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Abstract 

Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, cartilage, among others) 

accounting for 25% to 35% of the whole-body protein content, and entitled of conferring mechanical stability. 

This protein is also a fundamental building block of bone due to its excellent mechanical properties together 

with carbonated hydroxyapatite minerals. While the mechanical resilience and viscoelasticity have been 

studied both in vitro and in vivo from the molecule to tissue level, wave propagation properties and energy 

dissipation have not yet been deeply explored, in spite of being crucial to understand the vibration dynamics 

of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up 

atomistic modelling approach, here we study a collagen peptide under two distinct impulsive displacement 

loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, 

we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and 

the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the 

loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated 

one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as 

tendon and eardrum. This study can step towards understanding the mechanical behaviour of collagen upon 

transient loads, impact loading and fatigue, and designing biomimetic and bio-inspired materials to replace 

specific native tissues such as the tympanic membrane. 

 

Keywords: Wave propagation; molecular dynamics; modeling; simulation; bioinspiration; biomimicry; 

collagen; tissue 
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1. Introduction 

Collagen is a natural polymer richly abundant in human and animal tissues, such as in tendon, ligament, 

cartilage, skin, and bone.1–4 Based on the molecular structure, researchers have classified 28 different collagen 

types. Among them, the type I is the most abundant collagen in the human body.1,5,6 In bone tissue, collagen 

type I constructs with hydroxyapatite an interesting hierarchical structure that allows stability and elasticity 

for the musculo-skeletal system.1,7–15 From macroscopic collagenous tissue (e.g., tendon) with dimensions on 

the order of centimeters to the sequence of amino acids, it is possible to recognize specific structures at distinct 

scales of observation (Figure 1A). Collagen fibers of the macro tissues are composed of collagen fibrils that 

result from a staggered parallel organization of multiple polypeptides, known as tropocollagen, with a 

periodicity universally known as D-band, in which D is a characteristic dimension of 67 nm. A gap has also 

been observed between two adjacent molecules measuring 0.54D (≈ 36 nm),16 which is filled with a mineral 

component in the building block of bone tissue.17 Tropocollagen, the molecular building block, is a repeating 

sequence of the GXY triplet, in which G is glycine and X and Y are commonly proline and hydroxyproline.18,19 

The three-polypeptide chains form a triple-helix structure of the tropocollagen with length of ≈300 nm and a 

diameter of ≈1.5 nm. Earlier studies have extensively investigated collagen mechanics at different scales in 

terms of strength, toughness, loading-rate dependency, and viscoelasticity20,21 based on experimental 

campaigns employing X-ray diffraction techniques22–24 complemented with molecular modeling.25–28 These 

mechanical properties imply topology variations in time scales that may range from microseconds to hours.29  

An important advancement has recently been delivered by a number of studies investigating the role of water 

in collagen structure and properties, especially its mechanical features. Although dry collagen is critical for 

applications such as fabrication of leather or parchment,30,31 hydrated collagen is its native state32–35 and its 

stiffness is largely smaller than the dehydrated one due to the massive presence of protein-solvent hydrogen 

bonds (H-bonds) that prevent the formation of intramolecular H-bonds, mainly responsible for the increase of 

backbone rigidity.21,36  

While previous studies have extensively presented the quasi-static properties of collagen,21,37,38 little effort has 

been made to understand the capability of this material to transmit and dissipate mechanical energy along the 

structure when subjected to impulsive loads. A preliminary study reported on the propagation of a longitudinal 
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force wave aiming at observing the delay in the crosslinks. However, a more extensive discussion on the energy 

dissipation along the structure is missing. Earlier work has successfully compared a theoretical approach with 

simulations to describe longitudinal wave propagation that is in the order of km·s-1, and a time delay (~ns) that 

depends on the length of the triple helix.39 The dynamic properties of H-bonds also play an interesting role in 

governing energy transfer in other proteins such as amyloid and silk, which stems from the unique properties 

of beta sheet crystals. Some relevant work by Xu et al. focused on material responses upon impulsive 

displacements.40,41 

Experimentally, the scientific question, to define the different role of collagen in the different tissue, is difficult 

to address due the specific equipment requirements that must provide excellent time resolutions and reliable 

handling for positioning the necessary probes.42,43 In this work, we perform an in silico study on dry and 

hydrated collagen peptides aiming at unveiling how energy is transferred and dissipated along the triple helix 

when a longitudinal or transversal impulsive load is applied to the free end of the structure (Figure 1B).  

The insights hereby discussed can open new avenues of research in different fields such as biology, materials 

science, and tissue engineering. In view of this, a very interesting application is represented by the eardrum, a 

thin concave membrane in the middle ear, devoted to collect, filter, and transfer acoustic waves towards the 

inner ear. Its structure, is mainly composed of collagen type II fibers arranged in radial, circumferential, 

parabolic patterns. This specific structure, in addition to creating a scaffold to bear acoustic loads, plays a key 

role for the mechanical response and linking molecular to vibrational responses across scales.40,44–49 There 

exists a specific orientation of such collagenous fibers, and thus of their building blocks, associated to the 

hydration state might significantly affect the wave transmission and dissipation, enabling the observed 

transversal vibrations. More broadly, understanding the dissipative behavior of tropocollagen opens not only 

to a deeper knowledge of materials biology but also to the optimized design of new biomimetic and bio-

inspired materials able to deliver high-quality performances in tissue engineering applications with transient 

loads such as fatigue, impacts, or acoustical properties and mechanisms.  
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2. Materials and Methods 

2.1. MD model preparation and relaxation 

We prepare a (GPO)20 peptide topology with the Triple-Helical collagen Building Script (THe BuScr) with 

length of about 180 Å.50 In order to investigate the role of the water in the mechanical energy transfer, in 

addition to a dry structure (DS), we solvate the box that has the dimensions of 40 × 6 × 6 nm and randomly 

ionize (0.5 mol/L) the peptide via Visual Molecular Dynamics, reaching a hydrated structure (HS).  

The equilibration of both the DS and HS is performed via LAMMPS using the CHARMM force field that 

includes the hydroxyproline residue.51 We use the particle-particle particle-mesh solver with 10-4 kcal/mol-

Angstrom accuracy to compute the long-range Coulombic interactions, while for the short-range ones we 

employ the Leonard-Jones potential with global switching cut-offs set to 1 nm and 1.2 nm. The systems are 

equilibrated aiming at minimizing the potential energy at 310 K (37 °C), reaching a convergence of the root 

mean square deviation after 30 ns, according also to previous works.21 

2.2. Wave propagation 

We use a Molecular Dynamics (MD) approach to study the stress wavefront tracking to provide the main 

kinematic parameters to investigate the energy transfer along a collagen peptide.41,52 We fix three backbone 

nitrogen atoms (BB-N) at the extremity of the three chains of the peptide and load the structures through the 

other three BB-N atoms at the opposite edge.  

Two different load cases for both the DS and HS are here investigated: longitudinal (Longitudinal Case – LC) 

and transversal (Transversal Case – TC) cases due to the differences in the topology along and perpendicularly 

to the triple-helix structure (Figure 2). In the LC, the peptide is loaded with an impulsive displacement (Δ) 

equal to 10 Å, as depicted in Figure 2A and Figure 2C, with a slope of 100 m/s41 in a total time (T) equals 10 

ps. Concerning the TC, the peptide is firstly pre-stretched axially with a slope of 100 m/s up to a fixed 

deformation (i.e., from 1 to 10% axial strain to contain the computational cost)27 and, after 10 ps, we load the 

peptide edge with a vertical impulsive displacement, similar to the one used for the LC (Figure 2B and Figure 

2D). For both the LC and TC, the overall observation time is 160 ps. 
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Wave speeds are estimated through the displacements in time of the backbone alpha Carbon atoms (Cα) while 

the mechanical energy dissipation is investigated through the relaxation time (τ), defined as a coefficient of the 

exponential function (𝑒−
𝑡

𝜏) that fits the square of the maximum wave speed as a function of time (𝑣𝑀𝑎𝑥
2 (𝑡)). 

In order to further analyze the wave speed results, we model the peptide for the LC as a rod and the TC as a 

vibrating string. These assumptions allow us to study the problem with analytical references and correlate the 

kinematic outcomes with the Young’s modulus (E) according to the following equations: 

 𝑣𝐿𝐶 = √
𝐸

𝜌
 𝑣𝑇𝐶 = √

𝐸

𝜌
𝜀     Eq. 1 

in which 𝑣𝐿𝐶 and 𝑣𝑇𝐶 are the wave speeds in the LC and TC respectively, whilst 𝜌 and 𝜀 are the peptide density 

and tensile strain respectively.53 To make a clear comparison between cases and structures, we set the 

maximum displacement in Figure 3 and Figure 4 to 15 Å. Finally, we estimate the specific acoustic impedance 

Z through its definition: 

      𝑍 = 𝜌𝑣            Eq. 2 

in which 𝑣 is the wave speed. 

3. Results and discussion 

We perform a study on energy transmission and dissipation on two collagen peptides: one dry (Dry Structure 

– DS) and one hydrated (Hydrated Structure – HS) exposed to loads longitudinally (Longitudinal Case – LC 

– Figure 2A,C) or transversally (Transversal Case – TC – Figure 2B,D) to the triple-helix axis. As for this 

latter case, due to the similarities with a vibrating string, we pre-stretch the structure up to a tensile strain of 

10% in order to reduce the computational costs. In both cases, the load consists of an impulsive displacement 

able to deliver a travelling displacement wave.  

Figure 3 reports the results for the LC in which the axial displacement of the DS (Figure 3A) and the HS 

(Figure 3B) are plotted over time and position along the peptide structure. For both structures, the axial 

displacement-based load is almost completely dissipated before the induced wave reaches the fixed edge. In 

addition to the plots, the energy dissipation is estimated through the relaxation time (τLC) that is comparable 

for both the DS and HS in the order of 100 ps. We believe that the water environments for the HS case does 
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not play a significant role for longitudinal loads where axial stress waves are directly channelled into heat.53 

In contrast, measured wave speeds (𝑣𝐿𝐶) show a significant difference between the DS and HS, being higher 

for the dry peptide (i.e., 3082 m·s-1 vs. 2190 m·s-1). Compared to the fibrous beta-sheet-rich proteins 

investigated in 41 through a similar approach, wave speeds along the collagen peptides are definitely smaller. 

This result may be attributed to the almost crystalline structure of the proteins studied by the authors that is 

much stiffer of about one order of magnitude. Moreover, these results show velocities that are much slower 

than the wave speed possessed by the bone exposed to similar conditions (i.e., 4080 m·s-1 ).54 We attribute this 

deviation mainly to the absence of the mineral component, similar to carbonate hydroxyapatite, that is able to 

stiffen the whole topology and, thus, to enhance wave propagation according to  𝑣𝐿𝐶= √
𝐸

𝜌
 𝑣𝑇𝐶 = √

𝐸

𝜌
𝜀

     Eq. 1. In view of possible application for the mechanics of hearing, 

we also use 𝑍=𝜌𝑣            Eq. 2 to estimate the acoustic impedances 

that result in 2.63×106 kg·m2·s-1 and 1.87×106 kg·m2·s-1 for the DS and HS, respectively that results in, also, 

less than the bone’s (7.75×106 kg·m2·s-1).54 

The estimated Young’s Moduli for the DS and HS are 8.05 GPa and 4.07 GPa, respectively; while the result 

for the HS is quite similar to the one obtained in 55 with an error of 2%, the stiffness of the DS is slightly lower 

than what it is obtained in 21 (i.e., 10 MPa). The differences mainly depend on the method used to evaluate the 

mechanical properties that, for 21,55, relies on a tensile test on the structure; in contrast, we achieve our results 

from the wave speed propagation in which the loading rate plays a key role in the estimation of the mechanical 

properties,27 an effect that is negligible in 41 because of the quasi-crystallinity of the analyzed structures. 

Furthermore, we employ  𝑣𝐿𝐶= √
𝐸

𝜌
 𝑣𝑇𝐶 = √

𝐸

𝜌
𝜀     Eq. 1 to 

correlate the wave speed with the Young’s modulus but it represents only an approximation since it describes 

the longitudinal phenomena at the macro scale without taking into account other three-dimensional secondary 

effects at the molecular scale that induce transversal deformation due to the reduced bending stiffness of the 

molecule. The three-dimensionality of the structure deformation can be, thus, related to the errors in estimating 

the Young’s modulus.39 
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Results for the TC, schematically reported in Figure 4, show a different perspective. The DS is able to almost 

fully convey the energy content induced by the external load with a reduced dissipation (average τDS_TC = 429 

ns). As shown in Figure 4A,C, the DS presents a partial reflection of the wave with a dampening effect at the 

free end that is due to the free degrees of freedom of the peptide. In contrast, for the HS, when the structure is 

exposed to a transversal load, the wave propagation is quickly annihilated (average τHS_TC = 78 ns ≈ 0.2·τWS_TC). 

Interestingly, these dissipating phenomena differ considerably from what we described for the LC. 

Specifically, while we observe similar behaviors in the LC for the DS and HS, the perpendicularity between 

the loading and propagation directions in the TC, enhances the role of water, and specifically its viscosity, in 

damping the energy. However, although we observe a reduced damping for the DS in the TC, we believe that 

structural features of collagenous tissues, which are not modeled in the present work, might exist to compensate 

the weak dampening behavior. Quantitatively, a paired comparison remarks a four time increase of the 

relaxation time for the DS and a slight reduction for HS. Concerning the wave propagation for TC, it is possible 

to appreciate in 

Figure 5 how the outcomes clearly confirm the theory of the vibrating string expressed also by  𝑣𝐿𝐶= √
𝐸

𝜌

 𝑣𝑇𝐶 = √
𝐸

𝜌
𝜀     Eq. 1. In both the DS and HS the slope of the 

travelling displacement (i.e., 𝑣𝑇𝐶) gets steeper when the pre-strain increases and, thus, the Young’s modulus. 
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To better compare the capability of the two structures in transferring the kinetic energy, we report in 

Figure 5 the Wave Speed – Strain and Young’s modulus – Strain plots for both the DS and HS. According to 

the vibrating string model, the wave speed increases monotonically with the strain reaching values of 1401 

m·s-1 and 869 m·s-1 for the DS and HS respectively (

Figure 5A). Compared to the LC, velocities are reduced by a factor of about 2.3, although the highest values 

are still possessed by the DS. Also in this case, the absence of mineralization reduces the wave speeds and the 

specific acoustic impedances and the achieved results are definitely smaller than the values estimated for bone 

when it is exposed to shear waves (2800 m·s-1 and 5.32 × 106 kg·m2·s-1 54). 

To confirm our calculations, we estimate the Young’s modulus at different tensile strains and compare the 

values with previous studies (
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Figure 5B). For both the structures we achieve a steep decrease of the Young’s modulus from very high values 

at very little strains (83.54 GPa and 26.66 GPa for the DS and HS, respectively), probably due to the bigger 

errors in estimating the positions of the atoms at small deformations, towards a convergence at 15.21 GPa and 

5.85 GPa at 10% of tensile strain, according to earlier studies.21,26 

 

 

 

4. Conclusions 

We performed a theoretical study to assess how dry and hydrated collagen peptides are able to transfer and 

dissipate mechanical energy induced by external impulsive loads. We investigated two different perspectives 

of the same problem by focusing on the material behavior when applying longitudinal and transversal loads 

with respect to the triple-helix axis. Concerning the LC, the energy dissipation along the peptide shows similar 

results between the DS and HS (τLC ≈ 100 ps) whilst the propagation is, as expected, driven by the different 

stiffnesses that are higher for the DS, according to previous studies.21 The TC presents a more complex 

behavior: we found a monotonic increase of the wave speed with the tensile strain, also according to the 1-D 

vibrating string analytical model, confirming also how the DS is stiffer than HS. However, we observed many 

interesting differences between the two topologies and in contrast to the LC. Firstly, dissipation behaviors are 

markedly different for the two peptides, and also in contrast to the LC, with relaxation times τDS_TC ≈ 5·τWS_TC 

and τDS_TC ≈ 4·τLC. Concerning the TC, water improves the dissipating effect, rapidly decreasing the amplitude 

of the displacement waves. This damping effect is clearly absent in the DS, where the deformation is not 

contrasted by any dissipating agent. 

According to best of the authors’ knowledge, our study offers a new approach to investigate collagen at the 

molecular scale, giving new insights on how the triple helix faces external transient loads in its dry or hydrated 

states. Although employed to study energy propagation and dissipation in proteins,41 transient loads have not 

been employed to investigate the behavior of collagen-based materials so far, but they represent a key approach 

to model thermal management in both healthy and diseased tissues.56,57 
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Hydration level of tissues can vary, reaching also 62% in tendon:36 therefore, while the HS can well describe 

structures such as the tendon native state, other tissues may be studied half-way between the hydrated and dry 

models here investigated. This is the case of the eardrum, a thin spoon-shaped membrane in the middle ear 

that collects, filter and transfer the transient acoustic inputs to the inner ear. This structure is mainly composed 

of collagenous fibers radially, circumferentially, and parabolically organized in three different layers.45 

Researchers have studied the structural macro behavior only putting only a limited effort on explaining the 

mechanical response at fibril and tropocollagen scales. Briefly, upon transient loads, each part of the eardrum 

vibrates with different frequencies and amplitudes. However, the umbo – the connection with the ossicular 

chain – receives a filtered energetic content that represents with high fidelity the external input.40,44,46,58 Since 

the transversal vibration is the main mechanical response upon transient loads, we believe that there is a tight 

connection between the macroscale behavior and our study at the molecular level: the orientation of the fibers 

and, thus, tropocollagen, may contribute to damping the vibration along the fibers promoting, at the same time, 

the transversal displacement (Figure 6).  

Following the interesting results achieved, we plan to apply our method not only to the specific case of pure 

collagen, but also to the mineralized collagen that represents the building block of the bone,1 investigating how 

the covalent cross-links between helixes and different percentages of mineral affect the material behavior. 

Furthermore, similar studies may be pursued on damaged or diseased tissues by taking into account cases such 

as osteogenesis imperfecta (brittle bone disease) or other specific severe pathologies involving collagen-based 

tissues (e.g., fibrosis, Ehlers-Danlos syndrome).59–61 Understanding the energy propagation and dissipation in 

both healthy and diseased collagen-based tissues at the molecular scale may also lead towards a better 

understanding of mechanical response of such structures upon transient loads at the macro-scale (e.g., fatigue, 

impacts). 

Furthermore, tissue engineering can benefit from such advancements to develop new biomimetic and 

bioinspired materials to customize patient-specific devices to replace native tissues.5,62.In view of this, a 

remarkable field of application is certainly the middle-ear prosthetics, including ossicular bones and tympanic 

membrane replacements,62–70 in which all the structures possess abundant collagen and perform upon acoustic 

transient loads, to deliver more biocompatible collagen-based devices for long-term outcomes. 
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Figure 1. Panel A. Hierarchical structure of collagenous tissues with characteristic length scales: from macro 

tissues (e.g., tendon, eardrum) to amino acids 7–15. Tropocollagen (red lens) is the subject of this study. Panel 

B. Aiming at investigating wave propagation and energy dissipation along the triple helix, we use longitudinal 

(Longitudinal Case – LC) and transversal (Transversal Case – TC) impulsive loads at the free end of a dry 

(Dry Structure – DS) and hydrated (Hydrated Structure – HS) tropocollagen segment (length ≈ 180 Å). 

Adapted with permission from 25. Copyright 2011 American Chemical Society. 
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Figure 2. Collagen peptides upon impulsive loads and fixed at one end. The impulsive load has amplitude Δ 

equals 10 Å, a slope of 100 m·s-1, and period T equals 10 ps. The global time of observation is tf equals 160 

ps. LC – Panel A: the collagen peptide is loaded axially with displacement Δx as shown in panel C. TC – Panel 

B: the collagen peptide is firstly axially stretched with a slope of 100 m·s-1up to a set tensile strain (i.e., from 

1 to 10%) and (b) deformed from the free end with a vertical impulsive load Δ after 10 ps, as shown in panel 

D. For both cases, (a) represents the relaxed state, (b) – and (c) for the TC – shows a loading frame, and (c) 

– (d) for the TC – depicts a frame after the load application.  
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Figure 3. Plots of DS (A) and HS (B) Cα axial displacement [Å] over time and position along the peptide. In 

both cases, note the significant energy dissipation that annihilates almost completely the wave already before 

it reaches the fixed edge. DS shows a steeper slope of the traveling displacement leading to a higher velocity 

of the mechanical wave and, thus, of the Young’s modulus, according to 21. 
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Figure 4. TC – Transversal displacement [Å] along the peptide for dry (A, C) and hydrated (B, D) collagen 

peptides as a function of time, following a preliminary axial displacement of 1 Å (A, B) and 18 Å (C, D). 

Contrary to the LC, dissipation is significant only for the wet peptide. In contrast, dry collagen presents a 

more elastic, less viscous, behavior. By modeling the peptide as a pre-tensioned string, the most pulled 

structure possesses the highest wave speed, here depicted with steeper slopes of the traveling displacement. 

Finally, dry cases show higher velocities reflecting higher Young’s moduli.  

  



 22 

Figure 5. TC – Depiction of the Wave speed – Strain (A) and Young’s modulus – Strain (B) curves for the DS 

and HS. As also predictable with the vibrating string model, Panel A shows how the wave speed along the 

peptide increases monotonically with the pre-strain. Panel B, as a consequence of Panel A, shows a 

comparison between the Young’s modulus estimated through the wave propagation and previous results 

achieved through slowly stretching either DS or HS. Interestingly, the blue curve, representing our results for 

DS, well matches with the outcomes from 26. Similarly, the estimated Young’s modulus for HS fits the available 

data from 21. The high jump at low strains could be explained by the highest error in estimating the Young’s 

modulus in such small deformations. Therefore, we exclude from our discussion the results highlighted with 

the blue rectangle in both the Panels. 
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Figure 6. Input signal filtering and dissipation by the eardrum. The tympanic membrane, with its collagenous 

macro-structured radial, circumferential, and parabolic fibers, is able to deliver to the umbo – the connection 

with the ossicular chain – only specific energy contents despite its complex vibrating behavior 40,44,58. We 

believe that the mechanisms studied in this paper may be correlated to the mechanical response of the eardrum, 

which privileges transversal vibrations (red curves) damping more the longitudinal displacements (blue 

curves) along the fibers. 

  



 24 

Wave propagation and energy dissipation 

in collagen molecules  

 

Mario Milazzo, Gang Seob Jung, Serena Danti, Markus J. Buehler 

 

 

TOC image: Wave propagation and energy dissipation of collagen molecules. 


