al. 2006; 
Giacomini et  al. 2007; Rossi et  al. 2009; Guillot et  al. 
2009; Corsini and Rolland 2009; Elter and Padovano 
2010; Oggiano et al. 2013; von Raumer et al. 2013; Faure 
et al. 2014; Li et al. 2014) or the connections between the 
inner zones and their structures and the regional scale 
tectonic framework, e.g. the East Variscan Shear Zone 
(Corsini et  al. 2009; Elter and Padovano 2010; Carosi 
et al. 2010). Most authors, however, agree that the first-
order shaping of the South Variscan belt in Sardinia and 
Corsica was related to the frontal to oblique continent–
continent collisional processes. The continental collision 
produced, in Sardinia (Fig. 1): (i) SW-facing folds, (ii) top 
to the S/SW low angle thrusting of the high grade units 
of the axial zone on top of medium grade units of the 
northern nappes and (iii) the main fabric and structures 
in the low-grade nappe and external domains of the cen-
tral and southern Sardinia (Arthaud 1970; Carmignani 
et  al. 1979, 1994; Conti et  al. 2001; Carosi and Oggiano 
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2002; Franceschelli et  al. 2004; Carosi et  al. 2005; Cru-
ciani et  al. 2015). The collisional structures, referred to 
360–320 Ma (Di Vincenzo et al. 2004; Li et al. 2014), were 
reworked within regional-scale shear zones (e.g. Posada-
Asinara and the Grighini Shear zones in Sardinia, Zicavo 
and La Vaccia in NE Corsica) interpreted as transpres-
sional structures with dextral kinematics (Elter et  al. 
1990; Thevoux-Chabuel et  al. 1995; Carosi and Palm-
eri 2002; Oggiano and Rossi 2004; Helbing et  al. 2006; 
Iacopini et  al. 2008; Frassi et  al. 2009). These structures 
were developed during a phase of regional-scale change 
in transport direction (from S/SW to W/NW) in the 
nappe- and foreland-zones of Sardinia (Conti et al. 2001). 
Nevertheless, these structures and the related change in 
kinematics were differently interpreted by other authors 
(Musumeci 1992; Oggiano and Rossi 2004; Helbing 
et al. 2006; Casini and Oggiano 2008) as connected with 
a regional-scale switch from collisional contraction to 
post-collisional extension/transtension. This younger set-
ting may be constrained in age between 320 and 305 Ma 
along the Posada-Asinara Shear zone (Di Vincenzo 
et al. 2004; Giacomini et al. 2008) and between 305 and 
295 Ma in the southernmost Grighini Shear zone, as well 
as in the Zicavo and La Vaccia in NE Corsica (Musumeci 
1992; Thevoux-Chabuel et  al. 1995; Oggiano and Rossi 
2004; Cruciani et al. 2015; Cruciani et al. 2017).

2.3  The syn‑ to post‑orogenic magmatism: 
the Corsica‑Sardinia Batholith

Early- and late-collisional deformation structures were 
associated and followed by widespread magmatism, 
forming the so-called Corsica-Sardinia Batholith, classi-
cally subdivided into three main magmatic suites (Orsini 
1976, 1979; Ghezzo and Orsini 1982; Rossi and Cocherie 
1991; Ferré and Leake 2001; Edel et al. 2014; Renna et al. 
2006; Casini et al. 2015), from a petrological-geochemical 
point of view. The early magmatic sequence (U1), form-
ing a small fraction of the Corsica-Sardinia Batholith, is 
mainly documented in northwestern Corsica and subor-
dinately in NE Sardinia, where it is associated to anatex-
ites and layered migmatites (Rossi et al. 2015; Casini et al. 
2015). The U1 suite mainly includes high-Mg–K calc-
alkaline plutons (mainly monzonite to granite-adamel-
lites) emplaced over a short time span at c. 345–330 Ma 
(Paquette et al. 2003; Li et al. 2014; Rossi et al. 2015), as a 
result of the mixing between mantle-derived and lower-
crustal melts, and interpreted as sealing the original 
suture zone (Rossi et al. 2009).

The late- to post-Variscan magmatism is represented 
by the U2 and U3 magmatic suites (Figs.  1, 10a) which 
form the largest part of the Corsica-Sardinia Batho-
lith (del Moro et al. 1975; Paquette et al. 2003; Oggiano 
et  al. 2004; Casini et  al. 2008, 2015). The U2 magmatic 

suite is mainly characterized by granitoids with MgO 
content lower than the U1 suite, emplaced between 
310 and 280 Ma with a climax around c.305 Ma during 
which calc-alkaline granitoids were emplaced (Paquette 
et  al. 2003). The U3 magmatic suite, which was partly 
coeval with the latest U2 leucomonzogranites, consists 
of tholeiitic complexes emplaced from c. 304  Ma to c. 
280  Ma (Paquette et  al. 2003; Cocherie et  al. 2005) and 
subordinate alkaline granitoids formed at c. 290  Ma to 
c. 280 Ma (Cocherie et al. 2005; Renna et al. 2006; Rossi 
et al. 2015). The early U2 plutons were emplaced at shal-
low depths P ≤ 0.4 GPa forming elliptical bodies NW–
SE trending characterized by a sub-horizontal foliation, 
and magmatic lineation (Casini et  al. 2015). Their close 
spatial relationship with the late Carboniferous shear 
zones, dated at about 320–305 Ma, in northern Sardinia 
(Di Vincenzo et  al. 2004; Carosi et  al. 2012) supports a 
rapid, probably episodic melt migration localized along 
the ductile shear zones rooted in the lower crust and 
emplaced in a stretched upper crust during orogen-paral-
lel extension (Casini et al. 2015). Conversely, most of the 
lower Permian U2 and U3 plutons show a completely dif-
ferent architecture, with a NE/SW trend, sharp contacts 
with either the metamorphic basement or older granites, 
weak development of an internal fabrics, and presence of 
stoped blocks in the pluton roof zones (Gattacceca et al. 
2004; Cocherie et al. 2005).

3  The Palaeozoic rocks in the Northern Apennines
The Northern Apennines are characterized (Fig.  2) by 
stacked units belonging to a former accretionary wedge 
(Ligurian and sub-Ligurian Units) formed during the 
Tertiary closure stages of the Ligurian Tethys ocean, 
overlying the continental derived thrust-sheets and 
cover nappes of the Adria continental margin of Tuscan 
and Umbria-Marche Domains (e.g. Elter 1975; Bernoulli 
2001; Butler et  al. 2006; Molli 2008; Malavieille et  al. 
2016; Schmid et al. 2017).

3.1  Palaeozoic rocks in the Tuscan units
In the Northern Apennines, the Palaeozoic basement and 
covers belong to the continental units derived from the 
Tuscan and Umbria-Marche paleodomains, classically 
considered as part of the westernmost Adria-Africa con-
tinent (Fig. 2). The pre-Mesozoic basement is discontinu-
ously exposed (e.g. Lazzarotto et al. 2003), and it has been 
sampled by deep boreholes (Gianelli et  al. 1978; Anelli 
et al. 1994; Pandeli et al. 1994; Batini et al. 2003) mainly 
in the inner Tuscan sectors of the chain (Figs. 1, 2) and 
also in the external foreland domain (Vai 2001; Scisciani 
and Esestime 2017). For a complete bibliography on the 
pre-Mesozoic rocks of the Northern Apennines, the 
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reader is addressed to Rau and Tongiorgi (1974, 1981), 
Bagnoli et  al. (1979), Tongiorgi and Bagnoli (1981), Vai 
and Cocozza (1986), Conti et  al. (1991), Pandeli et  al. 
(1994), Vai (2001), Pandeli et  al. (2005), Aldinucci et  al. 
(2008a, b), Cassinis et al. (2018) and references therein.

According to our recent research in northern Tuscany 
(Molli et al. 2018), the pre-Mesozoic rocks of the North-
ern Apennines may be referred to three different tectonic 
zones (Fig. 2), from west to east:

1. Internal zone (former basement of the Tuscan 
Nappe). This internal zone is characterized by 
medium grade units mainly made up of micaschists 
with minor bodies of amphibolites (Ricci 1968; Di 
Sabatino et  al. 1979). Recent petrological studies 
(Molli et  al. 2002; Franceschelli et  al. 2004; Pandeli 
et al. 2005; Elter and Pandeli 2005; Lo Pò et al. 2017) 
in the Cerreto area, north of the Alpi Apuane area 
(Figs. 2, 3 and 4), defined a peak pressure exceeding 
1.1 GPa, followed by a peak temperature of 550–590 
°C at 0.9–1 GPa. The post-peak evolution occurred 
at 328–312 Ma (Molli et al. 2002) in micaschists and 
embedded amphibolites, both evolving in similar 

P–T conditions and final retrogression stage, being 
constrained at T < 475 °C, and P < 0.7 GPa, associated 
with well developed mylonitic fabrics (Figs. 3, 4);

2. Intermediate zone to which most of the pre-Meso-
zoic units may be referred (Figs.  2, and 5). The lat-
ter belong to the Tuscan metamorphic units and are 
exposed in the so-called Mid-Tuscan Ridge (Alpi 
Apuane, Monti Pisani, Iano, Montagnola Senese-
Monti Leoni, Monti Romani) and in the Tuscan 
Archipelago (Elba island). These units were affected 
by a regional low-grade (or intermediate to high 
pressure) and a locally high grade metamorphism 
during the Apennine orogenesis and late magma-
tism; different P–T values have been reconstructed 
for the different units (Duranti et  al. 1992; Theye 
et  al. 1997; Giorgetti et  al. 1998; Jolivet et  al. 1998; 
Brunet et al. 2000; Brogi and Giorgetti 2012; Bianco 
et  al. 2015, 2019; Caggianelli et  al. 2018). A synthe-
sis of the whole data in the framework of the North-
ern Apennines evolution is given by Jolivet et  al. 
(1998), Brunet et  al. (2000), Rossetti et  al. (2002), 
Franceschelli et  al. (2004); Molli (2008), Rossetti 

Fig. 2 a Tectonic map of Northern Apennines with the main pre-Mesozoic exposures of the Tuscan metamorphic units and of the external Tuscan 
domain in the subsurface (Pontremoli and Larderello-Travale deep wells); b geological cross sections of the Northern Apennines north and south of 
Arno, with indication of the pre-Mesozoic occurences; c simplified Mesozoic paleotectonic frame showing the relative pre-Mesozoic position of the 
Tuscan domains within Adria
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et al. (2008). The intermediate domain is well docu-
mented in the tectonic windows (Punta Bianca, Alpi 
Apuane and Monti Pisani) to the north of the Arno 
River (Fig.  2), where it includes low-grade Variscan 
units (Conti et al. 1993). These mainly contain albite-
bearing chloritic phyllites and quarzites including 
lenses of mafic metavolcanics and calcareous schists 
(Lower Phyllites), felsic metavolcanics and meta-
volcanoclastic rocks (Porphyroids and porphyritic 
schists), metasandstones, quarzites and phyllites 
(Upper Phyllites), graphitic schists and Orthoceras-
bearing dolostone. As a whole, these units are con-
sidered as part of a Cambrian? to Silurian succession 
(Vai 1972; Bagnoli et  al. 1979), classically correlated 

with the Palaeozoic units of central Sardinia (Car-
mignani et  al. 1979, 1994; Conti et  al. 1993; Pandeli 
et al. 1994). This low-grade basement is locally cov-
ered by Carboniferous-Permian deposits (Rau and 
Tongiorgi 1972; Bagnoli et  al. 1979; Pandeli et  al. 
1994; Spina et al. 2019; Figs. 2, 5). In southern Tus-
cany, the oldest Carboniferous-Permian succession is 
discontinuously exposed along the Monticiano-Roc-
castrada Ridge (Figs.  2 and 5). This succession con-
sists of Moscovian bioclastic limestone (Calcare di 
Sant’Antonio Formation—early Pennsylvanian; Pas-
ini 1991; Lazzarotto et  al. 2003; Engelbrecht 2008), 
related to a carbonatic platform (Cocozza et al. 1987; 
Lazzarotto et  al. 2003), unconformably overlain by 

Fig. 3 Mesoscopic appearence of the Cerreto medium grade rocks belonging to the former inner pre-Mesozoic “Tuscan” domain a 
mylonitic micaschist; b Morb-derived amphibolite. Plane-polarized light microphotographs of c micaschist with fractured and retrogressed 
garnet porphyroclast (from Lo Po’ et al. 2017) and d amphibolites (details in Molli et al. 2002; Lo Po’ et al. 2017); e mylonitic micaschist and f 
quartz-feldspatic mylonites from Pontremoli well (former pre-Mesozoic external "Tuscan" domain)
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dark phyllites and metasandstones (Scisti a Spirifer 
Fm). The latter were attributed to late Carboniferous-
early Permian on the basis of brachiopods (Cocozza 
1965), and to late Moscovian-Kasimovian by fusuli-
nid assemblages (Pasini 1991). Other exposures of 
the upper Carboniferous?-lower Permian succes-
sion (i.e. upper Pennsylvanian-Cisuralian p.p.) are 
in the Monti Pisani area (Scisti di San Lorenzo Fm, 
Rau and Tongiorgi 1974; Bagnoli et al. 1979; Pandeli 
et  al. 2008; Landi degl’Innocenti et  al. 2008). Here, 
they consist of a low-grade metamorphic succession 
formed by black silty-phyllites and metasandstones. 
Differently, in the Iano area (Figs. 2 and 5) the upper 
Carboniferous?-lower Permian succession consists 
of metaconglomerate with lenses of metasandstone, 
passing upwards to metasandstone and organic-rich 
metasiltstones and phyllites (Scisti di Iano Fm—Vai 
and Francavilla 1974; Costantini et  al. 1998; Laz-
zarotto et  al. 2003). These organic-rich siliciclastic 
sediments were attributed to different palaeoenviron-
ments: from continental (Scisti di San Lorenzo Fm) 
to coastal-neritic (Scisti di Iano and Scisti a Spirifer 
formations), deposited in an equatorial climate (Rau 
and Tongiorgi 1974; Costantini et al. 1998; Lazzarotto 
et al. 2003). A second sedimentary cycle, referred to 
the middle-late Permian (i.e. Guadalupian–Lopin-
gian), has been constrained by using data from dif-

ferent localities of Tuscany. This cycle includes: (i) 
middle?-Permian coarse grained metaconglomer-
ate (Breccia di Asciano Fm, in Rau and Tongiorgi 
1974; Bagnoli et  al. 1979; Pandeli et  al. 2008; Landi 
degl’Innocenti et al. 2008), exposed in the Mt. Pisani 
area; (ii) middle Permian phyllitic quartzites enriched 
in volcanic felsic components (Scisti Porfirici di Iano 
Fm); (iii) middle Permian metarudites, metasand-
stones and phyllites (Breccia e Conglomerati di Torri 
Fm), deposited in alluvial fans, covered by siltstones 
and phyllites with volcanic-rich quartzitic sandstones 
and conglomerates (Siltiti del Fregione Fm, Costan-
tini et al. 1998; Pandeli 1998). On the other hand, the 
deposits of Guadalupian–Lopingian age are charac-
terized by continental to marine, locally organic-rich 
successions and represented by metasandstones, 
metaconglomerates and metasiltstones that are 
known with different names in different areas: (i) 
Montignoso Formation in the Alpi Apuane (Massa 
Unit) area; (ii) Arenarie di Poggio al Carpino, Le 
Cetine, Farma, Carpineta, Falsacqua, Quarziti di Pog-
gio alle Pigne and Conglomerato di Fosso Pianaccia 
formations in the mid-Tuscan range of southern Tus-
cany (see Fig. 5); (iii) Arenarie rosse di Castelnuovo 
Fm, as recognized in the subsurface of the Larderello 
geothermal area; (iv) Mt Calamita and Rio Marina 
formations in the Elba Island; (v) Arenarie del Monte 
Argentario Fm, in the Argentario Promontory; (vi) 
“C” Fm, in subsurface of the the Monte Amiata vol-
cano-geothermal area; (vii) Arenarie di Ponte San 
Pietro, Quarzite e Fillade di Roccaccia di Montauto, 
Metarenarie di Botro del Lecceto, Calcescisti di Valle 
Tegolaia Fm, in the Monti Romani area (Gianelli et al. 
1978; Pandeli et  al. 1988; Pandeli and Pasini 1990; 
Moretti et  al. 1990; Elter and Pandeli 1991; Cirilli 
et  al. 2002, 2004; Lazzarotto et  al. 2003; Aldinucci 
et al. 2005; 2008a, b; Brogi 2008; Patacca et al. 2011; 
Spina et al. 2019).

 Permian magmatism has been recognized, since the 
late sixties (Barberi 1966; Rau and Tongiorgi 1974; 
Bagnoli et al. 1979; Costantini et al. 1998) within vol-
canosedimentary layers in the Iano exposures, as well 
as in clasts within Mid-Triassic Verrucano deposits 
(Rau and Tongiorgi 1974; Franceschelli et  al. 2004). 
More recently, sub-intrusive bodies cross-cutting the 
Variscan foliation and named Metarhyolite di Forno-
volasco Fm. (Vezzoni et  al. 2018), have been docu-
mented within the Palaeozoic basement of the Alpi 
Apuane (Pieruccioni etal. 2018). U–Pb zircon dating 
suggests a 292–271  Ma crystallization age (Fig.  4b, 
Vezzoni et al. 2018) in the range of Permian magma-
tism of the Central Mediterranean area (Buzzi and 
Gaggero 2008; Buzzi et al. 2008; Rossi et al. 2009);

Fig. 4 P–T–t path for inner (pink line) and external (blue line) Tuscan 
basement compared with that proposed for the axial zone of the 
Sardinian Variscan belt (Cruciani et al. 2015) in black continuous line 
(after Lo Po’ et al. 2017)
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3. External or easternmost zone, only reached at depth 
by the Pontremoli well (Eni) and by the boreholes 
in the Larderello-Travale geothermal areas (Enel), 

where garnet micaschists and gneisses were encoun-
tered (Batini et  al. 1983; Elter and Pandeli 1990; 
Anelli et  al. 1994; Pandeli et  al. 1994, 2005). In the 

Fig. 5 a Upper Carboniferous-Permian successions of the intermediate pre-Mesozoic “Tuscan” domain. Alpi Apuane: 1a—Montignoso Fm; Monti 
Pisani: 2a – Scisti di San Lorenzo Fm; 2b—Breccia di Asciano Fm; Middle Tuscan Ridge: 3a – Scisti di Iano Fm; 3b—Breccia e Conglomerati di Torri 
Fm; 3c – Scisti Porfirici Fm; 3d—Fosso del Fregione Fm; 4a—Calcare di Sant’Antonio Fm; 4b—Scisti a Spirifer Fm; 4c—Farma Fm—Falsacqua Fm; 
4d—Carpineta Fm—Quarziti di Poggio alle Pigne Fm; 4e—Arenarie di Poggio al Carpino Fm—Le Cetine Fm.- Conglomerato di Fosso Pianacce Fm; 
Larderello (geothermal borehole): 5a—Arenarie Rosse di Castelnuovo Fm; Elba Island: 6a—Mt Calamita Fm—Rio Marina Fm.; Monte Argentario: 
7a—Arenarie del Mt. Argentario Fm; Monte Amiata (geothermal borehole): 8a—C Fm; Monti Romani: 9a—Arenarie di Ponte San Pietro Fm., 9b—
Quarzite e Fillade di Roccaccia di Montauto Fm; 9c—Metarenarie di Botro del Lecceto; 9d—Calcescisti di Valle Tegolaia Fm. See the text for related 
bibliography; b location of the different Palaeozoic sequences of the intermediate pre-Mesozoic “Tuscan” domain; c retrodeformation of a major 
Apenninic thrusting of the “Tuscan Metamorphic units” on top of the external Tuscan units (transport direction and kinematic tectonic frame in 
Molli 2008; Le Breton et al. 2017) useful to infer the relative positions of pre-Mesozoic “intermediate” and “external” domains
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Pontremoli borehole (Lo Po’ et  al. 2016; Molli et  al. 
2018) medium-grade garnet micaschists associated 
with quartz-feldspatic mylonites (Fig.  3e, f ) show 
(Fig. 4) thermal metamorphic peak at 575 °C and 0.7 
GPa, followed by the peak pressure stage occurring at 
520 °C and 0.8 GPa, and then by a nearly isothermal 
decompression at 475–520 °C characterizing the late 
retrograde stage (Lo Pò et al. 2016). The peak condi-
tions were dated by monazite geochronology at 310–
293 Ma (Lo Pò et al. 2016). In the Larderello-Travale 
geothermal area, in the same structural position of 
the Pontremoli well, i.e. below a stack of Tuscan units 
including the metamorphic Monticiano-Roccastrada 
unit, micaschists (e.g. Franceschini 1994; Musumeci 
et al. 2002 for a different interpretation) and gneisses 
were recognized (Gianelli et al. 1978; Elter and Pan-
deli 1990; Pandeli et  al. 1994; Franceschelli et  al. 
2004; Pandeli et  al. 2005). A Rb/Sr radiometric age 
of 285 ± 11  Ma was obtained for a micaschist sam-
pled at Larderello (reported in Del Moro et al. 1982). 
Moreover, through classical geothermobarometry 
(garnet-biotite and plagioclase-garnet-muscovite-
biotite-quartz) and the stability fields of staurolite, 
muscovite, andalusite and cordierite assemblages, 
Bertini et  al. (1994) estimated peak conditions of 
500–600 °C and 0.7 GPa, in the gneiss complex. The 
peak was followed by an isothermal decompression 
to 0.2–0.35 GPa at 500–600  °C, developed during 
the pre-Alpine history with a P–T path referred to 
a fast tectonic exhumation after the Variscan col-
lision (Franceschelli et  al. 2004). Other subsurface 
occurences in the geothermal fields of the Monte 
Amiata (Pandeli and Pasini 1990; Batini et  al. 2003; 
Brogi 2008) sampled Permian metasediments only 
(Figs. 2 and 5).

3.2  Palaeozoic rocks in the External Ligurian Units
To complete the catalogue of the pre-Mesozoic rocks of 
the Northern Apennines, we mention here the occurence 
of Palaeozoic rocks within the so-called External Ligu-
rian units (Elter et al. 1966; Molli 2008; Malavieille et al. 
2016). These have been interpreted as derived from the 
Late Cretaceous tectono-sedimentary reworking the for-
mer Ligurian-Tethys Ocean Continent Transition (OCT) 
crust (Sturani 1973; Elter 1975; Molli 1996; Marroni et al. 
1998), where lower and upper continental crust rocks 
were included. The lower crust is represented by gabbro-
derived mafic granulite, derived from original gabbroic 
rocks of tholeiitic affinities with evidence of crustal con-
tamination (Meli et al. 1996; Marroni and Tribuzio 1996; 
Montanini 1997). Sm/Nd mineral whole-rock isochron 
age at 291 ± 9  Ma dated the emplacement of gabbro at 

intermediate crustal levels, reflecting a close age, para-
genetic and compositional resemblance with the gabbro-
derived granulite of the Ivrea Zone (Marroni et al. 1998). 
The intrusive mafic complex underwent subsolidus re-
equilibration under granulite-facies conditions (P = 0.7–
0.8 GPa, 800–900 °C), with an evolution characterized by 
temperature and pressure decrease (Marroni et al. 1998). 
The felsic granulites have a quartz-feldspathic composi-
tion and consist of mesoperthitic to perthitic feldspar, 
quartz and garnet (up to 15%) with isotopic compositions 
approaching those of the granulite-facies basement meta-
sediments from the Ivrea Zone (Voshage et  al. 1987). 
Other lower-crustal rocks may be found within the Cre-
taceous coarse-grained deposits called Salti del Diavolo 
Conglomerate Fm. (Elter et al. 1966; Marroni et al. 2001) 
where two-mica gneiss and biotite-sillimanite kinzigitic 
paragneiss were described. Finally, the upper continen-
tal crust is mainly documented by granitoids with a wide 
variety of rock-types, ranging from two-mica leucogran-
ite (volumetrically dominant), to biotite-bearing grano-
diorite and rare biotite-bearing tonalite to diorite. The 
two-mica leucogranites were emplaced at 310–280  Ma 
based on K/Ar and Rb/Sr muscovite ages (Ferrara and 
Tonarini 1985).

4  The Palaeozoic basement in Calabria 
and Southern Apennines

The southern Apennines-Calabria-Peloritani chain com-
prises oceanic and continental-derived cover and base-
ment units overthrusted upon the Adriatic continental 
crust (Amodio-Morelli et  al. 1976; Dewey et  al. 1989; 
Bonardi et  al. 2001; Rossetti et  al. 2004; Iannace et  al. 
2007; Carminati et al. 2012; Turco et al. 2012; Vitale and 
Ciarcia 2013).

The different units of the Apennines-Calabria-Pelori-
tani chain may be grouped (Fig. 6) from top to bottom in:

1. Continental units belonging to the Calabria-Pelori-
tani terrane, part of the former AlKaPeCa microplate 
(Bouillin 1984; Michard et al. 2002; Handy et al. 2010; 
Vitale and Ciarcia 2013; Cirrincione et al. 2015; Cri-
telli 2018). These units are made up of a Palaeozoic 
basement and locally Mesozoic cover (e.g. Innamo-
rati and Santantonio 2018), showing different degrees 
of Tertiary-age deformation and metamorphism 
which ranges from very low grade to HP/LT peak 
conditions (Serre, Sila, Aspromonte, Peloritani, Cast-
agna; Bagni, Africo-Polsi Bonardi et al. 2001; Somma 
et al. 2001; Langone et al. 2006; Heymes et al. 2008);

2. Oceanic and OCT-derived units showing different 
degrees of Tertiary-age metamorphism, ranging from 
very low grade to HP/LT peak conditions (Diamante-
Terranova, Gimigliano, Malvito and Frido units, e.g. 
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Cello et al. 1996; Liberi and Piluso 2009; Cavalcante 
et al 2012; Vitale et al. 2013, 2019; Laurita et al. 2014; 
Fedele et al. 2018; Tursi et al. 2020);

3. Distal to proximal Adria-derived continental cover 
units (Lungro-Verbicaro, Cetraro, Apenninic carbon-
ate platforms and Lagonegro-Molise basin-derived 
units) forming the southern Apennines to the E, and 
the Sicily-Maghrebian Chain to the W (Mazzoli et al. 
2001; Iannace et  al. 2007; Vitale and Ciarcia 2013; 
Vitale et  al. 2019), respectively. The most internal 
part of this group of units (Lungro-Verbicaro and 
Cetraro) shows HP/LT metamorphism. Differently, 
the others (Apenninic carbonate platforms and Lag-
onegro-Molise basin-derived units), in a lowermost 
position, were deformed at shallow crustal depths (T 
less than c. 250 °C);

4. Foreland units, represented in the Apulia region and 
southern Sicily (Patacca and Scandone 2007; Ber-
noulli 2001; Catalano et al. 1991, 1995).

Pre-Mesozoic rocks find their best exposures and the 
minor degree of orogenic reworking in the uppermost 
unit of the Calabria-Peloritani terrane (Bonardi et  al. 
2001; Appel et al. 2011) and in particular in the Sila and 
Serre massifs (Figs.  6, 7, 8 and 9), where a nearly com-
plete crustal section with an estimated total thickness of 
20–25 km has been documented (Schenk 1990; Grässner 
and Schenk 2001; Caggianelli and Prosser 2001; Caggi-
anelli et al. 2013 and ref. therein). The crustal section can 
be broadly subdivided into three crustal levels (Figs. 7, 8 
and 9).

4.1  The lower crustal units
The lower crust (up to 8  km thick) mainly includes 
granulites and migmatitic paragneisses with inter-
leaved marbles and metabasites (Caggianelli et  al. 
1991; Kruhl and Huntemann 1991). Mafic granulites 
(Fig.  7a) occur at the lowermost levels, represent-
ing former gabbros that underplated the Calabria 

Fig. 6 a Schematic geological map of Southern Apennines-Calabria-Peloritani showing the main groups of tectonic units (based onAmodio-Morelli 
et al. 1976; Bonardi et al. 2001; Vitale and Ciarcia 2013); b regional cross-section of the northern Calabria (based on Elter, Scandone 1980); d 
restoration of the Central Mediterranean region showing the distribution of the Central and Southern Apennine platforms and basins (after Patacca 
and Scandone 2007). The palinspastic reconstruction shows the position of Lagonegro-Imerese-Sicani and the northward prolongation between 
Tuscan and Umbria-Marche domains. This Mesozoic setting includes inheritance of former Permian precursors related to a major regional fault 
system, whose location is indicated as violet dashed line see text; e simplified paleotectonic frame showing the main domains involved in Southern 
Apennines-Calabria-Peloritani orogenic building and their relative pre-Mesozoic position
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continental crust (Fiannacca et al. 2019). Felsic granu-
lites (Fig.  7b, c) derive from original arenites whereas 
migmatitic paragneisses derive from a pelitic protolith 
(Caggianelli et  al. 1991). According to Schenk (1989), 
peak metamorphic conditions of 790 ± 30  °C and c. 
0.75 GPa were attained at the bottom of the Serre mas-
sif crust section at 300 ± 10  Ma. As an effect of the 
intense thermal perturbation, the fertile metapelitic 
rocks underwent widespread partial melting, mostly 
under water undersaturated conditions by muscovite 
and biotite breakdown reactions. The partial melting, 
estimated to a maximum degree of 60%, was respon-
sible for the genesis of peraluminous granitic melts 
(Caggianelli et  al. 1991). After the metamorphic peak 

the lower-crustal rocks recorded isothermal decom-
pression of c. 200 MPa (Schenk 1989). From 290 Ma to 
Oligocene, a slow isobaric cooling occurred, when the 
final exhumation took place by extension and erosion 
(Thomson 1994; Festa et al. 2003).

4.2  The middle crustal units
The intermediate crust (Fig.  7d, e) essentially includes 
a succession of dominant calc-alkaline and minor 
strongly peraluminous granitoids (Rottura et al. 1990). 
These range in composition from tonalite to monzo-
granite with only minor mafic bodies of amphibole gab-
bro. In the Serre massif, the cumulative thickeness of 
the granitoids amounts to c. 13  km. Here the contact 

Fig. 7 Calabria lower (a–c) and intermediate crust (d, e): a granulitic metagabbro (Curinga); b felsic granulite, garnet-sillimanite rich fels (Marina di 
Vibo); c Bt + Pl + Kfs + Sil + Grt ± Ms bearing migmatitic paragneiss (kinzigite Auct.); d tonalite emplaced at middle crust level and characterized by 
a dominant magmatic fabric (Ioppolo); e foliated peraluminous granodiorite (Parghelia)
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Fig. 8 a Sketch map of the Sila Massif: (1) continental unit affected by pervasive Tertiary orogenic fabrics; (2) lower crustal section (high grade metamorphic 
rocks), (3) Mesoraca Shear Zone, (4) intermediate crustal section (leucogranite, gabbro-diorite; metaluminous to strongly peraluminous granite and 
granodiorite); (5) upper crustal section of low grade metamorphic rocks. b Equal area, lower hemisphere stereonets showing structural data of the Mesoraca 
Shear Zone. (1) Poles of the main foliation and mineral and/or stretching lineation in migmatitic paragneiss, foliated granodiorite and mylonites. Contouring of 
lineation and foliation data indicated by grey and white areas, respectively; contouring interval (2%) equals the maximum of the data distribution contoured 
at > 16%; (2) best fit of foliation and lineation data; (3) back-rotation of the averaged mean foliation and lineation obtained by assuming a horizontal rotation 
axis parallel to the strike of the mean foliation (details in Liotta et al. 2008). c Melt-present deformation structures in granodiorites representing the early stages 
of Mesoraca Shear Zone deformation; d S/C structures indicating a top-to-the-west sense of shear in mylonites of the Mesoraca Shear Zone; e thin section 
scan (crossed polars) of a granodiorite involved in the Mesoraca shear zone. Quartz ribbons and porphyroclasts of quartz and feldspars locally showing 
core and mantle structure can be observed; f undeformed pegmatite and porphyritic dyke, intruding wall-rocks and the previously emplaced granitoids, 
respectively. The dyke (dated between c.290–280 Ma in Liotta et al. 2008) is exposed close to the Arvo Lake
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between the granitoids and the lower-crustal metape-
lites is characterized by a wide migmatitic border zone, 
locally affected by shearing. In contrast, the contact 
with the upper-crustal metapelites is sharp and marked 
by a wide metamorphic aureole. Granitoid emplace-
ment took place incrementally from 306 to 295  Ma, 
during the decompression event recorded by the lower-
crustal rocks (Langone et al. 2014). The older tonalitic 
magma was emplaced at deeper levels and underwent 
a slow cooling history, with development of an intense 
fabric anisotropy (see below). The younger granodior-
itic magma emplaced at shallower level and was sub-
jected to a rapid cooling, preventing the development 
of significant bulk ductile deformation (Caggianelli 
et al. 2000).

Lower and intermediate crust are separated by a 
regional-scale shear zone (Fig.  8) decribed in the Sila 
massif (Liotta et al. 2008), but also recognizable in the 
Serre (e.g. Fornelli et al. 2011; Festa et al. 2012) where 

it essentially corresponds to the Quartz-Dioritic Gneiss 
unit of Graessner and Schenk (2001). In the Sila mas-
sif, the shear zone, called Mesoraca Shear Zone, may be 
traced for more than 60  km, with a thickness of more 
than 4 km (Liotta et al. 2004; Festa et al. 2006). Simul-
taneous deformation and magmatism which involved 
hybrid magmas with a dominant contribution from 
a mantle source (Liotta et  al. 2008) is constrained by 
U/Pb dating of zircon and monazite, at 304–300  Ma, 
coeval with the regional metamorphic peak (Graess-
ner et al. 2000). The deformation within the shear zone, 
which remained steady during magma crystallization 
and cooling in subsolidus conditions, was associated to 
a top-to-the-W sense of shear (Fig.  8b-d), in the pre-
sent geographic coordinates (Liotta et  al. 2004, 2008; 
Festa et  al. 2006). Foliated granitoids and wall rocks 
were then intruded by poorly foliated Hbl-gabbro and, 
finally, by undeformed leucogranite, pegmatite and 
felsic porphyritic dykes (Fig.  8e). U/Pb zircon dating 

Fig. 9 a Calabria upper crust phyllites and metasandstones of the low grade unit of Stilo-Bivongi (Fiumara di Stilaro); b microscopic fabric of 
phyllite samples collected close to Bivongi village. S1 foliation in phyllite is parallel to axial plane of folds affecting S0 layering; c decimetre-thick 
granodioritic dyke within the low-grade host rock close to the margin of the Serre batholith near Stilo; d spotted schist in the aureola of Serre 
batholith near Stilo (see details Festa et al. 2013)
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of the last intrusions indicates an emplacement age of 
281 ± 8 Ma, providing a minimum estimate for the end 
of the shear zone activity at mid-crustal level (Liotta 
et al. 2008).

4.3  The upper crustal units
The upper crust (Fig.  9), probably having an original 
thickness of c. 7  km, is essentially represented in the 
Serre massif by two Variscan tectonic units (Colonna 
et  al. 1973): a first one, the Stilo-Pazzano phyllite is a 
former Cambro-Ordovician to Carboniferous succes-
sion, made up of pelite with intercalations of volcanics 
rocks and impure limestone layers, subjected to a low-
grade Variscan metamorphism (Bouillin et  al. 1987; 
Spalletta and Vai 1989); the second one, the Mammola 
paragneiss unit, is mainly represented by micaschists 
and meta-greywackes with minor amphibolites interca-
lations that recorded a dual peak metamorphic evolu-
tion from medium- to low-pressure series (Festa et al. 
2004; Angì et al. 2010; Tursi et al. 2020). Both tectonic 
units were overprinted by contact metamorphism, with 
peak T condition of 590 °C at a pressure of 0.175–0.200 
GPa, in response to the thermal perturbation produced 
by the emplacement of the granodioritic magma that 
was also responsible for the genesis of an ample rim 
fold in the wall rocks bordering the pluton (Festa et al. 
2013).

Relevant for the upper Palaeozoic tectonic history 
is to recall that below the Calabria-Peloritani Terrane 
and oceanic-derived units of the Apenninic-age nappe 
architecture (Fig.  6b, c) there are some units correlated 
with those of the Tuscan domains (i.e. Verbicaro and S. 
Donato, Elter and Scandone 1980; Iannace et  al. 2007) 
and, in a lowermost position, some others (Lagonegro 
units) in north Calabria and the Imerese-Sicani in Sic-
ily (Scandone 1975; Catalano et al. 1995), in which lower 

to upper Permian carbonate platforms and deep-water 
basins are documented (Imerese-Sicani) or inferred (Lag-
onegro) (Catalano et al. 1991, 1995; Vai 2001).

5  The Palaeozoic basement in Alpine Corsica
Corsica is subdivided into two different geological 
domains (Durand Delga 1984; Molli and Malavieille 
2011): the northeast of the island, forming the so called 
“Alpine Corsica”, and the western part, identified as 
“Autochthonous”, “Variscan” or “Crystalline” Corsica 
(Fig. 10a).

The western domain mainly consists of Variscan grani-
toids and Permian magmatic rocks, intruded within the 
Variscan and pre-Variscan basement (Durand Delga 
1984; Rossi et  al. 2009). The main features and tectonic 
context of the Variscan basement and of the syn- to post 
orogenic magmatism (i.e. the U1, U2 and U3 suites) of the 
Corsica-Sardinia Batholith have been already introduced.

It is noteworthy that the U2 and U3 intrusions in the 
“Authochthonous” Corsica were emplaced within their 
own volcanic apparatus at shallow crustal depth (Rossi 
and Cocherie 1991; Rossi et  al. 1993) whereas the rela-
tionships between shear zones in the lower crust and 
pluton emplacement can be only directly observed and 
reconstructed in Central Alpine Corsica, in the Santa 
Lucia Nappe (Libourel 1988a, b; Caby and Jacob 2000; 
Zibra et al. 2010; Rossi et al. 2015).

5.1  The Santa Lucia Nappe
The Santa Lucia Nappe is a continental-derived unit 
exposed a few kilometers north east of Corte (Fig. 10) in 
Central Alpine Corsica (Durand Delga 1984). Toward the 
north the unit overthrusts the Caporalino Eocene Fly-
sch (Puccinelli et al. 2012), to the east it is overlain by an 
HP/LT oceanic unit (Monte Piano Maggiore, Vitale Bro-
varone et  al. 2013) whereas, it is separated to the west, 

(See figure on next page.)
Fig. 10 a Schematic geological map of Alpine and Crystalline (or “Autochtonous”) Corsica. Developed after Cocherie et al. (2005) and Lin et al. 
(2018). b Simplified Mesozoic paleotectonic frame with indication of the domains discussed in the text and their relative positions. c Geological 
map of the Alpine Santa Lucia nappe, with (c1) a tectonic scheme of its Alpine orogenic framework (continuous black line trace of cross-section 
in (d); d Cross-section of Santa Lucia Nappe between E Corte and Santa Lucia di Mercurio, vertical = horizontal scale; e Schematic cross-section 
through the Santa Lucia pre-Alpine basement (i.e. the western part of Santa Lucia Nappe, cfr. (d). The orientation of foliation and lineation and 
the shear sense remain nearly constant during all deformation stages and states, solid-state (High- and Low-Temperature HT, LT, magmatic to 
submagmatic), as documented in the equal-area projection plots (see also Zibra et al. 2010; 2102 and unpublished data IZ and GM). f P–T conditions 
for the crystallization of the Granite Complex, for the Diorite-Granite Complex and for M1 and M2 assemblages in the Santa Lucia Shear Zone 
(modified after Zibra et al. 2012).  Al2SiO5 phase relations are calculated using winTWQ. The α-/β-quartz transition is from Gross and Heege (1973). 
Equilibrium (1) is the geothermometer Alm + Phl = Prp + Ann; equilibrium (2) is the geobarometer 2 Alm + Grs + 3 βQtz = 6Fs + 3 An. J: solidus 
for the tonalite system (biotite-plagioclase-quartz) from Johannes (1984); other fluid-absent solidi for granitoid systems are  taken from Clemens 
and Wall (1981): CW; Vielzeuf and Montel (1994): VM; (Vielzeuf 2001): VS.W = H2O-saturated haplogranite solidus (Singh and Johannes 1996). 
The maximally relaxed geotherm (V∞) for reasonable heat supply after thrusting is after (Thompson and England 1984). V∞ coincides with the 
geotherm for the c. 280–260 Ma crust of the Alpine area (SS08) from Schuster and Stüwe (2008). These geotherms are used here to estimate the 
pressure for the retrograde evolution along the BCVZ (Bocca di Civenti Shear Zone)
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from the continental basement and cover units of the 
Corte slices and the overlying HP/LT oceanic unit by the 
Central Corsica Fault (Molli and Malavieille 2011).

The Santa Lucia Nappe (Fig. 10) includes a pre-Meso-
zoic basement overlain by a Cretaceous metasedimen-
tary cover (Amaudric Du Chaffaut and Saliot 1979; Rieuf 
1980; Durand Delga 1984; Libourel 1988a, b; Lin et  al. 
2018).

The nappe experienced a low-grade Alpine metamor-
phism (RSCM temperature lower than 330  °C, Vitale 
Brovarone et al. 2013) and it is structurally subdivided 
into two portions, separated by the NW–SE trending 
intra-nappe Mandriola Fault of Alpine age (Fig.  10c, 
d). The eastern portion of the nappe experienced a 
higher finite strain during Alpine tectonics (Amudriac 
du Chaffault and Saliot 1979; Egal 1992; Caby and 
Jacob 2000; Zibra 2006), with pre-Mesozoic basement 
strongly retrogressed and widely affected by Alpine low 
grade fabrics (Fig.  10d). On the contrary, the western 
portion of the nappe is made up of two main tecton-
omagmatic suites that largely preserve the preorogenic 
tectonic grain and fabrics (Libourel 1988a, b; Caby and 
Jacob 2000; Zibra 2006).

A gabbroic layered intrusion, called Mafic Complex, 
includes melagabbros with subordinate hornblendites 
and pyroxenites, to the east, and progressively more 
evolved components to the west, where the main gab-
bro-norite central unit grades into quartz-norite to 
Opx-tonalite, in turn intruded by amphibole-rich dior-
ite–tonalite and by porphyritic granite (Fig.  11). This 
lithologically heterogeneous roof zone of the Mafic 
Complex is known as Diorite–Granite Complex (Zibra 
et  al. 2010, 2012). Slivers of mantle lherzolite occur 
near the base of the Mafic Complex (Libourel 1988a, b; 
Caby and Jacob 2000; Montanini et al. 2014), and lenses 
of granulite-facies metapelitic country rocks occur 
throughout the Mafic Complex, being interlayered 
with gabbros and dioritic to granitic rocks (Fig. 10c, d). 
Mafic Complex and Diorite-Granite Complex are jux-
taposed to a westernmost Granite Complex (Figs. 10c, 
d and 11), which mainly consists of Bt-bearing leuco-
tonalites intruded by two-mica microgranitoids. The 
contact between Diorite-Granite Complex and Granite 
Complex (Fig. 10c, d) is represented by an upper-green-
schist facies mylonitic zone called Bocca di Civenti 
Shear Zone (Zibra et al. 2010; Beltrando et al. 2013).

Zircon U–Pb geochronology on the Mafic Com-
plex (Paquette et  al. 2003; Zibra 2006; Seymour et  al. 
2016) documents the gabbronorite emplacement at 
280–286  Ma (time range of U3 suite of the Corsica-
Sardinia Batholith). The granulitic metasediments 
within the Permian gabbronorites were deformed dur-
ing the thermal re-equilibration of the lower crust 

as country rock septa, reaching P–T conditions of 
0.7 ± 0.1 GPa and 800 ± 50 °C (Libourel 1988a, b; Rossi 
et al. 2006; Zibra et al. 2010). A zircon U–Pb age popu-
lation at 286 ± 1  Ma in metapelites is interpreted to 
date granulite-facies metamorphism (Paquette et  al. 
2003), whereas zircon U/Pb data (Seymour et al. 2016, 
Fig.  10f ) record emplacement and crystallization of 
the Granite Complex in the 310 to 270  Ma time span, 
at ~ 730  °C, in broad agreement with the previously-
published ~ 278  Ma muscovite 40Ar/39Ar cooling age 
(Zibra 2006; Seymour et al. 2016).

Structural studies of the area (Libourel 1988a, b; Caby 
and Jacob 2000; Zibra 2006; Zibra et al. 2010; 2012) docu-
ment the same lineation trend and kinematics (sinistral 
shear) (Fig.  10e) between the two tectono-magmatic 
crustal domains (Mafic Complex + Diorite-Granite Com-
plex and Granite Complex) which were juxtposed along 
an oblique-slip shear zone (in present orientation) known 
as Santa Lucia Shear Zone, with magmatism, metamor-
phism and shearing that interacted over a temperature 
range from 800 to 400  °C, when deformation was local-
ized along the Bocca di Civenti Shear Zone (Zibra et al. 
2010, 2012).

More recent contributions of Beltrando et  al. (2013) 
and Seymour et  al. (2016), however, proposed to divide 
the Mafic Complex from the Diorite-Granite Complex 
and Granite Complex by an amphibolite to greenschist 
facies shear zone, the Belli Piani Shear Zone. These 
authors based the presence of this structure (with Tri-
assic-Jurassic activity) on three 40Ar/39Ar step-heating 
analyses on amphiboles (Beltrando et al. 2013) and using 
zircon, rutile, and apatite 206Pb/238U depth profiling cou-
pled with garnet trace-element diffusion modeling (Sey-
mour et al. 2016).

The two contributions, however, strongly differ in the 
envisaged role of the Belli Piani Shear Zone, which has 
been considered to produce no significant exhumation 
during its activity, thereby residing at a broadly constant 
depth (Beltrando et al. 2013) or, alternatively, to produce 
a synkinematic juxtaposition of the Diorite-Granite and 
Granite Complexes against the hot footwall of the Mafic 
Complex and whole-sale conductive steepening of geo-
thermal gradients (Seymour et al. 2016).

However, while the dating of a deformation event relies 
on the isotopic analysis of synkinematic minerals that 
belong to the metamorphic assemblage associated with 
deformation (e.g. Di Vincenzo et al. 2004; Cenki-Tok et al. 
2014; Erickson et al. 2015; Papapavlou et al. 2017), to date 
no direct dating of minerals synkinematic with any of the 
shear-related microfabrics exposed in the Santa Lucia 
basement is available, therefore other tectonic scenarios 
may be proposed to better fit the data of Beltrando et al. 
(2013) and Seymour et al. (2016). In particular, similarly 
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Fig.11 a Coarse-grained tonalite of the Granite Complex, showing magmatic to submagmatic fabric which is highlighted by aligned euhedral 
to subhedral plagioclase phenocrysts, aggregates of biotite flakes and quartz ribbons; b Sheared pegmatite, intruded into gabbro-norite, from 
western margin of SLSZ (see Fig. 10c, d). This pegmatite was intruded and sheared along the SLSZ during isothermal decompression from ~ 0.7 to 
0.5 GPa at 800 °C (Zibra et al. 2012 and Fig. 10e,f ); c Coarse-grained granitic gneiss along the contact between Granite Complex and Diorite-Granite 
complex (Bocca Civenti Shear Zone). Natural section nearly perpendicular to mylonitic foliation (subvertical) and subparallel to the stretching 
lineation. S/C and C’ subfabrics indicate sinistral shear; d Mylonitized intrusive contact between a granite pegmatite and host gabbro–norite, near 
the top of the SLSZ. Sinistral shear sense indicated by σ-type mantled K-feldspar (in pegmatite) and plagioclase porphyroclasts (in gabbro–norite); 
e, f Outcrop-scale evidence of melt-present deformation (e) boudinaged pegmatoid Opx-bearing tonalite, previously injected into the host 
melagabbro. Boudin neck is locally filled by undeformed leucotonalite (f ), interpreted to have been a melt. Stretched Opx porphyroclasts may 
be observed adjacent to the vein boundaries; (g) Mylonitic fabric affecting felsic granulite and meta-gabbro-norite. Shear bands and asymmetric 
porphyroclast systems show sinistral shear sense (more details in Zibra et al. 2010)
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to what has been proposed for analogous lower- to mid-
crustal settings and the same age-related issues of the 
Ivrea Zone (e.g. Siegesmund et  al. 2008; Ewing et  al. 
2015) and Calabria-Peloritani Terrane (Festa et al. 2004; 
Liberi et al. 2011), it is possible that heat advection by hot 
fluids and melts, as well as conductive heating from the 
rising asthenosphere during Mesozoic rifting events may 
have produced thermal pulses (with partial resetting of 
Permian ages) in the Santa Lucia basement. This is in line 
with what has already been proposed (Rossi et al. 2006) 
and supported by the presence of undeformed dolerite 
dykes with MORB affinity, and thus of Jurassic age (Zibra 
2006), cross-cutting the main foliation of the Mafic Com-
plex (Caby and Jacob 2000; Paquette et  al. 2003; Zibra 
2006). These dolerites characterized by chilled margins 
represent, moreover, further evidence that during Juras-
sic the Santa Lucia basement was already cooled below 
350 °C.

It is also worth noticing that both studies (Beltrando 
et al. 2013; Seymour et al 2016) do not provide any struc-
tural data for the Belli Piani Shear Zone (e.g. micro to 
mesoscopic elements and their kinematic characteriza-
tion) and both papers used maps and structural data 
reported in Zibra (2006) and Zibra et  al. (2010, 2012) 
which, similarly to what was documented by Libourel 
(1988a, b a, b) and Caby and Jacob (2000), demonstrated 
the complete kinematic coupling between the two tec-
tono-magmatic crustal domains.

We therefore support the interpretation that the 
western portion of the Santa Lucia Nappe shows a well 
preserved fragment (up to 3.5  km thick) of a Permian 
lower-middle crust with record of deformation of a crus-
tal scale shear zone (Libourel 1988a, b; Caby and Jacob 
2000; Zibra et al. 2010; Beltrando et al. 2013).

Moreover, the original stratigraphic relationships 
between the metasedimentary cover (Tomboni Con-
glomerate and Tralonca Flysch) and basement in the 
western portion of the nappe (Rieuf 1980; Caby and 
Jacob 2000) and in the highly strained eastern domain 
(Caby and Jacob 2000; Zibra 2006; cfr. Murato sub-unit 
of Beltrando et al. 2013), allowed some inferences about 
original geometries. The sub-vertical present-day atti-
tude of foliations and tectonic grain of the basement in 
the western portion of the Santa Lucia basement could 
be considered as quite close to its original orientation at 
the time of cover deposition (Fig.  10d). Conversely, the 
basement-cover is transposed and parallelized to the 
fold limbs in the east (subparallel relationships between 
bedding of metasediments and basement-cover contact 
quoted in Beltrando et  al. 2013 within the Murato sub-
unit i.e. our eastern nappe structural domain). The pres-
ence of exhumed brittle fault-rocks at the top of the Santa 

Lucia basement, however, clearly indicates a shallow 
crust deformation occurred during Mesozoic (Caby and 
Jacob 2000; Zibra 2006; Beltrando et  al. 2013). To date, 
no structural data are available to directly constrain the 
post-Permian to Cretaceous tectonic and kinematic his-
tory evolution in the upper crust for the studied domain 
and therefore an accurate restoration of the original Per-
mian geometries is at the moment not possible. However, 
P–T data from the Santa Lucia basement (Libourel 1988a, 
b; Zibra et al. 2010 and this paper) document a minimum 
of ~ 0,3 GPa of isothermal decompression during Per-
mian tectonics (Libourel 1988a, b; Caby and Jacob 2000; 
Zibra et al. 2010, 2012; Beltrando et al. 2013), supporting 
an oblique-slip kinematics and an overall transtensional 
setting (Libourel 1988a, b; Caby and Jacob 2000; Zibra 
et al. 2010).

Therefore, we consider that the Santa Lucia Shear 
Zone, as a whole, has accommodated high finite strain 
on a 1 km-wide crustal domain representing at the time 
of shearing a lower-middle crustal segment of a Permian 
crustal-scale regional fault.

It is noteworthy to notice that rock-types similar to 
those found in the Santa Lucia Nappe may be also rec-
ognized in the Ersa-Centuri continental slice (Malavieille 
1983; Harris 1985; Lahondere 1996) within the blues-
chist Schistes Lustres (Vitale Brovarone et  al. 2013), in 
the North-West of Cap Corse. This Alpine unit includes 
intercalations of mafic rocks (Gneiss of Centuri), and 
kinzigites (Gneiss of Ersa) essentially composed of alumi-
nous paragneisses. The latter displays Ti-biotite + plagi-
oclase-sillimanite + graphite + quartz-garnet-Kfeldspar 
andalusite(?)-cordierite(?) pre-Alpine mineral asso-
ciation, which was largely obliterated during the Alpine 
deformation and metamorphism. These occurrences pos-
sibly document that the width of crust originally affected 
by the Santa Lucia Shear zone was larger than what is 
now preserved in the western part of the Santa Lucia 
Nappe.

6  Late Palaeozoic tectonic framework in central 
Mediterranean: a discussion

6.1  Pre‑Mesozoic setting in the Northern Apennines: some 
key remarks

The major limits for reconstructing the pre-Mesozoic 
history of the Northern Apennines are the uneven and 
geographically limited occurrences of Palaeozoic rocks 
and their strong involvement in the Tertiary orogenic 
building (Figs.  2, 5c). Nevertheless, on the basis of pre-
viously presented data, some relevant tectonic features 
may be highlighted about the continental area, which 
subsequently evolved into the Mesozoic Tuscan Domain.
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The first one is related to the presence of two late Pal-
aeozoic sedimentary cycles, developed within fairly nar-
row continental or epicontinental domains where the 
activity of the steep bounding faults produced local ver-
tical movements with erosional episodes and a migra-
tion of depocenters and source areas (Rau and Tongiorgi 
1974). These depositional features have been related to 
pull-apart basins, within an overall transcurrent to tran-
stensive tectonic setting (Rau 1990, 1991, 1994; Spina 
et  al. 2019). Importantly, a connection between Upper-
Carboniferous Permian basins of Tuscany and the open 
marine domains of Sicily (Imerese, Sicani) has been sug-
gested (Rau 1994; Vai 2001). Moreover, the middle to 
upper Permian successions (second sedimentary cycle) 
recorded the occurences of Permian magmatism, wit-
nessed by reworked rhyolites in the porphyritic Schists 
of Iano (Barberi 1966), and within the Brecce di Asciano 
of the Monte Pisano (Rau and Tongiorgi 1974). Further 
evidence for this magmatism has been recently found, as 
first in-situ occurences, within the Variscan basement of 
the Alpi Apuane (Pieruccioni et  al. 2018; Vezzoni et  al. 
2018).

A second key point, critical, for constraining the late 
Palaeozoic history within the Apennines, is found in the 
mid-crustal tectono-metamorphic record of samples 
from the bottom of the Pontremoli (Anelli et  al. 1994; 
Pandeli et al. 1994; Lo Po’ et al. 2016; Molli et  al. 2018) 
and Larderello-Travale deep boreholes (Franceschelli 
et al. 2004; Pandeli et al. 2005). The tectono-metamorphic 
history combines with the most recent geochronological 
studies in Pontremoli, which document a metamorphic 
event at 293 Ma by monazite geochronology (Lo Po’ et al. 
2016) close to the 285 ± 11  Ma Rb/Sr age for a musco-
vite associated with andalusite obtained in the Larderello 
micaschist (as reported in Del Moro et al. 1982).

As illustrated in Fig.  5c, the retrodeformation at a 
mimimum displacement of the Tertiary overthrust of 
the Tuscan metamorphic units along the Apenninic 
NE-transport direction (e.g. Molli 2008; Le Breton et al. 
2017), defines Pontremoli and Larderello-Travale as two 
subsurface occurrences of a crustal domain originally 
located eastward (in present coordinates) with respect 
to those from which the exposed Tuscan units derived 
(Figs.  2c, 5c). This crustal sector (pre-Mesozoic “exter-
nal” domain) includes the remnants of a pre-Apenninic 
regional-scale north–south (in present coordinates) crus-
tal structure, here called the “East Tuscan Fault”. This 
“hidden” regional structure may be constrained by its 
overall trend (nearly north south in present coordinates) 
and by the fact that the deepest parts of the Pontremoli 
and Larderello boreholes shared the common structural 
architecture, displaying a subvertical attitude of the main 
pre-Alpine foliations (Elter and Pandeli 1990; Conti et al. 

1993; Pandeli et  al. 2005; Molli et  al. 2018). This struc-
tural feature, the reconstructed P–T history and age of 
Larderello-Travale (Bertini et al. 1994; Franceschelli et al. 
2004) and the peculiar Pontremoli anticlockwise PT 
path  (Tmax before  Pmax followed by a nearly-isothermal 
decompression), are in line with what proposed in Lo Pò 
et  al. (2016): i.e. the interpretation adressed the crustal 
record of transpressive and then transtensive deforma-
tion within a late Palaeozoic regional-scale shear zone.

The coeval tectonic evolution recorded at mid crustal 
depths in Pontremoli and Larderello-Travale, coupled 
with the tectono-sedimentary and magmatic history of 
the upper Carboniferous-early Permian depositional 
cycles of the Tuscan Metamorphic units, may be com-
bined to suggest a large-scale paleotectonic framework 
in Tuscany. We are therefore suggesting the scenario of 
an interlinked transtensional setting (Figs. 12a, b), asso-
ciated with pull-apart basins (Rau 1990, 1994), possibly 
kinematically connected (Fig. 12a, b) to a major regional 
fault here defined as the “East Tuscan Fault”.

6.2  The puzzle of investigated crustal domains 
and the framework of the South Variscan Belt

Although the large-scale structure of the Variscan belt 
is still, in some areas, open to discussion (Martinez-Cat-
alan 2011; Kroner, and Romer 2013; Franke et  al. 2017; 
Ballevre et  al. 2018; Tomek et  al. 2019), most authors 
agree that the Corsica-Sardinia block shows in an almost 
complete framework all the tectonic zones of the South 
Variscan belt with a well-preserved orogen-scale archi-
tecture from the SW foreland in Sardinia to the hinter-
land and retrobelt zone in the NE of Corsica (Rossi et al. 
2009; Oggiano et al. 2013). Each of the different tectonic 
zones are characterized by peculiar and distinctive rock-
unit associations or stratigraphy with their own tectono-
metamorphic and magmatic history (Lardeaux et  al. 
1994; Carmignani et  al. 1994; Rossi et  al. 2009). Below, 
we will insert our data and discuss their tectonic implica-
tions in a regional-scale tectonic scheme (Figs. 12,13 and 
14), based on those in Burg et  al. (1994), Matte (2001), 
Ziegler and Stampfli (2001); Martinez-Catalan (2011); 
Franke et  al. (2017); Ballevre et  al. (2018), having the 
Corsica-Sardinia block as reference frame. In the scheme 
(Fig. 14), following Matte (2001) and previous proposals 
(e.g. Vai and Cocozza 1986; Vai 2001), the external south-
ernmost part of the South Variscan belt is continued 
eastward into the Carnic foreland fold and thrust belt 
(Mariotto Pasquaré and Venturini 2018). This external 
domain of the Variscan belt would have its hinterland, 
in present coordinates, within the South-Alpine crust 
toward the Ivrea Zone (e.g. Milano et  al. 1988; Pfiffner 
1993; Schmid 1993; Vai 2001; Schaltegger and Brack 
2007; Spiess et  al. 2010). Using this as a major regional 
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constraint, Tuscany and Calabria are inserted according 
to their chief Variscan signature. 

For Tuscany, following previous stratigraphic and 
structural correlations (Bagnoli et  al. 1979; Vai and 
Cocozza 1986; Gattiglio et  al. 1989; Conti et  al. 1991; 
Pandeli et al. 1994, 2005), what is here defined as inter-
mediate pre-Mesozoic Tuscan domain (e.g. the Palaeo-
zoic basement associated with the Tuscan metamorphic 
units) has been considered as matching and correlating 
with the nappe zone of the Variscan belt (Gattiglio et al. 
1989; Conti et  al. 1991, 1993), i.e. with Central Sardinia 
where low-grade Cambrian to Devonian sequences may 
be observed (Figs.  1, 14). On the other hand, the avail-
able petrological data and age constraints support, for the 
inner or internal domain, its matching with the medium- 
to high-grade units of the axial zone (Molli et  al. 2002; 
Lo Pò et  al. 2017) and a correlation with NE Sardinia 
(Carmignani et al. 1994), SW Corsica (Rossi et al. 1995; 
Oggiano et al. 2013), the basement of Ligurian Briançon-
nais (Messiga et al. 1992; Cortesogno et al. 1997; Giaco-
mini et al. 2007) and some of the basement units of the 
western Alps (Von Raumer 1984; Fernandez et al. 2002; 
Simonetti et al. 2018). Lower and upper crust rocks asso-
ciated with the External Ligurian domain may conse-
quently be referred to an even further western (in present 
coordinates) crustal sector adjacent to the Alpine Sesia-
Austroalpine basement (Dal Piaz 1993; Pfiffner 1993; 

Pennacchioni 1996; Venturini et al. 1994; Hermann et al. 
1997; Manzotti et al. 2017; Petri et al. 2017; Schmid et al. 
2017).

In the external, pre-Mesozoic Tuscan domain, instead, 
the presence of a crustal scale shear zone that accomo-
dated transpressive and then transtensive deformation 
during lower Permian (Lo Pò et al. 2016) may be inferred. 
This shear zone may be considered the mid-crustal 
expression of what is defined here as the East Tuscan 
Fault (Fig. 5b, c).

Regarding the structural grain of the Calabria-Pelori-
tani Terrane, former attempts to match it with the 
Variscan belt in Sardinia were problematic [see the dif-
ferent solutions proposed in Vai (2001); Alvarez and 
Shimabukuro (2009)] due to the correlation between 
the medium- to high-grade Calabria rocks with those of 
the axial zone of NE Sardinia. However, focusing on the 
recent literature in terms of the age of deformation, and 
the magmatic and metamorphic characters, major dif-
ferences between Calabria medium- to high-grade rocks 
and those of the Corsica-Sardinia axial zone are high-
lighted (see chapt. 4). Moreover, we consider the upper-
crustal section in the Calabria-Peloritani Terrane, made 
of a low-grade fold and thrust belt affecting a Palaeo-
zoic (meta)sedimentary succession ranging in age from 
Cambrian to Lower Carboniferous and including Ordo-
vician metavolcanics (Spalletta and Vai 1989; Gattiglio 

Fig. 12 a A tentative paleotectonic frame for late Palaeozoic in Tuscany showing the linked transtensional setting with pull-apart basins in the 
“intermediate” Tuscan domain and the “hidden” East Tuscan Fault whose remnants in terms of basement and cover may be found in subsurface 
in the northern (Pontremoli) and southern Tuscany (Larderello, Amiata). Also represented the possible trends of Permian basins in Tuscan and 
Umbria-Marche domains (Rau and Tongiorgi 1974; Scisciani et al. 2014); b geological sketch (not to scale) illustrating the inferred tectonic context of 
the late Palaeozoic tectonics in Tuscany. Pull-apart basins developed in splay structures of a major regional fault whose mid-crustal relict remnants 
may be found in Pontremoli and Larderello deep well with their Carboniferous-Permian cover in the M.Amiata subsurface occurences
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et al. 1989; Vai 2001), as a key character for its location. 
Locally, the low-grade upper crustal units are observed 
as tectonically overlying medium-grade paragneiss (i.e. 
Mammola paragneiss) to be considered “allochthonous 
tectonic window”, with an overall tectonic grain, there-
fore supporting a correlation with the nappe zone of 
the Sardinian Variscan orogen (Gattiglio et al. 1989; Vai 
2001).

Finally, if “Autochtonous” Corsica was an integral part 
of the Corsica-Sardinia Variscan orogen, the basement 
of Santa Lucia Nappe can be considered (similarly to the 
remnants of the Ersa-Centuri unit within the Corsican 
Schistes Lustres) as part of a further eastern (in present 
coordinates) crustal domain. Whether, after the Meso-
zoic rifting, the Santa Lucia domain was still attached to 
the “Autochothonous” (Durand Delga 1984; Rossi et  al. 
2006; Li et al. 2015) or part of an OCT or AlKaPeCa-type 
microblock (Lahondere 1996; Michard et al. 1992; Molli 
and Malavieille 2011; Lin et  al. 2018), we suggest that a 
regional-scale transtensional fault, here called Santa 
Lucia Fault, existed during Permian, east (in present 
coordinates) of Corsica-Sardinia.

6.3  The late Palaeozoic tectonics in Corsica‑Sardinia, 
Calabria and Tuscany: a strain partitioned regional 
frame and two previously overlooked regional faults

The crustal domains investigated here, show evidence of 
late Palaeozoic tectonics and magmatism that have been 
recorded differently in their lower to upper crustal levels 
(Fig. 13). Key features to be highlighted are the remnants 
of two regional-scale structures bounding, to the west 
and the east, the pre-Mesozoic Calabria and Tuscan crus-
tal domains. The south-eastward structure (East Tuscan 
Fault), restoring the Apenninic displacements (Figs.  5c, 
12a), has an original paleotectonic position between the 
external Tuscan and the Umbria-Marche domains as 
defined in the Mesozoic paleotectonics (Figs. 2c, 6c and 
12a) within the Adria Plate to come. This fault, whose 
exhumed mid-crustal remnants can be found in subsur-
face from Pontremoli to Larderello-Travale (Figs. 2, 12a, 
b), may be further prolonged south of Tuscany (Figs. 6c, 
d) into the early to late Permian rifted crustal domain 
hosting basins and carbonatic platforms of the Lagon-
egro-Imerese-Sicani in the Southern Apennines and 
Sicily (Catalano et al. 1995; Mazzoli et al. 2001; Patacca 

Fig. 13 A summary of the age data of sedimentary, magmatic and tectonic events in late Palaeozoic record in Tuscany, Calabria and Corsica (Santa 
Lucia and Crystalline Corsica). Red bars refer to ages in intrusive mainly granitic rocks; whereas in pink subintrusive to effusive magmatic rocks, 
bluish bars refer to deformation and metamorphic ages, and black lines denotes the range of sedimentation as deduced from paleontological data. 
Sources of data are reported in text and references
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and Scandone 2007). For the same regional structure, its 
northward prolongation may be found in the shallow-
crustal splays defining the extensional/transtensional 
pull-aparts of Forni, Pramollo and Tarvisio in the exter-
nal Carnian Alps (Massari 1986; Venturini 1990; Cas-
sinis et al. 2012). Following this reconstruction (Fig. 14), 
a minimum estimated lenght for the East Tuscan Fault 
system may be regarded as c. 1000 km.

It is to be noticed that our proposal follows some pre-
cursory suggestions by Rau and Tongiorgi (1981), Rau 
(1990, 1991, 1994) who postulated the presence of a 
major crustal discontinuity to separate the “pre-Meso-
zoic” Tuscan Domain from that of Umbria-Marche, with 
a southernmost prolongation into the Lagonegro-Sicani-
Imerese (as also suggested by Scandone 1975). Moreover, 
Deroin and Bonin (2003), Ziegler and Stampfli (2001), 
von Raumer et  al. (2013) recently located a major late 
Permian structure in the same position, i.e. within the 
becoming Adria plate.

A second regional scale fault, the Santa Lucia Fault, 
characterized by a similar length and a field-constrained 
sinistral kinematics, could instead be located east of 
Corsica-Sardinia in a significant position to become a 
weak domain with a prolonged structural heritage during 
Mesozoic and Tertiary evolution. Also in this case, our 
proposal follows some previous suggestions, for instance 
that of Bard (1997), who however hypothesizes a dextral 
kinematics, or of Deroin and Bonin (2003) and Stampfli 
et al. (2002).

Therefore, the regional scale tectonic scenario that we 
propose (Fig.  14a, b) includes two major transcurrent/
transtensive fault systems, the Santa Lucia Fault and the 
East Tuscan Fault, bounding the former crustal domains 
of Calabria and Tuscany, where extensional/transten-
sional structures were formed in the deep, intermediate 
and shallower portions of their crust (Fig. 14b).

Figure 13 shows the intimate relationships that link the 
period of magmatism (intrusive and effusive), the age of 
high-temperature and low-pressure metamorphism in 
the lower crust (Calabria and Santa Lucia in Corsica), the 
ages and kinematics of lower to mid crustal shear zones 
(Mesoraca in Calabria, Santa Lucia in Corsica and the 
East Tuscan Fault), the activity of transtensional shallow 
crustal splays where late Palaeozoic Tuscan pull-apart 
basins developed (Rau 1994; Spina et al. 2019), inferring 
their marine communication with the southernmost 
rifted domains of the Imerese-Sicani-Lagonegro in which 
deep basins and platforms developed, in turn connected 
with Neo-Tethys paleodomains (Ziegler and Stampfli 
2001; Vai 2001). All these data point out the interconnec-
tion between the Tuscany-Calabria and Corsica crustal 
domains in a regional-scale strain–partitioned geody-
namic setting controlled by a first-order transcurrent/

Fig. 14 Interpretative configuration of the post-Variscan setting (at 
c. 270 Ma) based on a modified version of Fig. 2 in Matte (2001). The 
scheme show a possible frame of the Variscan belt of western Europe 
and north Africa, with the main Upper Carboniferous-Permian regional 
fault systems and related continental basins (after Burg et al. 1994). The 
original scheme of Matte (2001) is modified taking into account the 
data and interpretations proposed in this work. The Santa Lucia Fault 
(whose remnants are documented in the lower to mid-crust shear zone 
in the Alpine Santa Lucia Nappe), and the East Tuscan Fault (remnants 
in subsurface of Pontremoli and Larderello deep well) in the Apennines 
are represented. The East Tuscan Fault is prolonged southwards into 
the Lagonegro-Imerese-Sicani marine rifted domains (Catalano et al. 
1995) westernmost extension of the Permian rifted basin related with 
Neo-Tethys (Ziegler and Stampfli 2001; Stampfli et al. 2002; Garfunkel 
2004; Xyapolis et al. 2006; Schettino and Turco 2011). (1) Gondwana 
and Gondwana-derived crust blocks (Apulia and Adria figured); (2) 
Southern Europe Variscan belt: (a) low-grade external and nappe zone 
dots foreland domains, (b) axial zone medium to high grade units, 
suture/s and Ordovician arcs, (c) hinterland and Variscan retrowedge 
(Armorica, Hun or Brunia terranes); (3) (a) Laurussia-derived blocks of 
the northern continent; (b) inner domains of the South Europe Variscan 
orogen; (4) Permian sedimentary basins: (a) continental, (b) marine; (5); 
main vergence of the nappes; (6) kinematics of late Palaeozoic regional 
faults; (7) extension direction during Upper Carboniferous-Permian. The 
possible positions of the Briançonnais, South-Alpine and Austro-Alpine 
domains are also reported (see also Festa et al. 2018; Ballevre et al. 2018 
and references); thin dashed red lines represent dyke trend in Calabria 
(after Festa et al. 2010). Si: Sicani; Im: Imerese; Lag: Lagonegro; Ca: Calabria; 
Tu: Tuscany; Car: Carnia; IV Ivrea Zone; EL: External Ligurian; Z: Zicavo 
Shear Zone; P: Posada-Asinara; G: Grighini Shear Zone. (b) Conceptual 
schematic cross-section to envisiged the proposed tectonic scenario for 
late Palaeozoic in Central Mediterranean. The regional cross-section is 
traced not-perpendicular to the main regional fault systems to show and 
insert all the late Palaeozoic crustal domains and the different zones of 
South Europe Variscan orogen discussed in the text
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transtensive fault network which provided pathways for 
the intrusion and melt migration within it and/or out-
ward in the intervening crustal domains where exten-
sional to transtensional deformation developed (see also 
Rossi et al. 2015).

In this respect, it is worth attempting a comparative 
analysis of the late Carboniferous—early Permian tec-
tono-magmatic evolution of Corsica and Calabria lower-
crustal segments. Geochronological data indicate a 
substantial synchronism between magmatism and meta-
morphism both in Corsica (Rossi et al. 2009, 2015; Zibra 
et  al. 2010) and in Calabria (Grässner et  al. 2000; Cag-
gianelli et al. 2013) in the time span of c. 310–280 Ma. 
The P–T path outlined for Corsica in Fig.  10f, presents 
analogies and some differences with respect to the P–T 
paths to that of the lower crust exposed in Calabria 
(Schenk 1981, 1989; Grässner et  al. 2000; Caggianelli 
et  al. 2013). In both regions, peak pressure occurred at 
0.6–0.8 GPa and was followed by a decompression event 
with temperatures remaining close to 800 °C. The extent 
of decompression is slightly lower in Calabria (up to 0.2 
GPa) than in Corsica (in the order of 0.25–0.3 GPa). 
Afterwards, the Permian cooling event was accompanied 
by moderate decompression in Corsica and was near-
isobaric in Calabria. Thus, the resulting cooling path 
crossed the andalusite P–T field in Corsica and, limited 
to the top levels of the lower crust, in Calabria, in agree-
ment to the major component of transtension recorded 
in Santa Lucia basement of Corsica compared to those 
in Calabria lower crust as suggested in our proposed tec-
tonic model.

6.4  Late Palaeozoic tectonics in Central Mediterranean: 
between Variscan orogen and Tethyan rifting

The meaning and the geodynamic processes related to 
the late- and post-Variscan tectonics in Central Mediter-
ranean, i.e. the Corsica-Sardinia, Tuscany, Calabria and 
Alpine domains, have been widely debated similarly to 
the other segments of the Variscan belt in Europe (Ech-
tler and Malavieille 1990; Malavieille et  al. 1990; Van 
den Driessche, Brun 1992; Burg et al. 1994; Franke et al. 
2011; McCann et al. 2006; Roger et al. 2015). Some mod-
els, especially those focused on Corsica-Sardinia, try to 
tightly connect structures and upper Carboniferous and 
Permian tectono-magmatic processes to the latest stages 
of the Variscan orogen considering them as its waning 
shortening events, with or without an oblique conver-
gence-setting (Elter et al. 1990; Conti et al. 2001; Carosi 
and Oggiano 2002; Corsini and Rolland 2009; Padovano 
et  al. 2012); or to a post-collisional transpression of an 
Himalayan-type collisional belt in its easternmost mar-
ginal side (Carosi and Palmieri 2002; Iacopini et al. 2008; 
Frassi et  al. 2009; Rolland et  al. 2009; Padovano et  al. 

2012). Alternatively, authors have invoked gravitational 
collapse (Carmignani et al. 1994; Cappelli et al. 1992) or 
late- to post-orogenic extension (Thevoux-Chabuel et al. 
1995; Renna et al. 2006; Giacomini et al. 2008; Rossi et al. 
2015).

Moreover, for the pre-Mesozoic Alpine domains some 
authors have recently suggested a long-lasting period 
of active extension which started with the unroofing of 
the inner Variscan belts, followed by the Permo-Triassic 
thermal perturbation, to end with crustal break‐up and 
the formation of the Alpine Tethys Ocean (Spalla et  al. 
2014). According to this view, a kinematic and thermo-
mechanical link between the latest stages of Variscan 
orogenic construction and the beginning of the Alpine 
Tethys rifting has been suggested (e.g. Marotta and Spalla 
2007; Roda et al. 2018; Festa et al. 2018).

All above mentioned, interpretation-types have been 
similarly proposed for the tectono-magmatic shaping and 
evolution of the Calabria-Peloritani Terrane (Angì et  al. 
2010; Fornelli et al. 2011; Liberi et al. 2011; Laurita et al. 
2014).

Within our regional conceptual scheme, some of 
these proposals may be checked, discussed, and even-
tually ruled out. For instance, Fig.  14 clearly shows that 
the regional-scale faults developed across the former 
South Variscan belt, not only reactivating and reworking 
internal or axial domains (e.g. NE Sardina, SW Corsica; 
inner South Alpine) but also developing in the Variscan 
foreland, in the external domains as well as in the “sta-
ble” Gondwana. This evidently implies that late Palaeo-
zoic tectonics and related magmatic processes cannot 
be considered as “Variscan orogen-related”, i.e. related to 
the waning stages of syn- or late- convergence shorten-
ing, post-collisional extension or gravitational collapse. 
On the other hand, Fig. 14 quite evidently shows that late 
Palaeozoic structures were part of a post-Variscan setting 
characterized by an independent tectonics, kinematically 
and dynamically unrelated (Burg et  al. 1994) with that 
in which building and collapse of the Variscan orogen 
occurred. This has been already remarked, at least locally 
for instance in the South Alpine basement by Handy and 
Zingg (1991); Schmid (1993); Handy et al. (1999); Handy 
et al. (2001); Pohl et al. (2018) as well as in the external 
domains of the central Variscan belt, e.g. in the Mon-
tagne Noire (Etchler and Malavieille 1990; Franke et  al. 
2011; Roger et al. 2015) and in other segments far from 
to the axial zone of the Variscan orogen (Burg et al. 1994; 
Ziegler and Stampfli 2001).

The post-Varsican regime, following the early sugges-
tions by Arthaud and Matte (1975), Bard (1997), Burg 
et  al. (1994), Matte (2001), Muttoni et  al. (2003), Mar-
tinez-Catalan (2011), Ballevre et al. (2018) and references 
therein, may be connected with a network of crustal scale 
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strike-slip regional faults which accommodated mainly 
transtensional (and locally transpressional) deformation, 
associated and coeval with the overall clockwise rotation 
of Gondwana with respect to Laurussia, with Gondwana-
derived blocks and elements of the southern segment 
of the Variscan belt escaping toward east in the wake of 
subduction of the eastern ocean (Fig. 14). Our scheme in 
Fig. 14a shows quite clearly that for their locations some 
of the late Palaeozoic structures acted as zones of weak-
ness and were only locally reactivated or reused during 
Mesozoic rifting (mid-Triassic and later Triassic-Liassic), 
during the Cretaceous to Tertiary convergence and/or 
during the Tertiary opening of Central Mediterranean 
extensional basins.

7  Conclusion
As a result of the proposed review of data derived from 
the research of our group over the past decades inte-
grated with those of literature, the frame of a classi-
cal paleotectonic configuration of the Variscan belt of 
western Europe and northern Africa in the late Palaeo-
zoic may be completed to include the crustal domains 
of Calabria and Tuscany, and by matching them with the 
structural zonation of the Variscan orogenic frame of 
Sardinia-Corsica. By doing that, some major large-scale 
tectonic features may be outlined (Fig. 14):

1. The presence of domains affected by two regional-
scale faults whose relict remnants may be found in 
the crustal record of the Permian shear zones, i.e. the 
sinistral transtensive Santa Lucia, on the one side, 
and the East Tuscan Fault, possibly (but not directly 
constrained) with sinistral kinematics too, on the 
other;

2. Between these inferred crustal scale structures, dis-
tributed deformation, late Carboniferous-Permian in 
age, may be related to the record of the middle and 
shallow crust in Calabria and Tuscany, where exten-
sional to transtensional deformation has been con-
nected to the tectono-magmatic and sedimentary 
history of these regions;

3. The absence of unique relationships between late 
Carboniferous to Permian tectono-magmatic and 
sedimentary structures of the studied areas and 
the axial or inner structural domains of the for-
mer South-Variscan belt undermines, at least for 
Calabria, the concept of late-orogenic collapse of the 
overthickened crust as instead documented in other 
Variscan segments of Europe;

4. The late Palaeozoic history of the Central Mediterra-
nean region with its structural inheritance might play 
a major role in controlling the Mesozoic and Creta-
ceous to Tertiary paleogeographic and paleotectonic 

evolution of the region, with some local to regional 
relationships, in terms of localization in space and 
time.

Although our proposal is based on some well-con-
strained local field and subsurface data, and on some 
interpretations rooted in classical literature of the Italian 
peninsula, as well as on some largely accepted regional 
correlations, most of the continental crust with its record 
of late Palaeozoic history that is the focus of this paper 
is no longer accessible since it subducted during the Ter-
tiary orogenic history of central Mediterranean or it is 
unaccessible under younger rocks on land or under the 
sea. Therefore, our interpretation features as a working 
hypothesis to be further constrained by new data and 
checked against independently derived kinematic models 
(e.g. Agostini et al. 2020; Angrand et al. 2020; Le Breton 
et al. 2020; van Hinsbergen et al. 2020).
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