
SoftwareX 15 (2021) 100725

h
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

STL_Process: A .STL-based preprocessor for robot path planning in
manufacturing and quality control processes
Abanti Shama Afroz a, Francesco Inglese a, Cesare Stefanini a,b, Mario Milazzo a,∗

a The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
b The Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, PO Box, 127788, United Arab Emirates

a r t i c l e i n f o

Article history:
Received 11 December 2020
Received in revised form 24 May 2021
Accepted 25 May 2021

Keywords:
Computer-aided manufacturing
Trajectory planning
Feature extraction
Human–machine interface

a b s t r a c t

One of the most commonly used file formats in manufacturing industry is .STL. We developed a
semi-automated C++ -based preprocessor with a command line interface and an OpenGL-based visual
module to extract topological features from simplified 3D volumes presented in .STL file format. The
preprocessor evaluates input 3D models in five major steps: (i) edge identification, (ii) 2D regional
grouping, (iii) region characterization, (iv) 3D sub-volume extraction and (v) virtual cross-section
generation. It has been designed to aid online robot programming by offering an intuitive and user-
friendly system to robot operators for planning additive and subtractive mechanical operations, as well
as improve non-destructive quality control activities.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current Code version v1
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00094
Legal code license MIT
Code versioning system used Git
Software code language used C++
Compilation requirements, Operating environments & dependencies Microsoft Visual Studio 2015 in Windows 2010
If available link to developer documentation/manual https://github.com/AbantiS/STL_process/blob/master/README.md
Support email for questions afroz.abantishama@gmail.com, abanti2007@gmail.com

Software metadata

Current software version v1
Permanent link to executables of this version https://github.com/AbantiS/STL_process/tree/master
Legal software license MIT
Computing platform/Operating system Windows 10.
Installation requirements & dependencies Requires Eigen and OpenGL library for C++
If available link to user manual - if formally published include a reference to
the publication in the reference list

Not published yet

Support email for questions afroz.abantishama@gmail.com, abanti2007@gmail.com

∗ Corresponding author.
E-mail address: mario.milazzo@santannapisa.it (Mario Milazzo).

1. Introduction

The recent advancements in automation and robotics have
greatly improved industrial processes in terms of efficiency and
productivity. Computer-aided design (CAD) and manufacturing
(CAM) have played a significant role to simplify and optimize
ttps://doi.org/10.1016/j.softx.2021.100725
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.softx.2021.100725
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100725&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00094
https://github.com/AbantiS/STL_process/blob/master/README.md
mailto:afroz.abantishama@gmail.com
mailto:abanti2007@gmail.com
https://github.com/AbantiS/STL_process/tree/master
mailto:afroz.abantishama@gmail.com
mailto:abanti2007@gmail.com
mailto:mario.milazzo@santannapisa.it
https://doi.org/10.1016/j.softx.2021.100725
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

t
s
t
f
a
a

l
w
f
t
i
2
p
c
c
o

d
f
o
1
t
(
f
r
l
.
(
a
f

b
a
a

2

(
t
f

v

he developmental stages of complex products. The outputs of
uch procedures are 3D virtual models that are used as inputs
o manufacturing machines or robotic assemblies for the actual
abrication and assembly. Many solutions have been developed
s an extension to commercial CAD drawing packages [1,2], and
s plugins for robot processing software programs [3].
The current procedures, based on a CAD-file dependency, are

imited by two main factors: 1) they require original CAD files
ith all the information related to the fabrication of structural

eatures. In practice, such files are often either unavailable or par-
ially edited on site without following the references of the orig-
nal CAD files [4–6]. 2) In case of robot-guided inspections with
D laser scanners [7–9], it is beneficial to have reference tem-
lates [10,11]. Conventionally this task is completed by directly
omparing volumetric topologies [9,12,13], and require a large
omputation power and additional tools such as Geomagic [13]
r Atos [11].
As an alternative to complex CAD files, researchers have also

eveloped simplified file formats. The most popular is the .STL,
rom the word ‘‘stereolithography’’ since this format was devel-
ped for the so-called additive manufacturing technology [14,
5]. The difference of this format with respect to the tradi-
ional CAD file is the absence of detailed topological information
e.g., edges, surfaces) of the design approaches used to create
eatures (e.g., holes, protrusions) and the 3D structures are rep-
esented by a collection of connected triangles. Most of the pub-
ished works, showing the extraction of topological features from
STL models, have been carried out with commercial platforms
e.g., MATLAB) [16–18]. However, they are application-dependent
nd do not provide any general solution for extracting topological
eatures from .STL models [19–23].

Based on this premise, our work describes an open source C++
ased pre-processor for feature extraction of 3D structures from
.STL file to support robot path planning of toolpath generation
nd product quality inspection.

. Problems and background

In .STL files, 3D volumes appear as a collection of triangles
Ti), interconnected through their vertices (vij) and sides (Lij). Each
opological feature is mathematically expressed by a matrix as
ollows:

ij = [xj yj zj] Ti = [vi1 vi2 vi3] Lij = [vi1 vi2] (1)

in which xj, yj, zj are the coordinates of the vertices of the
triangles [19,24] (Fig. 1).

This highly-simplified .STL format has been exploited in both
additive [19,25] and subtractive [26] technologies, as well as in
reverse engineering processes [27,28]. The extraction of features
from a virtual geometry, simplified with the .STL format, has
been the objective of a large number of studies [16,19,22,23].
An efficient procedure allows, indeed, the accurate generation of
tool paths both for internal and external features [21,29–31]. Con-
cerning the specific case of additive manufacturing, this approach
helps defining the amount of support material required to frame
the actual structures [21,32] by slicing the volume along the so-
called build direction [20]. Additional applications include the
automation of manufacturing and assembly processes (e.g., cou-
pling parts [33,34] or welding structures [35–37]), to develop
efficient multiphysics and probabilistic simulation of complex
systems [38–40], path planning for robotic spray painting [41],
as well as quality control inspection [9,17,42–44]. Moreover, the
automatic estimation of the tool paths from a .STL file may be
crucial in manufacturing processes that are performed in different

geographic locations [45] and in geo-scattered, small manufactur-
ing units, a concept which turned out very promising during the
present pandemic situation [46].

However, there is the absence of a general automatic solution
that can detect volumetric features for processes not limited to
direct additive manufacturing. There is also room for improving
non-destructive process quality control procedures in terms of
computational memory consumption. This can be achieved by
using data, extracted from .STL models, and interpolated to match
cross-sections from laser profilers for a comparison.

The software here described aims at overcoming the lim-
itations of the state-of-the-art systems through a C++ -based
application able to extract geometric features semi-automatically
from the components whose .STL file is available. Our platform is
driven by a command line interface and an OpenGL-based visual
module to present the results of an estimated maneuver for a
later employment in the manufacturing chain. In order to validate
the approach, three models were used as case studies in which
the features propagate only along the thickness (Fig. 2). Model
1 is a block with six randomly positioned different blind holes.
Model 2 possesses two similar semi-open grooves, while Model 3
consists of a circular plate with seven open homogeneous curved
grooves. These models were selected since in manufacturing in-
dustry, similar designs are used for applications like welding,
gluing, or inserting. The most common of these forms were uti-
lized to generate these sample blocks. We designed each model
with Solidworks 2016 (Dassault Systèmes, Johnston, RI, USA),
using cutting/extrusion design features along the z-axis, as it
occurs in subtractive and additive manufacturing processes [20],
and eventually exported them to the .STL format.

3. Software framework

The developed approach consists in processing an input vol-
ume with features propagating along a specific direction, given
in the .STL format, and extrapolating its mechanical features to
reconstruct the topological operations originated in the CAD file
for a later employment as tool paths in additive or subtractive
operations. The 3D volume (VM ) is composed of a number of
volumetric features (VF_i) immersed in a surrounding region or
bounding surface (VS), so that

VM = VS +

∑
i

VF_i (2)

The software procedural approach was illustratively explained
using one of two 3D hypothetical volume samples reported in
Fig. A.1 of Appendix. The first volume in Fig. A.1 has a cylindrical
extrusion and a path symmetric intrusion and the second volume
possesses two cylindrical volumetric intrusions. The algorithm
processes only one volumetric feature at a time. The algorithm
starts by calculating gross mechanical features followed by identi-
fying the feature plane (Π∗

i ), parallel to the feature’s propagation,
where the major geometric variations are recognized. This is
followed by the evaluation of the feature edges given by the
collection of triangle sides (L∗

i ) related to the geometric feature
contours. A sub-algorithm works on the group of L∗

i , defining in
a new matrix the sequence of L∗

i that forms the planar feature
Π∗

i . Contours are then cataloged and associated to the related
sub-volume before using a new section plane Π∗

i+1, parallel to
Π∗

i , before repeating the procedure. The envelope of the features
along the direction of propagation gives the description of the
topological feature and the tool path for later uses.
2



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

m

C
r
r
d

Fig. 1. From CAD model (A) to .STL model (B). Panel C reports the mathematical features (vertices - vij , and sides Lij) of a generic triangle (Ti) composing the .STL
odel.

Fig. 2. Three models used as case studies. Model 1 is a block with blind holes randomly positioned in the volume. Model 2 is a block with two off-set grooves.
Model 3 presents seven open grooves distributed along the circumference.

Fig. 3. A schematic of the first .STL pre-processor where black angular arrows indicate data flow from modules, black spline arrows indicate input from user, black
dashed arrows indicate usable outputs. Black boxes indicate primary modules while dashed boxes indicates 2D and 3D analysis phases.

3.1. Software architecture

A schematic representation of the software procedure for the
++ -based pre-processor is depicted the in Fig. 3. The inter-
elationship of the pre-processor modules and their user input
equirements were summarized in this schematic picture and
escribed in the following sections.

3.2. Software functionalities

The code functionalities were organized into five major mod-
ules: (i) feature edge identification, (ii) contour generation and
regional grouping, (iii) 3D region characterization, (iv) 3D sub-
volume extraction and (v) virtual cross-section generation. The
action of these modules can be grouped into two phases: 2D and
3D analysis phases. The detailed functionalities are described in
the following section.
3



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

3

o
g

Π

t
t
m
p
t
e
g
P
t

3

t
s
a
h
a
(
i
e
c
d
b
r
d

R

3

s
i
f

t
s
(
c
b
t
p
a
b
b

3

s
s
o
a
2
v
o
b
a
T
s

V

.2.1. Feature plane identification
We first slice VM along the build direction with a finite number

f equidistant planes (Pi) [47]. We define as working plane Πi, the
eometry achieved with the Boolean operation:

i = VM ∩ Pi (3)

hat contains the following sets of topological features (TF): ver-
ices - vΠi , triangles - TΠi , lines - LΠi . Note that for simple/small
odels vΠi can be void. Feature planes, Π∗

i are defined as those
lanes that have a significantly large size of vΠi with respect
o other Πi planes. Panel B of Fig. A.2 (Appendix) depicts the
valuation of Π∗

i and Πi (the four red planes intersecting the
eometric features are feature planes Π∗

i against blue Πi planes).
anel C of the same figure depicts the 2D planar view of the
opmost feature plane, where vΠi components are marked in red.

.2.2. Identification of contours
We use the automatic procedure developed in [21] to detect

he TF for each Π∗

i . We define as feature edges (LΠ∗
i ) those

egments that belong to triangles with only two vertices on Π∗

i ,
nd, thus, form border boundary features. From these, those that
ave both the vertices on the external periphery are referred to
s external LΠ∗

i and the rest as internal LΠ∗
i . Panel B of Fig. A.3

Appendix) reports, as an example, in green and in blue colors any
nternal and external LΠ∗

i , respectively. This step is followed by
xtraction of internal contours (CΠ∗

i ), which are internal contours
onnected to each other by a common shared vertex. Note that
epending on the selected contour type, contours are merged to
ind a single region (open slot type) or used to define a single
egion (semi-open and closed slot type). Thus, a sub-region is
efined by Eq. (4).

egSub =

∑
CΠ∗

i (4)

.2.3. 2D tool-path generation
Once the planar feature is recognized and mathematically de-

cribed by CΠ∗
i and RegSub, the next step of the procedure consists

n defining the generic 2D tool-path to create the sub-volumetric
eature by robotic tool.

In the cases of open/semi-open/closed grooves/protrusions,
he 2D tool-path can be efficiently defined by the construction
ymmetry line between contours or by boundary derived lines
Panel A of Fig. A.4). Here, a dedicated algorithm localizes the
ontours that bound the groove/protrusion region and segment
y segment of CΠ∗

i , calculates the center point of the normal lines
hat connect correspondent vertices. The envelope of such center
oints is thus reduced to a centerline and stored for a later use
s a tool path, PathT . For the second case, i.e., the specific case of
lind/through holes, the path is simply a straight line along the
uilding direction (Panel B of Fig. A.4).

.2.4. Sub-volume border extraction
Every separated 2D boundary, RegSub, is adjacent to its own

ub-volume, VolSub. From a topological standpoint, any
ub-volume is composed of multiple layers, containing at least
ne upper and one lower layer, and these layers are defined
s slices of a sub-volume. A slice of a sub-volume (VF_n) is a
D geometry generated where a plane (Pm) intersects the sub-
olume. It is defined as a main slice (SliceM) if its boundary points
riginally exist in the .STL file, or as a sub-slice (SliceS) if the
oundary points are interpolated within the sub-volume. Main
nd sub-slices of a sub-volume are depicted in panel B Fig. A.5.
herefore, a sub-volume can also be represented as a set of main
lices in form of Eq. (5).

olsubn =

∑
SliceM i (5)

The process starts with generating an intermediate 3D model
from its parent RegSub. The model initially considers all the ver-
tices connected directly with the vertices of the parent RegSub
and thus the intermediate model includes all triangles having
common vertices in the selected sub-region. The 2D sub-region
is considered as the first slice, SliceM1. For each iteration, the
algorithm looks to see if there exists another groove like a bound-
ary for the targeted sub-region along the build direction of the
volume or in the same plane. The pseudo-code is following –

Pseudo-code for the sub-volume, Volsubn extraction

1: Take input from parent 2D regional border, RegSub
2: The input 2D sub-region is considered as the first slice, SliceM1
3: Consider all the vertices connected directly with the vertices of the
parent RegSub .
4: Keep only the points which are along the negative build direction and fall
under a dilated shadow zone,
5: Apply contour extraction algorithm, check if there exists another
connected boundary either in the lower or in the same plane.
5: Iterate through step 2–5, till the last layer arrives, where no more
connected vertices are not found.

Fig. A.5 shows this sub-algorithm step in details where sub-
volume (VF_2) has been extracted and contains two main slices
(SliceM1 & SliceM2).

3.2.5. 3D fine segment template generation
When the toolpath and sub-volume of a corresponding sub-

region are available, virtual templates can be generated for inte-
gration with non-destructive inspection systems like laser scan-
ners.

Pseudo-code for the cross-section generation for path symmetric regions

1: Take input from the main slices and 2D tool path.
2: For each point (i) of the center symmetric toolpath (PathT ) provide a line
for the laser projection
3: For each projection line Interpolate the external border from the slices
along the laser projection line and compute Secti .

Fig. A.6 depicts a sub-region boundary with its path descriptor
are shown with red and blue colors, respectively and the user
defines the projection line position, marked in green dashed
line, over the surface volume (VS) (Panel A). The determined
intrusive sub-volume can be seen in Panel B and the virtual cross-
sections, marked with various combinations of black color and
dashed patterns in Panel C. Such templates can be easily com-
pared with profile scans obtained with other hardware resources
like non-destructive test scanners.

4. Implementation and results

We have implemented a practical approach to identify sub-
volumetric features in three-dimensional components starting
from a .STL file without relying on original CAD sketches. Our
procedure may serve as an intuitive and user-friendly system
for operators processing mechanical components with either ad-
ditive or subtractive manufacturing procedures. We use three
different case studies to validate our approach, determining the
performance of the system with different topological conditions,
namely closed, semi-open, and open volumetric features.

The preprocessor was written with C++ language and was im-
plemented with Microsoft Community Visual Studio Environment
2015 and contains a text-based interface. The user can visual-
ize the end-results through an intuitive OpenGL-based interface
specifically developed for this purpose. The software allows the
simultaneous analysis of the 3D view, 2D top view along the
building direction with depiction of the detected contours, and a
zoomed view of the selected region of interest. Fig. 4 reports the
graphic user interface developed in the framework of this study. It
i

4



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

u
o

i
c
o
t
i
s

Fig. 4. Graphical user interface to study a .STL virtual mode. Left window shows the 3D view of the model while the right windows depict the 2D top view along
the building direction and a zoomed view of the selected region of interest. The colored lines refer to the topological features recognized by the system.. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Analysis of the three case studies. Panels A, B and C show the top views of block 1, 2 and 3 where green line marker depicts the feature lines, maroon color
is used to highlight the borders of the selected region. Panel D, E and F separately show the selected regions of block 1, 2 and 3 with gray lines and purple markers,
magenta lines indicate either the path descriptor line (Panels E, F) or user defined scanning pose (Panel D). Panel G, H, I show the 3D views of the case studies:
dark blue markers depict the vertices on the first feature plane, main slices are depicted in red, and one projection of the template is marked with solid black lines..
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is important to note here that, in the 3D view panel, the building
direction (+z) view is magnified against the x- or y-axis view to
emphasize the topological changes along the building direction.

Three test geometries with multiple sub-volumes have been
sed to assess the developed pre-processor. The comparative
utcomes are reported in Fig. 5.
For this implementation it was observed that feature-vertex

dentification, projection line calculation and virtual template
alculation were achieved in a reduced amount of time in the
rder of milli seconds. In contrast, feature-edge connectivity de-
ection and sub-slice calculation required much more time. This
s related to the fact that the algorithm evaluates all the con-
idered triangles and connectivity data in the mentioned steps.

However, although these steps require a processing time in the
order of seconds, this procedure ensures an increased efficiency
over pure online robot path planning approach. Table A.1 of
Appendix summarizes the computation time required for each
step. Additionally, we analyzed the primary memory allocation
while running the software. We observed that data processing
before visualization takes a maximum of 3 MB. While OpenGL
visualization modules causes a jump in of around 17 MB. These
results indicate that developed system can be implemented in
embedded visualization systems as well. Numerical findings were
summarized in Table A.2 of Appendix.

For each complete analysis of a model, the user has to provide
multiple input selection values. In view of this, we selected three
5



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

i

i
—
t

Fig. A.1. From .STL model to planar feature identification. Panel A: Sample volume (VM ) composed of a cylindrical extrusion (VF_1) and a path symmetric intrusion
(VF_1) within the surface volume (VS ). Panel B: Sample volume (VM ) with two sub-volumetric features (VF_1 and VF_2) merged within the surface volume (VS ).

Fig. A.2. From .STL model to planar feature identification. Panel A: a block (VM ) composed of two sub-volumetric features (VF_i and VS ). For clarity, the .STL model
s shown as a CAD model. Panel B: volume slicing and identification of Π∗

i , planes with planar geometrical features. Panel C: visualization of feature vertices (vΠi )
on the top most feature plane in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.3. Panel A: Visualization of vertex components (vΠi ) of the feature plane in red. Panel B: Identification of the sides (LΠi ) composing of regular edges (in gray),
nternal feature edges (in green), external feature edges (in blue), and planar features (in green). Panel C: Contour identification from a starting point vin (in red

selected by the user) progressive contour CΠ∗
i identified on Π∗

i in black. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

Fig. A.4. Tool path generation from symmetry-based and boundary-based samples. Panel A. A 3D volume sample with a cylindrical extrusion from the left-side
plane, and a path-based intrusion from the top plane, which is the singulated sub-region and therefore marked in red. The curvilinear description of the path is
reported with a blue dashed line. Panel B. A 3D volume with two cylindrical intrusions from the top plane. Here, the right-hand cylindrical volume is the targeted
sub-volume for the analysis. Since the sub-region has a cylindrical border, marked in red, it is considered as the parent path descriptor. Such path descriptors can
be utilized with additional algorithms to generate either cutter location source data [1] for subtractive operations or to estimate the extrusion path [3] for additive
operations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

different scenarios for each of the three case studies, and repeated

each of the nine scenarios ten times. Note that, as a convention,

we define as a scenario a specific set of inputs related to a
6



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

t
a
t

Fig. A.5. Extraction of sub-volumes. Panel A. The sub-region of interest has vertices that are marked in red and forms the first main slice. For the next main slice
extraction, all vertices connected with the red ones are initially taken into account, However, only the vertices that fall within the shadow region, shown with blue
circles, are selected as the sub-volume components and forms the next main slice. Panel B. Side view of the two main slices in red (containing red and yellow
vertices from Panel A). By interpolating these two main slices the blue sub-slices are generated. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. A.6. Template generation in 2D from 3D model: Panel A: Singulated sub-region borders are marked in red. The path descriptor can be seen in blue dashed line
and emulated usable scanner projection lines are depicted with yellow dashes while the projection line is marked with green dashes. Panel B: Singulated, intrusive
sub-volume with red boundary lines, blue path descriptor and interconnected borders in gray, Panel C: Hypothetical 2D templates along projection lines in multiple
shades of black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table A.1
Summary of computational time.
Case studies Average time for

feature plane vertices
detection (ms)

Average time for feature
edges detection (s)

Average time for
extended projection
line calculation (ms)

Average time for
sub-volume
calculation (s)

Average time for
template generation
(ms)

Case 1 4.44 ± 0.08 2.18 ± 0.8 3.35 ± 0.99 8.88 ± 7.17 87.54 ± 36.18
Case 2 0.83 ± 0.05 1.4 ± 0.48 3.63 ± 1.46 10.46 ± 6.47 49.02 ± 14.18
Case 3 0.83 ± 0.05 1.14 ± 0.1 2.46 ± 0.02 10.85 ± 2.29 44.88 ± 21.45

model. Concerning the accuracy of sub-region detection and sub-
volume detection, we obtained a value of 100% for case studies
2 and 3. In contrast, we found reduced values for region and
sub-volume extractions related to case 1. This feature can be
improved by updating the functionalities the second module,
i.e., regional contour and border generation module. As for the 2D
template generation, we achieved accuracy values of 80% and 92%
for cases 2 and 3. However, for closed loops (case 1), values re-
duce to 50%. This is due to the predicted scanning projection lines
that should be physically usable, and should be above the sub-
volume so that any structural variation falls under its projection
plane.

5. Conclusions

We present a semi-automated procedure and a visual in-
erface to identify volumetric features on .STL virtual models
nd the associated virtual operations (i.e., extrusion, cut) for

developed for manufacturing industries that use subtractive or
non-conventional additive processes, as well as joining proce-
dures such as gluing or welding. As a matter of fact, talking with
the experts who use robot programming, online programming is
today highly time consuming, especially for complex structures.
Therefore, having a generic estimation of robot tool path, as our
software does, would improve efficiency in manufacturing indus-
try. In view of this, our software overcomes several limitations of
state-of-the-art approaches: we are able to reference mechanical
components and identify their fabrication processes from .STL
files without commercial softwares (e.g., SolidWorks [34,45] or
MATLAB [16,17,21]). Thus, we are to reconstruct the Boolean
operations that lead to the final topology, without using as in-
puts complex CAD files and processors with high computational
power. Additionally, our procedure shows high flexibility, being
able to identify and reference not only closed concave features,
as reported in [21], but also more complex topologies such as
semi-open or fully open grooves. Finally, we are able to bridge
the gap that still persists for ongoing processes such as building
heir eventual fabrication or quality inspection. This software was

7



Abanti Shama Afroz, Francesco Inglese, Cesare Stefanini et al. SoftwareX 15 (2021) 100725

T
S

o
t
g
t
o

D

c
t

A

b
a
b
r
M
t

A

R

able A.2
ummary of primary heap memory usage.
Case studies Feature plane vertices

detection (MB)
Feature edges detection
(MB)

Extended projection
line calculation (MB)

Sub-volume
calculation (MB)

OpenGL visualization
(MB)

Case 1 0.672 0.179 0.193 0.07 17.48
Case 2 0.051 0.08 0.048 0.015 17.065
Case 3 0.598 0.005 0.005 0.005 17.452

up of geometric signatures [48], in which an online comparison
to reference data is not available until after finishing the product
fabrication process [9,11,13].

Future releases of the software will provide an improvement
f the edge extraction module to identify a broader range of fea-
ure edges not limited to those with high curvature, and the inte-
ration of with a Graphical User Interface (GUI) extension (i.e., Qt)
o enhance a real-time interaction feature and the development
f a plugin-like feature for 3D scanning applications.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was possible thanks to the fruitful collaboration
etween Scuola Superiore Sant’Anna, The BioRobotics Institute,
nd Baker Hughes, a GE Company (BHGE), who have strongly
elieved in the collaboration between industrial companies and
esearch centers. The authors would also like to thank Mr. Marco
iraglia and Mr. Godfried Jansen Van Vuuren for their support in

he study.

ppendix

See Figs. A.1–A.6.
See Tables A.1–A.2.

eferences

[1] Neto P, Mendes N. Robot Auton Syst 2013;61:896–910.
[2] Baizid K, Ćuković S, Iqbal J, Yousnadj A, Chellali R, Meddahi A, Devedžić G,

Ghionea I. Robot Comput Integr Manuf 2016;42:121–34.
[3] Morozov M, Pierce SG, MacLeod CN, Mineo C, Summan R. Meas J Int Meas

Confed 2018;122:284–90.
[4] Dorai C, Wang G, Jain AK, Mercer C. IEEE Trans Pattern Anal Mach Intell

1998;20:83–9.
[5] Thompson WB, Owen JC, Germain HJDe St, Stark SR, Henderson TC. IEEE

Trans Robot Autom 1999;15:57–66.
[6] Kuş A. Sensors 2009;9:1967–79.
[7] Zhao H, Kruth JP, Van Gestel N, Boeckmans B, Bleys P. Meas J Int Meas

Confed 2012;45:1057–66.
[8] Chen W, Xiong W, Cheng J, Gu Y, Li Y. 2018 IEEE/ACIS 17th int. conf.

comput. inf. sci.. 2018, p. 246–51.
[9] Phan NDM, Quinsat Y, Lavernhe S, Lartigue C. Int J Adv Manuf Technol

2018;1–15.
[10] Deneke C, Schlosser C, Mehler S, Schüppstuhl T. 7th int. symp. NDT aerosp..

2015, p. 1–8.
[11] Burghardt A, Kurc K, Szybicki D, Muszyńska M, Szczęch T. Teh Vjesn

2017;24:345–8.

[12] Marani R, Nitti M, Cicirelli G, D’Orazio T, Stella E. Adv Mech Eng 2013;2013.
[13] Wu Q, Lu J, Zou W, Xu D. 2015 IEEE int. conf. mechatronics autom. ICMA

2015. 2015, p. 2284–9.
[14] Milazzo M, Contessi Negrini N, Scialla S, Marelli B, Farè S, Danti S,

Buehler MJ. Adv Funct Mater 2019;29:1903055.
[15] Morouço P, Azimi B, Milazzo M, Mokhtari F, Fernandes C, Reis D, Danti S.

Appl Sci 2020;10:9143.
[16] Ding D, Shen C, Pan Z, Cuiuri D, Li H, Larkin N, Van Duin S. CAD Comput

Aided Des 2016;73:66–75.
[17] Mineo C, Pierce SG, Nicholson PI, Cooper I. Robot Comput Integr Manuf

2016;37:1–12.
[18] Milazzo M, Spezzaneve A, Persichetti A, Tomasi M, Peselli V, Messina A,

Gambineri F, Aringhieri G, Roccella S. Int J Adv Manuf Technol
2020;109:385–95.

[19] Brown AC, De Beer D. IEEE AFRICON conf.. 2013.
[20] Ding D, Pan Z, Cuiuri D, Li H, Larkin N. J Clean Prod 2016;133:942–52.
[21] Ding D, Pan Z, Cuiuri D, Li H, Larkin N, Van Duin S. Robot Comput Integr

Manuf 2016;37:139–50.
[22] Thuault A, Deveaux E, Béhin P, Cam CAD. Dent Mater 2017;33:477–85.
[23] Zheng H, Cong M, Dong H, Liu Y, Liu D. Int J Adv Manuf Technol

2017;92:3605–14.
[24] Nagata F, Okada Y, Sakamoto T, Kusano T, Habib MK, Watanabe K. IOP

conf. ser. earth environ. sci., Vol. 69. 2017, 012115.
[25] Jin Y, He Y, Fu G, Zhang A, Du J. Robot Comput Integr Manuf

2017;48:132–44.
[26] Manogharan GP, Wysk R, Harrysson OLA. Int J Comput Integr Manuf

2016;29:473–88.
[27] Toth T, Rajtukova V, Zivcak J. CINTI 2013-14th IEEE int. symp. comput.

intell. informatics, Proc. IEEE. 2013, p. 79–82.
[28] Wongwaen N, Sinthanayothin C. ICEIE 2010-2010 int. conf. electron. inf.

eng. proc. 1. 2010, p. V1–277–V1–280.
[29] Rebaioli L, Magnoni P, Fassi I, Pedrocchi N, Molinari Tosatti L. Robot

Comput Integr Manuf 2019;55:55–64.
[30] Nagata F, Takeshita K, Horie N. 2016 IEEE int. symp. robot. intell. sensors.

2016, p. 86–91.
[31] Xu J, Hou W, Sun Y, Lee YS. Robot Comput Integr Manuf 2018;49:1–12.
[32] Coupek D, Friedrich J, Battran D, Riedel O. Procedia CIRP 2018;67:221–6.
[33] Mahr A, Mayr A, Jung T, Franke J. Procedia Manuf 2019;38:866–75.
[34] Hasan B, Wikander J. Adv. dr. conf. comput. electr. ind. syst. DoCEIS 2017.

Cham: Springer; 2017, p. 144–53.
[35] Chen W, Du J, Xiong W, Wang Y, Chia S, Liu B, Cheng J, Gu Y. IEEE Trans

Autom Sci Eng 2018;15:251–63.
[36] Chang D, Son D, Lee J, Lee D, Kim TW, Lee KY, Kim J. Robot Comput Integr

Manuf 2012;28:1–13.
[37] Chen X, Dharmawan AG, Foong S, Soh GS. Robot Comput Integr Manuf

2018;50:242–55.
[38] Yi Y, Yan Y, Liu X, Ni Z, Feng J, Liu J. J Manuf Syst 2020.
[39] Liu M, Fang S, Dong H, Xu C. J Manuf Syst 2020.
[40] Cai Y, Wang Y, Burnett M. J Manuf Syst 2020;56:598–604.
[41] Andulkar MV, Chiddarwar SS, Marathe AS. J Manuf Syst 2015;37:201–16.
[42] Kah P, Shrestha M, Hiltunen E, Martikainen J. Int J Mech Mater Eng

2015;10:13.
[43] Sharifzadeh S, Biro I, Lohse N, Kinnell P. Mechatronics 2018;51:59–74.
[44] Liu Y, Zhao W, Sun R, Yue X. J Manuf Syst 2020;56:84–92.
[45] Swain AK, Sen D, Gurumoorthy B. Robot Comput Integr Manuf

2014;30:527–45.
[46] Nazir A, Azhar A, Nazir U, Liu Y-F, Qureshi WS, Chen J-E, Alanazi E. J Manuf

Syst 2020.
[47] Choi SH, Kwok KT. Rapid Prototyp J 2002;8:161–79.
[48] Li Z, Liu X, Wen S, He P, Zhong K, Wei Q, Shi Y, Liu S. Sensors (Switz)

2018;18.
8

http://refhub.elsevier.com/S2352-7110(21)00065-0/sb1
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb2
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb2
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb2
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb3
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb3
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb3
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb4
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb4
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb4
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb5
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb5
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb5
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb6
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb7
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb7
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb7
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb8
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb8
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb8
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb10
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb10
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb10
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb11
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb11
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb11
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb12
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb13
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb13
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb13
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb14
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb14
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb14
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb15
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb15
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb15
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb16
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb16
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb16
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb17
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb17
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb17
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb18
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb18
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb18
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb18
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb18
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb19
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb20
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb21
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb21
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb21
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb22
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb23
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb23
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb23
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb24
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb24
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb24
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb26
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb26
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb26
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb27
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb27
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb27
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb28
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb28
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb28
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb29
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb29
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb29
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb30
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb30
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb30
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb31
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb32
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb33
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb34
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb34
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb34
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb35
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb35
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb35
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb36
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb36
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb36
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb37
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb37
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb37
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb38
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb39
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb40
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb41
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb42
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb42
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb42
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb43
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb44
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb45
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb45
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb45
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb46
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb46
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb46
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb47
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb48
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb48
http://refhub.elsevier.com/S2352-7110(21)00065-0/sb48

	STL_Process: A .STL-based preprocessor for robot path planning in manufacturing and quality control processes
	Introduction
	Problems and background 
	Software framework
	Software architecture 
	Software functionalities 
	Feature plane identification
	Identification of contours
	2D tool-path generation
	Sub-volume border extraction
	3D fine segment template generation


	Implementation and results 
	 Conclusions 
	Declaration of competing interest
	Acknowledgments
	Appendix
	References


