Deep Reinforcement Learning for URLLC data
management on top of scheduled eMBB traffic

1% Fabio Saggese
CNIT // Dept. of Information Engineering
University of Pisa
Pisa, Italy
fabio.saggese@phd.unipi.it

3" Marco Moretti
CNIT // Dept. of Information Engineering
University of Pisa
Pisa, Italy
marco.moretti@unipi.it

Abstract—With the advent of 5G and the research into beyond
5G (B5G) networks, a novel and very relevant research issue
is how to manage the coexistence of different types of traffic,
each with very stringent but completely different requirements.
We propose a Deep Reinforcement Learning (DRL) algorithm to
slice the available physical layer resources between ultra-reliable
low-latency communications (URLLC) and enhanced Mobile
BroadBand (eMBB) traffic. Specifically, in our setting the time-
frequency resource grid is fully occupied by eMBB traffic and
we train the DRL agent to employ Proximal Policy Optimization
(PPO), a state-of-the-art DRL algorithm, to dynamically allocate
the incoming URLLC traffic by puncturing eMBB codewords.
Assuming that each eMBB codeword can tolerate a certain
limited amount of puncturing beyond which is in outage, we
show that the policy devised by the DRL agent never violates the
latency requirement of URLLC traffic and, at the same time,
manages to keep the number of eMBB codewords in outage
at minimum levels, when compared to other state-of-the-art
schemes.

Index Terms—RAN Slicing, Deep Reinforcement Learning,
URLLC, PPO.

I. INTRODUCTION

Resource slicing of different kinds of traffic is a key enabler
for 5G and B5G networks, allowing the coexistence on a
common infrastructure of different services with different
requirements such as eMBB and URLLC [1]. The two kind
of traffic have different quality-of-service (QoS): eMBB users
require high throughputs, while URLLC has strict low-latency
and reliability constraints [2]. In particular, URLLC traffic is
characterized by short packets that need to be transmitted and
decoded in less than 1 ms [3], so that conventional channel-
aware scheduling is generally not possible.

Addressing the problem of URLLC-eMBB scheduling, [2]
compares the performance of different techniques in the uplink
of a 5G system and lays the ground for the subsequent
literature using either puncturing, orthogonal multiple access
(OMA) and non-orthogonal multiple access (NOMA). Im-
mediate scheduling of URLLC packets in combination with

2" Luca Pasqualini
Dept. of Information Engineering and Mathematics
University of Siena
Siena, Italy
pasqualini@diism.unisi.it

4t Andrea Abrardo

CNIT // Dept. of Information Engineering and Mathematics

University of Siena
Siena, Italy
abrardo@dii.unisi.it

hybrid automatic repeat request (HARQ) is another approach
investigated in [4]. In [5] eMBB codewords are punctured
to accomodate URLLC traffic and the throughput loss for
eMBB packets is evaluated under different models. In [6] the
authors propose a resource allocation scheme for URLLC-
eMBB traffic based on successive convex approximation and
semidefinite relaxation of the general optimization problem.

Because of its ability of finding very good to optimal
policies for systems that dynamically change through time [7],
Reinforcement Learning (RL) is a natural choice to address the
random dynamics of URLLC traffic. Usually, RL is employed
in its Deep (DRL) formulation, where a multi-layer Neural
Network (NN) is employed to extract features from states
hardly enumerable in the simpler tabular approaches. Accord-
ingly, in [8], and [9] the authors propose two RL algorithms
based on Q-learning to multiplex eMBB and URLLC traffic
employing OMA and NOMA, respectively. In [10] and [11],
DRL approaches based on policy gradient algorithms are
proposed to choose the resources punctured by the URLLC
transmission. The former requires a-priori information to the
number of resources to be punctured, the latter relies on the
instantaneous channel state information (CSI).

Most of the recent literature [2], [5], [8]-[11] assumes that
the URLLC packets are transmitted as soon as they arrive.
However, as long as they satisfy their latency constraints,
URLLC packets can tolerate a certain amount of delay and this
(minimum) tolerable delay can be exploited to give the sched-
uler some degree of freedom. In this paper, we address the
slicing problem by allowing some slack for URLLC transmis-
sions to minimize their impact on eMBB traffic. We assume
a system where all resources are already allocated to eMBB
traffic, so that every time there is a URLLC transmission an
eMBB packet needs to be punctured. The URLLC scheduler
is a DRL agent, which select the resources for the URLLC
packets with the goal of minimizing the outage of the eMBB
traffic due to puncturing. To enforce slice isolation, the control

planes of the different slices are kept to a minimum degree of
interaction [5], and the URLLC the eMBB schedulers are two
independent entities. Accordingly, the only information the
URLLC scheduler needs to possess is the robustness of each
eMBB codeword to puncturing. Moreover, because of the strict
latency requirements, we assume that the URLLC scheduler
does not have instantaneous channel state information. While
our proposed codeword model resembles the threshold model
described in [5], it retains two important differences. First, we
consider a more realistic non-homogeneous situation where
different puncturing policies can be adopted at different times.
Then, we consider a threshold per codeword rather than per
user. Nevertheless, the model is kept at a minimum complexity
in order to preliminary investigate the capability of a DRL
approach to automatically extract and employ the simulation’s
features to devise a generalized scheduling strategy acting
independently with respect to the URLLC packet arrival and
the eMBB scheduling process.

II. SYSTEM MODEL

We consider a single cell scenario in which one base station
(BS) serves a set of downlink user equipments (UE) with
different requirements. We denote as U and E' the number of
URLLC and eMBB users, respectively. We consider a single
coherence interval as time horizon, where the channel can be
considered constant. The time axis is divided into ¥ equally
spaced time slots of fixed duration. To accommodate URLLC
traffic, with its stringent latency requirements, slots are further
divided into M minislots'. As for the frequency domain, the
system bandwidth is divided into F' orthogonal frequency
resources (FR)?.

We consider two different schedulers, one for each type of
traffic, which operate separately and independently of each
other. The eMBB scheduler is responsible for assigning time
and frequency resources to eMBB users: each eMBB code-
word can occupy any fraction of the total available number
of minislots and FRs. As customary, eMBB scheduling is
operated at the slot boundaries. At the same time, the URLLC
agent operates on a per minislot basis with the possibility of
puncturing some of the resources already assigned to eMBB
users, if needed. In the following, we present a detailed
description of how we model the traffics, and their coexistence.

A. The eMBB Scheduler

In this paper, we do not explicitly address the eMBB
scheduling problem, but, rather, we assume that a proper radio
resource allocations has been performed somehow and we
can focus on the coexistence of URLLC traffic on top of
eMBB. Nevertheless, we need to describe the main principles
of the eMBB scheduling policy, which is to maximize a rate-
dependent utility function, not considering any latency. Hence,

Tn 3GPP, the formal term for a “slot” is eMBB Transmit Time Interval
(TTI), and a “minislot” is a URLLC TTTI [5].

2With “frequency resources” we refer to the abstract concept of bandwidth
available in an OFDM system and we may refer to resource blocks or
subcarriers, indifferently.

mini slots

eMBB #1

ala|lalale|c|d]|d MDD 22

clb|b|b|b
ala|b|bld|d|d|d

frequency
o
o
o

slots
Fig. 1. Toy example of the resource allocation and codeword placement for
the eMBB users, F' = 3, > = 2, M = 4. Resources are allocated at slot
boundaries, while codewords are a,b € Wi, ¢,d € W» and |a| = |b] =
le| = [d] = 6.

radio resources are allocated to the set of active users on
a slot basis following the OMA paradigm. Moreover, since
there is enough time to exchange channel quality information
(CQI) before each scheduling decision, it is reasonable to
assume perfect knowledge of CSI at the BS. Therefore, eMBB
resource allocation can be performed following conventional
methods such as the water-filling algorithm [12].

The scheduler has to further take into account that the
eMBB packets might share the radio resources with URLLC
traffic and in such event they should carry enough redundancy
to be punctured without losing the entire packet. We denote as
W the codebook at the BS. The BS will then select a subset
W, C W containing all the codewords of user e. A single
codeword intended for user e is denoted as w € W,. The
length in symbols |w| of a codeword is always a multiple of the
minislot length, i.e., each codeword spans an integer number
of minislots. Finally, we denote with w; s the codeword
transmitted on the radio resource f during minislot ¢ and with
Wy = Ule wy ,, the set of all codewords transmitted during
the minislot ¢. Figure 1 shows a toy example of a possible
resource allocation and codeword placement for two eMBB
users.

B. The URLLC DRL agent

Generally speaking, the QoS requirements of an URLLC
user v € U in a wireless network are specified as follows: a
packet of size N, bits must be successfully delivered to the
receiver within an end-fo-end delay of no more than 7,'**
seconds with a probability of at least 1 — ¢, [4]. Moreover,
a URLLC packet may randomly arrive at the BS at any
moment. In this work we will concentrate on the edge delay,
i.e. the delay computed as the difference between the time
the scheduler receives the packet and the time the packet
is transmitted. This choice is justified by the fact that the
backhaul delay is generally negligible [13], while UL queuing
delay and transmission delay can be taken into account by
reducing the value of the tolerable latency 7***. Without loss
of generality, we define the tolerable latency in terms of the
maximum number [;;*** of minislots that can be waited before
exceeding the latency constraint.

To simplify the description of the problem, our work will
focus on URLLC packets of fixed length corresponding to a
single minislot. The packets are generated following memory-

less packet arrival distributions: Bernoulli with arrival prob-
ability p,, and Poisson with mean value \,. The packets are
stored in a first-in first-out (FIFO) queue Q of infinite length.
The DRL URLLC agent is responsible for taking the decision
whether the oldest packet in the queue should be transmitted or
not in the current minislot, and onto which frequency resource
in the grid.

Owing to the stringent latency constraint, the CSI of
URLLC users cannot be estimated. Hence, power adaptation
during transmission is not possible and ARQ re-transmission
mechanisms can be hardly acceptable. Accordingly, reliability
can be expressed in terms of outage probability for a fixed pre-
defined transmit power. As in previous works in literature [5],
we assume that the URLLC transmit power is large enough
so that the outage probability remains under an acceptable
threshold.

C. URLLC and eMBB Coexistence

Coexistence of eMBB and URLLC is achieved by superpo-
sition coding or puncturing [1]- [S]. In this paper we consider
a puncturing strategy, where the BS decides to use a certain re-
source for URLLC traffic regardless of any eMBB user already
occupying it. To avoid any interference between the two types
of traffic, the eMBB codeword is punctured, i.e., the transmit
power of the eMBB user on the specific resource is set to zero.
To tolerate puncturing, we assume that each eMBB codeword
employs an inner erasure code with rate 1 — C,,/|w| [2],
that allows to correct up to C,, erased minislots. The eMBB
scheduler is in charge of determining the class C, for each
codeword. The class assignment is performed on a codeword
basis, i.e., the BS can assign codewords with different C,
to the same user. Note that the algorithm implemented by
the eMBB scheduler may be unknown by the URLLC traffic
agent, as long as the latter is informed of the codewords class
by the former.

III. REINFORCEMENT LEARNING

RL is usually employed to solve a Markov Decision Process
(MDP) defined over a real world task. A MDP is defined via
a dynamic environment, a state space S, an action space A,
and a reward function R(a,s) witha € A, s € S [7]. In
a MDP, the decision maker, also referred to as agent, gets
a reward from the environment upon taking an action. The
action also causes the environment to change its internal state.
At each time step ¢, the agent receives a state S; € S from
the environment, and then selects an action A; € A. The
environment answers with a numerical reward R;;; € R C R
and a next state Sy;1. This interaction gives a trajectory of
random variables, also known as episode:

SOaA07R17SI;A1,R27...

The objective of RL is to find a policy that maximizes the
expected discounted reward, where the discount factor v &€
[0,1) determines the length of the time horizon within each
trajectory, so that v — 1 means an infinite horizon.

It’s common knowledge in literature that RL is especially
effective when paired with parametric function approximators
for the policy 7(a|s), specifically multi-layer NNs (hence the
name deep). That holds true especially for each task where
the state space is too complex to be represented in tabular
form, making it impossible for the algorithm to compute
the estimated value of each state in a reasonable time [7].
Since the simulation’s state observed by the proposed agent
at each time step ¢ is of combinatorial complexity, as shown
in section III-A, in this paper we follow the DRL paradigm
when training the agent, according to literature best practices.

A. System Model as a MDP

The application of RL to our task requires to formulate the
URLLC scheduling problem as a MDP. Despite the task at
hand being inherently not episodic, for convenience of opera-
tion we truncate it in multiple episodes of length 7" minislots,
corresponding to the whole coherence interval of the channel.
A minislot ¢ € {1,...,T} represents a time step in the
episode. At the beginning of each episode, resource allocation
and codeword placement for eMMB users is performed and
then, at each time step, new URLLC packets are generated
according to a certain distribution.

The DRL action consists in deciding whether the first
URLLC packet in the queue should be transmitted in the
current minislot or not and on which FR. The possible actions
at time step ¢ are collected in the set A, = {0,1,...,F},
where 0 means no transmission, while otherwise the action
indicates the FR index for transmitting the URLLC packet. If
the URLLC queue is empty, the only possible action is 0.

The state at each time step ¢ is then represented by the set
St = {St("),St(e)}, where St(“) and St(e) collect the URLLC
and eMBB information at step t, respectively. In particular,
the 2-dimensional state St(u) is

8™ = {Qi, A} (1)

where (); represents the length of the URLLC queue at step
t, while A; = [ma* — 914 represents the difference between
the tolerable latency and the latency of the oldest packet in
the queue at step ¢. The F'-dimensional state St(e) collects for
each of the F' frequency channels the variable s;(f), which
tracks if the codeword transmitted on channel f is in outage
(s¢(f) = =1) or not (s¢(f) > 0). A non-negative s:(f)
stores the residual number of times that the codeword can
be punctured without being in outage. Let p;(w) denote the
number of times the codeword w has been punctured from the
beginning of the episode, s.(f) is computed as

St(f) :ma‘x{c’wt,f _pt(wt,f)v_l}a (2
remembering that w, ; is the codeword placed on resource f
and minislot ¢. Once a codeword is in outage, its state variable
is set to -1 and does not change anymore regardless of the
times is further punctured.

B. Reward Computation

In a RL problem choosing the reward is an empirical
process: a good reward function should capture the essence
of the task at hand. In this case the objective is to minimize
the number of eMBB codewords in outage while keeping the
latency of URLLC packets below the given threshold. With
this goal in mind, we introduce the eMMB penalty function
er(w)

-1,
er(w) = {0,

which takes value —1 only if the chosen action causes the
outage of the codeword w. Furthermore, since A; < 0
signals the violation of the latency constraint, we introduce
the following URLLC penalty function

Cuw — pt—l(w) >0NCy — Pt(w) <0,
otherwise,

3)

0, Ay >0,
Li=3 .. Af)
T D + < 0.
The heuristic value —PE‘—II is empirically chosen so that the

violation of the latency constraint for an URLLC packet results
in a larger negative contribution than the outage penalty for
eMBB traffic. In the worst case, every punctured resource will
lead to an outage event and the total maximum contribution
of the eMBB penalty is —7. However, T' is a large value
which can lead to numerical instabilities within the learning
process, and it is not highly probable that an eMBB outage
event occurs every step. Hence, we normalize T by (F+1)/«
(o > 1) which is a term that accounts for to the fact that the
larger is the number of frequency resources, the less probable
are outage events. The value of « is devised by means of trial
and error, according to best practices of reward engineering in
RL [7]. Finally, the reward at time ¢ can be expressed by

Ri=) elw)+ Ly, 5)

weEW,

Eventually, when A; < 0 the episode is considered finished.

C. Algorithm and Neural Network (NN) Architecture

Among the possible DRL techniques, we consider a Policy
Gradient (PG) algorithm called Proximal Policy Optimization
(PPO) [14]. PPO aims at taking the biggest possible im-
provement step on a policy without ending too far from the
previous one, thus avoiding the risk of performance collapse.
While we know that many papers in literature focus on
well known methods as Deep Q-Learning (DQL) or Vanilla
Policy Gradient (VPG), both presents huge drawbacks w.r.t.
PPO. Specifically, DQL cannot scale to large action spaces
required by complex tasks as the one at hand, while VPG is
extremely unstable during training. PPO is considered state-
of-the-art for PG methods in current RL literature, by being an
efficient approximation of Trust Region Policy Optimization
(TRPO) [15], the latter being proved to guarantee a monotonic
improvement over the expected discounted reward w.r.t. the
training steps.

PPO is an actor-critic algorithm [14], where two different
neural networks are required. To this respect, we consider two
completely separated subnetworks, one for the value function
(the critic, with output estimated value of current state) and
one for the policy function (the actor, with output the current
strategy). Both policy and value function subnetworks have
three dense layers with 128, 64, and 32 neurons, respectively.
All of them operate a rectified linear activation function
(ReLU). Furthermore, the policy subnetwork has a dense
fourth layer with F' 4+ 1 neurons to choose the actions, while
the value subnetwork has a dense fourth layer with 1 neuron
and no activation to estimate the value. Finally, all layers are
initialized using Xavier initialization. For additional details
refer to the GitHub repository [16].

IV. RESULTS

We consider a scenario, where the slot duration and the
coherence time of the channel are set to 1 and 10 ms,
respectively. Each slot is further divided in M = 14 minislots.
The number of frequency resources is ' = 12. The length of
an episode corresponds to the coherence time of the channel
so that the number of time slots for each episode is ¥ = 10,
for a total of T' = 140 minislots. We consider a single
URLLC user, i.e. U = 1, and the number of eMBB users
is E = 10. We further set the maximum delay constraint to
[max — M /2 =7 = 0.5 ms. We consider only codewords of
class Cy, € {0,1}, i.e., codewords that can be punctured zero
or one times before being in outage.

Regarding PPO, we use an instance of PPO-Clip with a
clip ratio equal to 0.2, and an early stopping strategy if the
mean KL-divergence of the new policy from the old one grows
beyond a given threshold, set as 1.5 - 10~2, as described
in [17]. To reduce the variance of the states’ values stored
into the various trajectories we feed the NN with, we use the
generalized advantage estimation approach with yoag = 1
and Agag = 0.97, as proposed in [18]. The value of « in (4)
is 3.

To have a fair performance comparison, we consider four
alternative URLLC scheduling algorithms:

o Aggressive. The URLLC packet is transmitted immedi-
ately on a randomly chosen frequency.

e Threshold Proportional (TP). The URLLC packet is
transmitted immediately on the frequency resource occu-
pied by the codeword with the highest puncturing thresh-
old, given by (2). TP has almost optimal performance
when the URLLC is forced to transmit immediately upon
arrival, i.e., I;® = 1, and in case of low average URLLC
load [5].

e TP-lazy. Aslong as A; > 0, the packet is transmitted only
it > ew, Co—pe(w) 2 3 e, Co—pi(w), ie. if the
present state is somehow better (or equal) than the next
one. If A; = 0, the transmission is forced in the present
minislot. In any case, the choice of the frequency is made
according to the TP scheme. This heuristic combines
the advantage of the TP transmission policy with the
possibility of waiting before puncturing eMBB resources.

e TP-smart. This heuristic immediately transmits the
URLLC packet. If there is an eMBB codeword already in
outage the scheduler transmits on the resources occupied
by that codeword, otherwise TP-smart acts as TP. Note
that this scheme results optimal, in terms of impact on
eMBB codewords, for immediate transmissions in this
scenario.

During the learning phase of the PPO agent, the parameters
related to eMMB resource allocation and URLLC traffic
generation are randomized on a per episode basis. While this
is not mandatory to train a functioning agent, it is crucial
to help the agent to learn a generalized strategy that is not
specific either for a particular eMMB allocation policy or a
particular URLLC traffic load. Since the MDP formulation
considered in this paper models a not episodic task, to compute
the expected discounted reward we set v = 0.99. To further
simulate a continuous task, we initialize each episode with a
random number of URLLC packets in the queue. The number
of packets generated in this way is always smaller than [}}'®*
to avoid that the episode starts with A; < 0. After training
the agent with Bernoulli distribution of packets, we show the
results obtained by running the RL-based agent in inference
mode, providing comparisons with the considered heuristic
schemes.

A. Bernoulli Distribution

Here we discuss the results obtained for the Bernoulli
distribution.

Table I shows the total episode reward EtT:lRt as a
function of p,,, for 7' = 140. It is worth noting that the PPO
agent trained as proposed in this paper, outperforms all the
other schemes for every value of p,,. In Table II, we show the
average number of packets remaining in the URLLC queue
at the end of each episode for different p,. The results for
aggressive, TP-smart and TP are omitted since the URLLC
packets are promptly transmitted upon arrival. At the opposite,
with the TP-lazy scheme a non-negligible amount of traffic
remains unserved at the end of an episode. We can see that the
PPO agent is able to devise a new policy in-between the two.
It’s worth noting that while TP, TP-lazy, aggressive and TP-
smart are all designed to to never violate the URLLC latency
constraints for Bernoulli distribution, the PPO agent learns
this on its own.

The subdivision of the task into episodes may somehow
distort the correct evaluation of the algorithms’ performance.
To simulate a longer time horizon is of critical importance

TABLE 1
TOTAL REWARD VERSUS ACTIVATION PROBABILITY Dy, .

Pu 0.1 0.2 0.3 0.4 0.5 | mean
aggressive -4.60 -9.04 -14.01 -18.55 -23.34 | -13.91
TP -1.31 -3.23 -6.71 -9.85 -15.78 -7.38
TP-lazy -1.18 -3.18 -5.72 -9.25 -14.63 -6.79
TP-smart -0.77 -1.64 -2.34 -3.28 -4.23 -2.43
PPO -048 -1.18 -1.955 -2.69 -3.77 -2.03

TABLE II
AVERAGE NUMBER OF URLLC PACKETS NOT SERVED BEFORE THE END
OF THE EPISODE.

Pu 0.1 0.2 0.3 0.4 0.5
TP-lazy 0597 1222 1.790 2416 3.015
PPO 0.030 0.068 0.081 0.136 0.210

to the real word task. To address this issue, we repeated our
tests scaling up the length of each episode by one order of
magnitude, without retraining the agent.

Fig. 2 shows the percentage of eMMB codewords in outage
at the end of each episode for the various schemes, with 7' =
1400, while the class of each codeword is again randomly
chosen. Also in this case, the PPO agent outperforms all the
other schemes.

[5)

50

g 17.5 | —<— aggressive //<

o 15.0 - TP-smart N

g : —&— TP-lazy) 7

T 1254 TP //

% 10.0 - -+ - PPO

© 7.5

% 5.0

% 2.5 >

o -9 — e -

o — >

S 0.0 - \t// T T T T

0.10 0.20 0.30 0.40 0.50

Pu

Fig. 2. Percentage of eMBB codeword in outage versus activation probability
pu, T = 1400.

Finally, Fig. 3 shows the percentage of eMBB codewords
in outage for different compositions of eMBB codewords
classes D = [Pr{Cp}, Pr{C1}] and p,, = 0.3. The PPO agent
outperforms all the heuristic schemes, including the one we
considered optimal at one step. Among the other things, we
can see that PPO has good performance even when D = [1, 0],
i.e. there are only codewords without an inner erasure code.

B. Poisson Distribution

In this section, we discuss the results obtained for the
Poisson distribution, collected for 1" = 140. To assess the
generalization capabilities of PPO, we use the same network
trained on the environment with Bernoulli distribution.

In Fig. 4, we show the performance of the various schemes
in terms of eMBB codewords’ outages. Also in this case,
the proposed PPO agent attains best performance. It’s worth
noting that TP-lazy heuristic scheme is omitted since it’s
not able to deal with the bursts of packets generated under
the Poisson assumption, thus consistently violating URLLC
latency requirements. All other schemes, PPO included, never
violate them.

& 35.0 ,

S —x— aggressive

S 30.0 1 TP-smart

=

R | —4— TP-lazy 5
.g 25.0 e TP X
2 20.0 4 -»-PPO

3

S 15.0

g 10.0 o
o 5.0

s

< 0.0

T T T T T
[0, 1] [0.2, 0.8]0.5, 0.5]0.8, 0.2] [1, O]
D

Fig. 3. Percentage of eMBB codewords in outage versus the different
percentage of classes of codeword for probability of activation p,, = 0.3.

8 17.5 - —< aggressive —

S TP-smart 7

T 1254 »-PPO

é 10.0 +

S

© 7.5

% 5.0

% .

w 2.5

S

x 0.0 \ \ \ \
0.10 0.20 0.30 0.40 0.50

Ay

Fig. 4. Percentage of eMBB codeword in outage versus Poisson rate .

V. CONCLUSIONS

We proposed a DRL approach to train an agent acting as a
scheduler able to dynamically manage the coexistence of the
URLLC traffic on top of the eMBB traffic. The agent is trained
using PPO, a state-of-the-art DRL algorithm, and once trained
it can decide where to execute puncturing with average time
complexity within the range of [0.3, 3.0] milliseconds, depend-
ing on the underlying hardware. It also supports parallelization
by means of autonomous decisions over multiple simulations
at once. The trained RL agent overall outperforms all the
other schemes on multiple performance metrics, being capable
of noteworthy generalization over the complementary task
of never violating URLLC latency requirements while min-
imizing eMBB codewords’ outages. Our approach is highly
scalable with respect to the length of each simulation and
the arrival packet distribution, without retraining the agent.
This is of critical importance since the real world task we
modeled is inherently not episodic and the URLLC packets’
arrival distribution is not known a priori or it could be subject
to changes.

We believe this work to be a promising foundation w.r.t. the
general research task of solving the eMBB-URLLC resource

slicing problem. Our future works will build on top the results
of this paper, retaining the approach and its scalability while
we increase the realism of the simulation. Specifically, we plan
to focus on: taking into account the reliability of URLLC user;
addressing the transmission over multiple frequency resources;
enabling non-orthogonal multiple access communication; test-
ing the agent with different arrival packets distributions.

ACKNOWLEDGEMENT

The work of Fabio Saggese and Marco Moretti is partially
supported by the Italian Ministry of Education and Research
(MIUR) in the framework of the CrossLab project (Depart-
ments of Excellence).

REFERENCES

[1] S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano, “5G
RAN slicing for verticals: Enablers and challenges,” IEEE Commun.
Mag., vol. 57, no. 1, pp. 28-34, 2019.

[2] P. Popovski, K. Trillingsgaard, O. Simeone, and G. Durisi, “5G Wireless
Network Slicing for eMBB, URLLC, and mMTC: A Communication-
Theoretic View,” IEEE Access, vol. 6, pp. 55765-55779, 2018.

[3] C. She, C. Yang, and T. Q. S. Quek, “Radio Resource Management
for Ultra-Reliable and Low-Latency Communications,” IEEE Commun.
Mag., vol. 55, no. 6, pp. 72-78, 2017.

[4] A. Anand and G. de Veciana, “Resource Allocation and HARQ Opti-
mization for URLLC Traffic in 5G Wireless Networks,” IEEE J. Sel.
Areas Commun., vol. 36, no. 11, pp. 2411-2421, 2018.

[5] A. Anand, G. de Veciana, and S. Shakkottai, “Joint Scheduling of
URLLC and eMBB Traffic in 5G Wireless Networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 2, pp. 477-490, 2020.

[6] J. Tang, B. Shim, and T. Q. S. Quek, “Service Multiplexing and
Revenue Maximization in Sliced C-RAN Incorporated With URLLC
and Multicast eMBB,” IEEE J. Sel. Areas Commun., vol. 37, no. 4, pp.
881-895, 2019.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[8] M. Elsayed and M. Erol-Kantarci, “Al-Enabled Radio Resource Alloca-
tion in 5G for URLLC and eMBB Users,” in 2019 IEEE 2nd 5G World
Forum (5GWF), 2019, pp. 590-595.

[91 Y. Li, C. Hu, J. Wang, and M. Xu, “Optimization of URLLC and eMBB

Multiplexing via Deep Reinforcement Learning,” in 2019 IEEE/CIC In-

ternational Conference on Communications Workshops in China (ICCC

Workshops), 2019, pp. 245-250.

Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A Deep-Reinforcement-

Learning-Based Approach to Dynamic eMBB/URLLC Multiplexing in

5G NR,” IEEE Internet Things J., vol. 7, no. 7, pp. 6439-6456, 2020.

M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi,

and C. S. Hong, “Intelligent resource slicing for eMBB and URLLC

coexistence in 5G and beyond: A deep reinforcement learning based

approach,” IEEE Trans. Wireless Commun., pp. 1-1, 2021.

P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-Filling: A Geometric

Approach and its Application to Solve Generalized Radio Resource

Allocation Problems,” IEEE Trans. Wireless Commun., vol. 12, no. 7,

pp. 3637-3647, 2013.

G. M. S. Rahman, M. Peng, K. Zhang, and S. Chen, “Radio Resource

Allocation for Achieving Ultra-Low Latency in Fog Radio Access

Networks,” IEEE Access, vol. 6, pp. 17442-17454, 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust

region policy optimization,” in International Conference on Machine

Learning. PMLR, 2015, pp. 1889-1897.

L. Pasqualini and F. Saggese, “Deep Reinforcement Learning for

URLLC data management on top of scheduled eMBB traffic,” GitHub

repository, 2021, https://github.com/InsaneMonster/telerl2021.

OpenAl, “Proximal Policy Optimization,” OpenAl web site, 2018, https:

//spinningup.openai.com/en/latest/algorithms/ppo.html.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-

dimensional continuous control using generalized advantage estimation,”

arXiv:1506.02438, 2015.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

