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Abstract: This paper explores robust unconditional and conditional nonparametric approaches to 
support performance evaluation in problematic samples.  Real-world assessments often face critical 
problems regarding available data, as samples may be relatively small, with high variability in the 
magnitude of the observed indicators and contextual conditions. This paper explores the possibility of 
mitigating the impact of potential outlier observations and variability in small samples using a robust 
nonparametric approach. This approach has the advantage of avoiding unnecessary loss of relevant 
information, retaining all the decision-making units of the original sample. We devote particular 
attention to identifying peers and targets in the robust nonparametric approach to guide 
improvements for underperforming units. The results are compared with a traditional deterministic 
approach to highlight the proposed method's benefits for problematic samples. This framework's 
applicability in internal benchmarking studies is illustrated with a case study within the wastewater 
treatment industry in Portugal.  
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1. Introduction 

In the context of nonparametric efficiency analysis, such as Data Envelopment Analysis (DEA) and Free 
Disposal Hull (FDH), a set of individual entities is comparatively assessed to search for potential 
improvements in their performance. Each entity, or decision-making unit (DMU), conducts a given 
productive activity that can be seen as converting inputs into outputs. To achieve a fair efficiency 
assessment, the sample of DMUs used in the analysis must be homogeneous or, in other words, similar 
in several ways (Dyson et al., 2001). First, all DMUs must develop similar activities to obtain similar 
products or services (Pitfall 3.1, ibidem). However, although all DMUs may be converting the same 
type of inputs into the same type of outputs, in practice two additional issues can threaten the 
homogeneity assumption, namely the presence of atypical observations in the sample and different 
environmental conditions that the DMUs can face (Pitfall 3.2, ibidem). This issue often affects real-
world samples, where high variability in input/output levels or exogenous conditions can be found, 
hence the name “problematic samples”. The performance evaluation conducted on this type of 
samples might be strongly affected, resulting in biased efficiency measures. As an alternative to not 
conducting any efficiency analysis at all because some requirements are not perfectly met, or to 
implement a conventional framework with deficient results, the selection of a more refined method 
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may allow to open the black box of the transformation process under analysis and to obtain more 
realistic results, extracting valuable information concerning the units under assessment. 

This paper aims to show, from a novel perspective, how nonparametric efficiency evaluation tools can 
provide valuable information to assist companies or decision-makers in their management choices 
when evaluating DMUs in problematic samples. A problematic sample is defined as a sample with a 
small number of DMUs, and high variability in the indicators’ values and/or environmental conditions. 
In relation to the first aspect, the meaning of “small” in the definition of problematic samples should 
be interpreted in relative terms by comparing the number of DMUs and the inputs, outputs, and 
exogenous factors considered in the performance assessment. The curse of dimensionality in 
nonparametric methods is a well-known problem in the literature (e.g., Lee and Cai, 2020), but no 
general guidelines are available to overcome this issue in real-world benchmarking studies.  

Regarding the variability in the magnitude of the indicators’ values, part of it may result from the 
presence of atypical observations. In this context, a DMU may differ to a large extent from the rest of 
the sample mainly for two reasons: there may be errors in the data, or the observations may be 
potentially correct but highly atypical. In a benchmarking setting, the DMUs located on the frontier 
should correspond to replicable DMU-level performance for the same set of circumstances, so that 
DMUs with exceptionally high relative performance may be removed from the sample for 
precautionary reasons.  

The efficiency literature proposes several outlier detection procedures to guide the removal of 
suspected units, attempting to ensure that the frontier is well populated and not too distant from the 
bulk of DMUs in the analysis (e.g., Anderson and Petersen, 1993; Wilson, 1993; Wilson, 1995; Simar, 
2003; De Witte and Marques, 2010b). However, for analyses involving DMUs in a problematic sample, 
especially due to the limited number of DMUs available, removing potential outliers cannot be 
considered a solution. Using robust methods (for example, bootstrapping techniques as proposed by 
Simar and Wilson, 1998, or robust optimization approaches as proposed by Sadjadi and Omrani, 2008, 
Omrani at al, 2021, Omrani at al., 2022) or partial frontiers instead of full frontier are very appealing 
alternatives for these cases (see Cazals et al, 2002; Aragon et al, 2005).  

Furthermore, another key challenge in the performance measurement of DMUs in a problematic 
sample is accounting for different operating contexts. One-stage and two-stage approaches have been 
considered to address the impact of contextual conditions on DMUs’ efficiency levels (see Avkiran and 
Rowlands, 2008 for a literature review). However, there is an unsettled debate in the literature 
regarding the most appropriate specification of these types of approaches. To overcome some of the 
limitations of the two-stage approaches, a conditional approach (Daraio and Simar, 2005 & 2007) has 
been proposed to circumvent the restrictive assumptions underlying efficiency assessments with 
heterogeneous environmental conditions (see De Witte and Marques, 2010a, for a critical discussion 
of different methodologies to incorporate heterogeneity). 

In light of this, we found that the nonparametric order-m method (Cazals et al., 2002) fits all the 
requirements to attain the objectives of this paper. Firstly, alternatively to a full frontier method such 
as DEA, the partial frontier method is demonstrated to surmount the curse of dimensionality problem 
(Wheelock and Wilson, 2003), which is particularly useful when dealing with small samples. 
Additionally, the order-m method also allows to mitigate the effect of potential outliers, either 
occurring due to errors in the data or due to being real atypical observations, without the need to 
remove any DMU, which again is particularly useful when dealing with small samples. Moreover, 
regarding the variability that occurs due to DMUs facing different contextual conditions, a conditional 
order-m method (Daraio and Simar, 2005 & 2007) may provide additional insights into the role of those 
contextual conditions on the performance of the DMUs.  
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In this paper, we identify a suitable framework for internal benchmarking exercises and thus support 
real-world efficiency assessments. Specifically, we propose using the outlined robust order-m and 
conditional nonparametric estimation tools departing from their traditional applications. These 
approaches can be considered a starting point for extracting relevant information from internal 
benchmarking exercises, providing ad hoc suggestions, and ready-to-implement measures. The 
ultimate objective is to provide information to guide practical improvements, particularly in the case 
where the DMUs to be assessed are in a problematic sample, or, in other words, for samples that at 
first glance might discourage or invalidate the performance evaluation.  

The suggested framework has a clear managerial application. It focuses on the evaluation of 
problematic samples and provides a clear identification of potential reductions in resource 
consumption or reallocation of resources, rather than on a more general analysis of relative efficiency 
levels that would be suitable for policy design at more aggregated levels. By applying this toolbox, we 
illustrate the relevance of identifying peers and targets for decision support, complementing the 
standard results provided by robust methods. We also exemplify how informative is the evidence 
provided by the conditional approach to guide more thoroughly comparative assessments. As a result, 
in real-world case studies, intervening at a very detailed level can improve the effectiveness of the 
performance assessment exercise, making processes evolve towards more sustainable and productive 
systems at social, economic, and environmental levels (Moldan et al., 2012). 

Although the proposed efficiency analysis framework can be applied to several areas, we explore a 
particular case study within the wastewater treatment industry. The efficient use of resources in the 
productive activity of cleansing the wastewater is a topic that deserves increased attention by the 
scientific community and practitioners. As highlighted by Longo et al. (2018), the wastewater industry, 
and more specifically the case of wastewater treatment plants (WWTPs), constitutes an example of an 
application field where the homogeneity assumptions may be critical, although often disregarded in 
the literature. Our case study corresponds to a sample of 41 Portuguese WWTPs managed by the 
company Águas do Centro Litoral (AdCL). This sample presents remarkable variability in the input and 
output indicators and faces different operating characteristics. Therefore, it represents a good testbed 
to provide concrete examples of the advocated advantages of using robust and conditional efficiency 
method tools for performance measurement of DMUs in a problematic sample.  

Two aspects are simultaneously considered to assist decision-making better: (1) The measurement of 
efficiency should be as fair as possible to provide an accurate picture of the relative performance 
behaviour of the sample under evaluation. When this aspect is taken into account, better prioritization 
of actions and eventual investments can be achieved. (2) The information on peers and targets for 
improvements should be provided. This allows plants to benefit from information sharing to guide 
performance improvements through adjustments of technical and operational aspects. The use of DEA 
to guide organizational improvement by identifying attainable targets, representing best practices that 
are aligned with management strategy, is a topic that is gaining momentum in the literature in recent 
years (e.g., see Ruiz and Sirvent, 2019).   

DEA has also been widely used as the preferred methodology to assess the performance of wastewater 
treatment plants (WWTPs) (e.g., Hernández-Sancho and Sala-Garrido, 2009). Moreover, most studies 
within the context of the wastewater treatment industry recognize the relevance of the environmental 
conditions faced by WWTPs on their performance (e.g., Fuentes et al., 2015). Accordingly, for the 
practical implementation, we adopt a robust DEA estimator based on the concept of order-m frontiers 
introduced by Cazals et al. (2002) and further extended by Daraio and Simar (2007), together with its 
conditional version. Conducting a fair comparison of WWTPs and reporting their peers helps to look 
inside the black box of the transformation process. This directly allows the interested stakeholders, 
namely company and plants decision-makers, to receive tangible management solutions that can be 
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practically implemented. Moreover, ensuring improvements in asset management is likely to have an 
impact beyond the direct benefits arising from organizing the WWTPs production process more 
efficiently and consequently saving resources at the company level.  

The wastewater treatment industry plays a significant role in sustainable development worldwide. 
Improved functioning of the WWTPs would also support at least two goals of the Sustainable 
Development Agenda defined by the United Nations (United Nations, 2015): Goal 6 (“By 2030, improve 
water quality by reducing pollution, eliminating dumping and minimizing release of hazardous 
chemicals and materials, halving the proportion of untreated wastewater and substantially increasing 
recycling and safe reuse globally”, 6.3) and Goal 7 (“By 2030, double the global rate of improvement in 
energy efficiency”, 7.3).   

The contribution of this paper to the Operations Research and Management Science literature is 
twofold. First, it contributes to the nonparametric efficiency literature mostly oriented to internal 
managerial practices (Camanho and Dyson, 1999; Barros, 2006 & 2008; Camanho et al., 2009; Vaz et 
al., 2010; Roháčová, 2015) by adapting the use of robust and conditional approaches from an 
innovative and operative point of view. A critical feature in internal benchmarking studies concerns 
the improvement of operational practices through learning from peers. In a recent paper by Lavigne 
et al. (2019), the authors emphasize the importance of identifying the peers underlying a robust 
conditional Benefit-of-the-doubt approach applied to waste management. Our paper extends this 
research line in two main directions. First, Lavigne et al. (2019) focused on constructing a composite 
indicator to aggregate outputs, while we look at the transformation of resources into outputs in 
efficiency assessments involving problematic samples. Furthermore, rather than just focusing on 
estimating peers, we also estimate the targets for the inefficient DMUs to provide guidelines for the 
amount of resources that can be potentially saved. We also critically discuss the different information 
that can be retrieved from robust and deterministic methods when assessing the performance of 
DMUs in a problematic sample. In addition to this, we point out some technical issues that must be 
considered during the implementation of order-m and conditional approaches to the case of such type 
of samples.  

The second contribution of this paper is related to its empirical application, specifically to the literature 
on WWTPs efficiency evaluation. Despite the increasing prominence of this topic in recent years (see 
D’Inverno et al., 2018), to the best of our knowledge, only a few papers used a conditional approach 
to evaluate wastewater treatment plants efficiency (e.g., Fuentes et al., 2015; Guerrini et al., 2016). 
Furthermore, our study represents a development in relation to these approaches by proposing a novel 
WWTP output specification to fully capture the real output attained by each plant during the treatment 
process. This requires considering the rate of pollutant removal (which accounts for the concentration 
of the pollutant in the influent) and the total volume of wastewater treated. It is also the first study 
adopting an internal managerial perspective of WWTPs efficiency using Portuguese data. 

The remainder of the paper is organized as follows. Section 2 describes the methodological toolbox 
proposed for the efficiency analysis with problematic samples. Section 3 describes the case study used 
to demonstrate the usefulness of the framework proposed. Section 4 presents the results obtained 
and discusses their managerial implications. Finally, section 5 concludes, highlighting the major 
findings and limitations of this study. 

2. The methodology 

This section introduces the nonparametric efficiency tools commonly used in performance evaluations, 
which are adapted in the empirical application to deal with the challenges of problematic samples (i.e., 
small samples with high variability in input and output levels and/or exogenous conditions). Particular 
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attention is devoted to the practical information on peers and targets that can be retrieved from their 
use.  

One of the main advantages of nonparametric efficiency methods is that the efficient frontier is 
derived directly from observations. Therefore, there is no need for prior specification of its functional 
form. Depending on the assumptions characterizing the production technology, different 
nonparametric efficiency models can be considered, such as Data Envelopment Analysis, Free Disposal 
Hull, and Directional Distance Function. 

To keep a concise exposition, we focus the discussion on Data Envelopment Analysis (DEA) models, 
with an input orientation setting under Variable Returns to Scale (VRS). However, the approach can be 
straightforwardly extended to other nonparametric techniques, such as the ones mentioned above, as 
well as to different orientations or returns to scale assumptions.  

2.1 DEA: A baseline nonparametric efficiency model 

Data Envelopment Analysis (DEA) is a non-parametric method that originated from the seminal work 
of Farrell (1957), who proposed the evaluation of relative efficiency as the radial distance to a 
production frontier estimated directly from empirical observations. Farrell (1957) concepts were 
operationalized for the first time using linear programming by Charnes et al. (1978).  

DEA compares the efficiency of a relatively homogeneous set of DMUs in using multiple resources 
(inputs) to produce multiple outcomes (outputs). It derives a single summary measure of efficiency for 
each unit, which is based on a comparison with other units in the sample. DEA identifies two groups 
of units: radially efficient and inefficient. The DMUs on the frontier are considered examples of best 
practices (i.e., the benchmarks) and obtain an efficiency score equal to one. The efficient DMUs of the 
sample span the frontier. For the inefficient DMUs, the magnitude of their inefficiency is evaluated as 
the distance to the frontier. For an input-oriented assessment, it represents the proportional reduction 
of inputs that is required to reach the frontier. One of the advantages of DEA is to allow each DMU to 
select its own weighting system for the performance evaluation, recurring to optimization. This allows 
emphasizing the strengths of each DMU.  

The formulation of the input-oriented DEA model with Variable Returns to Scale is shown in (1).  
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In model (1), 𝑥!"  corresponds to the value of input 𝑖	(𝑖 = 1,… ,𝑚) and 𝑦#"  corresponds to the value of 
output 𝑟	(𝑟 = 1,… , 𝑠) observed for DMU 𝑗	(𝑗 = 1,… , 𝑛). The decision variables of the model (1) are 
𝜃% , 𝜆"  , 𝑠!$ and 𝑠#%. 𝜃%  corresponds to the radial efficiency score of the unit under assessment, 
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represented by index	k. 𝜆"  is an intensity variable, which assumes a positive value whenever a unit j is 
used as peer for unit k under assessment. The VRS assumption is represented by the restriction 
imposing that the sum of 𝜆", for 	(𝑗 = 1,… , 𝑛), is equal to one. 𝑠!$ and 𝑠#%	are slack variables, 
representing potential non-radial adjustments to the input and output levels of the unit under 
assessment, beyond the proportional reduction to the input levels represented by the radial efficiency 
score. 𝜀 is an infinitesimal used to ensure that slacks are not ignored in the efficiency assessment.  

When analyzing the solution to model (1), a DMU k under evaluation is fully efficient if and only if 
𝜃% =1 and all slacks are equal to zero (𝑠!'$ = 𝑠#'% = 0, ∀𝑖, 𝑟). In other words, a unit is fully efficient if 
it is not possible to decrease the consumption of any of its inputs without also decreasing the amount 
of at least one of the outputs or increasing the consumption of another input. As by-products of the 
assessment, for inefficient DMUs it is also possible to obtain peers and targets. The input and output 
targets for unit k are obtained as shown in expressions (2) and (3). The values of the decision variables 
obtained at the optimal solution to model (1) are signalled with an asterisk.  
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2.2 Robust DEA: Mitigating the impact of atypical observations 

The non-parametric nature of DEA is an important feature in situations where the production process 
is complex and the production function is unknown. However, its deterministic nature makes it very 
sensitive to atypical observations, as any unit can potentially contribute to shape the frontier, hence 
the name “full frontier”. As a result, the presence of outliers and extreme values might lead to 
downwardly biased estimates (Fusco et al., 2020), as DMUs that differ to a large extent from the rest 
of the sample may lead to the shift of the frontier and have a significant impact on the evaluation of 
other DMUs.  

Several methods can be employed to detect outliers that can potentially affect the position of the 
frontier, which are candidates to be removed from the sample (e.g., super-efficiency of Anderson and 
Petersen, 1993 or the approach proposed by Wilson, 1995). From an applied perspective of internal 
benchmarking, the outlying units might be of great interest to the stakeholders to the extent that they 
could potentially be the best or the worst-performing units. Especially in the context of small samples, 
each piece of information is crucial for a sound managerial decision, and the removal of observations 
should be avoided (De Witte and Marques, 2010b). To account for these issues, and at the same time 
to mitigate the impact of atypical observations, the literature has proposed the use of “partial” or 
“robust” frontiers, order-m (Cazals et al., 2002; Daraio and Simar, 2005 & 2007) or order-𝛼 methods 
(Aragon et al., 2005; Daouia and Simar, 2007). In compliance with this latter stream of literature, this 
paper adopts insights from the order-m method to evaluate performance. To keep the discussion 
focused on an operational perspective, we only present the basic idea and the main intuition of this 
robust approach. For an exhaustive exposition, we refer to Daraio and Simar (2007). 

Computationally, in the full frontier estimation, the linear programming model (1) is solved once for 
each unit under assessment. Instead, in the partial frontier estimation the linear programming model 
(1) is computed B times for each unit according to a Monte-Carlo procedure, where B is a large number. 
For an input-oriented assessment, in each of these B iterations, 𝑚 units are drawn at random with 
replacement among those producing at least the same level of output as the unit under evaluation. By 
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doing this, the impact of the atypical observations is remarkably mitigated, and the unit under 
evaluation is compared with a less extreme benchmark. The robust efficiency score 𝜃:%( is then 
obtained as the average of the efficiency scores 𝜃%

1,(	computed at each b-th iteration (𝑏 = 1,… , 𝐵): 

𝜃:%( =
1
𝐵(𝜃%

1,(
2

1)*

  (4) 

Due to the subsampling, the evaluated unit might not be among the drawn m units. In this case, it does 
not constitute its own reference set, and it may be located above the frontier. An efficiency score 
greater than one identifies a ‘super-efficient unit’ that is more efficient than the average m units in its 
reference set. 𝑚 can have a twofold interpretation (Daraio and Simar, 2005; De Witte and Schiltz, 
2018). First, it can represent the number of competitors producing greater or the same output levels. 
Second, it can be seen as a trimming value to assert the robustness of the analysis. Among others, 
Cazals et al. (2002) and Rogge and De Jaeger (2013) note that the choice of 𝑚 is not straightforward. 
𝑚 should not be set too low or too high, since “the obtained estimator will converge to the DEA frontier 
estimator if 𝑚 → ∞ but, for finite 𝑚, it will not envelop all the data points” (Cazals et al, 2002). Usually 
in practical applications 𝑚 < 𝑛 and it should be set so to have a “sufficiently small decrease in the 
proportion of super-efficient observations” (Schiltz et al., 2020). A sensitivity analysis for different 
values of 𝑚 helps to support the robustness of the findings. 

The identification of peers and targets in evaluations with “partial” frontiers is also possible. When the 
focus is on small samples representing real-world settings, these outcomes can be easily investigated 
and practically explored. For example, the number of times a unit is considered a peer can be 
computed while keeping in mind that units are now drawn from a subset of the sample. Furthermore, 
the intensity values (𝜆-∗) can be computed as an average value. Likewise, the target values can be 
obtained as the average target value across the B iterations, pointing at the average resource savings, 
once the units are evaluated against a “partial” frontier that envelops the data more tightly 
(representing a less demanding reference of best-practice). As a result, the robust efficiency score will 
always be higher than the one obtained from the full frontier estimation, and consequently the robust 
target values will be lower and more realistic to be achieved. 

2.3 Conditional robust DEA: The role of contextual variables 

Besides softening the impact of outlying observations in a problematic sample, the role of the 
operating context needs to be accounted for when it comes to giving operational guidelines to the 
units under assessment. This aspect enters both in the computation of the efficiency scores and in 
detecting the influence of these external factors on the production process itself. The literature on 
efficiency has acknowledged the relevance of these aspects and has developed mainly two approaches 
to address them, namely the ‘one-stage’ approach and the ‘two-stage’ approach (Daraio and Simar, 
2007). In the former, environmental variables are directly included in the model estimation, but they 
first need to be classified a priori for the analysis either as an input or as an output. In the latter, the 
efficiency scores are parametrically regressed in a second stage on nondiscretionary variables. 
However, a few issues might arise. First, the efficiency scores are serially correlated and the first stage 
efficiency scores are biased. Second, even if these problems would be addressed by bootstrap 
techniques, this approach would need a priori specification of the parametric regression model and it 
would imply the “separability condition”. Estimating first the efficiency scores and then regressing 
them on the environmental variables would assume that these variables do not influence the 
attainable set. In many practical applications, this assumption is difficult to defend (for a thorough 
explanation, we refer to Daraio and Simar (2007) and the references therein).  
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To circumvent the above-mentioned issues, conditional nonparametric frontier models have been 
introduced by Daraio and Simar (2005). Following insights from Daraio and Simar (2005, 2007) and De 
Witte and Kortelainen (2013), this paper integrates the robust DEA presented in the previous section 
with its conditional version. 

Computationally, the conditional robust frontier estimation requires a slight adjustment concerning 
the (unconditional)  frontier estimation as described above. The adjustment concerns the way 𝑚 units 
are drawn among those producing at least the same output level as the evaluated unit (Rogge and De 
Jaeger, 2013). In the unconditional case, 𝑚 units are drawn with replacement and with uniform 
probability, so that each unit is equally likely to be drawn. In the conditional case instead, 𝑚 units are 
drawn with replacement but with a weight (probability) determined by an estimated kernel function. 
Accordingly, units that operate in a more similar environment will have a higher probability of being 
drawn and included in the reference set. Likewise, units that operate in a more dissimilar environment 
will have a lower probability of being drawn and considered in the reference set. In this sense, the 
efficiency score is ‘conditional’ upon the environmental variables 𝑧. The conditional order-m efficiency 
score 𝜃:%

(,3 is obtained as the average of the conditional efficiency scores 𝜃%
1,(,3	computed at each b-

th iteration (𝑏 = 1,… , 𝐵): 

𝜃:%
(,3 =

1
𝐵(𝜃%

1,(,3
2

1)*

  (5) 

In addition to using the conditional approach to estimate efficiency scores that account for different 
operating contexts, the comparison between the conditional and the unconditional efficiency score 
helps to detect and to better understand the influence of the environmental variable on the efficiency. 
Practically, the ratio of the conditional and unconditional order-m efficiency estimates is computed as 
in (6) and non-parametrically regressed on the external variables 𝑧 (Li and Racine, 2007). 

𝑄% =
𝜃:%
(,3

𝜃:%(
  (6) 

The framework for the non-parametric regression smoothing is the following: 

𝑄% = 𝑔(𝑧%) + 𝜖% , 𝑘 = 1,… , 𝑛  (7) 

By making statistical inference, information about the sign and the statistical significance of the 
influence of environmental variables on the efficiency estimates can be retrieved (Rogge and De 
Jaeger, 2013). Moreover, it is possible to graphically visualize the ratio 𝑄% with a scatter plot when 𝑧 
is univariate or with a partial scatter plot when 𝑧 is multivariate, so to help with the interpretation of 
the role of 𝑧 on efficiency. In an input orientation, if 𝑄% is increasing, 𝑧 plays a detrimental 
(unfavourable) influence on the efficiency. Vice versa, if 𝑄% is decreasing, 𝑧 plays a conducive 
(favourable) influence on the efficiency (Daraio and Simar, 2005). 

3. Case study 

To demonstrate the practical usefulness of the methodological approach from a managerial and 
operational perspective, we use a case study of Portuguese wastewater treatment plants (WWTPs). It 
provides a practical example of the potential problems that may occur when attempting to conduct a 
fair efficiency assessment of DMUs in a problematic sample.  

The Portuguese case study consists of a set of 41 WWTPs that are managed by Águas do Centro Litoral 
(AdCL), a public-owned company. All WWTPs are activated sludge systems, meaning that all WWTPs 
are converting inputs into outputs using the same secondary treatment technology.  
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The set of plants selected treated 80% of total volume of wastewater and were responsible for 91% of 
the electricity consumption of all WWTPs managed by AdCL in 2015. All data used in this study was 
provided by AdCL and refers to the year 2015. The plants are quite heterogeneous in terms of 
dimension: 20 WWTPs serve less than 5000 inhabitants (measured in Population Equivalent, PE), 16 
WWTPs serve between 5000 and 50000 inhabitants, and 5 WWTPs serve more than 50000 inhabitants. 
The smallest of these WWTPs was designed to serve 79 PE and the largest to serve 230020 PE. Only 8 
WWTPs conduct a disinfection process. Only 5 WWTPs conduct anaerobic digestion with biogas 
production for energy recovery.  

3.1. Modelling the WWTPs activity: Input and output specification 

The literature reports several applications of DEA in the context of WWTPs performance assessment 
(e.g., Hernández-Sancho and Sala-Garrido, 2009). A critical phase of any DEA assessment concerns 
selecting of the most appropriate indicators to use as inputs and outputs of the productive process. 
Accordingly, input and output variables have been selected in compliance with the existing literature 
and the data availability. Moreover, the company managers and decision-makers of the plants under 
assessment have ultimately validated them to ensure a proper estimation of efficiency. 

In terms of the input indicators, the majority of studies reviewed used costs (operation, maintenance 
and other costs) either expressed in €/m3 (e.g., Fuentes et al., 2015; Sala-Garrido et al., 2011; Sala-
Garrido et al., 2012a; Molinos-Senante et al., 2014a,b; Hernández-Sancho et al., 2011) or in €/year 
(e.g., Castellet & Molinos-Senante, 2016; D’Inverno et al., 2018; Guerrini et al., 2016; Hernández-
Sancho et al., 2009; Molinos-Senante et al., 2016; Sala-Garrido et al., 2012b). The study by Lorenzo-
Toja et al. (2015) considered the physical quantities of resources used per year (i.e., electricity and 
chemicals).  

In this study, we selected as inputs the physical resources (energy and labour) used by each plant per 
year. Due to data unavailability, we could not consider other resources in the efficiency evaluation, 
such as maintenance actions or materials consumed. Nonetheless, energy and labour represent the 
largest share of the operational expenditures for a typical WWTP (Silva and Rosa, 2015). The energy 
indicator corresponds to the energy balance at each WWTP, obtained as the difference between the 
sum of electricity and natural gas consumed annually by the plant and the total amount of electricity 
produced (measured in kWh/year). The labour indicator corresponds to the number of full-time 
equivalent workers assigned to each plant, obtained as the ratio between the number of weekly 
person-hours spent by workers at each plant and the number of weekly hours corresponding to a full-
time worker. Note that our input specification also considers the scale of operation of the WWTP, as 
we do not normalise the resources used by the volume of wastewater treated (m3).  This ensures that 
no information inherent to the size of the plant is lost.  

In terms of the output indicators used in WWTP assessments, the majority of studies reviewed use the 
amount of pollutants removed from the wastewater, either expressed in kg/year (e.g., Castellet & 
Molinos-Senante, 2016; Hernández-Sancho et al., 2009; Molinos-Senante et al., 2016; Sala-Garrido et 
al., 2011; Sala-Garrido et al., 2012b), or in g/m3 (e.g., Hernández-Sancho et al., 2011; Molinos-Senante 
et al., 2014a,b; Sala-Garrido et al., 2012a; Fuentes et al., 2015), which corresponds to the difference 
between the pollutant in the influent and effluent. Dong et al. (2017) introduced a novel approach by 
using the rate of pollutants removal. This is interpreted as the ratio between the amount of pollutant 
removed and the amount of pollutant present in the raw wastewater (i.e., in the influent). Therefore, 
this indicator accounts for the concentration of each pollutant in the influent sewage. Indeed, 
considering two WWTPs (A and B) that treat the same volume of wastewater, it is not the same to 
remove 200 mg/l out of 600 mg/l on entry in plant A, or to remove 200 mg/l out of 1000 mg/l on entry 
in plant B. Although the absolute amount of pollutant removed by both plants is identical, the rate of 
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pollutant removal is higher in A than in B (e.g., A:200/600 > B:200/1000). Therefore, considering only 
the absolute amount of pollutant removed could imply an unfavourable evaluation of plant A since it 
demands a higher level of resource consumption than B. For this reason, the use of the rate of pollutant 
removal instead of the absolute amount of pollutant removed as the output specification allows a 
fairer efficiency comparison among plants.  

However, since the scale is a factor that affects the performance of WWTPs (e.g., Hernández-Sancho 
and Sala-Garrido, 2009), the rate of pollutant removal still does not correspond to the real amount of 
pollutant removed from the influent wastewater. This varies in pollutant concentration, which will also 
impact the required effort in terms of the total amount of resource consumption. In this study, we 
contribute to the literature by proposing a novel WWTP output specification, namely the “pollutants 
actually removed”, which is defined as the rate of pollutant removal multiplied by the total volume of 
wastewater treated (m3 per year). In this study, we used as outputs the “pollutants actually removed”, 
both in terms of suspended solids (SS) and chemical oxygen demand (COD), which is consistent with 
the input specification in terms of the total amount of resources consumed (per year). 

Table 1 shows the descriptive statistics of the inputs and outputs used in the DEA model. The variables 
display an important variability that emerges especially looking at the quartiles. This variability is a 
consequence of the characteristics of the plants that constitute the sample, both in terms of size and 
contextual factors affecting WWTP activity. Note that the data was collected from company records, 
and the values were confirmed with managers and engineers working at the WWTP. Therefore, 
existing outliers are not likely to be erroneous or corrupted data, but real observations of the 
operational activity. As pointed out in the previous sections, the performance evaluation aims to 
provide a full picture of the WWTP system to enable the design of sound asset management policies 
by company managers, as well as improvements in operational procedures to be implemented by local 
managers of all plants.  

Table 1. Descriptive statistics for inputs and outputs of the DEA model (41 WWTPs, year of 2015). 

    Mean SD Min Max Q1 Median Q3 
Inputs Energetic balance [MWh/year] 376.90 781.48 21.50 4476.00 51.74 135.30 201.40 

Labour [number of full time 
equivalent workers] 1.10 1.89 0.20 9.00 0.30 0.45 0.61 

Outputs (CODremoved/CODentry)´Vol. 
wastewater [thousand m3 per year] 987.10 2468.53 2.01 12461 62.00 140.50 323.50 

(SSremoved/SSentry)´Vol. wastewater 
[thousand m3 per year] 1022.00 2557 2.01 12875 57.29 141.90 331.00 

 
3.2. Modelling the WWTPs activity: The role of contextual variables 

The threat to the homogeneity of the units under analysis emerges not only from the observed 
variability on the magnitude of the inputs and the outputs, but also from the environmental conditions 
faced by the WWTPs. The majority of studies recognize the relevance of the environmental conditions 
faced by WWTPs on their performance. In some of these studies, two-stage approaches have been 
used to explain the variability of the DEA efficiency scores (e.g., Hernández-Sancho et al., 2009; Dong 
et al., 2017; D’Inverno et al., 2018; Molinos-Senante et al., 2016; Hernández-Sancho et al., 2011; 
Molinos-Senante et al., 2014a,b; Sala-Garrido et al., 2012b). Alternatively, conditional frontier 
estimators have also been used within the context of WWTPs performance assessment, accounting for 
contextual conditions directly in the computation of the efficiency scores (e.g., Fuentes et al., 2015; 
Guerrini et al., 2016).  
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Table 2 provides a review of the contextual factors deemed to play a role in the WWTP activity, listing 
the most frequently investigated contextual variables, classified into structural factors, operational 
factors and other factors. 

Table 2. Overview of the contextual variables used in DEA related studies of WWTPs. 

Study 

Structural factors Operational factors Other factors 

Plant 
capacity 
(or plant 

size) 

Plant 
age 

Secondary 
treatment 
technology 

Technology 
used for 
sludge 

treatment 

Nutrient 
removal 

and 
Tertiary 

treatment 

Type of 
aeration 

in the 
bioreactor 

Characteristics 
of influent 

wastewater 

 

Capacity 
utilization 

Energy 
consumption 

Sludge 
generated 

Compliance 
with 

regulatory 
effluent 

standards 

Climate Seasonality 

D’Inverno 
et al. 
(2018) 

x x x  x  x    x  x 

Dong et al. 
(2017) x  x    x x    x  

Fuentes et 
al. (2015) 

x x    x x       

Gómez et 
al. (2017) x x x     x x     

Hernández-
Sancho et 
al. (2009) 

x             

Hernández-
Sancho et 
al. (2011) 

x x    x x       

Guerrini et 
al. (2016) x x x   x x x   x   

Lorenzo-
Toja et al. 
(2015) 

x    x  x x    x  

Molinos-
Senante et 
al. (2016a) 

x x x x    x      

Molinos-
Senante et 
al. (2014a) 

x x  x x         

Molinos-
Senante et 
al. (2014b) 

x x x x     x x    

Sala-
Garrido et 
al. (2012b) 

            x 

No. times 
used 11 8 6 3 2 3 6 6 2 1 1 2 1 

 

Among all variables considered in the literature, plant capacity (or plant size), plant age, secondary 
treatment technology, capacity utilization, and characteristics of the influent wastewater were the 
variables chosen more often to analyse their potential influence on the efficiency of the WWTPs. 

As the contextual factors may strongly influence the performance of the WWTPs, we also discussed 
with AdCL managers what would be the most relevant set of contextual factors to consider in the 
analysis of their plants.  

As managers were very concerned with asset management, they demonstrated particular interest in 
the age of the plants. Also, they were concerned with five additional aspects that could be relevant to 
explain differences in relative performance. The first of these aspects is the plant dimension. There are 
very big and very small plants in the sample, and their size affects the operation. The second aspect is 
capacity utilization. This is a particularly critical aspect in at least one plant that was built to 
accommodate seasonal events (religious). The third aspect is the existence of disinfection treatment 
in some of the plants. This occurs due to legal requirements concerning the effluent quality. In the 
plants considered in our sample, the disinfection treatment is made through UV radiation, which 
implies additional energy consumption at these plants. The fourth aspect is the existence of sludge 
dehydration in some of the plants, which requires additional labour and electricity consumption. The 
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fifth aspect is the existence of pumping facilities inside some of the plants. This is required by the 
geographical features of the place where the plant is located, and causes additional energy 
consumption.  

In summary, we selected the following set of contextual factors: (i) age of the plant (expressed in terms 
of the number of years since the construction of the WWTP or since the last rehabilitation), (ii) installed 
capacity (expressed in terms of the volume of wastewater that can be treated at each plant daily, in 
m3/day), (iii) capacity utilization (expressed as the ratio between the average volume of wastewater 
treated per day and the installed capacity), (iv) disinfection treatment (binary variable), (v) sludge 
dehydration (binary variable), and (vi) pumping facilities inside the WWTP (binary variable).  

All the contextual factors listed above represent structural conditions at the plants, except the plant's 
capacity utilization that corresponds to an uncontrollable operational aspect.  

Table 3 shows the descriptive statistics of the contextual variables used in the conditional efficiency 
assessment. 

Table 3 – Descriptive statistics for the contextual variables (41 WWTPs, year of 2015). 

Contextual variable Description Mean SD Min Max 

Plant age Years since construction or last intervention 11 5 4 23 

Installed capacity m3/day 5400 12015.49 90 49000 

Percentage of utilization 
of the installed capacity 

Average volume of wastewater treated 
(m3/day)/Installed capacity (m3/day) 

54.32% 32.33% 6.59% 155% 

Disinfection treatment Dummy = 1 if present 19.51%    

Dehydration of sludge Dummy = 1 if present 26.83%    

Pumping facilities Dummy = 1 if present 58.54%       
 

To conclude, Figure 1 depicts a visual summary of the input and output indicators, as well as the 
environmental variables considered in this study.  

 
Figure 1 – Schematic representation of the conditional DEA model used to assess WWTPs performance in this study. 

4. Results and Discussion 
 
4.1 Critical comparison of results obtained from robust and deterministic DEA. 

WWTP

Rate of COD removed x 
Volume of wastewater treated

Rate of SS removed x 
Volume of wastewater treated

Energy balance

Labour

Inputs 
(Physical resources consumed) Outputs 

(Pollutants actually removed)

Contextual variables
• Age of the plant
• Installed capacity
• % utilization of the installed capacity
• Desinfection treatment
• Sludge dehydration
• Pumping stations inside the plant
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In this section, we compare the results obtained from a traditional (deterministic) DEA with those 
obtained using a robust unconditional approach to the problematic sample of WWTPs. We also explore 
the practical information to be delivered to WWTPs managers to guide performance improvements. 
Specifically, we used a VRS specification of the DEA model, to comply with existing literature 
demonstrating that these utilities exhibit VRS technology (e.g., Hernández-Sancho et al., 2009). 

The first issue that must be resolved in assessments using the order-m method is choosing the value 
of m (number of units drawn at random with replacement among those producing at least the same 
output as the unit under evaluation). As explained in Section 2.2, the value of m can be selected by 
plotting the percentage of super-efficient units against the values of m, and then determining the 
elbow value after which the percentage of super-efficient units stabilizes. Figure 2 shows the sensitivity 
analysis for different values of m, both in terms of % of super-efficient units and average robust 
efficiency scores. The detailed data at the DMU level underlying the construction of the graphs shown 
in Figure 2 is shown in Appendix A. 

 
Figure 2 – Sensitivity analysis for selection of the m-value. 

The analysis of these graphs led us to choose a value of m equal to 41, which corresponds to the 
number of DMUs in the sample. A value of m equal to the number of DMUs in the sample might be 
regarded as a recommended option for problematic samples due to the small dimension.   

Table 4 shows the descriptive statistics of the robust unconditional efficiency scores for different 
values of m, together with the DEA scores of the deterministic DEA (full frontier without resampling) 
and deterministic DEA with peers restricted to the WWTPs with at least the same output level as the 
DMU under assessment. 

Table 4. Summary information of efficiency results for different model specifications 

 
The magnitude of the efficiency scores obtained for the deterministic DEA approaches and the robust 
DEA approaches are quite different. The efficiency scores obtained under the DEA approach (mean 
value of 0.654) are much lower than in the robust approaches, regardless of the value of m selected. 
This highlights the importance of using robust approaches to analyse problematic samples, as a full-
frontier may lead to results with limited face validity from a practical perspective, compromising the 
design of policies for continuous improvement.  

As expected, we notice that the average value of deterministic DEA with peers restricted is practically 
the same as that obtained in the robust DEA for large values of m compared to the sample size (m = 

conventional Peers restricted (m  = 10) (m  = 20) (m  = 30) (m  = 41) (m  = 50) (m  = 60) (m  = 70) (m  = 80)

Mean 0.654 0.880 1.180 1.000 0.940 0.920 0.910 0.900 0.890 0.890

StDev 0.242 0.160 0.363 0.239 0.197 0.180 0.170 0.165 0.162 0.160

Min 0.245 0.530 0.647 0.573 0.547 0.537 0.532 0.529 0.528 0.527

Max 1 1 2.338 1.807 1.525 1.367 1.258 1.186 1.126 1.099

# of (super-)efficient units 8 21 29 23 23 22 21 21 21 21

Summary Statistics
Robust DEADeterministic DEA
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70 and m = 80). Furthermore, for the DMUs considered inefficient, the magnitude of the difference 
between the estimates obtained for individual efficiency scores in the Deterministic DEA with peers 
restricted model and the Robust DEA (m=80) was under 0,5% for 17 DMUs. The largest difference 
(2.6%) was observed for DMU P38 (see Table A.1 in Appendix). Also, the number of (super-) efficient 
DMUs observed in the deterministic DEA with peers restricted is similar to that obtained in the robust 
approach.  

We highlight the finding that the input-oriented deterministic DEA with peers restricted is very similar 
to the input-oriented robust DEA for values of m close to the sample size. This could be anticipated 
given that both methods are using the same conditional assumption, i.e., each DMU can only be 
compared with those that produce at least the same amount of output.  From a deterministic point of 
view, the deterministic DEA with peers restricted can be seen as a dynamic clustering (Golany and 
Thore, 1997), since the peer restriction used is softening the variability of the sample in terms of the 
output indicator, such that each DMU is fairly evaluated within a group of comparable peers. See in 
Appendix B the mathematical programming model formulation used for the deterministic DEA model 
with peers restricted, as well as the results obtained from its application to the sample of WWTPs from 
AdCL (Table B.2). 

Using the robust DEA with m equal to 41, we found 19 plants performing inefficiently. Since this paper 
aims to get into the black box of the efficiency assessment, Table 5 presents the information obtained 
regarding efficiency scores and targets for the detected inefficient DMUs.  

Table 5 – Results of the efficiency analysis for the inefficient units, by using the robust approach. 

Inefficient 
WWTPs 

# units with ≥ 
output level than 
the evaluated unit 

Robust 
efficiency 

score 

Target Energetic 
Balance 

(MWh/year) 

Potential 
Energy savings 
(MWh/year) 

Target Labour 
(# of FTE 
workers) 

Potential Labour 
savings (# of FTE 

workers) 

P5  4 0.924 1485.2 122.9 5.2 3.80 

P9  7 0.857 489.6 421.0 1.2 0.20 

P12 13 0.605 121.7 79.7 0.4 0.25 

P14 18 0.572 126.7 94.5 0.3 0.26 

P15 19 0.537 98.4 84.6 0.5 0.42 

P16 13 0.670 115.2 56.3 0.4 0.21 

P17  20 0.677 114.4 54.4 0.4 0.19 

P19 11 0.870 153.1 22.8 0.2 0.20 

P22  23 0.659 117.9 61.2 0.4 0.21 

P23  22 0.769 103.9 31.4 0.5 0.14 

P24 15 0.907 91.6 9.4 0.5 0.10 

P26  40 0.696 24.9 11.0 0.3 0.15 

P28  25 0.928 105.3 8.0 0.4 0.03 

P29  29 0.678 105.3 50.4 0.3 0.15 

P34  16 0.922 120.4 10.1 0.4 0.03 

P35  21 0.674 145.1 72.2 0.3 0.13 

P36  36 0.985 32.6 0.65 0.3 0.07 

P38  34 0.820 34.4 7.6 0.3 0.13 

P40  14 0.819 146.1 32.5 0.2 0.06 

Mean  0.766 196.4 64.8 0.7 0.35 

St.Dev  0.136 317.7 93.0 1.1 0.84 

Min  0.537 24.9 0.65 0.2 0.03 

Max  0.985 1485.2 421.0 5.2 3.80 



15 
 

 

From the analysis of Table 5, we can see that even despite the features underlying the robust efficiency 
assessment (mitigation of the impact of outliers in the comparative evaluation process through 
resampling and construction of a partial frontier based only on units with the same or higher level of 
output than the unit under evaluation) there is still room for improvement. The average inefficiency is 
23.4% (1-76.6%), which means there is room for reducing the overall level of resource usage by 23.4%. 
For the energy input, the total energy wasted due to inefficiency is 1230.8 MWh/year, corresponding 
to 8% of the total energy consumed by the 41 WWTPs. In the case of labour, the total number of full-
time equivalent workers that can be potentially reduced is 6.7 (or equivalently 268 hours per week, 
assuming 1 FTE corresponds to 40 hours per week). This labour time could be applied to different 
functions within the company to improve the overall functioning of the WWTPs system.  

Table 6 complements the insights gained by looking into the black box of the efficiency assessment 
exercise with the description of the peers identified. Table 6 presents the vector of intensities 𝜆"  for 
each DMU, which indicates how relevant other (observed) WWTPs (j) are for constructing the 
benchmark against which the efficiency of plant k is assessed. The values of lambda presented in the 
intensity matrix are the average values of the lambdas calculated for each plant in B iterations. Recall 
that the efficiency results are robustified by creating B (=2000) efficiency scores per plant given the 
subsample of m (=41) plants (the order-m approach) generated in each iteration.  
 

Table 6 – List of peers and intensity values for the units considered inefficient under the robust approach. 

 
 

From an individual perspective, we can take the example of WWTP P15 that was assigned the lowest 
efficiency value to give an in-depth understanding of the practicality inherent to the robust approach. 
This plant was considered comparable to 19 other WWTPs of AdCL, meaning that these other 19 plants 
produce the same or more output that WWTP P15 (see Table B1 in Appendix B). P15 uses a very high 
percentage of the installed capacity (in fact, on average, it was working with overload in the year 
analysed). It is a relatively new facility (with 9 years in 2015). Table 6 shows that plant P25 was 
considered the most relevant peer for plant P15, with an intensity value of 0.8. This suggests that P15 
should look for the best practices implemented in plant P25 to foster performance improvements. In 
fact, the similarities between P15 and P25 are noticeable. Both were overloaded in the period 

P1 P2 P3 P6 P10 P18 P19 P20 P21 P24 P25 P26 P28 P30 P32 P33 P34 P36 P37 P38 P40 P41

P5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

P12 0 0 0 0.46 0 0 0.03 0 0 0 0.51 0 0 0 0 0 0 0 0 0 0 0

P14 0 0 0 0.5 0 0 0 0 0 0.03 0.38 0 0 0 0 0 0.07 0 0 0 0.02 0

P15 0 0 0 0.08 0 0 0 0 0 0.08 0.8 0 0 0 0 0 0.03 0 0 0 0 0

P16 0 0 0 0.37 0 0 0.02 0 0 0 0.62 0 0 0 0 0 0 0 0 0 0 0

P17 0 0 0 0.3 0 0 0 0 0 0.06 0.54 0 0 0 0 0 0.09 0 0 0 0 0

P19 0 0 0 0.98 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P22 0 0 0 0.32 0 0 0 0 0 0.07 0.46 0 0 0 0 0 0.14 0 0 0 0.01 0

P23 0 0 0 0.15 0 0 0 0 0 0.09 0.69 0 0 0 0 0 0.06 0 0 0 0 0

P24 0 0 0 0 0 0 0 0 0 0.05 0.94 0 0 0 0 0 0 0 0 0 0 0

P26 0 0.01 0 0 0 0 0 0 0 0 0 0.01 0 0.08 0.23 0.63 0 0.04 0 0 0 0

P28 0 0 0 0.14 0 0 0 0 0 0 0.12 0 0.02 0 0 0 0.02 0 0.67 0 0.02 0

P29 0 0 0 0.1 0 0.1 0 0.03 0 0 0 0 0 0 0 0 0.01 0 0 0 0.03 0.72

P34 0 0 0 0.42 0 0 0 0 0 0.03 0.47 0 0 0 0 0 0.07 0 0 0 0 0

P35 0 0 0 0.69 0 0 0.02 0 0 0.02 0.14 0 0 0 0 0 0.02 0 0 0 0.11 0

P36 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0.69 0 0 0 0.21 0 0.08 0 0

P38 0 0 0.06 0 0.02 0 0 0 0 0 0 0 0 0.72 0 0 0 0 0 0.21 0 0

P40 0 0 0 0.82 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0.05 0

Intensity values of WWTPs considered peers
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analysed, and P25 is only 6 years older than P15, indicating that both are in useful age. Note that using 
the deterministic DEA approach, the efficiency score of WWTP P15 was only 0.334 (a difference of 
20.3% in relation to the robust approach).  

Another example is WWTP P13, with the biggest difference between the results obtained in the DEA 
and robust approaches (64.7%). In the robust approach, this plant is considered comparable to 7 other 
plants (see Table B1 in Appendix B), and was considered slightly super-efficient. This suggests that 
plant P13 was being unfairly evaluated when using the DEA (efficiency score equal to 0.353) due to 
comparisons with very different WWTPs.  

Finally, we consider the case of WWTP P9, which was identified as the most inefficient plant in the DEA 
approach (efficiency score equal to 0.245). This plant was assigned an efficiency score of 0.857 in the 
robust approach. Looking at the characteristics of this particular WWTP, we see that it had a very low 
average percentage of utilization of the installed capacity in the year of 2015 (37.9%). This plant is 
significantly affected by seasonality due to religious events that attract many people to the city of 
Fátima for a few days per year in the area served by this WWTP. In addition, this WWTP also undertakes 
a disinfection treatment. Although it may be challenging to improve the efficiency of this plant due to 
the adverse contextual conditions, the robust approach allows comparisons with 7 other plants in the 
sample and found WWTP P21 as its peer. This plant also had a very low average percentage of 
utilization of the installed capacity (18.1%) in 2015. It can be used as a benchmark to share best 
practices and guide the implementation of enhanced management and operational procedures at 
plant P9.  

As expected, all units considered efficient in the deterministic DEA approach continue to be considered 
efficient in the robust approach. However, the number of efficient units increases significantly in the 
robust approach by mitigating the effect of outliers in the assessment and imposing a more restricted 
assumption regarding the comparability among DMUs. Accordingly, a total of 22 WWTPs were 
identified as (super-)efficient in the robust approach, against only 8 efficient WWTPs under the 
deterministic approach. Consequently, the robust efficiency assessment results match more closely 
stakeholders perceptions concerning WWTPs’ performance than the results of the deterministic DEA 
model. The targets obtained using DEA would be very demanding and perceived as impractical to 
accomplish with the technology available at the WWTPs. 

Other important conclusions can be drawn by comparing the number of times each WWTP is identified 
as peer, and the average intensity value (𝜆") obtained in deterministic DEA versus robust DEA 
approaches. In the robust approach, the number of times a plant is identified as a peer is obtained by 
counting the number of times the average results of the intensity values obtained in the B iterations 
were greater than zero. This means that even a WWTP considered inefficient (on average) may have 
been considered efficient at least once in the B iterations and therefore be counted as a peer of itself. 
Tables 7 and 8 summarise this information concisely.  

Table 7 –Number of times each WWTP is identified as peer and average intensity values for robust DEA. 

 
 

Table 8 – Number of times each WWTP is identified as peer and average intensity values for deterministic DEA. 

 

WWTP P1 P2 P3 P4 P6 P7 P8 P10 P11 P13 P16 P18 P19 P20 P21 P23 P24
# of times as peer 2 5 9 1 27 2 2 9 5 1 1 7 14 9 4 3 13
Average intensity 0.049 0.019 0.035 0.024 0.165 0.024 0.024 0.033 0.002 0.024 0.000 0.028 0.002 0.028 0.049 0.000 0.012

WWTP P25 P26 P27 P28 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41
# of times as peer 21 2 1 5 12 4 4 3 13 2 6 8 6 9 19 6
Average intensity 0.171 0.000 0.015 0.000 0.084 0.024 0.029 0.036 0.012 0.000 0.008 0.041 0.007 0.006 0.007 0.038

WWTP P4 P6 P7 P27
# of times as peer 29 29 4 35
Average intensity 0.058 0.267 0.025 0.649
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There are three main aspects to retain from Table 7 and Table 8. First, WWTP P6 is considered the 
preferable peer both in the DEA and the robust approaches. This signals outstanding relative 
performance at this plant in the year 2015.  

Secondly, WWTP P4 was considered 29 times as peer for the underperforming units in the DEA 
benchmarking exercise (although with an average intensity value of only 0.06), whereas P4 is only peer 
to itself in the robust approach. In fact, WWTP P4 is the largest of the sample in terms of output levels, 
so although all other plants could have used this DMU as a peer, they have selected other plants as 
benchmarks in the robust analysis (it was only used once as a peer).   

Conversely, the smallest plant of the sample is P27. It has been considered 35 times as a peer in the 
DEA approach, with the highest intensity value (0.65). However, in the robust approach, this WWTP 
could not be included in the comparator set of any other plant (see Table B1 in Appendix B). Therefore, 
given the assumptions underlying the robust approach, this plant could not be a peer to any other 
plant except itself (and indeed, it is a self-comparator, despite having a small lambda value in its own 
efficiency evaluation).  

Thirdly, WWTP P25 is considered as a preferable peer in the robust approach (from Table 7 it can be 
observed that 21 plants have used it as a benchmark in the efficiency evaluation), whereas it is 
considered inefficient in the DEA approach (efficiency score of 0.739). In fact, P25 is comparable only 
to 12 plants in the overall sample (see the line corresponding to P25 in Table B1 of Appendix B). This 
shows that by mitigating the effect of outliers, some plants that are considered inefficient in the DEA 
approach can stand out as examples of best practices in the robust assessment. 

The information retrieved from this analysis can be summarised in three main takeaways. The first 
aspect is that valuable managerial information can be retrieved by exploring the by-products of a 
robust non-parametric model. Identifying peers paves the way for information sharing among 
managers, operators, and technical staff. It thus constitutes a starting point for the planning and 
action-taken that leads to performance improvements. Moreover, the computation of targets gives 
both managers and operational staff a direct indication of necessary improvements. It also triggers the 
gathering of new insights into both current practices and best practices observed in identified peers. 
In addition, the possibility of conducting internal benchmarking to identify best practices is vital to 
motivate continuous improvement, taking as inspiration examples known for the company. Otherwise, 
company's operational staff may perceive goal-setting based on external benchmarking or without 
empirical support as unrealistic. The second one concerns the comparison of the results corresponding 
to robust and deterministic approaches. Best-practice sharing can be best promoted using robust 
approaches, as the peers identified are more similar to the unit under assessment. This is actually an 
essential ingredient for fair benchmarking evaluations. Finally, even if only deterministic models are 
used, their implementation should consider peers’ restrictions. This will enable obtaining results that 
are more aligned with the robust approaches (especially for large values of m). 

4.2 Results of the conditional robust DEA 

As demonstrated in the previous section, the robust approach allows a trustworthy comparative 
evaluation of units, which serves as a baseline reference for estimating the efficiency levels of the 
WWTPs. To complement this analysis, we also explored the relationship of contextual factors with 
plants’ performance. This exploratory study aims to grasp additional insights concerning the evaluation 
of small samples with variability in the values of the input and output indicators and facing 
heterogeneous environmental conditions. 

The statistical significance of the models is an issue that must be explored with caution. Also, for small 
samples, it is not possible to include all potentially relevant contextual factors in the same model, 
which prevents exploring interactions among variables. Nevertheless, conditional models can still 
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guide decision-makers concerning the significance and direction of influence of each contextual 
variable on the performance of the units under assessment. 

Table 9 shows the summary results obtained for the conditional models tested. For the factors with a 
statistically significant impact on efficiency, this table also indicates the direction of influence of the 
conditional factor on WWTP efficiency (favorable or unfavorable). Appendix C (Table C.1) provides the 
complete information on the efficiency scores obtained for each WWTP in the models considered. 

Table 9 – Results of the robust conditional efficiency analysis and statistical inference. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Variables Age 
Installed 
capacity 

% of utilization of 
installed capacity 

Disinfection 
treatment 

Sludge 
dehydration 

Pumping 
facilities 

Mean 0.945 0.904 0.940 0.916 0.922 0.910 

St.Dev. 0.111 0.168 0.129 0.168 0.146 0.170 

Min. 0.639 0.528 0.526 0.535 0.535 0.536 

Max. 1.058 1.195 1.166 1.323 1.155 1.249 

Direction of influence  Unfavorable  Unfavorable Unfavorable Unfavorable 

p-value 0.067 0.049* 0.407 0.001* 0.044* 0.018* 

*Statiscally significant at a 5% confidence level 

We can conclude that two of the factors considered (age and percentage of utilization of installed 
capacity) do not have a statistically significant relationship with efficiency, and thus the direction of 
influence is not reported on Table 9. Regarding the variable age, similar results were found, for 
example, by Hernández-Sancho et al. (2011) and D’Inverno et al. (2018).  

Regarding the percentage of utilization of the installed capacity, Guerrini et al. (2016) found that high 
use of the installed capacity positively influences the performance levels. Although the analysis of our 
sample did not confirm this result at a statistically significant level, the analysis of the scatter plot for 
this conditional model (see Figure 3) shows a decreasing slope for a percentage of the utilization of the 
installed capacity between 50% and 110%, signaling that in this range of values the effect of increasing 
the use of the installed capacity may have a favourable influence on efficiency. This result is in 
accordance with what is described by Lorenzo-Toja et al. (2015) and by Dong et al. (2017). 

 
Figure 3 – Univariate scatter plot for the influence of the percentage of utilization of the installed capacity a) with 

confidence interval; b) without confidence interval. 

According to our sample, only severe over-sizing (below 50% of utilization) and under-sizing (more 
than 120% of utilization) are detrimental to good performance. In our sample, 18 WWTPs are oversized 
and 4 WWTPs are undersized (totalizing more than half of the plants in the sample), which justifies the 
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observed unfavorable trend of this contextual factor on performance. Furthermore, as the average 
percentage of utilization of the installed capacity is around 50%, there is considerable room for 
increasing the capacity utilization in the long run. In the future, increasing the volume of wastewater 
treated at the 18 currently oversized plants might enhance efficiency. Accordingly, to face a potential 
increase in wastewater treatment needs, it could be wise to analyse the feasibility of draining the 
additional volumes to these existing WWTPs, as an alternative, if possible, to the construction of new 
facilities.  

One of the contextual factors that is commonly studied in the WWTPs performance assessment 
literature is the plant dimension (see Table 2). This factor is proxied in our study by the installed 
capacity. Table 9 shows that the installed capacity has an unfavourable effect on WWTP efficiency for 
the AdCL sample, meaning that higher installed capacity is associated with lower levels of efficiency. 
Although the study by Fuentes et al. (2015), also using a robust conditional approach, reached a similar 
conclusion regarding the unfavourable effect of dimension on efficiency, this is a result contrary to 
what is commonly described in the literature (e.g., Guerrini et al., 2016). Although this effect was found 
to be statistically significant at a 5% level for our sample, the p-value is quite high (0.049), so the results 
should be viewed with caution. Note also that in our sample, the majority of plants (36 out of 41) have 
a small installed capacity (i.e., lower than 6500 m3/day), while only 5 plants have a big installed capacity 
(i.e., greater than 20000 m3/day). 

Concerning the disinfection treatment, sludge dehydration, and the existence of pumping facilities, all 
these factors have a statistically significant association with the efficiency of WWTPs, and the direction 
of their influence is unfavorable. Thus, some of the inefficiency identified in the robust unconditional 
model can be attributed to the influence of these contextual conditions. This result is as expected, as 
all these factors imply electricity consumption and require additional workforce. 

It has been argued in the literature (e.g., Lorenzo-Toja et al., 2015) that the plants with a tertiary 
treatment, which includes disinfection, should not be comparatively assessed with plants that don’t 
conduct this kind of treatment. However, in the presence of small samples, it is not possible to separate 
the plants into groups according to the combination of contextual conditions that they face. This is 
precisely what motivated this paper. We provide an alternative approach to evaluate small samples, 
consisting of using a robust unconditional DEA model to estimate a baseline efficiency level for all 
plants under evaluation, followed by a robust conditional model, such that the decision maker 
becomes aware of the particular issues (contextual conditions) that may be correlated with the 
performance of the plants. Consequently, the design of policy measures to improve efficiency can be 
done in light of the additional information provided by the conditional analysis. 

It should also be noted that although the conditional analysis revealed that some of the factors have a 
statistically significant relationship with the efficiency levels, the correlation between the efficiency 
scores obtained with robust conditional and unconditional models is very high (see Table 10). 

Table 10 - Spearman correlation matrix for different model specifications 

 Robust Conditional DEA 

 Age Installed capacity % utilization of 
installed capacity 

Disinfection 
treatment 

Sludge 
dehydration 

Pumping 
facilities 

Robust DEA 0.7673 0.9606 0.8112 0.9770 0.9737 0.9922 

In summary, our results demonstrate that four contextual variables have a statistically significant 
association with the efficiency levels. Therefore, the results revealed by the conditional models should 
be taken into account, especially when considering the identification of peers to guide performance 
improvements at the plants.  
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5. Conclusion 

In order to guide the design of policies for performance improvement, efficiency studies at macro level 
are often directed to a sector or area to understand trends and reveal opportunities and threats. In 
these cases, the samples to analyse are carefully selected, such that it is possible to reach unbiased 
conclusions. At a micro level, companies may also be interested in conducting efficiency studies to 
tackle better internal challenges for the improvement of their utilities. In these internal benchmarking 
situations, the samples available may be problematic, undermining the reliability of the evaluation 
process. As defined in this paper, problematic samples are small samples whose units present high 
variability in terms of input-output indicators and/or environmental conditions.  

Considering the importance of performance assessment studies in the search for improvements within 
organizations, the variability within the samples should be treated without compromising the quality 
of the information obtained. This must be done without disregarding any unit, especially in companies 
or entities that manage a small number of units. 

In this paper, we showed the potential of an efficiency analysis framework based on the combination 
of robust unconditional and conditional DEA models. This procedure was implemented using a real-
world problematic sample of a Portuguese wastewater company, and was validated by company 
managers. It was demonstrated that a robust efficiency approach could successfully tackle the 
challenge of  identifying best practices and uncovering the real potential for improvement within a 
company. This approach can identify a more realistic set of targets than the deterministic DEA 
formulation.  

For example, in the case study consisting of 41 WWTP from the AdCL company, the baseline value for 
reducing the total energy consumed was 8%. This is more conservative and realistic than the value 
proposed by the traditional DEA approach (28%). Furthermore, using a robust conditional approach, it 
was possible to derive additional information about the effect of the environmental factors that were 
not previously considered directly in the unconditional efficiency assessment. More precisely, it was 
concluded that plants’ installed capacity, the existence of disinfection treatment, sludge dehydration 
and pumping facilities inside the plants have a statistically significant association with plants’ efficiency 
levels. Therefore, these factors must be taken into account in the identification of the peers where 
best practices should be observed to foster performance improvements at underperforming WWTPs. 

The information gathered can help identify priorities of investments, determine the type of technical 
measures to implement at inefficient units based on information sharing, and assist the decision-
making process.  

The practical application of the efficiency assessment framework proposed in this paper also 
constitutes an example of a formative evaluation procedure that other water companies may adopt in 
the pursuit of improved sustainability of their assets. Although the performance assessment 
framework proposed in this paper was applied to the specific case of the wastewater industry, it can 
also be adopted in other industry contexts, especially in internal benchmarking exercises where the 
samples available are small, and the operating characteristics or environmental conditions differ 
significantly among DMUs.  

Our study only covers information from one year, so future research should explore the evolution of 
performance over time. This could mitigate the variability in input and output levels that may occur 
over the years and systematically identify the plants that consistently maintain high or low levels of 
performance over the years. It would also allow monitoring the effect of the environmental conditions 
on DMUs performance and investigate the changes in productivity levels over time. 
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Appendix A. Supplementary information on the choice of the m-value. 

Table A.1. Robust efficiency scores of WWTPs according to each m-value tested. 

 
  

Robust DEA Robust DEA Robust DEA Robust DEA Robust DEA Robust DEA Robust DEA Robust DEA Robust DEA 
(m  = 10) (m  = 20) (m  = 30) (m  = 40) (m  = 50) (m = 60) (m  = 70) (m  = 80) (m  = 90)

P1 0.815 1 1 1 1 1 1 1 1 1 1
P2 1 1 1.325 1.114 1.048 1.024 1.013 1.006 1.004 1.003 1.002
P3 1 1 1.467 1.205 1.1 1.057 1.032 1.02 1.013 1.01 1.005
P4 1 1 1 1 1 1 1 1 1 1 1
P5 0.433 0.924 0.928 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924
P6 1 1 2.139 1.346 1.122 1.04 1.014 1 1 1.001 1
P7 1 1 1.017 1 1 1 1 1 1 1 1
P8 0.409 1 1.134 1.015 1 1 1 1 1 1 1
P9 0.245 0.857 0.952 0.866 0.859 0.857 0.857 0.857 0.857 0.857 0.857

P10 1 1 1.658 1.359 1.21 1.14 1.085 1.062 1.04 1.026 1.018
P11 1 1 1.247 1.077 1.03 1.007 1.003 1.001 1 1 1
P12 0.439 0.593 0.763 0.654 0.619 0.605 0.599 0.595 0.594 0.593 0.593
P13 0.353 1 1.132 1.012 1.002 1 1 1 1 1 1
P14 0.396 0.562 0.664 0.603 0.583 0.572 0.568 0.566 0.564 0.563 0.563
P15 0.334 0.526 0.647 0.573 0.547 0.537 0.532 0.529 0.528 0.527 0.527
P16 0.487 0.657 0.842 0.723 0.687 0.671 0.663 0.66 0.658 0.658 0.657
P17 0.400 0.663 0.787 0.713 0.688 0.677 0.672 0.669 0.666 0.665 0.664
P18 0.543 1 1.212 1.081 1.043 1.025 1.015 1.009 1.007 1.005 1.003
P19 0.619 0.867 1.068 0.905 0.879 0.871 0.869 0.868 0.868 0.868 0.867
P20 0.536 1 1.237 1.097 1.058 1.036 1.025 1.016 1.01 1.006 1.004
P21 0.647 1 1.386 1.065 1.009 1 1 1 1 1 1
P22 0.333 0.641 0.768 0.696 0.672 0.658 0.652 0.648 0.645 0.643 0.642
P23 0.381 0.749 0.902 0.817 0.787 0.77 0.762 0.756 0.754 0.751 0.751
P24 0.572 0.899 1.094 0.956 0.922 0.906 0.904 0.901 0.9 0.9 0.899
P25 0.739 1 1.373 1.123 1.051 1.023 1.011 1.003 1.002 1.001 1
P26 0.611 0.663 0.954 0.769 0.72 0.695 0.682 0.674 0.671 0.667 0.665
P27 1 1 1.625 1.295 1.2 1.139 1.107 1.086 1.063 1.05 1.035
P28 0.445 0.914 1.042 0.965 0.94 0.928 0.923 0.92 0.917 0.916 0.915
P29 0.444 0.659 0.797 0.72 0.692 0.677 0.67 0.667 0.663 0.662 0.661
P30 0.982 1 2.338 1.807 1.525 1.367 1.258 1.186 1.126 1.099 1.059
P31 0.681 1 1.588 1.182 1.051 1.018 1.002 1.002 1.002 1 1
P32 0.968 1 1.652 1.285 1.18 1.12 1.087 1.067 1.047 1.038 1.024
P33 0.969 1 1.48 1.194 1.092 1.049 1.033 1.017 1.012 1.007 1.003
P34 0.637 0.910 1.04 0.957 0.934 0.922 0.916 0.914 0.912 0.911 0.911
P35 0.5 0.647 0.848 0.737 0.693 0.672 0.663 0.656 0.653 0.65 0.649
P36 0.751 0.937 1.371 1.094 1.017 0.982 0.967 0.955 0.951 0.949 0.943
P37 0.486 1 1.176 1.061 1.026 1.01 1.006 1.004 1.002 1.001 1.001
P38 0.635 0.742 1.18 0.938 0.861 0.824 0.802 0.786 0.774 0.768 0.76
P39 0.696 0.951 1.371 1.139 1.054 1.009 0.986 0.973 0.966 0.958 0.957
P40 0.667 0.806 1.031 0.878 0.836 0.818 0.813 0.81 0.808 0.807 0.807
P41 0.667 1 1.216 1.096 1.052 1.026 1.019 1.01 1.006 1.004 1.003

# of (super-) 
efficient units

8 21 29 23 23 22 21 21 21 21 21

Mean 0.654 0.882 1.182 1.001 0.944 0.918 0.906 0.898 0.893 0.890 0.887
StDev 0.242 0.156 0.363 0.239 0.197 0.180 0.170 0.165 0.162 0.160 0.158
Min 0.245 0.526 0.647 0.573 0.547 0.537 0.532 0.529 0.528 0.527 0.527
Max 1 1 2.338 1.807 1.525 1.367 1.258 1.186 1.126 1.099 1.059

WWTP Deterministic 
DEA

Deterministic DEA 
(peers restricted)
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Appendix B. Suplementary information upon deterministic DEA with the peers in the order-m 
approach restricted. 

Mathematical programming model for Deterministic DEA with peers restricted 

min
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In formulation (1), 𝐶' is the group of peers allowed for the efficiency evaluation of DMU k under 
assessment.  

In the case study of WWTPs from AdCL, the peers used for the evaluation of DMU k are those shown 
in the columns of Table B.1. 

Table B.1. Matrix describing the fulfilment of the comparability criterium for the WWTPs under evaluation 

  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41

P1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

P3 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1

P4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P5 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P6 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P7 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P8 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P9 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P10 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1

P11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1

P12 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P13 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P14 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

P15 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

P16 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P17 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

P18 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0

P19 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P20 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0

P21 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P22 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

P23 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

P24 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

P25 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P28 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0

P29 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1

P30 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1

P31 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

P32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

P33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P34 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

P35 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

P36 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

P37 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

P38 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1

P39 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1

P40 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

P41 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1
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Table B.2. presents the comparison between the results of the deterministic DEA model with peers 
restricted and the robust DEA model (with m-value equal to 41). 

Table B.2. Information for comparison of deterministic DEA with peers restricted and robust DEA.  

WWTP 
Efficiency score 

(deterministic DEA 
with peers restricted) 

Efficiency 
score  

(robust DEA) 

Difference  

(in %) 

Peers  

Deterministic DEA with peers restricted 

Peers  

Robust DEA  

(more than 30% of the DEA runs) 

P1 1 1 0.0% DMU 1 (lambda=1) DMU 1 

P2 1 1.0231 2.3% DMU 2 (lambda=1) DMU 2 

P3 1 1.0528 5.3% DMU 3 (lambda=1) DMU 3 

P4 1 1 0.0% DMU 4 (lambda=1) DMU 4 

P5 0.9236 0.9236 0.0% DMU 1 (lambda=1) DMU 1 

P6 1 1.0426 4.3% DMU 6 (lambda=1) DMU 6 

P7 1 1 0.0% DMU 7 (lambda=1) DMU 7 

P8 1 1 0.0% DMU 8 (lambda=1) DMU 8 

P9 0.8571 0.8573 0.0% DMU 21 (lambda=1) DMU 21 

P10 1 1.1382 13.8% DMU 10 (lambda=1) DMU 10 

P11 1 1.0078 0.8% DMU 3 (lambda=0.7300); DMU 6 (lambda=0.2699) DMU 3; DMU 6 

P12 0.5928 0.6034 1.1% DMU 6 (lambda=0.4614); DMU 25 (lambda=0.5386) DMU 6; DMU 25 

P13 1 1.0001 0.0% DMU 13 (lambda=1) DMU 13 

P14 0.5622 0.5724 1.0% DMU 6 (lambda=0.5422); DMU 25 (lambda=0.4578) DMU 6; DMU 25 

P15 0.5263 0.5363 1.0% DMU 6 (lambda=0.0879); DMU 25 (lambda=0.9121) DMU 6; DMU 25 

P16 0.6570 0.6705 1.3% DMU 6 (lambda=0.3526); DMU 25 (lambda=0.6474) DMU 6; DMU 25 

P17 0.6631 0.6771 1.4% DMU 6 (lambda=0.3404); DMU 25 (lambda=0.6596) DMU 6; DMU 25 

P18 1 1.0264 2.6% DMU 18 (lambda=1) DMU 18 

P19 0.8674 0.8699 0.2% DMU 6 (lambda=1) DMU 6 

P20 1 1.0325 3.3% DMU 20 (lambda=1) DMU 20 

P21 1 1 0.0% DMU 21 (lambda=1) DMU 21 

P22 0.6405 0.6589 1.8% DMU 6 (lambda=0.3856); DMU 25 (lambda=0.6144) DMU 6; DMU 25 

P23 0.7489 0.7679 1.9% DMU 6 (lambda=0.1690); DMU 25 (lambda=0.8310) DMU 6; DMU 25 

P24 0.8994 0.9060 0.7% DMU 25 (lambda=1) DMU 25 

P25 1 1.0167 1.7% DMU 25 (lambda=1) DMU 25 

P26 0.6634 0.6958 3.2% DMU 2 (lambda=0.0149); DMU 33 (lambda=0.9851) DMU 2; DMU 33 

P27 1 1.1336 13.4% DMU 27 (lambda=1) DMU 27 

P28 0.9137 0.9274 1.4% DMU 6 (lambda=0.1553); DMU 37 (lambda=0.8447) DMU 6; DMU 37 

P29 0.6590 0.6766 1.8% DMU 6 (lambda=0.0343); DMU 41 (lambda=0.9657) DMU 6; DMU 41 

P30 1 1.3898 39.0% DMU 30 (lambda=1) DMU 30 

P31 1 1.0141 1.4% DMU 31 (lambda=1) DMU 31 

P32 1 1.1237 12.4% DMU 32 (lambda=1) DMU 32 

P33 1 1.0484 4.8% DMU 33 (lambda=1) DMU 33 

P34 0.9103 0.9222 1.2% DMU 6 (lambda=0.4530); DMU 25 (lambda=0.5470) DMU 6; DMU 25 

P35 0.6466 0.6727 2.6% DMU 6 (lambda=0.8045); DMU 25 (lambda=0.1955) DMU 6; DMU 25 

P36 0.9367 0.9841 4.7% DMU 30 (lambda=1) DMU 30 

P37 1 1.0098 1.0% DMU 37 (lambda=1) DMU 37 

P38 0.7423 0.8230 8.1% DMU 30 (lambda=1) DMU 30 

P39 0.9506 1.0017 5.1% DMU 6 (lambda=0.1482); DMU 30 (lambda=0.8518) DMU 6; DMU 30 

P40 0.8063 0.8178 1.2% DMU 6 (lambda=0.8604); DMU 25 (lambda=0.1396) DMU 6; DM U 25 

P41 1 1.0260 2.6% DMU 41 (lambda=1) DMU 41 
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From Table B.2. we observe that, concerning the identification of efficient DMUs, the two methods 
coincide. In both cases, 22 WWTPs are considered efficient. However, while in the robust conditional 
DEA, 17 of these were classified as super-efficient, in deterministic DEA with restricted peers, all 
efficient DMUs are assigned a score equal to one. 
Also from Table B.2., if we focus only the WWTPs that were assigned an efficiency score lower than 1 
in the deterministic DEA with peers restricted, we observe that the scores of the two approaches are 
very similar for all WWTPs, only with the exception of five WWTPs (P26, P35, P36, P38, and P39) that 
present a difference between both approaches higher than 2.6%. However, we didn’t find a particular 
reason that could explain this difference. The higher values of efficiency are systematically 
corresponding to the robust approach. This can be easily explained by the stochastic nature of the 
robust approach, since in each sample replication m units are randomly drawn with replacement. In 
this process, there is a probability for the more efficient units being left out from the sample, resulting 
in less demanding frontiers in some of the DEA runs. 
Concerning the by-products of the DEA assessment, the peers identified by deterministic DEA are 
exactly the same as the peers identified using the robust DEA method with the filter of reporting only 
those that were used more than in 30% of the 2000 replications. Both methods allow the 
determination of targets for improvement for the inefficient DMUs according to the equations (2) and 
(3) of the main text of the paper. The intensity values (lambdas) of the peers identified for each 
inefficient DMU are reported in Table B.2. for the case of the deterministic DEA model with peers 
restricted.  
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Appendix C. Detailed information resulting from deterministic, robust and robust conditional DEA. 

Table C. 1. Complete table with efficiency scores 

WWTP 

Deterministic 
DEA 

Robust DEA Robust 
Conditional DEA  

(Age) 

Robust 
Conditional DEA 

(Installed 
capacity) 

Robust 
Conditional DEA  

(Percentage 
utilization of 

installed capacity) 

Robust 
Conditional DEA 

(Disinfection 
treatment) 

Robust 
Conditional DEA  

(Sludge 
dehydration) 

Robust 
Conditional DEA 

(Pumping 
facilities) 

P1 0.8149 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P2 1.0000 1.0219 1.0000 1.0091 1.0347 1.0136 1.0083 1.0263 

P3 1.0000 1.0514 1.0000 1.0252 1.0000 1.0322 1.0223 1.0332 

P4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P5 0.4333 0.9236 0.9998 0.9832 0.9236 0.9236 0.9236 0.9236 

P6 1.0000 1.0275 1.0000 1.0000 1.0000 1.0124 1.0221 1.0171 

P7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P8 0.4089 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P9 0.2454 0.8574 1.0000 1.0000 0.8579 0.9174 0.9461 0.8573 

P10 1.0000 1.1291 1.0000 1.0715 1.0370 1.0950 1.0685 1.0902 

P11 1.0000 1.0099 1.0000 1.0042 1.0000 1.0025 1.0023 1.0129 

P12 0.4393 0.6052 1.0000 0.5929 0.9942 0.5985 0.6678 0.6003 

P13 0.3532 1.0004 1.0000 1.0000 1.0000 1.0001 1.0001 1.0003 

P14 0.3961 0.5719 0.6420 0.5652 0.6367 0.5707 0.6286 0.5704 

P15 0.3343 0.5365 0.7510 0.5279 0.5263 0.5343 0.5345 0.5358 

P16 0.4873 0.6701 0.9283 0.6580 0.9998 0.6635 0.7159 0.6661 

P17 0.3995 0.6766 0.7684 0.6667 0.7388 0.6739 0.7012 0.6799 

P18 0.5427 1.0244 1.0038 1.0091 1.0176 1.0001 1.0084 1.0187 

P19 0.6191 0.8703 0.8886 0.8674 0.8694 0.8688 0.9254 0.8690 

P20 0.5357 1.0353 1.0005 1.0149 1.0002 1.0000 1.0107 1.0284 

P21 0.6467 1.0022 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P22 0.3333 0.6592 0.7650 0.6468 0.7119 0.7609 0.7358 0.6553 

P23 0.3809 0.7686 0.9484 0.7544 0.8579 0.7649 0.9088 0.7729 

P24 0.5717 0.9070 1.0000 0.8998 1.0004 0.9038 0.8995 0.9043 

P25 0.7393 1.0187 1.0000 1.0003 1.0000 1.0068 1.0000 1.0127 

P26 0.6108 0.6963 0.7006 0.6784 0.6650 0.6825 0.6788 0.6909 

P27 1.0000 1.1417 1.0267 1.0965 1.0012 1.1166 1.0923 1.1152 

P28 0.4448 0.9277 1.0000 0.9192 0.9795 0.9250 0.9453 0.9308 

P29 0.4444 0.6775 0.6984 0.6665 0.7279 0.7893 0.6780 0.6735 

P30 0.9824 1.3476 1.0486 1.1909 1.1458 1.3637 1.1711 1.2490 

P31 0.6811 1.0188 1.0000 1.0000 1.0020 1.0038 1.0000 1.0047 

P32 0.9684 1.1183 1.0000 1.0813 1.0124 1.1000 1.0757 1.0955 

P33 0.9691 1.0474 1.0115 1.0225 1.0003 1.0295 1.0209 1.0550 

P34 0.6369 0.9216 0.9818 0.9115 1.0016 0.9187 0.9747 0.9184 

P35 0.5000 0.6739 0.6753 0.6563 0.8414 0.6659 0.7643 0.6783 

P36 0.7508 0.9853 0.9424 0.9641 0.9962 0.9928 0.9605 0.9975 

P37 0.4861 1.0120 1.0000 1.0033 1.0023 1.0077 1.0027 1.0084 

P38 0.6351 0.8198 1.0000 0.7913 0.9386 0.8013 0.7849 0.8079 

P39 0.6961 1.0050 0.9557 0.9747 1.0045 0.9912 1.0000 0.9858 

P40 0.6667 0.8187 1.0000 0.8071 1.0021 0.8147 0.9311 0.8177 

P41 0.6667 1.0269 1.0000 1.0111 1.0055 1.0301 1.0148 1.0229 

 


