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Abstract 

The theory of critical distances is based on the definition of a material-dependent length L. Here, we 

investigate the statistical properties of L deduced from the crack threshold or a suitable notched 

specimen geometry. Monte Carlo simulations are done for best-fitting analytical functions to express 

mean, standard deviation and skewness of L. Standard-deviation-to-mean ratio is the lowest for the 

threshold-derived L estimation and decreases with notch sharpness. The minimum notch severity to 

achieve the desired accuracy in L estimation is identified. The impact of these statistical properties 

on the prediction of independent notched and cracked configurations is evaluated. 
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Nomenclature 

CV coefficient of variation (standard deviation to mean ratio) 

D specimen outer diameter 

Kf fatigue stress concentration factor 

KN notch-stress intensity factor (N-SIF) 

KN,UU N-SIF for unitary nominal stress and unitary half-diameter D 

l dimensionless notch-derived critical distance (Eq. (6a)) 

l0 dimensionless notch-derived critical distance for an infinitely sharp notch (Eq. (6d)) 

l   dimensionless notch-derived critical distance obtained from mean values of plain and notch 

fatigue limit 
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llim notch-derived limit critical distance corresponding to a given value of NCV  

lmin minimum limit for the range of accurate notch-derived critical distance estimation 

lmax maximum limit for the range of accurate notch-derived critical distance estimation 

lth dimensionless threshold-derived critical distance (Eq. (6a)) 

thl   dimensionless threshold-derived critical distance obtained from mean values of plain fatigue 

limit and crack threshold 

L notch-derived critical distance 

Lth threshold-derived critical distance 

LM line method 

MC Monte Carlo 

NCV normalized coefficient of variation 

PDF probability density function 

r CV of plain fatigue limit range 

rN CV of notch fatigue limit range 

rth CV of threshold stress intensity factor range 

R notch radius 

R stress ratio 

s William's power law singularity exponent 

S, SN, Sth standard deviation of plain and notch fatigue limit as well as crack growth threshold, 

respectively 

sk skewness of dimensionless notch-derived critical distance 

skth skewness of dimensionless threshold-derived critical distance 

SND skew-normal distribution 

TCD theory of critical distances 

 shape parameter of the skew-normal distribution (Eq. (10a)) 

   notch opening angle 

 location parameter of the skew-normal distribution (Eq. (10a)) 

 standard deviation of dimensionless notch-derived critical distance 

th standard deviation of dimensionless threshold-derived critical distance 

ΔKth threshold stress intensity factor range. In this work, it is assumed to be normally distributed 

with mean thK  and standard deviation Sth 

Δσfl plain specimen fatigue limit range. In this work, it is assumed to be normally distributed with 

mean fl  and standard deviation S 
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ΔσN,fl notched specimen fatigue limit range (net nominal stress). In this work, it is assumed to be 

normally distributed with mean N,fl  and standard deviation SN 

 fluctuation index of a certain statistical property p (Eq. (9)) 

 line slope of the LM inversion function 

 scale parameter of the skew-normal distribution (Eq. (10a)) 

 rN to r ratio 

th  rth to r ratio 

min minimum value of the inversion function range 

max maximum value of the inversion function range 

 mean of dimensionless notch-derived critical distance 

th mean of dimensionless threshold-derived critical distance 

 CV of the notch-derived critical length normalized to the equivalent CV of the input data  

0 NCV of the notch-derived critical length for an infinitely sharp notch 

th CV of the threshold-derived critical length normalized to the equivalent CV of the input data 

th 

 dimensionless notch radius (Eq. (6a)) 

lim dimensionless notch radius corresponding to a given value of NCV (Eq. (13c)) 

 equivalent CV of input data for notch-derived critical length estimation (Eq. (11a)) 

th equivalent CV of input data for threshold-derived critical length estimation (Eq. (11a)) 

 

Best-fit coefficients 

a1,...,a4  skewness inversion function (Eq. (10e)) 

b1,b2  limit critical distance (Eq. (12b)) 

c1,c2,c3  model function coefficients for lmax (Eq. (7d)) 

d normalized standard deviation on the estimation of crack threshold based on notch-

derived critical length estimations (Eq. (15b)) 

dth normalized standard deviation on the estimation of crack threshold limit based on 

threshold-derived critical length estimations (Eq. (15a)) 

f1,...,f6 normalized standard deviation on the estimation of notch fatigue limit based on notch-

derived critical length estimations (Eq. (14b)). 

fth,1,...,fth,6 normalized standard deviation on the estimation of notch fatigue limit based on 

threshold-derived critical length estimations (Eq. (14a)). 

m1,m2  Mean of notch-derived critical length estimation (Eq. (13d)) 
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mth,1,mth,2 Mean of threshold-derived critical length estimation (Eq. (12b)) 

n1,...,n4  NCV of notch-derived critical length estimation (Eq. (13d)) 

p1,...,p4  model function coefficients for lmin (Eq. (7b)) 

q1,...,q4  model function coefficients for min (Eq. (7c)) 

s1,s2  Skewness of notch-derived critical distance estimation (Eq. (13f)) 

sth,1,sth,2 Skewness of threshold-derived critical distance estimation (Eq. (12c)) 

 

1. Introduction 

The theory of critical distances (TCD) is a powerful tool for estimating the strength of notched 

components, just on the basis of standard material tests. There are different formalizations of the 

TCD, and the more common are the Point Method and the Line Method [1]. All the TCD techniques 

share the same length, i.e. the critical distance, which is a material property also depending on the 

fatigue stress ratio R1. Although in principle the TCD is defined for notches loaded under mode I, 

several extensions of this methodology have been applied. The TCD was combined with a multiaxial 

fatigue criterion, according to a critical plane approach by Susmel and Taylor [2]. Liao et al. [3] 

recently proposed the orientation of the critical distance length along the critical plane, instead of the 

notch bisector, and similarly was proposed by Santus [4] for the fretting fatigue application. In this 

way, more accurate results were obtained suggesting a better matching between the critical distance 

length and the highest stress path orientation. 

The critical distance turns out to be coincident with the El Haddad length a0, which is fictitiously 

added to the actual crack length for extending the long crack fracture mechanics to the small cracks. 

Moreover, the TCD length is also defined on the well-known Kitagawa-Takahashi diagram, as the 

intersection between the fatigue strength of the long crack and the fatigue limit of the unnotched 

(plain) specimen. This length is indeed obtained from the threshold Stress Intensity Factor (SIF) range 

ΔKth and the full range fatigue limit of the plain specimen Δσfl, both experimentally obtained at the 

same stress ratio R: 

2

th
th

fl

1 K
L

 

 
=  

 
            (1) 

The subscript “th” is usually not applied to the TCD length, however, in this study it refers to the 

determination of L by means of the threshold SIF range. On the contrary, the assessment of the critical 

distance with a sharp notch geometry is an alternative approach, deeply investigated by the authors 

in this paper and previous research. According to the basic definition of the critical distance, Eq. (1), 

 
1 In this paper the stress ratio is referred to as R, while the symbol R is used for the radius of the V-notched specimens. 
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in order to have a proper assessment of Lth, the threshold SIF range ΔKth is required with enough 

accuracy. However, despite the standardized procedure provided by the ASTM E647 [5], this test is 

quite challenging, time consuming, and requires specific experience. Different effects can play a role 

when this testing is performed, such as the precracking strategy, as investigated by Forth et al. [6]. A 

slightly lower threshold is in fact obtained by applying the compression precracking constant 

amplitude method, with respect to the common load-reduction method, as shown by Jordon et al. [7] 

and Newman and Yamada [8]. The main issues are related to the plasticity-induced crack closure, as 

reviewed by Zerbst et al. [9, 10], which in principle can be considered and then modeled, as proposed 

by Noroozi et al. [11]. However, an intrinsic uncertainty of the effective SIF cycle experienced at the 

crack tip is unavoidable. Moreover, the environmental conditions are also well known to be quite 

effective, both for the threshold, and the crack growth rate. 

For these reasons, the threshold ΔKth may be not uniquely defined, thus its determination just for 

obtaining the critical distance, is not usual. On the contrary, this length is more easily obtained by 

combining the strength of two initially uncracked specimens and imposing a TCD criterion. 

Furthermore, the fracture mechanics properties can be then obtained without performing the specific 

tests. Susmel and Taylor in this way obtained ΔKth values, as well as KIc, for several metal alloys and 

other materials [12]. They just inverted Eq. (1) after comparing the test results of standard specimens, 

according to the Point Method. The plain specimen and a notched specimen were considered for the 

fatigue properties, whilst they combined two notches with different sharpness to derive the fracture 

toughness. The use of a sharply-notched specimen, instead of the threshold SIF range for evaluating 

the fatigue critical distance L was clearly suggested by Taylor [13]. This approach can be found in 

several papers by different researchers, in particular dedicated to the brittle fracture (or “static”) 

properties. Thus, the comparison between two specimens with a significant difference in terms of 

notch sharpness, i.e. a blunt vs. a sharp notch, is actually the common practice [14, 15, 16, 17, 18, 19, 

20]. Cicero et al. [21] recently proposed a comparison with more than just two notched specimens, 

dedicated to the brittle fracture properties determination, showing how accurate and robust is this 

method, based on the Point Method. 

Santus et al. [22] emphasized the determination of the fatigue critical distance by combining a sharp 

notched specimen and the plain specimen. A dedicated V-notched specimen was proposed, with 

optimized notch depth, and proper values of notch angle and root radius were considered, also taking 

into account the manufacturing viability. Moreover, a complete numerical procedure was provided to 

calculate the critical distance value after the availability of the experimental fatigue stress 

concentration factor Kf. This inverse search procedure was both based on the Line and the Point 

Methods, and for the Line Method it turned out to be much easier and effective since a linear 
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relationship holds. Santus et al. [23] then provided a direct validation of this procedure, showing a 

more accurate prediction of the Line Method length L in terms of comparison with threshold-based 

length Lth. The critical distance has been extended to the medium-cycle fatigue regime, by assuming 

L as dependent on the number of cycles to failure. A power law relationship for the L(Nf) function 

was proposed by Susmel and Taylor [14], followed by several other authors such as Negru et al. [24] 

and Wen et al. [25]. Benedetti et al. [26] proposed the critical distance method applied to shot peened 

fatigue test results, considering the (beneficial) role of the induced residual stress distribution, and 

for this application the power law relationship was followed too. A different function was 

implemented by Benedetti et al. [27], still with two parameters again on the shot peening application. 

On the other hand, by following the inverse search proposed by Santus et al. [22], the length L can be 

quickly calculated for several values of the number of cycles to failure, thus obtaining an almost 

continuous function without the need of an interpolating relationship, as discussed by Santus et al. 

[23]. 

The TCD is based on a purely elastic material, and this is usually assumed reasonable under the 

hypothesis of small-scale yielding, in agreement with the linear elastic fracture mechanics. However, 

a clear definition or standardization of the small-scale yielding limit, applied to the TCD, has been 

never provided. On the contrary, several attempts have been proposed in the literature aiming at 

combining the elastic-plastic methodologies and the critical distance, or critical volume, approaches. 

For example, Benedetti and Santus [28] combined the TCD Point and Line Methods and several 

multiaxial criteria, showing how the elastic-plastic behavior can play a significant role in particular 

when the fatigue limit is relatively high with respect to the yield stress. For each of these methods an 

accurate assessment of the material length should be performed, also evaluating the scatter band for 

having a statistical significance. 

The TCD, under mode I loading and linear elastic material, has been considered for this purpose. 

After assuming specific probability distributions for the threshold SIF range and the fatigue limit, and 

introducing these into Eq. (1), the deviation of the critical distance is: 

2

th th th th
th th th

fl fl fl fl

( ) 1 ( ) /1
( )

( ) 1 ( ) /

K K K K
L L L

 


      

        
 = =   

        
     (2a) 

If the deviations δ() of the two fatigue properties are small, the first-order approximation can be 

considered accurate, and the following result is obtained: 

th th th th fl fl( ) / 2 ( ) / 2 ( ) /L L K K       +          (2b) 

In other words, the propagation of uncertainty on the critical distance, generated by the ratio of the 

fatigue properties, is equivalent to the sum of the relative deviations, and the square induces a factor 

of 2 on both terms. 
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The strength of a generic (notched) component is then assessed with the TCD by introducing the 

fatigue limit and this critical distance length, both with their uncertainties: 

fl fl th th N,fl N,fl[ ( ), ( )] ( )L L          →           (3a) 

When the critical distance is determined by means of a sharp notched specimen, as previously 

discussed (L value, instead of Lth), a different uncertainty is obtained: 

fl fl N,fl N,fl[ ( ), ( )] ( )L L          →           (3b) 

The deviation of L is in principle larger than that of Lth, because the crack can be seen as the sharpest 

notch. This obviously implies that the uncertainty on the estimated strength of the notched component 

is higher as well: 

th N,fl N,fl( ) ( ) ( ) ( )L L                  (4) 

However, for the reasons reviewed above, the threshold data with a sound statistical significance is 

usually unavailable. Most of the times a similar material is referred and just a single specimen is 

tested. Therefore, the best strategy is to find the critical distance with a quite sharp notch, and multiple 

specimens, just disregarding the threshold SIF range, at least obtaining a controlled uncertainty. 

The fatigue limit is usually assumed as a Weibull distribution underpinning the “weakest link” 

damage concept [29, 30, 31]. Nevertheless, for the sake of simplicity, we will assume plain and notch 

fatigue limit as well as crack threshold to be Gaussian (or normally) distributed. In fact, as shown in 

the following, this assumption permits us to take advantage of recent findings of the statistics research 

community regarding the distribution of the ratio between two normally distributed variables. We are 

not aware of similar investigations on differently distributed variables. Moreover, we remind that the 

very commonly adopted (especially in the industrial field) stair-case procedure assumes the fatigue 

limit to be normally distributed [32]. 

As shown in detail below, the obtained distribution of the derived critical distance turns out to be 

accurately modeled with a skew-normal distribution. This statistical analysis was done both for the 

threshold-derived critical distance, according to Eq. (1), and for the length obtained with the 

procedure based on the optimized sharp V-notch. The results are compared and discussed and then 

put into relationship with the local notch radius. Effective and simple fitting equations are then 

provided to straightforwardly estimate these statistical distributions. These proposed equations are 

shown in detail in Appendix A, and the procedure can be found as an editable script file for 

MATLAB® software in Appendix B. 

 

2. Background: inverse determination of the critical length 

The procedure recently proposed by Santus et al. [22], for an accurate determination of the critical 

distance, requires the combined use of the plain specimen and a V-notched cylindrical specimen of 
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optimal geometry (see Fig. 1a). The critical distance obtained in this way, according to the Line 

Method (LM), is denoted here as L. The specimen geometry is illustrated in Fig. 1b: A is the notch 

depth, R is the notch radius,   is the notch opening angle and D is the outer diameter of the specimen. 

The non-dimensional notch depth / ( / 2) 0.3A D =  was selected in [22] to maximize the intensity of 

the notch tip singular stress term and hence to minimize the sensitivity of the inverse search of critical 

distance to the experimental uncertainties. In this way, the only independent specimen dimensions 

are D, R and  . To keep the problem non-dimensional, the notch root radius, the LM critical distance 

L and threshold based Lth can be normalized with respect to the notch depth and the specimen outer 

radius, respectively: 

th
th; ;

0.3 / 2 / 2 / 2

LR L
l l

D D D
 = = =          (5a) 

Figure 1c reports the main formulas to obtain l. In brief, the dimensionless critical distance is 

evaluated from a linear function of the length l0: 

0 min
min

l
l l





−
= +            (5b) 

where l0 is the critical distance estimated assuming even at the tip of the radiused notch the singular 

stress distribution reigning in an infinitely sharp notch (see Fig. 1b): 

N( )y s

K
x

x
 =             (5c) 

In this way l0 can be expressed as: 

( )

1/

N,UU N fl
0 N,UU f

f N N,fl

1 1
; ;

2 (1 ) / 2

s

s

K K
l K K

s K D



 

  
= = = 

−  
      (5d) 

KN,UU is the dimensionless (net) Notch Stress Intensity Factor (N- SIF) for unitary nominal stress and 

unitary scaling length, i.e. when the specimen radius D/2 equals unity, and s is the Williams power 

law singularity exponent. They are reported in Table 1 as a function of two notable values of the 

notch opening angle  , viz. 90° and 60°. The fatigue stress concentration factor Kf, obtained as the 

ratio between the fatigue limits of the two specimens, is the only experimental input of the procedure, 

besides the notched specimen geometry dimensions. 

The terms of Eq. (5b) are expressed as a function of the non-dimensional notch radius ρ and the notch 

opening angle   in the following equations: 

max min

max minl l

 


−
=

−
           (6a) 

4
4

min

1

( ) i

i

i

l p   −

=

=             (6b) 



 9 

4
4

min

1

( ) i

i

i

q   −

=

=             (6c) 

3 ( )

max max 1 2( ) ( )
c

l c c
   = = +          (6d) 

Best-fit coefficients pi, qi, and ci are reported in Table 2. 

The sensitivity analysis conducted in [22] showed that the uncertainty about the estimation of L is the 

smaller the sharper the radius. In this work, we propose, among other things, to quantify the 

uncertainty on L based on the statistical dispersion of the fatigue data so as to define the minimum 

level of sharpness of the notch necessary to bring this uncertainty below a certain threshold. 

 

3. Statistical properties of the critical distance length 

3.1 The skew-normal distribution 

Looking at the expression of the threshold-derived lth (Eq. (5a)) and notch-derived l (Eq. (5b)) critical 

distance, it can be noted that both of them are functions of two random variables, viz. fl, N,fl and 

Kth. In general, the statistical distribution of these experimental variables is assumed to be normal, 

or Gaussian [33]. In this case, according to Eq. (5a), and in turn Eq. (1), and Eq. (5b), lth and l will 

depend on the ratio between two normal variables. The resulting statistical distribution is still debated 

in the scientific community [34-37]. It was found that the random variable Z=X/Y, being both X and 

Y normal variables of mean x and y and standard deviation x and y, has no finite moments and its 

probability distribution function (PDF) is heavy tailed [37,38], yet having a very complicated 

expression. The shape of this PDF can be uni- or bimodal, asymmetric or symmetric, or even close 

to a normal distribution, depending fundamentally on the value of the coefficient of variation (CV) 

of the denominator Y, ry= y/y. 

Given the though mathematical complexity of this issue, further exacerbated by the elevation to either 

power 2 or 1/s in Eq. (1) and (5), of the ratio of such normal variables, the only viable approach to 

this problem is making recourse to a numerical analysis of the statistical distribution of lth and l based 

on the Monte Carlo (MC) approach. The feasibility of this numerical method is facilitated by the 

simple mathematical formulation of the inverse procedure of l and lth. In essence, the MC method is 

based on the generation of a (large) population of individuals through repeated random sampling 

(“trials”). In each trial, individuals of lth and l data are randomly generated assuming a Gaussian PDF 

for fl, N,fl and Kth. Their mean value and standard deviation will be denoted as 

fl N,fl N th th, , , , ,S S K S    , respectively. The corresponding CV are defined as follows: 

th N
th N

fl th N,fl

; ;
S SS

r r r
K 

= = =
  

         (7) 
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In the MC simulations, the mean values thK  and N,fl  are expressed as a function of an input value 

thl  and l , of lth and l, respectively: 

fl
th fl th N,fl

f

( / 2);
( )

K l D
K l


  


 =   =         (8) 

where the fatigue notch concentration factor Kf is a known function of l  [22]. It is evident from Eq. 

(8) that thl  and l  represent the critical distances estimated considering the average values 

fl N,fl th, , K    of plain and notch fatigue limit as well as crack threshold. 

A large number of trials is in general necessary to get stationary statistical properties. A convergence 

analysis is performed to define a reasonable number of trials. For this purpose, we propose the 

following index  expressing the relative fluctuation of a statistical property p: 

max( ) min( )
( )

mean( )

p p
p

p


−
=           (9) 

and apply it to mean, standard deviation and skewness of twenty populations composed of an 

increasing number of individuals. Looking at Fig. 2, it can be noted that  asymptotically decreases 

with the number of trials. The convergence rate is fastest for the mean and lowest for the skewness. 

In the following, 100,000 trials will be considered, corresponding to a  value less than 0.1% and 4% 

for mean and skewness, respectively. 

For the moment, we will assume, for the sake of simplicity, that the notch fatigue limit and the crack 

threshold have the same CV as the plain fatigue limit: rth = r,  rN = r . The histograms plotted in Figure 

3a and b illustrate the PDF of lth and l, respectively, for increasing values of the coefficient of variation 

r ranging from 0.01 to 0.09. It can be noted that the distribution of both lth and l is unimodal with 

longer right-sided tail (positive skewness). Its asymmetry becomes more pronounced with increasing 

r. Interestingly, as long as r is sufficiently small, viz. about 0.07, the PDF histograms are well 

represented (solid lines) by a skew-normal distribution (SND) expressed as [39]: 

2

2

1 ( ) ( )
( ) 1 erf exp

22 2

x x
PDF x

  

  

    − −
= + −     

   
     (10a) 

where , , and  are shape, location and scale parameters, respectively. Over other distributions, 

such as Cauchy, Laplace, Weibull, etc., the SND has the advantage of having the first three moments 

defined and expressed in the form of algebraic functions of the aforementioned parameters. Indeed, 

the mean , standard deviation  and skewness sk are respectively given by: 

2

2

1

 
 


= +

+
          (10b) 
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2

2

2
1

(1 )


 

 
= −

+
          (10c) 

( )

3

3/2
2

2(4 )

( 2)
sk

 

  

−
=

+ −
         (10d) 

When the shape factor  vanishes, the skewness is zero and the distribution becomes Gaussian of 

mean  and standard deviation . Figure 4a plots the skewness as a function of positive values of  

(Eq. (10d)). It can be noted that the skewness is monotonically increasing with  and is bounded from 

above in the interval [0,1). This means that the SND is suitable to represent populations with low-to-

moderate skewness and this is the reason why SND fails to faithfully represent the distribution of lth 

and l for large values of r: when the skewness approaches the unity (e.g., sk is 0.9 for r = 0.09),  

increases asymptotically (see Fig. 4b) leading to the degeneration of the PDF evident in Fig. 3a and 

b. 

The inversion of Eq. (10d) to deduce  from the skewness sk is algebraically though, therefore we 

propose the following approximate solution: 

4
/2

2
1

1
; 0 1

1

i

i

i

a sk sk
sk


=

=  
−

         (10e) 

whose best-fit coefficients ai are listed in Table 3. As shown in Fig. 4b, the agreement between 

numerical and analytical solution is very good. Once  has been calculated from Eq. (10e),  and  

can be readily calculated through algebraic solution of Eqs. (10b)-(c). 

In the literature, several works [34,38,40] indicate that, as long as the CV of the denominator ry is 

sufficiently small (the definition of the upper limit thereof is not unanimous, yet comprised between 

0.1 and 1/3), the distribution of the random variable Z=X/Y is reasonably well represented by a normal 

distribution with mean x/y and CV 2 2

x yr r+ . Since the limit of applicability of the SND to the 

critical distance is reasonable as long as r is smaller than 0.07, hence within the validity range of the 

aforementioned calculation of the ratio Z distribution, we propose here to take advantage of this 

finding to account for values of rth and rN different from r. The basic idea is to bring this case back 

to that considered so far (viz. of numerator and denominator of equal CV) by introducing an 

equivalent CV expressed as: 

2 2 2 2

th N
th ;

2 2

r r r r+ +
 =  =         (11a) 



 12 

In this way, the resulting approximate normal distribution of the ratios th fl N,fl fl/ , /K        will 

have CV equal to 
2 2 2 2

th N,r r r r+ + , viz. that expected for numerator and denominator of different 

CV. 

Clearly, this is an approximation, as we already know that the real distribution of lth and l is rather 

skew-normal than Gaussian. Nevertheless, we found that, as long as the ratio between the CVs is not 

too far from the unity, this approximation is reasonable. To this regard, let us introduce now an 

auxiliary coefficient, th and , expressing the ratio between the CV of numerator and denominator: 

th N
th ;

r r

r r
 = =           (11b) 

which gives a measure of the deviation from the condition of unitary value under which the 

approximate distribution of equivalent th and  is evaluated. 

Figure 5 illustrates the comparison between the actual and the approximate distribution of lth and l in 

the lower and upper bound of the proposed validity range of this coefficient: th0.5 , 2.2   . It can 

be noted that in this interval the approximation is reasonably good. Indeed, the absolute relative 

difference in standard deviation (and also in CV) is around 3%, whereas that in skewness is up to 

50%. This is not surprising as the rationale behind Eq. (11a) is the assumption of a zero-skewness 

normal distribution. On the other hand, Eq. (11a) allows for a great simplification of the problem of 

the statistical distribution of lth and l, as the CV will be estimated with a very good approximation 

only from th and . In essence, this is the greatest advantage of the assumptions of normally 

distributed input quantities discussed in the Introduction. Conversely, as shown in the next section, 

mean value and skewness will be expressed as a function of th (or ) and th (or ) as well. These 

statistical properties of lth and l will be investigated through parametric MC simulations. 

 

3.2 Parameters of the skew-normal distribution of lth 

The key advantage of introducing the equivalent CV expressed by Eq. (11a) is evident looking at Fig. 

6a: when the CV δth/μth of the estimation of lth is normalized with respect to th (hereinafter denoted 

as "normalized CV", NCV), it becomes, with a very good approximation, independent of both th and 

th, therefore well represented by the following expression: 

th
th

th th

1 



=


           (12a) 

Importantly, the results of the MC simulations are comprised between an error band estimated with 

respect to the mean value calculated for th=1 (in Fig. 6a and in Eq. (12a) denoted as th) that is 

comprised between -1.0% and 3.5%; moreover, most of the simulations display an absolute error 
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below 1%. For the purpose of the present work, this accuracy in the estimation of CV is deemed to 

be adequate. The estimated value of th, being approximately equal to 2.8, is listed in Table 4. 

Figure 6b illustrates the dependency of the mean to the input value ratio th th/ l  as a function of th, 

varying parametrically th. Interestingly, th th/ l  increases with increasing th and decreasing th. We 

propose here to fit th th/ l  according to the following hyperbolic function: 

th th

th th,1 th,2 th

cosh
l m m





 
=   + 

         (12b) 

Solid curves of Fig. 6b represent the plot of Eq. (12b) with best-fit coefficients mth,i listed in Table 5. 

From Fig. 6b, it is clear that μth coincides with thl  for vanishing th and that μth progressively deviates 

from thl  with increasing th. 

A similar behavior is displayed by the skewness skth, which is plotted in Fig. 6c as a function of th, 

varying parametrically th. For vanishing th, sk tends to zero, while it grows with increasing th and 

decreasing th. A similar hyberbolic function is proposed to fit sk as a function of th and th: 

th
th

th,1 th,2 th

sinhsk
s s 

 
=   + 

         (12c) 

which is represented by solid lines in Fig. 6c and whose best-fit coefficients sth,i are listed in Table 6. 

Once skth is determined from Eq. (12c), the shape parameter  of SND can be readily obtained from 

Eq. (10e), as shown in Fig. 6d. Subsequently, location  and scale  parameters can be determined 

from mean (Eq. (12b)) and standard deviation (Eq. (12a)) by algebraic solution of Eqs. (10b) and 

(10c). 

 

3.3 Parameters of the skew-normal distribution of l 

On the base of the sensitivity analyses carried out in [22] on the inverse determination of notch-

derived critical distance l, we can already anticipate that its statistical distribution shall be strongly 

correlated to the notch radius of the notched specimen used to determine Kf. To this regard, Fig. 7a 

shows the results of MC simulations carried out to explore the dependency of the NCV, / ( )  , 

upon the input crack length l  taking the notch radius  as a parameter. Importantly, CV declines 

asymptotically with increasing l  and gets larger with increasing . Moreover, the asymptotic value 

(black dashed line in Fig. 7a), here denoted as s and compared in Table 4 with th for two opening 

angles   (90° and 60°), corresponds to the condition of infinitely sharp notch ( = 0). This value is 
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obtained from MC simulations considering the singular stress field expressed by Eq. (5c) and, 

similarly to thl , is independent of the critical distance l . 

It is now clear that, in contrast to lth, the statistical distribution of l will depend on an additional 

geometric parameter, namely the notch radius . Accordingly, we expect that NCV will increase with 

declining stress gradient ahead of the radiused notch tip, which in turn is inversely proportional to the 

notch radius . Consequently, NCV is an increasing function of  that is bounded from below by . 

To eliminate the dependency upon , we propose here to research the locus of points satisfying the 

following equality: 

0 lim

1
; ( ) 7 l l


   


=    =


        (13a) 

where the parameter   is a constant comprised between 0 and 7. This upper bound was selected after 

realizing that even larger values of  lead to excessively dispersed distributions of l hardly 

representable by a SND. Figure 7b gives an illustrative example of this locus when the parameter  

is equal to 5. Dotted values are obtained by numerically searching the intersection of families of 

curves similar to those plotted in Fig. 7a with the horizontal line  = constant. The equivalent CV  

and the notch radius  are varied parametrically, while keeping fixed the notch angle   and  (=1). 

Importantly, the locus of l  is found to be independent of  and an increasing function of . Within 

the validity range of the inverse search function ( min maxl l l  ), this locus of l , here denoted as llim, 

is well represented by the following quadratic polynomial: 

( ) ( ) 2

lim 1 2, ,l b b     = +          (13b) 

where the coefficients bi are function of   and  and their best-fit values are listed in Table 7. 

It is now clear that values of l  satisfying Eq. (13b) are characterized by a NCV equal to  with a 

degree of approximation that can be deduced from Fig. 7c. For the explored values of the notch radius 

, the NCV value is approximated by that predicted by Eq. (13a) with an absolute error below 1.5%. 

Equation (13b) can be easily inverted to determine the value lim of the notch radius  that makes the 

NCV of the estimation of l  equal to : 

( ) ( ) ( )

( )

2

1 1 2

lim lim lim

2

, , 4 ,
; 0.3

2 , 2

b b b l D
R

b

     
 

 

− + +
= =     (13c) 

In the following, the statistical properties of l will be analyzed by exploring parametrically five values 

of , namely 0, 4, 5, 6, 7. This permits to build the plot reported in Fig. 7d, where the dotted values 

represent, for parametrically varying l , the value  corresponding to a certain notch radius . 

Interestingly, the family of curves, parametric in l , converges for  =  (infinitely sharp notch) to 
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the same value 0. Moreover, with increasing , the increment in NCV is particularly pronounced for 

small values of l . The dotted values of Fig. 7d are interpolated with good accuracy by the following 

expression (solid lines): 

3 4

2

0 1 2( ) ( )
( ) ( )

n n
n n

l l
 

 
   = + +         (13d) 

Best-fit coefficients ni are listed in Table 4 for two values of  . 

Eq. (13d) and Figure 7c are of particular interest, mainly for two reasons: (i) given the input value l  

and the notch radius of the specimen used to deduce l, the expected NCV for the estimation of l can 

be readily calculated from Eq. (13d); (ii) when designing the notched specimen geometry for the 

experimental evaluation of l, the designer can assess, from the expected value of l , the notch radius 

necessary to bring the NCV of l equal to the desired level . 

The knowledge of  through Eq. (13d) is also useful to infer the statistical properties of l. Indeed, the 

CV can be immediately deduced from Eq. (13a), while the equations derived in the following for 

estimating mean and skewness for five discrete values of  (0, 4, 5, 6, 7), can be extended to 

intermediate  values through simple interpolation. 

Figure 8a illustrates the results of MC simulations showing that Eq. (13a) is able to accurately predict 

the value of NVC for any values of  and  comprised within the validity range: the corresponding 

relative error is comprised between -1.0% and +2.5%. Figure 7b shows the results of MC simulations 

demonstrating that the average value of l satisfying Eq. (13b) are very little affected by the notch 

radius . We come to similar conclusions (here not reported for the sake of brevity) also for the 

skewness sk. Therefore, in the following, mean and skewness corresponding to a certain combinations 

of  and  will be evaluated by averaging the values obtained for all the explored valus of . These 

averaged values are shown in Fig. 8c and 8d for mean and skewness, respectively. The obtained trends 

are very similar to those found for lth. Therefore, we propose to interpolate them with formally 

identical expressions suggested for mean value: 

1 2

cosh
( , ) ( , )l m m



    

 
=  

+ 
        (13e) 

and skewness: 

1 2

sinh
( , ) ( , )

sk
s s    

 
=  

+ 
        (13f) 

Best-fit coefficients mi and si of Eqs. (13e) and (13f) are listed in Tables 5 and 6, respectively, for 

different values of  and  . Parametric plots of of Eqs. (13e) and (13f) are provided in Fig. 8c and 

8d, respectively. Interestigly, looking at the best-fit coefficients si listed in Table 6, it can be noted 
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that the skewness is very weakly dependent on . A very small estimation error (relative absolute 

error below 1%) is made when replacing the coefficients listed in Table 6 for different  by average 

values. 

Again, once sk is determined from Eq. (13f), the shape parameter  of SND can be readily obtained 

from Eq. (10e). Subsequently, location  and scale  parameters can be determined from mean (Eq. 

(13e) interpolated at the corresponding value of  given by Eq. (13d)) and standard deviation (Eq. 

(13a) and (13d)) by algebraic solution of Eqs. (10b) and (10c). 

To conclude, Table 8 summarizes the validity range under which the proposed method to deduce the 

statistical properties of lth and l can be used with adequate level of approximation. The proposed 

method permits to determine mean, standard deviation and skewness of the statistical distribution of 

lth and l as a function of  (or th),  (or th), , and  . The modus operandi for determining the 

statistical properties of lth and l is illustrated by the flow-chart reported in Fig. 9 and implemented in 

Matlab scripts enclosed in the electronic version of the paper and described in the Appendix. The 

designer can incorporate this information into a probabilistic fatigue calculation of notched 

components. In the next section, we will show how the statistical distribution of lth and l affects the 

fatigue strength of notched specimens of the same geometry depicted in Fig. 1, yet of different notch 

angle   and notch radius  from those of the notched specimen used to determine the critical length. 

 

3.4 Effect of the statistical distribution of lth and l on the predictions of the Line Method 

MC simulations are run according to the following steps: 

1. Extraction of lth or l from a skew-normally distributed population with parameters expressed 

by Eqs. (12) or (13) as a function of  (or th),  (or th), , and  . 

2. Calculation of the corresponding value of Kf. 

3. Calculation of the notched fatigue strength N,fl from Kf and the plain fatigue limit extracted 

from a normally distributed population of mean fl  and CV:

2

thfl

2

th

1

2

1

2

S










+


= 
 

 +



 

4. Calculation of the NCV of N,fl. 

The results of the MC simulations (dotted values) are shown in Fig. 10a and 10c for the NCV of the 

prediction of N,fl starting from lth or l, respectively, in the case of infinitely sharp notch ( = 0). It 

can be noted that NCV is higher for the lowest value for explored interval of  and th (=0.5). In order 
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to eliminate the dependency upon this parameter, we propose here to investigate the NCV of N,fl 

for radiused notches considering, for the sake of conservatorism, the value of  and th (=0.5) leading 

to the largest dispersion of notch fatigue strength predictions. Moreover, it can be noted that NCV is 

practically independent of th, while it tends to decline for large values of . For this reason, again 

for the sake of conservatorism, the following plots will be displayed and analysed for th==1/100 

and th =  = 0.5, as they were found to give the largest values of NCV.  

The results of the MC simulations (dotted values) are shown in Fig. 10b and 10d for the NCV of 

N,fl for radiused notches, exploring parametrically the critical distance lth or l, respectively. 

Interestingly, NCV declines with decreasing sharpness (increasing ) of the notch and gets higher 

with increasing thl  or l . In other words, the uncertainty about the notch fatigue limit is higher the 

greater the critical length with respect to the notch radius. Furthermore, the trends converge to the 

same CV value for the infinitely sharp notch ( = ) regardless of the thl  or l  value. 

The dotted values of Fig. 10b and 10d are very well represented by the solid lines expressed by the 

following bivariate function of  and thl  or l , respectively: 

th ,5 th ,6

N
th,1 2

th N,fl
th,2 th,3 th,4

th th

1 1

f f

S
f

f f f
l l

 
= +

 
+ +

      (14a) 

5 6

N
1 2

N,fl
2 3 4( , ) ( , )

1 1
( , )

( , ) ( , ) ( , )
f f

S
f

f f f
l l

   

 
 

     

= +
 

+ +

    (14b) 

Best-fit coefficients fth,i and fi of Eq. (14a-b) are listed in Table 9 for different values of  and  . In 

essence, Eqs. (14a) and (14b) permit to calculate the NCV of the estimation of the fatigue limit of 

any notched specimen geometry, including the infinitely sharp one. 

Similar MC simulations are carried out to determine the NCV of the estimation of the crack growth 

treshold Kth from lth or l (skew-normally distributed) and fl (normally distributed) and their results 

are shown in Fig. 11a and 11b, respectively, for different values of  (or th) and  (or th). Clearly, 

it makes no sense to estimate th from lth, as this latter value requires the knowledge of th. 

Nevertheless, the comparison of the NCV obtained in both ways is interesting for assessing the effect 

of the larger dispersion of l with respect of lth on the estimation of th. From Fig. 11a and b, it can 

be noted that the largest NCV in the estimation of th is obtained for th =  = 0.5. This value is 

used to give an upper bound (solid lines in Fig. 11a and b) of the NCV and expressed by the following 

equations: 
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th
th

th th

1 S
d

K
=

 
          (15a) 

th

th

1
( )

S
d

K
=

 
          (15b) 

Best-fit coefficients dth and d of Eq. (15a-b) are listed in Table 10 for different values of . 

 

4. Applicative examples 

4.1 Experimental data 

In this section, we will use the experimental data that were collected in [23] to test the inverse search 

procedure of the critical length devised in [22]. The purpose is to characterize the stochastic properties 

of lth and l and their effect on the prediction of independent experimental fatigue data. Specifically, 

plain, notched and fracture mechanics specimens were extracted from bars of aeronautical aluminum 

grade 7075-T6 and steel 42CrMo4+QT (quenched and tempered). Details regarding the material and 

experimental procedures used to generate the fatigue data analyzed in this article can be found in 

[23]. 

In [23] the fatigue characterization was carried out under fully-reversed (load ratio R = −1) and 

pulsating (R = 0.1) axial fatigue on axisymmetric plain and V‐notched samples, whose geometries 

are shown in Fig. 12. The outcomes of the fatigue tests carried out on the plain samples are listed in 

Table 11 in terms of average stress amplitude and standard deviation on the stress amplitude evaluated 

in the high-cycle fatigue regime. 

Notches of different severity were explored by changing the notch root radius R (see Fig. 1a and c). 

In the sharp and blunt notch configuration, R is set equal to 0.2 mm (effective size measured by SEM 

is 0.21 mm, theoretical principal stress concentration factor Kt = 5.75) and 1 mm (Kt = 2.88), 

respectively. In [41] a third notched geometry, termed ultra-sharp, wherein R is 0.1 mm (effective 

size 0.12 mm, Kt = 7.42) was investigated with the aim of exploring the effect of an even sharper 

notch geometry. The experimentation was complemented in [23] by fatigue crack growth tests 

conducted at R = −1 and R = 0.1 using C(T) and M(T) specimens, respectively, also shown in Fig. 

12. The outcomes in terms of crack threshold ΔKth are listed in Table 12. In contrast to plain and 

notch fatigue strength data, no information is available about the standard deviation on ΔKth, as only 

a single test was performed per each experimental variant. In order to simulate the stochastic 

variability of ΔKth, we will assume in the present case that the mean value corresponds to the 

experimental value. The standard deviation is here inferred from [42] where the scatter band of fatigue 

crack growth curves of 7075-T651 was estimated on the basis of six tests undertaken on three 

different material lots. The tests showed that the corresponding crack growth threshold ΔKth at R = 
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0.1 was between 2.1 and 2.8 MPa m . Assuming these data normally distributed and comprised in 

the band ±2Sth (95% probability), Sth is then estimated to be about 0.18 MPa m . The standard 

deviation of the remaining experimental variants listed in Table 12 are scaled according to the ratio 

between mean values of ΔKth. In [43], the same notched specimen geometry was used to determine 

the critical distance in additively manufactured Ti-6Al-4V. Unfortunately, the obtained results are 

here not discussed as their statistical properties do not satisfy the validity conditions set by Table 8. 

 

4.2 Statistical distribution of lth and l 

Table 12 lists also the statistical properties of threshold-derived critical length lth. These are estimated 

using both Eqs. (12a-c) and MC simulations where, during each trial, lth is computed extracting 

normally distributed values of plain fatigue limit and crack threshold with mean and standard 

deviation listed in Table 11 and 12. The agreement among the statistical parameters estimated in the 

two ways is very good. Data referred to 42CrMo4+QT tested at R=0.1 are shown in bold because the 

ratio th = rth/r lies outside the validity range shown in Table 8 and will be therefore ruled out in the 

rest of the discussion. 

Figure 13a and 13b compare the PDF of Lth estimated through MC simulations (histograms) and the 

SND with parameters deduced from Eqs. (12) and listed in Table 10 (solid curves) for 7075-T6 tested 

under R = −1 and R = 0.1, respectively. The agreement between the two approaches is pretty good, 

especially for R = −1. Conversely, despite the very good agreement of the predictions made by Eqs. 

(12) in terms of mean, standard deviation and skewness with MC simulations, the agreement between 

predicted PDF and histogram for R = 0.1 is less good (Fig. 13b), especially for the left tail of the 

distribution. This can be imputed to the slight violation on the maximum limit set on th (mainly due 

the highly dispersed plain fatigue limit), that makes the statistical distribution less accurately 

represented by a SND. 

The threshold-derived critical length estimations Lth can be now used to infer from Eq. (13d) the NCV 

value expected for the notch-derived estimations l. This scenario is illustrated in Fig. 13c for 7075-

T6. Interestingly, when l is deduced from ultra-sharp notched specimens NCV is comprised between 

4.3 and 4.9, while when it is obtained from sharp notched specimens NCV increases up to 5.2 and 

6.2, respectively. This result outlines the fundamental role played by small values of  to get l 

estimations affected by low standard deviation. 

Table 13 lists the experimental results of the fatigue tests carried out on the sharp and ultra-sharp 

notched specimens used to deduce the critical length l. In all the experimental variants, the conditions 

set in Table 8 on  and  are satisfied. For 7075-T6, NCV is very similar to that anticipated in Fig. 

13c using threshold-derived critical distance estimations, being comprised between 4.4 and 6.6. For 
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42CrMo4+QT, wherein only sharp notched specimens were used, NCV is higher, namely comprised 

between 6.2 and 7.3. The latter value is slightly higher than the maximum allowable value set in Table 

8 equal to 7, yet considered still acceptable for a proper statistical characterization. To determine the 

statistical properties of l estimations affected by these NCV values, the results of Eqs. (13) for discrete 

 values are interpolated at the effective  value of each experimental variants. Importantly, the 

relative absolute error made in the estimation of mean, standard deviation and skewness is below 2% 

in all the investigated experimental variants. Such good agreement is also evident looking at Fig. 14a-

d, which compare the PDF of L estimated through MC simulations (histograms) and the SND with 

parameters deduced from Eqs. (13) and listed in Table 13 for 7075-T6 tested under R = −1 and R = 

0.1 using both ultra-sharp and sharp notched specimens. Interestingly, comparing Fig. 13a-b and 14a-

d, it can be noted that the peak of the statistical distribution progressively declines passing from the 

fracture mechanics to the notched specimen with decreasing sharpness of the notch root as a 

consequence of the concomitant increment in NCV . On the other hand, a notch-derived critical 

length estimation allows for a simpler and sounder statistical characterization, as the standard 

deviation of the notch fatigue limit can be quantified with a much lesser experimental effort as 

compared to the crack threshold. Furthermore, if a notched specimen geometry of adequate sharpness 

is adopted, the increment in standard deviation can be kept small (compare Table 12 and 13). 

 

4.3 Prediction of the fatigue limit of independent experimental variants 

Table 14 and 15 list the predictions of the notch fatigue strength and crack growth threshold of 

variants not used to determine lth and l, respectively. In this case as well, the predictions are made 

through MC simulations and according to the simplified approach expressed by Eqs. (14) and (15) 

for the CV, while the mean value is calculated starting from the mean plain fatigue limit fl  and the 

mean value of the critical length th (Eq. (12b)) and  (Eq. (13e)). The agreement between the two 

approaches is very good: the mean value is almost identical; the standard deviation is always slightly 

overestimated by the simplified method (see conservative assumptions taken in Section 3.4) with 

respect to MC simulations. The simplified method overestimates, even though to a reasonably extent, 

the standard deviation with respect to the experimental value; hence, the method here adopted for its 

derivation can be profitably exploited in any reliability-based fatigue design approach. To conclude, 

it can be noted that the LM is less accurate in predicting the fatigue limit of the independent 

experimental variants of steel 42CrMo4+QT as compared with 7075-T6: this issue was already 

discussed in our previous works [28, 41] and mainly attributed to plasticity effects that are not 

captured by a pure linear-elastic formulation of TCD. 
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5. Conclusions 

The present paper investigated the statistical properties of the critical distance estimations obtained 

from crack threshold (lth) or notch fatigue limit (l). The latter estimation is based on an inverse search 

procedure proposed in [22] that requires a specific notch geometry devised to minimize the sensitivity 

of l to the experimental uncertainty. It was found that, if the input quantities are normally distributed, 

the output variable has a non-symmetric probability density function that, under certain conditions, 

is well represented by a skew normal distribution. Approximate functions were proposed to predict 

mean, standard deviation and skewness of such distribution and tested using real experimental data. 

The following conclusions can be drawn: 

1) The cracked specimen geometry permits to estimate lth with the lowest possible normalized 

coefficient of variation (NCV). The notch-derived l estimation is affected by larger NCV, 

which increases with increasing notch radius. In this case, NCV depends on the notch radius 

 and opening angle a  only (Eq. (12d)). This makes it possible to design a priori the notch 

specimen geometry according to the desired NCV of l estimation. 

2) The notch radius of the notched specimen geometry used for the inverse search of the critical 

distance l is the key geometrical parameter controlling the dispersion and therefore the 

uncertainty about l. The smallest dispersion is ensured by the inverse search from the crack 

threshold, whose experimental evaluation is however much more challenging with respect to 

the notch fatigue limit, especially if replicated fracture mechanics tests must be carried out to 

estimate its standard deviation. 

3) The statistical properties of l and lth can be used to estimate the dispersion of the predictions 

of independent notched or cracked geometries. The dispersion increases with increasing 

sharpness of the notch to be assessed (being the cracked configuration the sharpest notch 

possible) and with rising non-dimensional critical length. 

4) A rapid estimation of the statistical properties of l and lth (mean, standard deviation and 

skewness) is made possible by MATLAB scripts attached to the on-line version of the paper. 

 

Appendix A 

A calculation example is reported in this appendix, showing step-by-step the proposed procedure. 

The data reported here is referring to the experimental results of Aluminum alloy 7075-T6 and load 

ratio R = ‒1, comparing the critical distance distribution data as predicted with the ultra-sharp 

specimen and the threshold. This calculation sequence follows the flowchart illustrated in Fig. 9, and 

can also be retrieved in the editable script file for MATLAB® software, available online in Appendix 
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B. The material data considered, both as input of the procedure and results, can be found in Tables 

11-15. 

The following basic fatigue strength properties are introduced. The plain specimen: 

fl / 2 159MPa, / 2 5.23MPaS = =         (A.1a) 

the ultra-sharp specimen, 90 , 0.12 mmR =  = : 

fl N/ 2 38.2MPa, / 2 2.19MPaS = =         (A.1b) 

and the threshold SIF range, obtained with the M(T) specimen: 

th th4.2MPa m, / 2 0.30MPa mK S = =         (A.1c) 

The plain and the notched specimen data can be combined, obviously to find the fatigue stress 

concentration factor, along with the coefficients of variation and the equivalent CV: 

f 4.162K =             (A.2a) 

0.03289r =             (A.2b) 

N 0.05733r =             (A.2c) 

1.743 =             (A.2d) 

0.04674 =             (A.2e) 

The dimensionless LM critical distance length, obtained from the inverse search procedure, results: 

0.00520l =             (A.3a) 

and the dimensional critical distance is ( 20 mmD = ): 

0.0520 mmL =            (A.3b) 

The normalized CV can be obtained from Eq. (13d): 

4.368 =             (A.4) 

and the mean (dimensionless) critical distance   can be obtained by interpolating Eq. (13e). Specific 

values of   are considered, namely: 0 , 4,5,6,7 =  for which the 1 2,m m  values are avalable, as 

reported in Table 5. The mean value of   is calculated for these values: 

0

1 2

( ) cosh , ,...,7
( , ) ( , )

l
m m

   
    

 
= = 

+ 
       (A.5a) 

and then by piecewise linear interpolation it follows: 

( 4.368) 0.00526  = =           (A.5b) 

A similar procedure is followed to find the skewness of the distribution, according to Eq. (13f), and 

again interpolating according to the NCV, the following result is obtained: 
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1 2

( ) sinh , ( 4.368) 0.3406
( , ) ( , )

sk sk
s s

 
    

 
= = = 

+ 
     (A.6) 

The standard deviation can be found by inverting Eq. (13a): 

0.001075  =  =            (A.7) 

and the shape parameter   of the distribution can be obtained with Eq. (10e): 

1.635 =             (A.8) 

Now the scale parameter   can be found by inverting Eq. (10c) since the values ,   are available: 

2

2

0.001467
2

1
(1 )






 

= =

−
+

         (A.9) 

and the location parameter   is obtained with Eq. (10b): 

2

2

0.004266
1

 
 


= − =

+
          (A.10) 

All the parameters for the skew-normal PDF distribution are available at this point, which can be 

introduced into Eq. (10a). 

The skew-normal distribution of the threshold-derived critical distance can be calculated by following 

similar steps, as in the workflow shown in Fig. 9. By combing the experimental threshold SIF range, 

recalled in Eq. (A.1c), and the plain specimen fatigue limit Eq. (A.1a), the obtained critical distance 

is: 

th 0.0555mmL =            (A.11a) 

th th / ( / 2) 0.00555l L D= =           (A.11b) 

Along with the following coefficient of variation and equivalent CV based on the threshold 

determination: 

th 0.07143r =             (A.12a) 

th 2.172 =             (A.12b) 

th 0.05561 =             (A.12c) 

while the NCV is a fixed value: 

th 2.842 =             (A.13) 

From Eqs. (12b) and (12c) the mean value and the skewness can be found: 

th 0.00560 =            (A.14) 
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th 0.3177sk =             (A.15) 

Similarly to above, the standard deviation is retrieved with Eq. (12a): 

th 0.0008843 =            (A.16) 

and by following the same steps all the other parameters of the PDF are obtained: 

th 1.570 =             (A.17) 

th 0.001196 =            (A.18) 

th 0.004791 =            (A.19) 

The strength of a blunter notch (R = 1.0 mm) is assessed, both with thL  and L  considering their 

statistical distributions. By inverting Eq. (5b) with thl =  as input, l0 is found. Kf is then obtained 

with the first of Eq. 5(d) inverted, and the fatigue limit of the notched specimen is: 

th N,fl / 2 62.0MPa →  =           (A.20a) 

The standard deviation of this value is obtained with Eq. (14a): 

N / 2 4.47 MPaS =            (A.20b) 

This fatigue limit can be similarly obtained with the mean value of the LM critical distance,  , by 

following the same steps, i.e. by inverting Eqs. (5): 

N,fl / 2 61.6MPa →  =           (A.21a) 

Eq. (14b) can be used for the standard deviation, however, an interpolation in terms of the CV is 

required: 

N4.368 / 2 3.84MPaS = → =          (A.21b) 

The threshold SIF range can be assessed with the dimensional mean value of the critical distance, 

using Eq. (8) in which the length ( / 2)D  is introduced. The result obtained is: 

th 4.09MPa mK =           

 (A.22a) 

and the standard deviation is given by Eq. (15b), after interpolating again with respect to  : 

th 0.48MPa mS =            (A.22b) 
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Tables 

Table 1. Dependence of Williams power law singularity exponent and dimensionless N-SIF on the 

notch opening angle  , after Santus et al. [22]. 

  s KN,UU 

90° 0.4555 0.3210 

60° 0.4878 0.2866 

 

Table 2. pi, qi, ci fit model coefficients for the limit values of l and , after Santus et al. [22]. 

Notch angle 90 =  , radius ratio range ρ = 0.01−1.0 

 p1, q1, c1 p2, q2, c2 p3, q3, c3 p4, q4 

lmin 1.5331595E−03 −5.4476787E−03 1.3930191E−02 4.3940341E−06 

min 4.3035219E−03 −2.0461370E−02 6.2189732E−02 −9.0345965E−06 

lmax −7.8790423E−02 1.8286498E−01 1.4527845E−01 - 

Notch angle 60 =  , radius ratio range ρ = 0.01−1.0 

 p1, q1, c1 p2, q2, c2 p3, q3, c3 p4, q4 

lmin 3.4760317E−03 −1.0042167E−02 1.8482608E−02 1.3622097E−05 

min 1.2733490E−02 −3.9007230E−02 7.5860044E−02 1.0597477E−04 

lmax 1.7783232E−02 8.5788750E−02 3.2189338E−01 - 

 

Table 3. ai fit model coefficients for the inversion of Eq. (10e). 

a1 a2 a3 a4 

2.6159 1.7983 -5.4302 4.1124 

 

Table 4: Best-fit coefficients of the equations used to estimate NCV of lth (Eq. (12a)) and l (Eq. (13a)). 

Geometry Notch 

angle   

NCV Best-fit coefficients of Eq. (13d) 

Symbol value n1 n2 n3 n4 

Cracked - th 2.842 - - - - 

Notched 90° 0 3.125 0.1619 0.04948 0.998 0.957 

60° 2.910 0.1976 0.1141 0.987 0.345 
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Table 5: Best fit coefficients of the equations used to estimate mean value of lth (Eq. (12b)) and l (Eq. 

(13d)). 

Geometry Notch angle   NCV Symbol Index i 

1 2 

Cracked - th mth,i 0.2640 0.08393 

Notched 90° 0 mi 0.2486 0.06676 

4 0.2209 0.05860 

5 0.1971 0.05146 

6 0.1805 0.04720 

7 0.1675 0.04353 

60° 0 0.2607 0.07603 

4 0.2269 0.06149 

5 0.2025 0.05619 

6 0.1829 0.05186 

 0.1690 0.04774 

 

Table 6: Best fit coefficients of the equations used to estimate skewness of lth (Eq. (12c)) and l (Eq. 

(13e)) 

Geometry Notch angle   NCV Symbol Index i 

1 2 

Cracked - th sth,i 0.06307 0.05287 

Notched 90° 0 si 0.05956 0.04688 

4 0.06288 0.04407 

5 0.06255 0.0444 

6 0.06264 0.04457 

7 0.06210 0.04481 

60° 0 0.06393 0.05117 

4 0.06264 0.05162 

5 0.06347 0.05079 

6 0.06336 0.05103 

 0.06300 0.05126 
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Table 7: Best fit coefficients of the equations used to estimate llim (Eq. (13b)) 

Notch angle   NCV b1 b2 

90° 4 0.17590 0.1049 

5 0.08396 0.02717 

6 0.05615 0.01358 

 0.04129 0.01157 

60° 4 0.1651 0.05701 

5 0.08699 0.01692 

6 0.05960 0.007107 

 0.04447 0.005942 

 

Table 8. Requirements for statistically validated notch-derived l and threshold derived lth estimations. 

Requirements on l and lth Requirements on l 

th

th

, 0.07

0.5 , 2.2 

  

 
 

min max

( , ) 7

l l l

l   

 

=  
 

 

Table 9: Best fit coefficients for the estimation of the normalized standard deviation on the estimation 

of notch fatigue limit (Eq. (14)). 

Geometry Notch 

angle 

  

NCV Symbol Index i 

1 2 3 4 5 6 

Cracked 90° th fth,i 1.263 1.826 0.1869 0.01150 0.947 1.85 

60° 1.264 1.639 0.1779 0.01195 0.979 1.87 

Notched 90° 0 fi 1.262 1.561 0.1328 0.01360 0.985 1.76 

4 1.262 1.044 0.09107 0.007485 0.969 1.79 

5 1.257 0.7400 0.06425 0.003618 0.960 1.83 

6 1.257 0.5701 0.04643 0.002906 0.960 1.81 

7 1.253 0.4590 0.03567 0.002371 0.964 1.78 

60° 0 1.264 1.567 0.1698 0.01146 0.989 1.85 

4 1.263 0.9417 0.08927 0.006158 0.998 1.85 

5 1.256 0.6725 0.05709 0.004405 1.01 1.80 

6 1.259 0.5196 0.04637 0.002588 0.984 1.85 

 1.254 0.4196 0.03517 0.002010 0.992 1.83 
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Table 10: Best fit coefficients for the estimation of the normalized standard deviation on the 

estimation of crack threshold (Eq. (15)). 

Geometry NCV Symbol Value 

Cracked th dth 1.90 

Notched 0 d 2.01 ( 90 =  ) 

1.94 ( 60 =  ) 

4 2.38 

5 2.80 

6 3.26 

7 3.73 

 

Table 11. High-cycle plain fatigue strength of investigated materials, after Santus et al. [23]. 

Material Cycles to failure Load ratio R 
fl / 2  

(MPa) 

S/2 (MPa) 

7075-T6 3×107 -1 159 5.23 

0.1 116 9.4 

42CrMo4+QT 1×107 -1 390 20.7 

0.1 337 5.3 

 

Table 12. Statistical properties of threshold derived lth estimations. Data in bold refer to estimations 

not compliant with the requirements set in Table 8. 

Material Load 

ratio R 

thK  

( MPa m ) 

Sth 

( MPa m ) 

thL  

(mm) 

th 

 th 

th th/ l  

Eq. (12b) 

 MC 

th th/ 

Eq. 

(12a) 

 MC 

skth 

Eq. (12c) 

 MC 

7075-T6 -1 4.2 0.30 0.0555 0.0556 

2.2 

1.009 

1.009 

0.158 

0.159 

0.318 

0.320 

0.1 2.5 0.18* 0.0370 0.0768 

0.89 

1.026 

1.026 

0.224 

0.222 

0.756 

0.743 

42CrMo4 

+QT 

-1 9.1 0.66 0.0433 0.0636 

1.4 

1.015 

1.015 

0.183 

0.182 

0.480 

0.471 

0.1 7.2 0.52 0.0363 0.0523 

0.22 

1.004 

1.006 

0.149 

0.148 

0.182 

0.247 

* Estimated from the scatter band reported in [42] based on six tests undertaken on three different material lots. 

The remaining experimental variants are assumed to have the same rth ratio. 
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Table 13. Statistical properties of notch-derived l estimations. Data in bold refer to estimations not 

compliant with requirements set in Table 8. 

Material R 

(mm) 

R 
N,fl / 2  

(MPa) 

SN/2 

(MPa) 

(mm)L

l
 

 

 

 / l  

Eq. 

(13e) 

 MC 

/   

Eq. 

(13a) 

MC 

sk 

Eq. 

(13f) 

 MC 

7075-T6 0.12 -1 38.2 2.19 0.0520 

0.00520 

0.0467 

1.7 

4.4 1.012 

1.013 

0.204 

0.201 

0.341 

0.333 

0.1 24.9 1.46 0.0362 

0.00362 

0.0707 

0.72 

4.9 1.045 

1.047 

0.348 

0.348 

0.818 

0.818 

0.21 -1 42.0 2.69 0.0556 

0.00556 

0.0509 

1.9 

5.2 1.015 

1.015 

0.265 

0.261 

0.348 

0.356 

0.1 27.0 1.43 0.0327 

0.00327 

0.0685 

0.65 

6.6 1.058 

1.061 

0.453 

0.448 

0.818 

0.821 

42CrMo4 

+QT 

0.21 -1 87.5 2.93 0.0273 

0.00273 

0.0444 

0.63 

7.3 1.027 

1.029 

0.324 

0.319 

0.513 

0.510 

0.1 80.5 2.65 0.0367 

0.00367 

0.0258 

2.1 

6.2 1.004 

1.004 

0.161 

0.159 

0.166 

0.171 

 

Table 14. Predictions of notch fatigue limit based on validated threshold-derived lth estimations.  

Material R Predicted 

Geometry 

Exp. Statistical prop. of lth MonteCarlo 

N,fl / 2  

(MPa) 

SN/2 

(MPa) 

N,fl / 2  

(MPa) 

SN/2 

(MPa) 

N,fl / 2  

(MPa) 

SN/2 

(MPa) 

7075-T6 -1 R1 62.3 2.86 62.0 4.47 62.0 2.27 

R0.21 42.0 2.69 42.3 3.50 42.2 2.30 

R0.12 38.2 2.19 39.2 3.45 39.1 2.42 

0.1 R1 45.0 2.72 43.7 4.29 43.7 3.62 

R0.21 27.0 1.43 27.9 3.06 27.9 2.66 

R0.12 24.9 1.46 25.2 2.95 25.2 2.58 

42CrMo4 

+QT 

-1 R1 163 12.1 149 12.2 149 8.22 

R0.21 87.5 2.93 97.3 8.97 97.1 6.75 
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Table 15. Predictions of notch fatigue limit and crack threshold based on validated notch-derived l 

estimations. Data in bold refer to estimations not compliant with requirements set in Table 8. 

Material Notch 

geometry 

to get L 

NCV 

R Predicted 

Geometry 

Exp. Statistical prop. of 

llim 

MonteCarlo 

N,fl / 2  

(MPa) 

thK  

( MPa

m ) 

SN/2 

(MPa) 

Sth 

( MPa

m ) 

N,fl / 2  

(MPa) 

thK  

( MPa

m ) 

SN/2 

(MPa) 

Sth 

( MPa

m ) 

N,fl / 2  

(MPa) 

thK  

( MPa

m ) 

SN/2 

(MPa) 

Sth 

( MPa

m ) 

7075-T6 R0.12 

 = 4.4 

-1 R1 62.3 2.86 61.6 3.84 61.6 2.36 

R0.21 42.0 2.69 41.6 3.35 41.5 2.64 

M(T) 4.2 0.30* 4.09 0.48 4.07 0.43 

R0.12 

 = 4.9 

0.1 R1 45.0 2.72 43.7 4.07 43.7 3.72 

R0.21 27.0 1.43 27.9 3.36 27.8 3.16 

C(T) 2.5 0.18* 2.53 0.49 2.50 0.48 

R0.21 

 = 5.2 

-1 R1 62.3 2.86 61.9 4.33 61.9 2.62 

R0.12 38.2 2.19 39.0 4.28 38.9 3.65 

M(T) 4.2 0.30* 4.20 0.62 4.17 0.57 

R0.21 

 = 6.6 

0.1 R1 45.0 2.72 43.4 4.01 43.4 3.77 

R0.12 24.9 1.46 24.6 3.85 24.4 3.66 

C(T) 2.5 0.18* 2.42 0.59 2.35 0.57 

42CrMo4 

+QT 

R0.21 

 = 7.3 

-1 R1 163 12.1 144 8.52 144 8.07 

M(T) 9.1 0.66* 7.32 1.26 7.22 1.24 

R0.21 

 = 6.2 

0.1 R1 119 3.71 127 4.40 127 2.47 

C(T) 7.2 0.52* 7.25 0.63 7.23 0.59 

*See note in Table 12 on the standard deviation of crack growth threshold. 
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Figures (low resolution, then submitted in vector format) 

 

Figure 1. Specimen geometry for notch-derived estimation of the critical distance. (a) Specimen 

extraction from the same material bar, (b) characteristic dimensions and axial stress distributions, (c) 

summary of the critical distance inverse search. 

 

 

Figure 2. Convergence analysis aimed at determining the number of MC trials necessary to have 

stationary statistical properties. The fluctuation index  is defined by Eq. (9). 
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Figure 3. Probability density function of (a) threshold- and (b) notch-derived critical distance 

estimations. Histograms are obtained from MonteCarlo (MC) simulations. Mean, standard deviation 

and skewness calculated from MC simulations are used to evaluate the parameters of the skew-normal 

distributions plotted as solid lines. r is the coefficient of variation (CV) of the plain fatigue limit, 

which is here assumed to be equal to CV of crack threshold (rth) and notch fatigue limit (rN). 

 

 

Figure 4. (a) relation between skewness and shape parameter  for the skew-normal distribution (Eq. 

(10d)). (b) comparison between analytical and numerical (Eq. (10e), dotted yellow line) inversion of 

Eq. (10d). 
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Figure 5. Probability density functions (PDF) of threshold- (a),(c) and notch-derived (b),(d) critical 

distance estimations. The PDFs accounting for the effective CV, r, rth = th r, rN =  r, are compared 

with those obtained considering, for plain fatigue limit, notch fatigue limit and the crack threshold, 

the same equivalent CV, namely  and th. (a) and (b) are obtained for the maximum, (c) and (d) the 

minimum value of the validity range established for  and th. 
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Figure 6. Statistical properties of lth. (a) the CV normalized to th can be reasonably assumed to be a 

constant th, thus independent of th and th within an error band -1%, 3.5%. (b) The mean normalized 

to the input length thl  (estimated from mean of plain fatigue limit and crack threshold) is well 

represented by a hyperbolic function of th and th (Eq. (12b)). (c) The skewness is well represented 

by a hyperbolic function of th and th (Eq. (12c)). (d) Eq. (10e) can be used to infer the shape factor 

th from the skewness. 
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Figure 7. (a) The CV of notch-derived l estimations normalized to  (and denoted as ) depends on 

the notch radius . Here, the statistical properties of l will be evaluated considering five values of , 

ranging from 0 (corresponding to an infinitely sharp notch, black dashed line) to 7. (b) llim is the 

locus of critical distances for varying notch radii  corresponding to a certain value of  (here taken 

equal to 5) and is compared with the extremes of the inversion validity range lmin and lmax. (c) The 

NCV  for the locus llim is fairly independent of  and  within an error band -1.5%, 1.5%. (d) The 

dependency of  upon  and l  is well represented by Eq. (13d). 
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Figure 8. Statistical properties of notch-derived l estimations characterized by the same  value (here 

taken equal to 5). (a) The NCV  for the locus llim is fairly independent of  and  within an error 

band -1.0%, 2.5%. (b) The mean normalized to the input length l  (estimated from mean of plain and 

notch fatigue limit) is independent of the notch radius . In the following, mean and skewness will 

be calculated as the average value obtained for the explored  values. The mean normalized to the 

input length l  (c) and the skewness are well represented of hyperbolic functions of  and . 
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Figure 9. Flow-chart illustrating the step-by-step calculation procedure of the statistical properties 

of threshold- (left) lth and notch-derived (right) l estimations. 
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Figure 10. CV of notch fatigue strength estimations made using threshold- (a)-(b) and notch-derived 

(c)-(d) critical distance estimations and normalized to th or . (a) and (c) refer to infinitely sharp 

notches and show that the largest value of NCV is obtained for th or  equal to 0.5. (b) and (d) show 

the dependency of NCV of notch predictions upon notch radius and input critical length. 

 

 

Figure 11. CV of notch crack threshold estimations made using threshold- (a) and notch-derived (b) 

critical distance estimations and normalized to th or . They show that the largest value of NCV is 

obtained for th or  equal to 0.5 and will be used in the following as worst-case estimations. 
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Figure 12. Technical drawing of the specimens used for the material data: (a) C(T) specimen, (b) 

M(T) specimen, (c) hourglass-shaped plain specimen, (d) V-notched specimen with 90 =   and a 

generic notch radius. (e) Sharp notch with nominal radius R = 0.2 mm, and SEM evidence of the 

actual radius. (f) Ultrasharp notch with nominal radius R = 0.1 mm, and SEM evidence of the actual 

radius. 
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Figure 13. Comparison between PDF estimated through MC simulations and predicted by Eqs. (12) 

for the threshold-derived critical distance of 7075-T6 tested under (a) fully reversed and (b) pulsating 

axial fatigue tests. (c) The threshold-derived critical distance is input into Eq. (13d) to infer the NCV 

on the notch-derived critical distance estimations using notches of different sharpness. 
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Figure 14. Comparison between PDF estimated through MC simulations and predicted by Eqs. (13) 

for the notch-derived critical distance of 7075-T6 tested under (a)-(b) fully reversed and (c)-(d) 

pulsating axial fatigue tests. (a)-(c) ultrasharp notches (R0.12), (b)-(d) sharp notches (R0.21). 

 


