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Abstract:
For many complex processes, it is desirable to use a nonlinear model in the MPC design, and the recently
proposed Dynamic Response Surface Methodology (DRSM) is capable of accurately modeling nonlinear
continuous processes over semi-infinite time horizons. We exploit the DRSM to identify nonlinear data-
driven dynamic models that are used in an NMPC. We demonstrate the ability and effectiveness of the
DRSM data-driven model to be used as the prediction model for a nonlinear MPC regulator. This DRSM
model is efficiently used to solve a non-equally-spaced finite-horizon optimal control problem so that the
number of decision variables is reduced. The proposed DRSM-based NMPC is tested on a representative
nonlinear process, an isothermal CSTR in which a second-order irreversible reaction is taking place.
It is shown that the obtained quadratic data-driven model accurately represents the open-loop process
dynamics and that DRSM-based NMPC is an effective data-driven implementation of nonlinear MPC.

Keywords: Nonlinear MPC, Dynamic Response Surface Methodology, Data-driven MPC, Systems
identification

1. INTRODUCTION

Model Predictive Control (MPC) is a powerful tool for process
control, hence in recent decades, an extensive number of ef-
forts among researchers have been carried out to improve the
usability of MPC products (Darby and Nikolaou, 2012). Even
though MPC is a good choice in handling complex interactions
and multiple constraints, it still has some disadvantages. The
implementation and maintenance costs for an MPC are, in many
cases, higher than those of classical control structures. This
is primarily due to the cost for the estimation of the related
process models. The traditional MPC uses a linear model, but
several processes are quite nonlinear necessitating the use of a
Nonlinear MPC (NMPC). Most of the time, nonlinear process
models are not easily available. Mostly because we do not know
enough of the inner workings of a process to write down a
knowledge-driven model. Even in cases, we achieve this, the
derived model representation is too complex. For such reasons,
a data-driven model may be preferred. It is derived by collecting
process input and output data over a specific time window
and using suitable algorithms to estimate the parameters of the
postulated process model. Researchers have mainly focused on
Nonlinear ARX (NARX) (Hong et al., 1996), Hammerstein-
Wiener (H-W) models (van Wingerden and Verhaegen, 2009)
and the Neural Network models (da Cruz Meleiro et al., 2009).
These models are identified through Pseudo-Random Binary
Signals (PRBS) or Generalized Binary Noise (GBN) (Tulleken,
1990) input experimentation near a steady state.

The Design of Dynamic Experiments (DoDE) (Georgakis,
2013), a generalization of the traditional Design of Experi-
ments (DoE) (Montgomery, 2017), is a novel approach for
data-driven process modeling. The available data for estimating

the corresponding Dynamic Response Surface Methodology
(DRSM) (Klebanov and Georgakis, 2016) model are collected
at fixed time intervals during the experiments. Contrary to the
static RSM, the model parameters in the DRSM are time-
varying and require time-resolved measurements to be esti-
mated. The DRSM model has already been used to estimate
a dynamic model for use in an MPC and to calculate the opti-
mal trajectory of a batch process (Wang and Georgakis, 2019).
A transformation of the DRSM model into a Hammerstein-
Wiener form was also used by an NMPC regulator.

The present paper aims to develop a methodology for the direct
use of a DRSM model in an NMPC framework, and to this aim
the DRSM model is suitably conceived to include the initial
condition as one of the factors so that it can be directly used in a
finite-horizon optimal control problem formulation. The DRSM
model captures the nonlinear dynamics of a process quite accu-
rately and can be used to develop a linear or a nonlinear recur-
sive dynamic model. Firstly, a DRSM model is estimated rep-
resenting the dynamics of the process over the design domain
where the DoDE experiments are performed. Then, a DRSM-
NMPC is designed to control a process. An isothermal CSTR
is used here as a case study and the DRSM-NMPC regulator
aims to track the desired product concentration. The control
performances of DRSM-NMPC, based on a nonlinear dynamic
model, are then tested and compared with the Linear DRSM-
MPC and a nominal NMPC using the true process model. To
streamline the material presentation, the DRSM model is pre-
sented for a single-input single-output (SISO) process, but then
a brief discussion on how to treat the multi-input multi-output
case is also presented.



The rest of the paper is organized as follows. The problem
definition and the methodology for the DRSM identification
are given in the following section 2. The proposed DRSM-
NMPC is formulated in Section 3. The resulting DRSM-NMPC
algorithm is tested on the simulated example in Section 4.
Finally, conclusions are presented in Section 5.

2. DRSM MODEL

2.1 Plant dynamics

We consider a discrete-time nonlinear dynamic system:
ξ
+
p = fp(ξp,u)
yp = hp(ξp)+ vp

(1)

where ξp ∈Rnξ , u∈Rnu and yp ∈Rny are the current plant state,
input and output, respectively, ξ+

p ∈R
nξ are the successor states

and vp is the output noise. Although not explicitly mentioned in
(1), the discretization time is denoted by h.

We assume that the plant dynamics (1) is not known, therefore
in this section, a methodology is developed to identify a DRSM
model from experimental data able to approximately capture
the plant dynamics.

2.2 DRSM model

As anticipated, to simplify the discussion about the DRSM
model, we consider a SISO plant, i.e. nu = ny = 1. We consider
in this discussion a quadratic DRSM model given by:

y(θ) = β0(θ)+
n

∑
i=1

βi(θ)xi +
n

∑
i=1

n

∑
i< j

βi j(θ)xix j +
n

∑
i=1

βii(θ)x2
i

(2)
where y(θ) is the model output value evaluated at the dimen-
sionless time θ (later defined), and xi are normalized model
factors with−1≤ xi ≤ 1, i= 1, · · · ,n, which are used to express
the initial condition and applied input of each experiment, as
later defined in (5). Other model classes, such as linear, cubic
or higher order, can also be chosen. The dimensionless time θ

is defined as follows:

θ = 1− exp
(
− t

tc

)
(3)

where tc characterizes the slowest dynamics of the plant. The
time-varying parametric function βq(θ) is defined with an
orthogonal basis of R+1 Shifted Legendre Polynomials (SLP),
Pr(·) with r = 0, . . . ,R, where r is the order of the SLP as:

βq(θ) = γq,1P0(θ)+ γq,2P1(θ)+ · · ·+ γq,R+1PR(θ) (4)
in which q = 0, i, i j, ii for i = 1,2, . . . ,n, j > i and γq,r+1 are
scalar coefficients.
Remark 1. The parameters of the DRSM model (2) are the
SLP highest order R, the characteristic time tc, and the SLP
coefficients γq,r for r = 0, . . . ,R and q = 0, i, i j, ii.

We define a new vector variable η = [y0,u], where y0 is the
initial value of the output and u is the applied input, assumed
constant in each experiment. For a SISO control plant the
considered DRSM has two factors x1 and x2, i.e. n = 2, and η

is related with them by the following normalization equation:
ηi = η

c
i +∆ηixi, i = 1,2 (5)

where ηc
i is a centering value, and ∆ηi determines the size of

the design domain.

Let us note that an efficient data collection strategy is to imple-
ment a series of step changes in the process input u changing in
the DRSM model the second factor x2. The initial value y0, cor-
responding to the first factor x1, is collected by the experimental
measurement at the end of the previous experimentation. This
is based on the assumption that the experiments are executed
one after the other and in a continuous operation plant. The
procedure used to estimate the DRSM parameters is described
in Wang and Georgakis (2017).

2.3 DRSM-based MPC nominal model

In order to design a DRSM-based MPC algorithm, we consider
a nominal process model defined as in (2), and we rewrite it in
the following compact form:

y(t) = H̃(t,x) (6)
We note that, by definition (2), the function H̃(t,x) is differ-
entiable in its arguments. By inverting (5), we express xi as a
function of ηi:

xi =
ηi− η̄i

∆ηi
(7)

Then, we rewrite (6) as follows:
y(t) = H(t,y0,u) (8)

Furthermore, we can derive a recursive discrete-time model
from (6) considering the discretization time h as generic time
t, obtaining:

y(h) = H(h,y0,u) (9)
Finally, to simplify the notation and to further highlight the
recursion, we indicate the initial condition y0 as y, the output
at the end of the discretization interval y(h) as y+, and rewrite
(9) as follows:

y+ = H(h,y,u) (10)
Remark 2. While the model (10) is in discrete-time form, it
explicitly contains the discretization interval h as an argument,
so it can be used to predict future output for an arbitrary h. This
feature is exploited in the MPC formulation described in the
next section to reduce the number of optimization variables by
solving the Finite Horizon Optimal Control Problem (FHOCP)
with gradually increasing discretization intervals.
Remark 3. When the system has multiple inputs and multiple
outputs, nu > 1 and ny > 1, a DRSM model in the same form
of (2) is defined and identified for each output separately. In
such case, for each output the DRSM model has (the same)
n = ny + nu factors, which are related to the vector variable
η = [yT

0 , uT ]T ∈ Rny+nu by the same relation (7). By stacking
the ny DRSM models of each output, the recursive model (10)
is obtained.

3. DRSM-BASED MPC

3.1 Augmented model

We remark that the nominal model dynamics (10) differs from
the actual plant dynamics (1) due to modeling errors and the
presence of unmodeled disturbances affecting the plant.

Hence, in order to cope with the plant model-mismatch a lin-
early augmented version of the model (10) for offset-free track-
ing DRSM-based MPC algorithms is implemented according to
the guidelines described in (Pannocchia et al., 2015):

y+ = H(h,y,u)+d
d+ = d

(11)



where d ∈ Rny are the so-called disturbances.
Assumption 4. The augmented system (11) is observable, ac-
cording to (Pannocchia et al., 2015, Remark 8).

3.2 State and disturbance estimation

Let ŷ∗k−1 and d̂∗k−1 be the estimates of yk−1 and dk−1 obtained
using the output measurements at time k − 1. Furthermore,
ŷk and d̂k, are the predicted values of yk and dk that can be
obtained at time k using the augmented model (11), inputs and
disturbances at time k−1, that is:

ŷk = H(h, ŷ∗k−1,uk−1)+ d̂∗k−1
d̂k = d̂∗k−1

(12)

Hence, we define the prediction errors at time k as:
εk = yp,k− ŷk (13)

therefore, we can write the filtering relations for the augmented
states as:

ŷ∗k = ŷk +Kxεk
d̂∗k = d̂k +Kdεk

(14)

where the matrices Kx ∈ Rny×ny and Kd ∈ Rnd×ny are chosen to
form an asymptotically stable observer, which requires Kd to be
invertible (Pannocchia et al., 2015).

3.3 Target calculation

A steady-state target calculation is required at time k to compute
a feasible equilibrium (uk,yk) to be tracked by the optimal
control problem. Considering the current disturbance estimate
d̂∗k the following target optimization problem is solved each
iterations.

(ūk, ȳk) = argmin
(u,y)

`ss(y,u) (15a)

subject to:

`ss(y,u) =
1
2
(
∆yT Qss∆y

)
(15b)

∆y = ysp− y (15c)

y = H(h,y,u)+ d̂∗k (15d)
umin ≤ u≤ umax (15e)
ymin ≤ y≤ ymax (15f)

in which Qss ∈ Rny×ny is symmetric positive definite and usp is
the set point for the controlled variables. ysp is the output set-
point which the target optimization problem (15) aims to track.

3.4 Optimal control problem

Next, the input sequence is computed as the solution of a non-
equally-spaced horizon optimal control problem. Let us denote
y:={ζ0,ζ1, . . . ,ζN} and u := {ν0,ν1, . . . ,νN−1} some generic
output and input sequences of optimization variables, which
are not equally-spaced over the prediction horizon. As depicted
in Fig. 1, the time interval between the indices i and i + 1
has a total length of Jih, that is it contains Ji sub-intervals of
size h. We define the vector J :={J0, . . . ,JN−1} in which the
value of Ji > 0 specifies the number of time steps between the
optimization pairs (ζi,ζi+1) and (νi,νi+1). We can see as the
input νi remains constant in that interval, while the output ζi, j is
evaluated in each sub-interval, starting with ζi,0 = ζi, thanks to
the inherent multi-rate nature of the DRSM model (11), which
allows us to predict the output at an arbitrary future time.

Fig. 1. Representation of subdivision of the prediction horizon
between indices i and i+ 1 with the input (blue) and the
output (orange). In this case Ji = 3.

The following finite-horizon optimal control problem (FHOCP)
is solved at each decision time k:

(y?
k ,u

?
k) = argmin

y,u

N−1

∑
i=0

`(ζi,νi) (16a)

subject to:

`(ζi,νi) =
Ji−1

∑
j=0

1
2
(
∆ζ

T
i, jQ∆ζi, j +∆ν

T
i, jS∆νi, j

)
(16b)

ζ0 = ŷ∗k (16c)

ζi+1 = H(Jih,νi,ζi)+ d̂∗k , i = 0, · · · ,N−1 (16d)

ζi, j = H( jh,νi,ζi)+ d̂∗k , ∀i, j = 0, . . . ,Ji−1 (16e)
∆ζi, j = ζi, j− ȳk (16f)

∆νi, j =

{
νi−νi−1 if j = 0

0 if j 6= 0 (16g)

umin ≤ νi ≤ umax (16h)
ymin ≤ ζi ≤ ymax (16i)

ζN = ȳk (16j)
where the penalty matrices Q ∈ Rny×ny and S ∈ Rnu×nu are
chosen symmetric positive definite. We note that the definition
of ∆νi, j implies that ν remains constant in the i-th interval.
Moreover, the constraint ζN = ȳk is used for the feasibility of
the FHOCP. Assuming that Problem (16) is feasible, the first
input of the optimal sequence u?

k is implemented as usual in
MPC.

uk = u?
k [0] (17)

4. CASE STUDY: CSTR SISO SYSTEM

This section presents a case study to validate in simulation the
proposed methodology, considering an experimental setup that
can be realized in a continuously operating plant.

We consider an isothermal continuous-stirred tank reactor
(CSTR) with the following second order reaction:

A
k1−→ B r1 = k1c2

A (18)
Species A is fed at the variable flowrate u with molar concentra-
tion cA0, while the product is the species B. The volume of the
reactor Vr is constant. The dynamics of the system is defined as
follows:

dy
dt

=− u
Vr

(cA0− y)− k1y2 (19)



It is a SISO system in which the feed flow u is the input and
the reagent concentration in the reactor y is the measurement
output. We set the following constraints on y and u:

ymin ≤ y≤ ymax

umin ≤ u≤ umax

The constant parameters are reported in Table 1.

Table 1. Parameters and constraints of the isother-
mal CSTR system.

Quantity Value Unit

k1 0.05 L/(mol min)
Vr 2800 L
cA0 1.5 mol/L

umax 150 L/min
umin 50 L/min
uc 100 L/min
∆u 50 L/min

ymax 1.5 mol/L
ymin 0 mol/L
yc 0.75 mol/L
∆y 0.75 mol/L

4.1 DRSM model: experiments and estimation

We define the two factors x1 and x2, that are used for the
development of the DRSM model. The initial concentration y0
and the input u are related with the factor with the following
equations:

y0 = yc + x1∆y (20a)
u = uc + x2∆u (20b)

We consider a set of M = 16 experiments in which the value
of factor x2 is defined as in Table 2, while the next value
of factor x1 is updated with the last output measurement of
previous simulation. Moreover, we consider three repetitions of
the experiments with the following noise:

vp

hp(ξp)
∼ N (0,σ) with σ = 0.02 (21)

Note that σ = 0.02 is called±5% because in a normal distribu-
tion 2.5σ cover almost all possible number with N(0,σ).

For each of the values of the factors, we simulated the dynamic
system (19), and we collected the data of the output y(t) at the
following time instants t = h,2h,3h, . . .,Kmh. We set h = 1 min,
and the total number of measurements in the m-th experiment
Km = 100. We remark that for estimating a DRSM model of
the same accuracy, it is typically sufficient to have 12-15 data
points for each experiment. This aspect can be relevant when
the related measurements are expensive to be obtained, e.g. as
in the case of product quality.

We estimated the DRSM model from the collected data.The
model parameters tc and R are estimated in the following in-
tervals tc ∈ [10, 20] min, R ∈ [1, 5]. The DRSM identification
software is developed in Python 3.x based on the method-
ology described in Section 2.The function LassoLarsIC
of scikit-learn library is used for the Lasso regres-
sion. For the ordinary least squares the function OLS of the
statsmodels library is also used.

The tc = 15.5 min and the order of the SLP R= 2. The estimated
model coefficients are reported in Table 3. The other parameters

γ0,3, γ1,3, γ2,3, γ12,2, γ11,1, γ11,2, γ11,3 are obtained equal to 0.
It is interesting to observe how the use of a sparse regression
allows obtaining a model with a small number of parameters.
This makes the model simple and easy to use in an optimization
framework. We represent in Figure 2 the plot of experiments
for the identification of the DRSM. We note the presence of a
quadratic model due to the nonlinear kinetic.

The DRSM requires performing a Lack-of-Fit (LoF) test to
check the model validity as described in Wang and Georgakis
(2017).We compare the minimized sum of square obtained
in the final regression against the data against squares of the
pure error estimated from the replicate runsusing an F-test.
We consider 3 replicate runs of the experiments with MC = 3.
We obtained F0 = 0.41 and Fα,DoFLoF ,DoFPE = 1.19, so F0 <
Fα,DoFLoF ,DoFPE ; with a corresponding p-value of 0.999 and the
LoF is not significant. This implies that the DRSM model has
succeeded in representing all the non-random information in
the data.

4.2 MPC closed-loop simulations

Three controllers are compared:

• MPC1: nominal NMPC, in which we assume perfect
knowledge of the true process model (19)

• MPC2: linear DRSM-MPC with a linear DRSM model
estimated

• MPC3: nonlinear DRSM-NMPC with the quadratic DRSM
model estimated in this section.

In all controllers the following cost weights are used: Qss = 1,
Q = 1, S = 5 · 10−4. The estimator is a deadbeat Kalman filter
with Kx = 0, Kd = 1. The sampling time used for control is
h = 1 min, and the prediction horizon 50 min is unevenly
discretized using the following vector J :

J := {1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,5,5,10}

A software implemented in Python with CasADi library and
IPOPT optimizer has been used to solve this constrained non-
linear optimization problem. The simulation was performed on
a PC with CPU Intel i5 7200u and the resulting computational
cost is not an issue for this problem. The effectiveness of the
DRSM-NPMC controller has been evaluated by introducing
set-point changes according to the sequence reported in Table 4.

The performance of the designed controllers to a series of step
changes on the set-point for output y are shown in Figure 3;
the changes in u caused by the controllers are depicted in the
upper figure, while the output is reported in the bottom figure.
We note that in general, the set-point tracking performance is
satisfactory. When the set-point is increased, at t = 200 min,
the targeted concentration is reached in approximately 35 min.
When the set-point is decreased, at t = 400 min, the dynamic
response of the system is slower and the new set-point is
reached in approximately 45 min. Table 5 reports the overall
cost comparison of MPC1, MPC2 and MPC3. We observe the
performance of MPC2 is slightly worse than that of controller
MPC3, MPC1 is an idealistic controller, while MPC3 is better
than MPC2. In Figure 4 MPC3 is used to control the system,
where a uniform white noise, as in equation (21), is added to the
output to emulate measurement noise. We note that the system
is well controlled despite the noise.



Table 2. Experiments design

Expr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x2 -1 -1 1 1 0 0 -1 1 0.75 0.75 -1 -1 -0.125 0 0 0
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Fig. 2. Sixteen experiments (every 100 min) for the estimation of the DRSM of the CSTR. The red line represents noisy output
data; the blue line represents the output of the estimated DRSM model; the orange line represents the input.
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Fig. 3. Closed-loop results input (top) and output (bottom).
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Fig. 4. Closed-loop results input (top) and output (bottom).



Table 3. γ parameters for the CSTR with confi-
dence interval (α = 0.05).

Value

γ0,1 0.6365 ± 0.0043
γ0,2 0.1072 ± 0.0052

γ1,1 0.2256 ± 0.0042
γ1,2 -0.2160 ± 0.0051

γ2,1 0.2015 ± 0.0034
γ2,2 0.1439 ± 0.0040

γ12,1 -0.0913 ± 0.0040
γ12,3 0.0562 ± 0.0054

γ22,1 -0.0555 ± 0.0057
γ22,2 -0.0743 ± 0.0078
γ22,3 -0.0438 ± 0.0052

Table 4. Output set-point

time (min) ysp

0-200 0.6
200-400 0.7
400-600 0.5
600-800 0.8

800-1000 0.4

Table 5. Overall cost comparison

Controller Overall cost

MPC1 2.62
MPC2 2.70
MPC3 2.68

5. CONCLUSIONS

In this work, a data-driven dynamic model, the DRSM, has
been used to model a continuous nonlinear process. The iden-
tified DRSM model is a sparse model that shows promising
performance in modeling complex nonlinear dynamics, leaving
a simple structure to be applied in the context of optimization
and control. Then, the identified DRSM model is used for
controlling a nonlinear CSTR process in an NMPC framework.
From the DRSM model, a recursive nonlinear model is obtained
directly choosing the discretization interval of the DRSM. This
formulation proved to converge to plant set-point despite model
uncertainty and white noise.

Further studies will focus on the design of the experiments,
introducing experiments with different time lengths and optimal
DOE design, especially for the MIMO case. Moreover, DRSM
based eMPC will be analyzed; we will investigate and prove the
convergence conditions and KKT matching upon convergence.
Moreover, a future investigation will be focused on DRSM
based economic MPC. Economic MPC (eMPC) is one of the
most studied solution methods to overcome the hierarchical
separation between economic optimization and control in the
process industries (Rawlings et al., 2012). To deal with the
plant-model mismatch Offset-Free eMPC (OF-eMPC) algo-
rithms have been proposed in the literature (Vaccari and Pan-
nocchia, 2016; Faulwasser and Pannocchia, 2019) with the in-
tegration of modifier adaptation (MA) (Marchetti et al., 2009).
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