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Abstract
Fiducial markers are fundamental components of many computer vision systems that help, through their unique features (e.g.,
shape, color), a fast localization of spatial objects in unstructured scenarios. They find applications in many scientific and
industrial fields, such as augmented reality, human-robot interaction, and robot navigation. In order to overcome the limitations
of traditional paper-printed fiducial markers (i.e. deformability of the paper surface, incompatibility with industrial and harsh
environments, complexity of the shape to reproduce directly on the piece), we aim at exploiting existing, or additionally
fabricated, structural features on rigid bodies (e.g., holes), developing a fiducial mechanical marker system called MechaTag.
Our system, endowed with a dedicated algorithm, is able to minimize recognition errors and to improve repeatability also in case
of ill boundary conditions (e.g., partial illumination). We assess MechaTag in a pilot study, achieving a robustness of fiducial
marker recognition above 95% in different environment conditions and position configurations. The pilot study was conducted
by guiding a robotic platform in different poses in order to experiment with a wide range of working conditions. Our results make
MechaTag a reliable fiducial marker system for a wide range of robotic applications in harsh industrial environments without
losing accuracy of recognition due to the shape and material.
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1 Introduction

Machine Vision (MV) consists of the analysis and elaboration
of digital images for extracting specific pieces of information.

The applications of MV cover a wide range of purposes such
as localization [1], tracking objects [2–4], and recognizing and
measuring objects in specific environments [5]. In order to
accomplish these tasks, a vision system requires references
to accelerate data elaboration and to precisely and accurately
guide the robotic systems Fig. 1.

Traditionally, vision-based systems exploits fiducial
markers as references for robotics applications such as aug-
mented reality (AR) [8, 11], computer vision applications
[12–15], human-robot interaction [16, 17], and real-time sys-
tems like Structure from Motion (SM) and Simultaneous
Localization and Mapping (SLAM) [18–20].

These references, also called as fiducial markers, are artifi-
cial planar elements with already-known features (e.g., shape,
color, dimension). They usually have an external shape that
works as a frame with an internal patterned image which en-
codes specific information and are designed to meet specific
criteria such as resistance to partial occlusion and different
lighting conditions. Inter-marker confusion is usually taken
into account to assess the performance [8]. Researchers have
mostly used squared markers since corners allow an accurate
calibration and recognition also with a single marker. The
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most used marker-based systems are the following: ARTag
[6], AprilTag [7], CALTag [8], Pi-Tag [10], ChromaTag [9],
and CCTag [21] (Fig. 1). Most markers are monochromatic to
minimize the sensitivity with different lighting conditions:
ARTag uses, for instance, 2002 squared white/black planar
markers that are detectable through their edges [6]. ARTag
is used for AR applications, achieving a very low inter-
marker confusion and false positive error rates [6]. AprilTag
is a system that uses the same markers as ARTag but with a
different detection algorithm. The detection procedure is, in-
deed, improved to minimize the number of false positives by
using a graph-based clustering method instead of exploiting
an edge-based method [7]. Pi-Tag, in contrast, presents 12
dot-shaped markers equally placed on the sides of an imagi-
nary square. The main advantages are the following: the cir-
cular shape of the dots in a pattern identical on the four sides of
the square to minimize the localization error, robustness to ill
conditions such as moderate occlusion of single dots, blurring,
heavy artificial noise, and illumination conditions [10].
Moreover, if dots are sufficiently small, a circular shape still
guarantees a negligible positioning error even under a severe
perspective distortion. Other groups have developed markers
with circular shapes like the Circular Data matrix Marker [8].
This circular marker is divided into black, white sectors, with
small black and white circles that allow to understand its ori-
entation. Bergamasco et al. [22] provided a fiducial marker
system with a strong occlusion resilience while Calvet et al.
developed a circular fiducials system, composed of three con-
centric circles, able to deal with severe conditions, such as
partial occlusion, varying distances and angles of view [21].
The marker provides a high-frequency image since the circles

are black over a white background. Furthermore, the re-
searchers used the thickness of the rings to encode the unique
ID of the marker, providing a simple and reliable method to
recognize the marker in the scene [21]. Researchers have also
developed fiducial markers with further features the most rel-
evant addition is the embodiment of colored signs. DeGol
et al. [9] introduced colored fiducial markers for real-time
robot navigation applications, named ChromaTag. It used
the color channel of LAB (Lightness, Red/Green value,
Blue/Yellow value) opponent colorspace to reduce false de-
tections. The color channels constitute the unique ID of the
marker but create issues for the ID encoding and tag localiza-
tion [9]. The SCR Marker system, designed by Siemens in-
stead, employs markers with circular and square signs.
However, despite the high reliability and accuracy, the asso-
ciated detection algorithm is quite slow. However, all these
systems are usually printed on paper to reduce costs and en-
hance an easier preparation and set-up. [21].

To date rigid mechanical parts with already known shapes
have not been used to estimate the position of a target but,
instead, they have been employed in other tasks. Bartindale
et al. developed a method for identifying the order of stacked
items by using fiducial markers made of reflective areas on
mechanical parts [23]. As for pick & place robotic applica-
tions, Vijayalaxmi et al. provided amachine vision application
for recognizing objects with simple shapes like circles,
squares, or triangle, in order to create a vision-assisted robotic
platform [24] [25]. As for inspecting defects, Wang et al. de-
veloped an automatic optical inspection system to check the
integrity of holes on a printed circuit board (PCB) [26].

In this paper, we introduce MechaTag, a vision-based fidu-
cial marker system able to localize, with a dedicated algo-
rithm, specific targets through already existing, or additionally
fabricated, mechanical features that are parts of the targets
themselves (markers). We use mechanical markers with cir-
cular shape since they are the most common in mechanics
(e.g., holes), and they have an easy shape to reconstruct.
MechaTag is able to significantly minimize the time required
for the recognition process based on a simple and immediate
image elaboration process, adaptable to different working
conditions such as different illumination conditions or harsh
environments without losing precision and accuracy. In con-
trast to the state of art fiducial marker system, the shape of our
marker is simple but reliable and robust to reproduce directly
on the target, minimizing the error estimation of the localiza-
tion task due to the rigidity of the surface where it is located.
The state-of-the-art paper-based markers could be deformed
by the application surface and increase the error for the local-
ization objective. Furthermore, their shape is complex to be
reproduced directly on the target, and they are less compatible
with industrial and harsh environment characterized by high
temperature, humidity, and high variability of environmental
illumination.

ARTag 

(a) 
AprilTag 

(b) 
RUNE-Tag 

(c)

ChromaTag 

(e)
Pi-Tag 

(f) 
CCTag 

(g) 

Intersense

(d)  

Fig. 1 Example of the most common fiducial marker with different
features (e.g, shape, colour, configuration), (a) [6] and (b) [7] represent
fiducial marker bi-colour with square shape, (g) and (c) are the same
features [8] of a) and b) but circular shape, (d) [9] and e) [10] are
hybrid fiducial marker for the addition of combination of more features:
(e) adds the RGB colour configuration, d) combines an external square
shape with circular dot internal
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2 Detection Algorithm

2.1 MechaTag Configuration and Design

The markers used to assess MechaTag’s performance consist
of two holes with increasing diameters (D1 and D2), 8 and
10 mm respectively, an inter-axis distance (b) of 15 mm,
and a depth (d) of 3 mm (Fig. 2a). We select these specific
dimensions to minimize the intra-class variation error between
the two circles during the recognition process, and the effect of
a light reflection on the internal walls of the markers. We
analyze two different pairs of markers (through holes and
blind holes) on two samples made of different materials.
Blind holes present conic ends, and the depth d is defined as
the distance from the vertex of the cone to the top surface of
the sample.

Holes are drilled with a CNCmachine (Kern, HSPC 2522 –
with 1 μm of accuracy) on two rigid blocks either made of
polymethylmethacrylate (PMMA) (a non-reflective material)
or steel (reflective material), as shown in Fig. 2b, c, and d,
respectively. The specific selection of such materials is driven
by their large use in industrial and research applications (e.g.,
biomedical prosthetics [27, 28], lithography, mechatronic
[29]).

2.2 Detection Algorithm Architecture

MechaTag is driven by a dedicated parametric and closed-
loop detection algorithm, schematically shown in Fig. 3. The
first step relates to pre-processing and segmenting the ac-
quired image before its elaboration. Pre-processing includes
three sub-steps: the binarization of the image, the application
of a non-linear filter to minimize the noise and preserve edges,
and the extraction of the marker’s edges. The segmentation
procedure uses a threshold to distinguish the marker from the
background: it is an easy and parametric method already val-
idated in a previous work [30]. Then, we apply a median filter,
namely the Canny filter [31], to the thresholded image to
reduce the noise from external lighting conditions, and to pre-
serve the edges of the markers [32].

The second step consists of a first attempt to detect of the
marker. First, we analyze the hierarchy and the topology of the
contours in the image, and we choose the most internal edges
(S.Suzuki 1985). Then, we run an algorithm to iteratively
extract any further parametric feature. If the image does not
possess any internal contours, it is pre-processed once again
with an incremented value of the threshold for the segmenta-
tion. Otherwise, we approximate each contour with a tight-
fitting convex boundary around the points or the shape [33],
and we evaluate the geometric features of each contour. The
most important topological parameters are the numeric values

Fig. 2 Configuration of marker design and real tester of marker in two
different materials: (a) typologies of holes: A) through B) blind conic
with the specific dimensional reference of diameters, D1and D2,inter-

axis b between the centers of the two holes and the depth d equal for
both types of the holes (b) PMMA tester with through and blind, (c)
STEEL tester with blind hole, (d) STEEL tester with through hole

Fig. 3 Diagram of detection algorithm, in which every step of image
elaboration is identified and grouped in larger block to characterize the
iterative sections
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of the marker’s area (in pixel) and the circularity of the marker
in order to avoid false positives due to the noise [34].

Therefore, the algorithm detects a number of different con-
tours that are further processed. Among them, we choose the
contour with the maximum area and apply to this a spatial
filter. Specifically, we create a spatial filter that is marker-
dependent and is able to reduce the amount of data to process
and the false positives. We extract only the targeted informa-
tion convolving the spatial filtering to the entire image. As
result of the convolution, we analyze the marker in order to
extract its main features (e.g., area, circularity, convexity). In
this step, we perform a more restricted evaluation of the geo-
metric features by adding the difference between the actual
ratio of the squared perimeter and the area of the single mark-
er, and the one estimated by the algorithm. This method adds
an information on the real dimension of the fabricated marker,
useful during the recognition process, in order to prevent the
consideration of larger or smaller blobs in the environment. At
this step, we introduce a second feedback. If the detected
marker does not reflect the restricted evaluation of the geo-
metric features above described (e.g., area, circularity), the
image is pre-processed again. In contrast, the main geometric
properties of the fiducial marker are extracted, visualized and
stored: the planar position of the center of each circle, the
numeric values of the area in pixel and circularity, and the
identity of the marker (viz., if the circle is the smallest or the
largest one).

2.3 Implementation Environment

The image is processed with a C++ code using OpenCV li-
braries and built on Visual Studio platform. The implementa-
tion environment is compatible with the operating system of
the robot controller. Furthermore, the host-client architecture
involves the main computer as host, able to send input signals
to different clients as robot controller and vision system using
an asynchronous communication and managing the overall
information to estimate the desired output.

3 Experimental Design

We acquire images with a 2D camera (Baumer VCXG-24C)
with a CMOS sensor (1920 × 1200 resolution) and a 12-mm
fixed focal length lens with the possibility to dynamically
change the parameters (i.e., gain, illumination, contrast) for
the acquisition.

We endow the camera with a radial light source, able to
create a concentrated bright white light on a 25 × 25 mm area
at a working distance equal to 200 mm, Fig. 4. In the presence
of reflectivematerial, tests are performedwith the light source.
The camera is linked to the main workstation transferring
information and images automatically through an Ethernet

port. We perform the recognition process in stationary condi-
tions, without any relative movement between the camera and
the target. We set up the fiducial marker system in an arbitrary
position, while the camera is installed on a controllable me-
chanical arm (Mitsubishi Electric Industrial Rob ot CR750/
700/500 series) to acquire a large number of frames from
different orientations. For each robot configuration, our algo-
rithm performs the detection of the markers.

To assess MechaTag’s performance, we analyze 8 cases
with different conditions (Table 1).

For each of these, we analyze the outcomes of the detection
algorithm from the pre-processing of the images to the iden-
tification and classification of the marker (Fig. 5) We test each
case performing a sensitivity analysis on a set of parameters.

We estimate the Root Mean Square Error (RMSE) by tak-
ing into account the planar contour of each hole and their
centers, as features, according to the following equation

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E bθ−θ
� �2

� �

s

ð1Þ

where bθ is the parameter for the estimated frame, and θ relates
to that of the reference image. In our case study, the estimated
image consists of the image with the contours of the detected
and estimated mechanical markers, while the reference image
consists of the image with the contours of ideal markers. Ideal

Fig. 4 Experimental setup constituted by camera, illuminator. All
components are installed on the end-effector of the robot

Table 1 Case studies to assess the performance of MechaTag, where P
stands for PMMA, S for STEEL, T for Through, NI for No Illuminator,
and I for presence of illuminator

Cases of Studies Material Typologies Illuminator

PTNI PMMA Through No

PTI PMMA Through Yes

PBNI PMMA Blind No

PBI PMMA Blind Yes

STNI STEEL Through No

STI STEEL Through Yes

SBNI STEEL Blind No

SBI STEEL Blind Yes
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markers are represented by black holes with the same dimen-
sions features as of the mechanical markers on a white
background.

Moreover, we estimate the Recognition Rate (RR) for each
case, considering five poses of the vision system, according to
the following formula:

RR ¼ #Recognized Features

#Total Features
ð2Þ

in which the “recognized features” are the real features detect-
ed from the algorithm, while with “total features” we refer as
the contours, centers and classification of the two holes of
MechaTag. In addition to the performance assessment of the
algorithm, this parameter gives a quantitative measurement of
the efficiency of the system among different acquisition
conditions.

Concerning the geometrical evaluation of the markers, we
estimate two features: circularity and eccentricity of the holes,
according to the following equations:

f circ ¼
4πA
P2 e ¼ c

a
ð3Þ

where A, P, c and a are the area, perimeter, and semi-axes of
the ellipsoidal contours, respectively, which serve to measure
the circularity of the markers. For each case, we present these
parameters as mean ± standard deviation values.

To assess the performance of MechaTag along with its
detection algorithm, we test three different working condi-
tions: distance, orientation and illumination variability.

Performance under distance variability is assessed by
changing the working distance from 100% to 150% of its
nominal value of 15 cm, using steps of 10% each.

Performance under rotation variability is assessed by rotat-
ing the camera along the three axes of the fixed reference
system of the robot base in which the z-axis is oriented per-
pendicularly to the ground, while test samples lay on a surface
parallel to x-y plane. The rotation along x- and y- axes ranged
from −10° to 10°, with 5° steps; the rotation along z-axis
ranged from −15° to 15°, with 5° steps. All the tests are per-
formed by both switching on/off an industrial illuminator
installed on the robot arm and collinear with the camera, in
order to assess MechaTag performance under illumination
variability.

This operation variability allows us to test the robustness of
the system against blurring, distortion and defocusing.

4 Results

Figures 5, 6, 7, and 8 report the performance of the detection
algorithm with the array of working conditions described
above. Nomenclature for case studies is reported in Table 1.

Figure 4 shows the principal imaging elaboration phases of
the detection algorithm. The first one is related to the pre-
processing and segmentation phases: the image is binary as
the thresholding methodology provides a black and white im-
age (Fig. 4a). These elaborations are implemented for enhanc-
ing the features of the image to minimize the presence of the
noise from the sensor acquisition. The second step is the edge
detection: the image shows the extraction of the most impor-
tant features, the edges, from the pre-processed image for
focusing the computational cost and the attention only on
target features (Fig. 4b). The third step is the edge evaluation
and spatial filtering: it is an additional step to remove false
positive information, to identify the region of interest and
accelerate the image process in terms of computational time
and iterations (Fig. 4c). The final steps are the marker analysis
and identification: a detailed survey of the features in terms of
geometrical features of the edge related to each single circle
and the link between the two of them (Fig. 4d). Then, the
algorithm provides the classification of the circles in terms
of geometrical features (Fig. 4e).

By considering different working distance conditions,
asymmetric boxplots with significant skewness are observed
in all cases except for PBNI and PTCI, for which a Gaussian
model describes the distributions.

Figure 5 shows the boxplots related to the estimation of the
RMSE measurement. This statistical value is correlated to
distance, defocusing and illumination variabilities.

RMSE ranges from 0.36 to 0.65 with the only exception of
the PBNI and PBCI. Concerning these two cases, a RMSE
value could not be estimated since the detection algorithm is
not able to detect these kinds of markers if working distance is
above 130% of nominal value, independently of illumination
conditions, due to the presence of a very low contrast between
the target and the background.

Fig. 5 The principal imaging elaboration phases of the detection algorithm are: (a) pre-processing and segmentation; (b) edge detection, (c) edge
evaluation and spatial filtering, (d) marker analysis, and (e) identification
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If we consider only the illumination variability (light on/
off), the mean value of RMSE reaches 0.72 and 0.47 for
PMMA and steel, respectively. The third benchmark that we
studied is the orientation variability along every axis of the 3D
reference frame along with illumination conditions. Figure 5b,
c and d show the variation of the RMSE values in relationship
to camera orientation along x, y and z -axis, respectively, and
illumination variabilities, during the variation of the rotation
along the axis of the robot not only in clockwise direction but
also specular direction, experimenting defocusing of the target
when the angle reaches a working distance higher or lower
than the nominal and illumination variability, respectively.

By considering the variations along the x-axis, the detec-
tion algorithm is always able to recognize MechaTag with
results comparable between materials with an average
RMSE equal to 0.59, ranging from 0.57 to 0.64 and the coef-
ficient of variability of 3%. As for the variations along the y -
axis, results present a mean value equal to 0.60, ranging from
0.52 to 0.72 and a coefficient of variability of 7%. Concerning
the variations along the z -axis, the results present a mean
value of 0.60, ranging from 0.56 to 0.64 and the coefficient

of variability is equal to 3%. Results for the variations of y -
axis present more variability but non-significant different from
the results related to the variations along x -axis. This scenario
describes all tested benchmarks except for the PBNI, for
which the RMSE is higher or undefined since the detection
algorithm is not able to detect the marker for all kind of
orientation.

Figures 6 and 7 show the boxplots related to the estimation
of the eccentricity and circularity measurements in all the en-
vironmental conditions and for each MechaTag hole with
minimum and maximum diameters. As Fig. 8 shows, the val-
ue of the circularity is, in all cases, at its maximum value (~1).
As for the eccentricity, Fig. 7 shows a mean eccentricity value
of 0.16 for the minimum-diameter hole and a mean variability
of 3% concerning the distance variability. For the maximum-
diameter hole, the mean eccentricity is 0.12 with a mean var-
iability of 2%. Along the x-axis variability, the mean value is
0.19 with a mean variability of 4% for the minimum-diameter
hole, 0.20 with variability of 5% for the maximum-diameter
hole; along the y -axis the mean value is 0.18 with a mean
variability of 6% for the minimum-diameter hole and 0.18

Fig. 6 The boxplots are related to the estimation of RMSE: a) The RMSE is related to distance, defocusing and illumination variabilities. b), c) and d))
The RMSE is related to camera orientation along x, y and z-axis, respectively, and illumination variabilities

Fig. 7 The boxplots are related to the estimation of eccentricity of the
hole a), b), c) and d) with the maximum diameter, e), f), g) and h) with the
minimum diameter. The values have been tested in different benchmark:

a) and e) distance variability, b) and f), c) and g), d) and h) x, y and z axis
variability, respectively

46    Page 6 of 11 J Intell Robot Syst (2021) 103: 46



with a mean variability of 7% for the maximum-diameter
hole; along the z -axis, the mean value is 0.24 with a mean
variability of 6% for the minimum-diameter hole and 0.24
with mean variability of 7% for the maximum-diameter hole.
Excepting for the PBNI case study, where the value is higher,
the value of eccentricity is near to the minimum value for the
overall cases of study.

Table 2 shows the success rate of the recognition rate
(%RR) using a colorbar ranging from dark red (0%) to light
green (100%): the dark red means no capability to recognize
the marker, while the light green means the maximum value of
recognition rate with the capability to recognize the marker
and all its features. The success rate of the recognition is max-
imum for through holes not only for the PMMA but also for
the steel samples, in all tested working conditions. It has the
minimum value for the blind hole in PMMA samples and
without the presence of the illuminator. In this case, the
intensity-based segmentation fails since the object to be rec-
ognized and the background have similar light intensities.
Finally, concerning the specific case of the blind hole, the best

performance is achieved with steel samples since PMMA
samples do not show sufficient reflectivity and, therefore,
while the center of the hole can be recognized, the edge cannot
be fully identified. All the cases studies and their associated
measurement are reported in the Table 3.

5 Discussion

We present a mechanical fiducial marker, named MechaTag,
along with its detection algorithm that has the potential to be
useful in a large number of robotic applications, in which
intrinsic mechanical features (e.g., holes) can be used to ref-
erence objects in the three-dimensional space. In order to test
our approach, we use as case study the recognition of blind
and through holes fabricated on two materials (viz., steel and
PMMA) to evaluate the identification capabilities of a robotic
system in different environmental/working conditions: dis-
tance, orientation, and illumination. Degol et al. introduced a
squared fiducial marker, called.

ChromaTag [9] with a detection algorithm based on the iden-
tification of the color information, integrated on the ChromaTag,
in order to minimize the amount of false positive from grayscale
acquisitions. They compared their system with other state-of-art
fiducial marker systems such as AprilTag and RuneTag in terms
of accuracy, varying the working distance and colour informa-
tion. ChromaTag is a good choice for short and long working
distance achieving the 94.4% of accuracy and it is robust to
colour variation with an accuracy of 68%. In contrast, consider-
ing the tested set-up and environment conditions, MechaTag
achieves a 100% of accuracy for the majority of the case studies
also varying specific boundary conditions. Only for the PBNI
and SBCI cases the accuracy decreases if working conditions

Fig. 8 The boxplots are related to the estimation of circularity of the hole
a), b), c) and d) with the maximum diameter, e), f), g) and h) with the
minimum diameter. The values have been tested in different benchmark:

a) and e) distance variability, b) and f), c) and g), d) and h) x, y and z axis
variability, respectively

Table 2 Recognition Rate for each of the case studies
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vary, due to the low contrast between the target and the back-
ground. In particular, poor reflectivity of PMMA decreases con-
trast in the image, not allowing to distinguish the blind hole area
with respect to the background. In terms of the color robustness,
our fiducial marker is not affected by the white balancing of the
imaging because of the constant illumination conditions granted
by the illuminator. In case of light off, only PBNI and SBNI are
affected by the lack of an additional and constant light condi-
tions. As a consequence, the target is not distinguishable from
the background and with our proposed detection approach it is
not possible to detect it. Bergamasco et al. [10] proposed the
fiducial marker system, called Pi-Tag, for estimating camera
pose. Their marker is composed of 12 dots distributed with
specific patterns on a square profile. They chose the dot since
it is easy to fabricate and, if dots are small enough, the perspec-
tive error is negligible. They tested the detection algorithm under
heavy artificial noises, blur and severe illumination conditions.
They observed a good recognition rate under the influence of
Gaussian noises or very angled camera positions taking into
account the case study of the modality of marker acquisition
or blurring effects. Furthermore, they observed another possible
cause of errors if dots are used as markers. If the marker acqui-
sition is performed so far and angled from the reference system,
the dots become too small and blended, so in this case, the cause
is related to the resolution of the used vision system. In contrast,
MechaTag is able to achieve the highest recognition rate inde-
pendently of the boundary conditions, excepted for PBNI and
SBNI, where the lack of an additional illumination affects the
detection of the target from the background. Moreover, the high
resolution of the employed camera does not introduce any
blending and overlapping of the marker images even if they
are far away from the camera and the dimensions of the hole
edges are small to capture. In fact, the two targets are always
distinguishable each other and their features preserved. Calvet
et al. presented a circular fiducial consisting on a planar pattern
with concentric rings [21]. They experimented their fiducial
marker system by using synthetic images and testing the perfor-
mance under the influence of blurring, lighting conditions, and
varying working distances. The achieved detection rate of their
proposed fiducial marker system equals 94%, but decreases
down to 22% under the influence of blurring. By varying the
distance, the detection rate decreases from 100% to 80%. In our
case, we reveal a higher or comparable detection rate in the same
conditions without decreasing the accuracy of detection. A final
but important difference among the fiducial marker system pro-
posed by the other research groups and our fiducial marker is the
material of the marker. Scientists have proposed and tested fi-
ducial marker systems designed on paper supports, having the
possibility to set the contrast level between the target and the
background, with the aim to increase it for a fast and accurate
recognition of the marker. We introduce a fiducial marker sys-
tem on rigid materials, used for a wide range of robotic applica-
tions, such as robotics, manufacturing, localization and tracking.

Moreover, it is reliable in harsh industrial environments without
losing accuracy of recognition due to the shape and material.
This prevents any deformation of the marker itself, which can
influence the calibration and the estimation of the distance be-
tween the camera and the target. However, it presents some light
reflection issues, due to the material, and low contrast between
marker and background, due to the fact that it is built directly on
the same material to localize. We provide a mechanical marker
made by a mechanical process with high precision as it was
fabricated with a Computer Numerical Control (CNC) machine
[35], and therefore it can lead to a more precise recognition.
With respect to the state-of-the-art fiducial marker, it has been
tested that MechaTag can be recognized in a high variety of
working conditions (distance, orientation and illumination),
while its material allows for its use for many industrial and
research applications and in many environmental conditions.

6 Conclusion

We present MechaTag, a fiducial marker and its detection al-
gorithm that exploits mechanical features (e.g., holes) of a
three-dimensional component for a precise reference in robotic
applications. In contrast to state-of-the-art systems, MechaTag
does not exploit paper-based markers, but intrinsic mechanical
features. This peculiarity makes our system a reliable tool in
challenging industrial environments. MechaTag also shows
high robustness under different light environment conditions,
varying colour and reflectivity of the material where they are
fabricated (PPMA is white with low reflectivity, while steel is
grey with high reflectivity), under blurring, defocusing and dif-
ferent working distance situations, showing a very satisfactory
detection rate thanks to its dedicated detection algorithm. Due
to its robustness,MechaTag can be applied to a very wide range
of fields, also in industrial environments, since it is inert to
humidity, operating incidence, or overheating: for example, it
can be used as a reference for recognizing and localizing com-
ponents in manufacturing cells, for machining or pick-and-
place purposes. The system is very promising and it is possible
to improve it by testing more kind of materials, making it suit-
able also for outdoor usage; additionally, for the cases in which
an explicit recognition algorithm has been shown not to be
effective, i.e. PBCI and SBNI cases, a neural network approach
(for example a Convolutional Neural Network) can be intro-
duced, in order to extend the applicability of theMechaTag also
for low-contrast image; neural network could also help to in-
crease the recognition rate. With the deep learning approach,
the algorithm will be able to classify the image to identify the
presence of the target, and then localize the target in the image.
Next steps will explore the influence of not only different
shapes, but also different environmental conditions, such as
dusty environment and different colors in order to improve
MechaTag’s robustness.
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Table 3 For each case of study the statistical evaluation is performed;
the value of Root Mean Square Error (RMSE), circularity (fcirc) and
eccentricity (e) are analyzed in terms of mean value, standard deviation
and the Recognition Rate is registered in order to record the performance
of the recognition algorithm and the developed custom vision system in
four kind of different conditions. These conditions are related to the
variability of environment features and the position of the vision system

during the acquisition. We experimented different orientation of the
vision system along each one of the axis of the 3D space of the robot.
Asmain consequence of the variation of the position of the vision system,
we registered different environment conditions as defocusing of the
target, illumination variability on the target getting away or closing
from the target, inclusion of other disturbing features or occlusion of
the marker, blurring of the targe t

Cases Measurement Distance X Y Z

Mean SD %RR Mean SD %RR Mean SD %RR Mean SD %RR

PTNI RMSE 0.53 0.033 0.59 0.0128 0.59 0.023 0.58 0.012

fcirc 0.99 0.0006 100 0.99 0.0005 100 0.99 0.002 100 0.99 0.0016 100

e 0.22 0.017 0.29 0.03 0.24 0.08 0.31 0.06

PTI RMSE 0.54 0.034 0.59 0.0096 0.59 0.045 0.59 0.013

fcirc 0.99 0.0011 100 0.99 0.0007 100 0.99 0.007 100 0.99 0.0009 100

e 0.16 0.051 0.27 0.03 0.21 0.06 0.31 0.05

PBNI RMSE 0.96 0.01 - - - - - -

fcirc 0.95 0.07 66.6 - - 40 - - 40 - - 20

e 0.57 0.05 - - - - - -

PBI RMSE 0.54 0.04 0.60 0.008 0.62 0.064 0.62 0.038

fcirc 0.99 0.0014 100 0.99 0.0013 100 0.99 0.001 100 0.99 0.0015 100

e 0.18 0.022 0.19 0.04 0.16 0.03 0.23 0.05

STNI RMSE 0.57 0.036 0.59 0.011 0.59 0.053 0.61 0.036

fcirc 0.99 0.003 100 0.99 0.0009 100 0.99 0.004 100 0.99 0.0009 100

e 0.15 0.038 0.19 0.05 0.18 0.07 0.23 0.08

STI RMSE 0.55 0.032 0.60 0.0103 0.61 0.045 0.61 0.032

fcirc 0.99 0.003 100 0.99 0.0006 100 0.99 0.006 100 0.99 0.0004 100

e 0.11 0.007 0.10 0.04 0.15 0.09 0.13 0.05

SBNI RMSE - - - - - - - -

fcirc - - - - - - - - - - - -

e - - - - - - - -

SBI RMSE 0.57 0.036 0.63 0.016 0.65 0.043 0.99 0.014

fcirc 0.99 0.003 100 0.99 0.0004 100 0.99 0.006 80 0.99 0.0008 60

e 0.15 0.038 0.12 0.02 0.12 0.03 0.11 0.009
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