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Abstract: Malignant pleural mesothelioma (MPM) is a cancer mainly caused by asbestos fiber
inhalation, characterized by an extremely long latency and poor prognosis. Recently, researchers have
focused on testing the diagnostic ability of several biomarkers. Gamma-Glutamyltransferase (GGT)
has been demonstrated to be the sum of several GGT sub-fractions activity, classified based on their
molecular weight in big-GGT, medium-GGT, small-GGT, and free-GGT. This work aims to evaluate
whether specific GGT fractional enzymatic activity patterns could be helpful in MPM diagnosis. We
analyzed blood samples from 175 workers previously exposed to asbestos, 157 non-exposed healthy
subjects, and 37 MPM patients through a molecular exclusion chromatographic method. We found a
specific profile of GGT fractions activity, significantly associated with MPM, resulting in an increase
in b-, m- activity, along with an evident, yet not significant, decrease in f-activity. Receiver-operating
characteristic (ROC) analysis showed that the best Area Under Curve (AUC) value resulted from
the combined index b/f (0.679, 95% CI: 0.582–0.777). Combining the b-/f-GGT activity with the
levels of serum mesothelin-related protein (SMRP; another promising MPM biomarker) improved
the diagnostic accuracy, increasing the AUC value to 0.875 (95% CI: 0.807–0.943, p = <0.0001). Since
MPM has a specific pattern of GGT enzymatic activity, we could hypothesize that GGT fractions
play different specific biochemical roles. The improvement in the diagnostic power given by the
combination of these two biomarkers confirms that the strategy of biomarkers combination might be
a better approach for MPM diagnosis.

Keywords: mesothelioma; biomarkers; diagnosis; gamma-glutamyltransferase

1. Introduction

Malignant pleural mesothelioma (MPM) is characterized by very long latency periods,
sudden clinical onset, and extremely poor prognosis [1]. Identifying a panel of biomarkers
to diagnose early grades is still the goal of many researchers [2,3]. While MPM is a rare
cancer, its incidence is expected to increase dramatically due to the worldwide use of
asbestos, the main etiological factor, over the past decades. Indeed, prolonged inhalation of
asbestos fiber can form oxidized iron bodies, leading to the production of reactive oxygen
species (ROS) and inducing reactive hyperplasia [4] that represents a primary step in
mesothelioma development.
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Gamma-Glutamyltransferase (GGT) is a type II membrane glycoprotein composed of
a heavy and a light subunit linked by non-covalent bonds. GGT plays a crucial role in the
translocation of amino acids across the plasma membrane. The activity of plasma GGT
has been used for a long time as a liver function test and marker of alcohol abuse [5], but,
more recently, increased GGT has been shown as a marker of oxidative stress [6], leading
to cancer development and progression [7]. Accordingly, we showed that exposure to a
subtoxic concentration of crocidolite asbestos triggered a GGT overexpression in THP-1
macrophagic cells, suggesting the possible involvement of GSH/GGT-dependent pro-
oxidant reactions in the pathogenesis of MPM [8]. For this reason, GGT could be a
diagnostic marker for MPM. Through the molecular exclusion chromatographic method,
carried out on an FPLC system (Fast Protein Liquid Chromatography), it has been possible
to identify and quantify four GGT fractions in human plasma, named according to their
molecular weight: big-GGT (b-GGT), small-GGT (s-GGT), medium-GGT (m-GGT), and
free-GGT (f-GGT) [9]. The fractional GGT method has improved the diagnostic use of
GGT in the liver pathology field, the most traditional application of GGT. Indeed, b-
GGT presents the best sensitivity and specificity for the diagnosis of steatosis, while
s-GGT is more suited for chronic viral hepatitis [10]. These first results have raised the
interest for GGT fractional enzymatic activity in other medical fields. For example, some
in vitro studies showed that neoplastic epithelial cell lines other than the liver, including
melanoma, prostate cancer, and bronchial epithelium, release GGT activity in the medium
mainly as a b-GGT-fraction, explaining the increase in serum GGT observed in diseases of
other organs [11].

Thus, regarding the role of cellular GGT in carcinogenesis [12] and plasma GGT as
a risk factor for neoplastic-related mortality [13], this study aimed to identify a possible
asymmetric distribution of GGT fractions among patients with MPM and people without
neoplastic diseases. We also compared the diagnostic power of GGT fractions with serum
mesothelin-related protein (SMRP), which is currently one of the best diagnostic biomarkers
for MPM. Additionally, since we observed that the combination of SMRP and plasmatic
osteopontin (pOPN) in a single biomarker resulted in increased accuracy [2], we compared
the diagnostic power of this latter with that of GGT fractions as well.

2. Materials and Methods
2.1. Patients

This study was approved by the ethical committee for pharmaceutical experimenta-
tion at Pisa Hospital. All patients were recruited from January 2010 to December 2015
and gave written informed consent. Subjects with MPM (n = 37) were included in the
study from consecutive patients presenting at the University Hospital of Pisa. The small
number of MPM cases is due to the rarity of this cancer. Previously asbestos-exposed
workers (pe-W, n = 175) were selected from a cohort of people followed up for cancer
screening purposes at the University Hospital of Pisa. The 157 healthy non-exposed
subjects (ne-HS, n = 157) were selected among those enrolled in the MEHLP Study (G.
Monasterio Tuscany Foundation, Pisa, Italy). All MPM subjects were males. Both pe-W
and ne-HS subjects included in the study were matched with MPMs for gender, age, and
total GGT activity.

MPM patients were recruited at the time of diagnosis before beginning any treat-
ment. All MPMs were epithelioid sub-type, being the more representative one between
mesotheliomas, as histologically and/or cytologically confirmed. Mixed and sarcomatoid
mesothelioma were excluded because of the paucity of available cases. Subjects with total
GGT two-fold higher than the upper reference limit (110 U/l) and other hepatic transam-
inases out of the negative range were excluded to limit the bias deriving from possible
misdiagnosed liver diseases. The pe-W subjects were recruited within a population of
workers previously exposed to asbestos undergoing a preventive cancer program. These
subjects underwent clinical examination, including chest radiography, functional respira-
tory tests (FRT), and, in some cases, low-dose computerized tomography. Based on the
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findings, the subjects were divided into the following groups: 70 (40%) benign respiratory
diseases (BRD), 62 (35.4%) healthy-exposed subjects, and 43 (24.6%) patients with pleural
plaques or unspecific lung nodules (<10 mm diameter). BRD included lung asbestosis (n. 2;
2.9%), emphysema (n. 5; 7.1%), chronic obstructive pulmonary disease (COPD; n. 5; 7.1%),
silicosis (n. 8; 11.4%) and bronchiectasis (n. 5; 7.1%). All subjects previously exposed to
asbestos were also characterized by their employment, occupational segment, and years
of asbestos exposure. Since previous reports showed a more or less consistent association
between increase/decrease in total GGT activity, or its fractions, and some physiologic or
pathological conditions such as alcohol habits, diabetes, arterial blood hypertension, and
other cardiovascular diseases, these parameters and their potential role as confounding
factors were considered in the statistical analysis.

2.2. Biomarker Assays

Only for previously exposed to asbestos subjects and MPM cases, the serum-soluble
mesothelin-related peptides (SMRP) concentration was measured using a sandwich-type
Elisa, called Mesomark (Cisbio International, Gif/Yvette, France), and the plasmatic con-
centration of osteopontin (pOPN) was measured using the Osteopontin Assay Kit (IBL,
Gunma, Japan) according to manufacturer’s instructions. Absorbance at 450 nm was used
to quantify the SMRP/pOPN concentration in nmol/L by comparing the mean of the du-
plicate measurement with a calibration curve fitted by CourbesRD software (Installshield
Corporation, Inc, France).

2.3. Fractional GGT Analysis

Analysis of total and fractional GGT was performed using plasma-EDTA samples
(0.02 mL), as described previously [9], and an FPLC (fast protein liquid chromatography)
system (AKTA purifier, GE Healthcare Europe, Milan, Italy) equipped with a gel filtration
column (Superose 6 HR 10/300 GL, GE Healthcare Europe) and a fluorescence detector
(Jasco FP-2020, Jasco Europe, Lecco, Italy). Separation of fractional GGT was obtained by
gel filtration chromatography, and the enzymatic activity was quantified by post-column
injection of the fluorescent substrate for GGT, gGluAMC. The enzymatic reaction, in the
presence of gGluAMC 0.030 mmol/L and glycylglycine 4.5 mmol/L, proceeded for 4.5 min
in a reaction coil (PFA, 2.6 mL) kept at the 37 ◦C in a water bath. The fluorescence detector
operating at excitation/emission wavelengths of 380/440 nm detected the AMC signal;
the intensity of the fluorescence signal was expressed in arbitrary fluorescence units (f.u.).
Under these reaction conditions, the area under the curve is proportional to GGT activity.
The total area, between 10 and 25 mL elution volume, and the fractional GGT area were
calculated by a MatLab program (Version 7 MathWorks, Inc.) to resolve overlapping peaks;
the curve fitting was conducted with a nonlinear least-squares minimization algorithm
using four exponentially modified Gaussian (EMG) curves. The reaction was calibrated
by analyzing plasma samples with known total GGT activity (standards); the slope of the
calibration curve was used to convert the total and fractional GGT area into activity values
expressed as U/L.

2.4. Statistical Analysis

GGT fraction, SMRP, and pOPN were explored to analyze their normality, using the
Kolmogorov–Smirnov test. Since all variable distributions were not Gaussian, all values
were shown as median, 25th and 75th percentiles, and the Mann–Whitney test was used to
assess the differences between groups.

Logistic regression was used to determine the weight given to each marker and then
to calculate a specific formula to provide a combined risk index. In order to estimate
whether this marker combination might increase the performance of the markers in MPM
detection, receiver-operating characteristic (ROC) curves were plotted, and the areas under
curves (AUC) were calculated with their 95% confidence intervals (95% CI) using standard
techniques to evaluate the sensitivity and specificity of each marker and their combination.
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The Youden index (1 + Sensitivity − (1 − Specificity)) was used to assess the best cut-off for
each marker or marker combination. Statistical analysis was performed with SPSS v20.0
(Statistical Package for the Social Sciences).

3. Results
3.1. Patients’ Characteristics

The distribution of age, smoking habits, hepatic and cardiovascular diseases, and
diabetes among ne-HS, pe-W, and a subset of 19 MPM (sMPM) is shown in Table 1. The
same information was not available for the remaining 18 MPM subjects.

Table 1. Distribution of some physio- pathological conditions in the study population of non-exposed
subjects (ne-HS), previously exposed workers (pe-W), and a subset of malignant mesothelioma
patients (sMPM) for which information about concomitant conditions was available.

ne-HS (n = 157) pe-W (n = 175) sMPM (n = 19)

Age 66.22 (47–77) 65.46 (48–84) 69.16 (49–80)
Hypertension 44 (28.0%) 48 (27.4%) 5 (27.8%)

Hepatic diseases 0 (0.0%) 7 (4.0%) 2 (10.5%)
Cardiovascular diseases 36 (22.9%) 66 (37.7%) 7 (36.8%)

Diabetes 28 (17.8%) 20 (11.4%) 4 (21.0%)

3.2. GGT Fractions Analysis

Each person in the study had a Total GGT value ranging from 6.51 to 106.58. The
median and distribution values of the two non-neoplastic groups (ne-HS and pe-W) did
not differ for any fractions except for the b-GGT and m-GGT, with the median of ne-HS
being significantly lesser than the pe-W (Table 2).

Table 2. Summary of the analysis of GGT fractions distribution in non-exposed subjects (ne-HS),
previously exposed workers (pe-W), and a subset of malignant mesothelioma patients (sMPM)
for which information about concomitant conditions was available; data are expressed as median
(25th–75th percentile) of enzymatic activity (U/L).

ne-HS
(n = 157)

pe-W
(n = 175)

sMPM
(n = 19)

pe-W
vs.

ne-HS
(p-Value)

sMPM
vs.

ne-HS
(p-Value)

sMPM
vs.

pe-W
(p-Value)

sMPM
vs.

pe-W + ne-HS
(p-Value)

Tot-GGT 22.91
(16.77–34.61)

24.27
(18.09–34.07)

24.29
(22.39–37.88) ns ns ns ns

b-GGT 2.46
(1.00–4.41)

2.93
(1.95–4.90)

3.95
(3.06–5.38) 0.004 0.002 ns 0.018

m-GGT 0.51
(0.22–0.98)

0.70
(0.37–1.22)

0.83
(0.53–1.42) 0.002 0.002 ns 0.029

s-GGT 7.28
(4.46–13.00)

8.88
(5.16–14.32)

10.00
(8.29–17.30) ns 0.010 ns ns

f-GGT 11.84
(9.39–15.70)

11.04
(9.14–13.90)

10.83
(8.79–13.50) ns ns ns ns

The comparison between GGT fractions of those from both ne-HS and pe-W free from
diabetes, hepatitis, and cardiovascular diseases did not influence this difference.

The sMPM group had a higher level of enzymatic activity of all the GGT fractions
except for the f-fraction compared to the ne-HS. A significant difference was also observed
between the sMPM group and the merged pe-W + ne-HS group concerning the b- and
m-fractions (Table 2). When we included the whole MPM group (MPM, n = 37) in the
analyses, we also observed a significant difference between the MPM and the pe-W group
for the b- and m-fractions. Additionally, a significant difference emerged between the MPM
group and the merged pe-W + ne-HS group for the s-fraction.
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Interestingly, fractions b- and m- GGT showed a significant increasing trend from
ne-HS to MPM groups (p = 0.001), while f-GGT showed a decreasing trend, even if not
statistically significant (Table 3).

Table 3. Summary of the analysis of GGT fractions distribution when including the whole MPM
group (MPM), the non-exposed subjects (ne-HS) and the previously exposed workers (pe-W); data
are expressed as medians (25th–75th percentile) of enzymatic activity (U/L).

ne-HS
(n = 157)

pe-W
(n = 175)

MPM
(n = 37)

pe-W
vs.

ne-HS
(p-Value)

MPM
vs.

ne-HS
(p-Value)

MPM
vs.

pe-W
(p-Value)

MPM
vs.

pe-W + ne-HS
(p-Value)

Tot-GGT 22.91
(16.77–34.61)

24.27
(18.09–34.07)

26.28
(21.16–38.25) ns ns ns ns

b-GGT 2.46
(1.00–4.41)

2.93
(1.95–4.90)

4.06
(2.84–6.94) 0.004 0.001 0.020 0.001

m-GGT 0.51
(0.22–0.98)

0.70
(0.37–1.22)

0.77
(0.53–1.48) 0.002 0.001 0.043 0.002

s-GGT 7.28
(4.46–13.00)

8.88
(5.16–14.32)

9.78
(6.97–15.86) ns 0.014 ns 0.046

f-GGT 11.84
(9.39–15.70)

11.04
(9.14–13.90)

11.06
(9.17–13.26) ns ns ns ns

Since b- and m-GGT and f-GGT had different trends, we investigate whether a ratio
of the single fractions had a better discriminating performance. We found that the only
combination having a statistical advantage over the b-fraction was b/f-GGT fractions
(Table 4).

Table 4. Area under the curve (AUC) values in order of increasing diagnostic power for the free-,
small-, medium-, big-GGT fractions (f-, s-, m- and b-GGT), the total-GGT (Tot-GGT) and the ratio
between big and free fractions (b/f-GGT) and big and medium fractions (b/m-GGT). The 95% CI
indicates the 95% confidence interval of the AUC.

AUC 95% CI p-Value

f-GGT 0.477 0.377–0.577 ns
Tot-GGT 0.567 0.469–0.666 ns

s-GGT 0.574 0.476–0.671 ns
m-GGT 0.610 0.514–0.705 0.036
b-GGT 0.633 0.532–0.734 0.011

b/f-GGT 0.679 0.582–0.777 0.001
b/m-GGT 0.484 0.379–0.589 ns

The b/f-GGT ratio levels were statistically different between the three groups of
studied subjects, as shown in Figure 1 (p < 0.0001).
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Figure 1. Graph showing the big/free-GGT ratio levels (b/f GGT) in the group of non-exposed sub-
jects (ne-HS), previously exposed workers (pe-W), and patients affected by malignant mesothelioma
(MPM). Box represents the first and the third quartile; the black line corresponds to the median value;
the whiskers are 1st and 99th percentile.

3.3. SMRP vs. GGT Fractions Comparison

Median values for SMRP were significantly different between the pe-W and MPM
patients (0.88 nM vs. 1.95 nM, respectively, p < 0.0001).

ROC curve analysis was performed for each GGT fraction, the b/f-GGT ratio, and
SMRP. The resulting AUC values are shown in Table 4.

Since SMRP and b/f-GGT had the better AUC values, they were combined in a single
variable (SMRP-b/f GGT) using logistic regression. This combination improved the AUC
to 0.875, as shown in Figure 2a (95% CI: 0.807–0.943, p = <0.0001). The best cut-off of
the combined risk factors, resulting from the Youden index, was 0.10, associated with a
combination of 87.50% sensitivity and 72.19% specificity. In a previous study, we reported
that the combination of SMRP and pOPN in a single variable (SMRP-pOPN) significantly
increased the diagnostic accuracy compared with the individual biomarkers alone [2].
Interestingly, when we compared the AUC of SMRP-pOPN with that of SMRP-b/f GGT,
the latter was slightly greater (0.857, 95% CI: 0.776–0.937 vs. 0.875, 95% CI: 0.807–0.943)
Figure 2b.
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Figure 2. (a) ROC curve describing the diagnostic power of mesothelioma patients (MPM) vs.
previously exposed workers (pe-W), by soluble mesothelin-related peptide (SMRP), big/free-GGT
activity ratio (b/f GGT), and the combination of the two biomarkers (SMRP-b/f GGT); (b) comparison
between the ROC curve of SMRPb/f GGT and combination of SMRP and plasmatic osteopontin
(SMRP-pOPN).
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4. Discussion

Malignant mesothelioma is an asbestos-related cancer of the serosal membranes that
can affect pleura, peritoneum, pericardium, and the tunica vaginalis testis, characterized
by chemo- and radio-resistance. The worldwide use of asbestos in the last century and
its high bio-persistence account for a large proportion of people exposed to asbestos for
occupational or environmental reasons. Despite many countries banning the use and
production of asbestos in the early 1990s, we are currently facing an increasing number of
MPM cases due to past exposure. To date, however, no effective diagnostic tools exist for
the surveillance of exposed individuals, and most MPMs are diagnosed at advanced stages.
For this reason, many authors are evaluating the significance of biological indicators as
biomarkers for the screening and early diagnosis of MPM.

Serum mesothelin-related protein (SMRP) is considered to be the most reliable
marker [2,14].

SMRP by itself and other biomarkers currently under investigation do not possess
an optimal combination of sensitivity and specificity. Nevertheless, some authors have
demonstrated that the combination of different biomarkers can improve the diagnostic
power [2,15,16].

Recently, numerous epidemiological studies have definitely ascertained that serum
GGT elevation, even within the normal reference range, is associated with higher mortality
of all causes, as well as with cardiovascular [17] and cancer-related mortality in the general
population, independently from liver disease and alcohol abuse [13,18,19]. The association
between serum GGT levels and the incidence of cancer (in general) and some site-specific
cancer types was investigated in two large population-based cohort studies [18,19] and
reviewed by Kunutsor et al. [13]. These studies reported a significant association between
GGT levels and increased risk of developing digestive and respiratory/intra-thoracic
malignancies in both genders. In all these previous studies, cancer risk correlated with total
GGT. There is also consistent literature showing a correlation between total GGT amount
and arterial blood hypertension, Diabetes Mellitus Type II (DMII) [20–22], cardiac [13,23],
and hepatic diseases [5,24], but no data is yet available regarding any specific pattern of
GGT fractional activity. In our study, a specific GGT fractional enzymatic activity has not
been associated with any of the latter diseases. It must be outlined that all these subjects
had total GGT values below two-fold the upper reference bound, limiting the possibility
that our data are affected by the presence of subclinical hepatic alterations. Moreover,
most people in the three groups had total GGT values below 55 U/l (290 subjects, 92.4%).
However, we found that mesothelioma patients have a specific GGT fractional pattern,
demonstrating that GGT-fractions may have a specific diagnostic meaning regardless of
the total amount of GGT.

The most interesting result from the GGT fraction analysis is that the pattern associated
with MPM differs not only from healthy subjects but also from those previously found in
other diseases, such as muscular dystrophy [17], non-alcoholic fatty liver, and liver diseases
in general [10,25]. These non-neoplastic patterns were characterized by an increase in
total GGT and all single fractions, with s-GGT particularly specific for hepatic damage.
In our study, MPMs showed a sensible increase in all GGT-fractions compared to the two
combined control groups (ne-HS + pe-W), confirming previous observations. Additionally,
MPMs were also characterized by a remarkable, though not statistically significant, decrease
in the f-GGT fraction. We observed a positive trend in the b- and m-GGT fractional activity
and a negative one for f-GGT, starting from ne-HS to pe-W and finally MPM. Since the
physio- and pathologic meaning of GGT-fractions is still far from being well known, there
is no chance for a sensible, comprehensive interpretation of our data. Nevertheless, only
the b- and m-GGT among all fractions were significantly different between pe-W and
ne-HS, and the b-GGT fraction is also the only one to be spontaneously released in the
culture medium by GGT-expressing tumor cell lines or by activated inflammatory cells, as
demonstrated in previous in vitro experiments [9,26,27]. Furthermore, the b-GGT fraction
increase had been previously attributed to the inflammatory component of a heterogeneous
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group of diseases [10,26], and total GGT levels have been associated with established
markers of inflammation [28,29]. Our pe-W group included several lung parenchymal
diseases and mono-bilateral pleural plaques mostly due to asbestos. On this basis, we
may speculate that the difference in b-GGT activity between ne-HS and pe-W could be
attributed to an inflammatory thoracic condition, either clinical (those having pleural or
parenchymal pathologies) or sub-clinical phlogosis, due to the presence of asbestos fibers
potentially responsible for continuous inflammatory triggering or possibly to the sum
of the two circumstances. The observation that the pe-W group free from pleural and
parenchymal disease still had a median value of b-fraction activity higher than ne-HS
(statically significant though with lesser strength) supports this theoretical explanation.
Most likely, the physio-pathological role of any single GGT fraction is different, and this
might explain the different up- or down-regulation observed in their activity according to
different health conditions.

Due to the lack of specific symptomatology, MPM is frequently diagnosed at late stages
when the chances of effective treatments are very poor. For this reason, several potential
biomarkers of early diagnosis have been investigated. By itself, none of these biomarkers
reached the levels of sensitivity and specificity required for screening purposes. Therefore,
some authors have proposed using combined risk indexes deriving from the simultaneous
application of different biomarkers. This approach has proved attractive to allow for an
increase in diagnostic accuracy. To date, the combination of SMRP and plasma osteopontin
(pOPN) provided the best diagnostic performance, with an AUC value of 0.873 ± 0.05 [2].
When we carried out a ROC curve analysis to establish the diagnostic accuracy of the
combined SMRP + pOPN in the present cohort, we found an AUC of 0.857. Interestingly,
the diagnostic accuracy of the combined risk index given by SMRP and b-/f-GGT ratio
was slightly higher (0.875), with high sensitivity and specificity. While the accuracy of the
combined SMRP-b/f GGT reported here is still too low to allow its employment in the
clinical practice, these results suggest the eligibility of GGT fractions activity for a selected
panel of early diagnosis biomarkers to be tested in future research. Furthermore, analyzing
the GGT fractions on a larger sample could allow a better estimation of the real sensitivity
and specificity of GGT as a biomarker for MPM.

In conclusion, this study demonstrated that the epithelioid subtype MPM is char-
acterized by a specific pattern of GGT fractional activity, regardless of the total amount
of GGT. The peculiarity of this enzymatic profile is given by a significant increase in the
activity of the b-GGT and m-GGT fractions, along with a simultaneous decrease in the
f-GGT fraction, which is constantly much more represented in healthy people. The b/f-
GGT activity ratio resulted as the best performing parameter in ROC analysis among all
fractions or rate combinations of them. The use of b/f-GGT in combination with SMRP
further increases the diagnostic power. In our study, non-exposed healthy subjects and
exposed people, regardless of any benign respiratory disease, showed different b-GGT
fraction activity. A new targeted research design is necessary to assess the role of b-GGT
fractional activity as a biomarker of asbestos exposure. Our data confirm the complexity
of the physio-pathological role of what we simplistically refer to as GGT activity, suggest-
ing, however, that further research is needed to exploit its potential in both clinical and
preventive applications.

5. Conclusions

Up to date, the fractional GGTs analysis has been mostly explored in the perspective
of implementing liver diseases diagnosis. The results of our study demonstrated that MPM
is associated with a specific pattern of GGT enzyme activity, suggesting a potential utility
in the diagnosis of MPM, as well as providing further evidence for the hypothesis that GGT
fractions play several specific biochemical roles.
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