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Abstract— Photoplethysmography (PPG) is a completely non-
invasive, optical method of assessing blood flow dynamics in
peripheral vasculature. Wearable devices for PPG recording are
becoming increasingly popular, due to their cost-effectiveness
and ease of use. For these reasons, many recent scientific studies
have proposed the use of pulse rate variability (PRV) extracted
from PPG as a surrogate for heart rate variability (HRV), in
monitoring autonomic activity and cardiovascular health.
In this work, we used a cross-mapping approach, a methodology
based on chaos theory, to compare PRV and HRV dynamics,
and investigate their agreement according to age and gender of
healthy subjects. We used ECG and PPG data acquired from
57 subjects (41 young and 16 elderly) during resting state in
the supine position. Signals were gathered from the publicly
available VORTAL dataset. Our results showed a statistically
significant decrease of PRV reliability as an HRV surrogate in
old participants, which was confirmed as significant when only
men subjects were analyzed (p-value<0.01).
Our findings, although preliminary, suggest greater caution in
the use of PPG devices for monitoring cardiovascular health,
especially in elderly men.

I. INTRODUCTION

The use of wearable devices for the acquisition of pho-
toplethysmography (PPG) signals to monitor cardiovascular
health is increasingly widespread. This rapid boost in the
demand and consequent production of these devices is due
to a multiplicity of factors, e.g., their non-invasiveness, cost-
effectiveness, and easiness of connection.
PPG signals acquired with such wearable devices have been
used to analyze the heart rate variability (HRV): the gold
standard signal to investigate the autonomic nervous system.
However, several previous studies have shown controversial
results on the reliability of pulse rate variability (PRV)
obtained from PPG signal, as a surrogate for HRV signal
extracted from the ECG [1]–[7]. Specifically, the reliability
of PRV was found to be influenced by several factors,
including physical activity [4], stress and emotions [8], [9],
cold exposure and acquisition site [9], [10]. The hypothesis
of using PRV indexes as surrogates for HRV features was
investigated also in subjects affected by cardiovascular dis-
eases (such as hypertension, acute infarction, heart failure,
and coronary artery disease) [5] and ischemic stroke [11].
Under these pathological conditions, the agreement between
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HRV and PRV was lower than in healthy subjects and caution
was recommended when using PRV for cardiovascular health
monitoring. Pathologies such as cardiovascular disorders or
ischemic strokes are much more frequent in the elderly
population, characterized by a physiological weakening of
the heart system and by pathologies such as hypertension
and diabetes, which can affect its regular activity.
This study aims to investigate how aging can influence the
agreement between PRV and HRV, in healthy subjects. The
possible effects of aging on PRV due to vascular changes
was already hypothesized in previous literature [1]. The age-
related increase of artery stiffness can in fact influence the
morphology of PPG signal and was demonstrated to be
inversely correlated with sympathetic baroreflex sensitivity,
an indicator of cardiac autonomic regulation [12]. Moreover,
several studies highlighted that gender affects baroreflex
sensitivity and the incidence of specific cardiovascular dis-
eases [12], [13]. The factors behind this difference are still
being investigated, although one of them could be related to
different exposure to sex hormones [14].
We compared the quality of the PRV signal extracted from
the PPG of healthy elderly subjects with that of healthy
young subjects. We used data contained in the public VOR-
TAL dataset [15]–[17], consisting of ECG and finger-PPG
signals acquired from 41 young healthy subjects and 16
elderly healthy subjects. All participants were monitored
in the supine position for at least 9 minutes. In order to
compare PRV and HRV dynamics we used the approach we
proposed in [9], based on cross-mapping method [18], [19].
This approach studies and compare nonlinear dynamics of
HRV and PRV signals in the phase space, and allowed us
to unveil relevant differences in the quality of PRV when
acquired from wrist and finger, overcoming the performance
of a simple linear correlation between the signals [9]. We
started from the hypothesis that in order to consider PRV as
a good surrogate of HRV, the attractors described by PRV
and HRV time series after the phase space reconstruction
have to follow the same dynamics. Finally, statistical analysis
was carried out to compare PRV and HRV signals in the
two groups of subjects, i.e. young and elderly, by using
the indexes of agreement obtained with the cross mapping
approach.

II. MATERIALS AND METHODS

A. Data description

The VORTAL dataset contains data from a total of 57
healthy participants: 41 young subjects (21 women, aged 26-
31) and 16 elderly subjects (9 women, aged 72-78) [15]–[17].



All the participants provided written informed consent for the
study. The dataset was collected during the VORTAL study
(National Clinical Trial 01472133), at St Thomas’ Hospital,
London, UK. Ethical approval was obtained from the London
Westminster Research Ethics Committee (11/LO/1667). The
Vortal dataset contains simultaneous ECG, finger-PPG, ear-
PPG, oral-nasal air pressure and impedance pneumography
signals acquired during a resting state session of about 10
minutes in supine position. For this study, according to the
minimum duration of the acquisitions, we used the first 9
minutes of ECG and PPG signals. PPG signals were recorded
from the finger of each participant, which is considered the
gold-standard location for PPG acquisition. Lead II ECG
signals were acquired using an adapted 3-lead M1510A ECG
cable (Philips Medical Systems, Boeblingen, Germany) and
PPG signals were recorded by using the MLT1020FC fin-
ger clip infrared reflection plethysmograph sensor (Braebon
Medical Corporation, Kantata, ON, Canada). A sampling rate
of 500 Hz was used.

B. Signal pre-processing

In this study, we applied the cross-mapping procedure
to compare HRV series and PRV series of young and
elderly healthy subjects. HRV and PRV were extracted from
simultaneously acquired ECG and PPG signals, respectively.
Interbeat interval series (RR series) were extracted from
ECG signals, by using the Pan-Tompkins algorithm to
automatically detect the QRS complexes [20]. The pulse
detector algorithm described in [21] was used to extract the
pulse-to-pulse (PP) series. Then, two uniformly-sampled
HRV and PRV series were obtained for each subject through
a shape-preserving piecewise cubic interpolation at the
standard rate of 4 Hz.

C. Cross-Mapping

Before applying cross-mapping method the attractors of
PRV and HRV time series have to be reconstructed according
to Takens’ theorem, using time-delayed embedding [22]. For
each time series, we identified the appropriate time delay τ ,
as the minimum of the mutual information function, and the
embedding dimension m, using the false nearest neighbor
(FNN) method [23]–[25].
Given two time series [x(1), x(2), ..., x(n)] and
[y(1), y(2), ..., y(n)], representing the observation
functions of the same dynamic process and describing
the diffeomorphic attractors, the cross-mapping method can
be applied following the procedure described in [18], [19].
An estimate of Y can be generated from a reconstructed
manifold or ”shadow manifold” MX , derived from X . The
estimate of each point of Y is called Ŷ (t)|MX , and is found
through a simple projection: a nearest-neighbor algorithm
based on exponentially weighted distances from nearby
points on MX . Specifically, in order to find Ŷ (t)|MX

starting from the shadow manifold MX , the corresponding
point over time in MX has to be identified, i.e., X(t). Then,
a small region of E + 1 points around X(t) has to be used

to map a corresponding small region around Y (t), where E
was chosen as the maximum value among the embedding
dimensions of the two time series [18], [26]. This means
that the points [X(t1), X(t2), ..., X(tE+1)] ordered from the
nearest to the farthest, are used to map the corresponding
points [Y (t1), Y (t2), ..., Y (tE+1)], and the of estimate Y (t)
is found as follows:

Ŷ (t)|MX =

E+1∑
i=1

wiY (ti) (1)

The weights wi are calculated using the Euclidean distances
between X(t) and the nearest E + 1 points (‖ · ‖ indicates
the Euclidean distance in RE):

wi =
ui∑E+1

j=1 uj
(2)

ui = exp

(
−‖ X(t)−X(ti) ‖
‖ X(t)−X(t1) ‖

)
(3)

Finally, the Pearson correlation coefficient is computed to
compare the time series obtained applying the cross-mapping
and the original series.
Here, we used the points of the attractor related to the
PRV series to estimate the points of the attractor of the
HRV series. Then we compared the estimate of HRV series
obtained using the PRV attractor with the real HRV signal,
by using Pearson correlation indicated as ρMX

. The higher
the ρMX

coefficient value, the higher the reliability of PRV
signal as a surrogate of HRV.

D. Statistical analysis

The Mann-Whitney non-parametric test was used to sta-
tistically compare group-wise medians between ρMX

values
obtained after the application of cross-mapping procedure.
Specifically, the statistical analysis consisted in identifying
the presence of significant differences in the ρMX

values
between young and old participants starting from three
different groups of subjects: all participants, all men, all
women. A p-value<0.05 was considered significant. The use
of non-parametric tests was justified by the non-gaussian
distribution of samples (p < 0.05 from the Shapiro-Wilk
test).

III. RESULTS

Figure 1 shows the values of the correlation coefficient
ρMX

obtained after the application of cross mapping ap-
proach to cardiovascular signals of Vortal dataset. Results are
presented in the form of boxplots referred to three pools of
participants: for all the subjects grouped according to the age
(young vs. elderly), and for all the women and all the men
grouped in the same way. In the first case, when we used
the Mann-Whitney test to analyze the statistical difference
between young and elderly regardless of the gender of the
participants, we found a significant p-value i.e., p=0.028. The
median value of ρMX

coefficients was higher in the group of
young subjects when compared to the median value of corre-
lation coefficients computed for the group of old participants.



On the other hand, studying males and females separately,
only males presented significant differences in ρMX

values
according to the age. Elderly men were associated with lower
correlation coefficients with respect to young males.
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Fig. 1. Boxplots of ρMX
coefficient values obtained after the application

of cross-mapping method on Vortal ECG and PPG data, considering the
following three groups: all subjects, males and females. Boxplots related
to young subjects are colored by green, whereas boxplots associated with
elderly subjects are colored by blue. The p-value of the Mann-Whitney
statistical test between ρMX

values of young and elderly subjects is reported
above the corresponding subfigure.

IV. DISCUSSION AND CONCLUSION

The convenience and practicality of using wearable de-
vices for PPG signal monitoring have led to an in-depth
study on the reliability of PRV signal extracted from it, as
a surrogate of HRV signal. According to recent literature,
PRV should be used with caution as a diagnostic tool in old
subjects affected by cardiovascular diseases and stroke [5],
[11].
This study reports on the investigation of statistical differ-
ences in PRV and HRV agreement according to the age in
both male and female healthy subjects. In fact, aging plays
a crucial role in characterizing cardiovascular dynamics also

in healthy population [13], [27], and physiological factors,
e.g. sex-related hormones and biochemical processes, can in-
fluence the development of several cardiac pathologies [14].
We used data gathered from the public available VORTAL
dataset [15]–[17]. ECG and PPG signals lasting nine minutes
were simultaneously recorded from 57 subjects in supine
position, grouped according to the age: 41 young and 16 old
participants. In order to compare HRV and PRV dynamics,
we used the cross-mapping, a methodology based on chaos
theory and used to evaluate time correlation and causality
between two time series [9], [18], [26]. Nonlinear analysis
of cardiovascular univariate and multivariate time series has
already been shown to be an effective tool for the detection
of age-dependent changes in complex autonomic dynamics
[25], [28]. The results obtained after the application of cross-
mapping approach showed a decrease of agreement between
PRV and HRV in elderly participants. Mann-Whitney non-
parametric statistical test revealed a significant statistical
difference between the median values of the correlation
coefficient ρMX

related to young and old subjects (p-
value<0.05). When we investigated gender effects on our
analysis, we did not find significant differences if only the
signals of female participants were taken into account. On the
other hand, a significant p-value, i.e. p<0.01, was obtained
when only the PRV and HRV signals recorded from men
were considered.
Our outcomes suggest that the reliability of PRV signal
decreases according to the age of subjects and is affected by
gender, showing a statistically significant reduction of the
agreement with HRV in men. The results are in line with
previous literature. In fact, PPG signal was demonstrated to
be affected by aging [29], [30]. Furthermore, gender differ-
ences in cardiovascular metrics extracted from elderly were
already found, showing higher values of parasympathetic
indexes and more complex dynamics in women than men
[31], [32]. The quality of PRV was already analyzed in
patients affected by several diseases, specially cardiovascular
disorders [5]. However our results, obtained on a population
of healthy subjects and not on patients as in the previous
studies, suggest caution on the use of the PRV signal not
only in the prognosis of diseases, but also in the diagnosis
and monitoring. The analysis of gender differences added
new and relevant information, showing a worse reliability in
elderly men than in women.
Future works will be addressed towards an increase of
sample size to study more thoroughly gender dependence,
and an investigation of the reliability of PRV also in case of
short and ultra-short time series, i.e., series with a duration
less than or equal to five minutes.
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