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Abbreviations
ADAR  Airborne data acquisition and registration
AVIRIS  Airborne visible/infrared imaging 

spectrometer
CAO  Carnegie airborne observatory
CASI  Compact airborne spectrographic imager
CI  Chlorophyll index
DED  Dutch elm disease
DMSC  Digital multi-spectral camera
EVI  Enhanced vegetation index
GA  Genetic algorithm
GEOBIA  Geographic object-based image analysis
GPR  Gaussian process regression
GRSAI  Green–red spectral area index
HS  Hyperspectral sensor
HS-I  Hyperspectral imaging sensor
Lasso  Least absolute shrinkage and selection 

operator
LIBERTY   Leaf incorporating biochemistry exhibiting 

reflectance and transmittance yields model
MASTER  MODIS (moderate resolution imaging 

spectroradiometer)/ASTER (advanced 
spaceborne thermal emission and reflection 
radiometer)

MLD  Mycosphaerella leaf index
MNF  Minimum noise fraction
MS  Multispectral sensor
MS-I  Multispectral imaging sensor
NAIP  National agriculture imagery program
NDIwilt  Normalized difference wilt index
NDVI  Normalized difference vegetation index
NDWI  Normalized difference water index

Abstract Sustainable forest management is essential to 
confront the detrimental impacts of diseases on forest eco-
systems. This review highlights the potential of vegetation 
spectroscopy in improving the feasibility of assessing forest 
disturbances induced by diseases in a timely and cost-effec-
tive manner. The basic concepts of vegetation spectroscopy 
and its application in phytopathology are first outlined then 
the literature on the topic is discussed. Using several opti-
cal sensors from leaf to landscape-level, a number of for-
est diseases characterized by variable pathogenic processes 
have been detected, identified and quantified in many coun-
try sites worldwide. Overall, these reviewed studies have 
pointed out the green and red regions of the visible spec-
trum, the red-edge and the early near-infrared as the spectral 
regions most sensitive to the disease development as they are 
mostly related to chlorophyll changes and symptom develop-
ment. Late disease conditions particularly affect the short-
wave-infrared region, mostly related to water content. This 
review also highlights some major issues to be addressed 
such as the need to explore other major forest diseases and 
geographic areas, to further develop hyperspectral sensors 
for early detection and discrimination of forest disturbances, 
to improve devices for remote sensing, to implement long-
term monitoring, and to advance algorithms for exploitation 
of spectral data. Achieving of these goals will enhance the 
capability of vegetation spectroscopy in early detection of 
forest stress and in managing forest diseases.
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NGRDI  Normalized green red difference index
NIR  Near-infrared
NPV  Non-photosynthetic vegetation
NWI  Normalized wilt index
PC  Principal component
PCA  Principal component analysis
PCR  Principal component regression
PLSDA  Partial least squares discriminant analysis
PLSR  Partial least squares regression
PRI  Photochemical reflectance index
PROSPECT  Properties spectra model
PWD  Pine wilt disease
PWN  Pine wilt nematode
RATIO975  Three-band ratio VSI centered at 975 nm
RATIO1200  Three-band ratio VSI centered at 1200 nm
RF  Random forests
ROD  Rapid ʻŌhiʻa Death
RVSI  Red-edge vegetation stress index
RWC   Relative water content
SMLR  Stepwise multiple linear regression
SOD  Sudden oak death
SVR  Support vector regression
SWIR  Shortwave-infrared
UAV  Unmanned airborne vehicles
VARI  Vegetation atmospherically resistant index
VIgreen  Vegetation index green
VIS  Visible
VSI  Vegetation spectral indices
WP  Wavelength position

Introduction

Forests are essential ecosystems, providing numerous eco-
logical, economic, social, and cultural services (Chen and 
Meentmeyer 2016) and a major portion of the global terres-
trial carbon dioxide sink (Pan et al. 2011). However, climate 
change (i.e., changes in global temperatures and rainfall) and 
global trade have increased forest vulnerability to a number 
of natural disturbances, including diseases caused by patho-
gens such as fungi, bacteria, viruses and nematodes (Boyd 
et al. 2013; Wingfield et al. 2015). While some pathogens 
are native to local ecosystems, many recent major distur-
bances occur from nonindigenous species that may pose 
dangerous and unpredictable threats to forest health (Boyd 
et al. 2013). Over the past few decades, the frequency and 
intensity of forest disturbances due to diseases have dramati-
cally increased, leading to wide tree mortality in major forest 
biomes worldwide (Chen and Meentmeyer 2016).

Sustainable forest management is fundamental to confront 
the detrimental consequences of diseases in forest ecosystems. 
This is especially true when such disturbances have the poten-
tial to reduce the dominant native species, causing a perma-
nent change in forest structure. One prerequisite for effective 
management is to understand the severity and spatial distri-
bution of forest damage. Consequently, mitigation efforts can 
limit the population and the spread of pathogens on infected 
or susceptible host trees. Although conventional field men-
suration remains the most accurate way to quantify stages of 
infection, it can be logistically challenging, time-consuming 
and expensive, especially when pathogen populations reach 
epidemic levels.

Remote sensing makes possible a rapid and accurate 
evaluation of ecosystem functioning and status, and has 
the potential to be extended to larger spatial scales. Nota-
bly, the employment of spectroscopy in remote sensing is 
an outstanding approach for monitoring vegetation per-
formance under environmental constraints (Cotrozzi et al. 
2018). Recent developments in space- and airborne sen-
sors have further advanced the ability to collect observa-
tion data across multiple spatial, temporal, and spectral 
scales, making remote sensing feasible to monitor forest 
disturbances, e.g., variations in biophysical and biochemi-
cal parameters, in response to disease outbreaks of varying 
levels of invasion. Such rapid and accurate delineation of 
large-area forest damage allows decision makers to take 
prompt and informed action (Chen and Meentmeyer 2016).

In order to encourage other research in this area, this 
paper summarizes the present knowledge on the use of 
vegetation spectroscopy for the detection of forest dam-
age caused by diseases. First, it briefly reports basic con-
cepts of vegetation spectroscopy, focusing on reflectance 
spectroscopy. It then reviews the literature concerning 
the spectroscopic detection of forest diseases. Finally, it 
highlights knowledge gaps and proposes new perspectives 
on the topic. The published peer-reviewed literature was 
searched in the Web of Science (Thompson-ISI, Phila-
delphia, PA, USA, http:// apps. webof knolw edge. com/) and 
Scopus (Elsevier, Amsterdam, Netherlands, http:// www. 
scopus. com/) databases, using multiple combinations of 
“spectroscopy”, “reflectance”, “multispectral”, “hyper-
spectral”, “forest”, “tree”, “pathology” and “disease” key-
words. Database searches were performed in December 
2020 back to 1970. Papers that did not match the aim of 
the present review, e.g., those focused on crop species and/
or abiotic factors, were excluded, as well as those not in 
English. In order to identify other suitable references, the 
reference lists of articles recorded by this literature search 
were examined.

http://apps.webofknolwedge.com/
http://www.scopus.com/
http://www.scopus.com/
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Vegetation spectroscopy

Basic concepts

Spectroscopy has been used in plant science over several 
decades (Gates et al. 1965). Radiation striking vegetation, 
or any other target, may be reflected (diffuse, specular), 
absorbed, or transmitted (with refraction, Fig. 1a). Among 
the different spectroscopy approaches (Conrad and Bonello 
2016), reflectance spectroscopy is the one most used for 
measuring vegetation in the field. Reflectance spectros-
copy relies on the interaction of light with plant structure, 
chemical configuration and water content reflectance being 
dependent on variations in absorption as a consequence of 
vibrational excitation of molecular bonds, e.g., C–H, N–H, 
and O–H bonds, at specific wavelengths. Reflectance of 
vegetation can be calculated from the measurement of the 
vegetation radiance divided by the radiance of white refer-
ence panels, and defined as percentage (Kumar et al. 2001).

Within the full range of the solar radiation reaching veg-
etation (i.e., 350−2500 nm), the typical reflectance profile 
of a green leaf is characterized by three regions (Fig. 2): (1) 
the visible VIS, 400−700 nm showing low reflectance due 
to strong absorption by leaf pigments; (2) the near-infrared, 
NIR, 700−1100 nm characterized by high reflectance and 
mainly related to leaf cell structure; and, (3) the shortwave-
infrared SWIR, 1100−2500 nm characterized by another 
reduction of reflectance due to lower incident radiation as 
well as to the absorption by water and other absorptions 
by biochemical metabolites, e.g., lignin, starch, cellulose, 

proteins, phenols (Curran 1989; Asner and Martin 2008; 
Serbin et al. 2015). Another feature of the vegetation reflec-
tance spectrum is the red-edge, i.e., the region in the VIS 
red-NIR transition zone where reflectance increases drasti-
cally, which has been shown to be dependent on chloro-
phyll content and stress conditions. In light of the above, 
variations in spectral data can be used for various purposes 
such as mapping plant functional traits, species biodiversity 
and distribution, and monitoring plant responses to resource 
availability and environmental constraints (Kumar et al. 
2001; Cotrozzi et al. 2018).

Fig. 1  (a) Incoming light (L) reaching the surface of vegetation 
may be reflected (R; diffuse, specular), transmitted (T; with refrac-
tion) or absorbed (A); (b) during pathogenesis, leaf pathogens, e.g., 
biotrophic (left) and necrotrophic (right), affect leaf structural and 

chemical properties, and by this leaf reflectance as well as other leaf 
optical properties is distinctively altered in the visible spectra (VIS: 
blue, b; green, g; red, r), near-infrared (NIR) and shortwave-infrared 
(SWIR); leaf sections re-drawn from Mahlein (2015)

Fig. 2  Typical full range, i.e., 350−2500  nm, reflectance profile of 
healthy vegetation; major absorption and reflectance features are indi-
cated. VIS: visible, 400−700 nm; NIR: near-infrared, 700−1100 nm; 
SWIR: shortwave-infrared, 1100−2500  nm; gray stripes show spec-
tral bands commonly measured by multispectral sensors
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Optical sensors are classified on their spectral resolution 
and range. Multispectral sensors (MS) measure reflected 
energy from few to many specific discrete sections, i.e., 
bands, of the electromagnetic spectrum, e.g., 3−12 bands 
covering a few tenths of wavelengths each, common only 
in the VIS–NIR; Fig. 2. Hyperspectral sensors (HS) meas-
ure energy in narrower and more numerous bands than MS 
(e.g., hundreds or thousands covering 5−20 nm each). The 
numerous narrow bands of HS provide a continuous spec-
tral measurement which is more sensitive to subtle varia-
tions in reflected light, providing more data complexity and 
information content. Since the 1990s, several hand-held HS 
spectroradiometers covering the full VIS–NIR-SWIR range, 
i.e., 350−2500 nm, have become available and widely used 
for field vegetation research (Cotrozzi et al. 2018). Evi-
dently, MS (or HS covering narrower wavelength ranges) are 
smaller in volume, lighter in weight, needing fewer internal 
components for working, and are less expensive than HS in 
collecting wider wavelength ranges, and for these reasons 
are more used for remote sensing collections by unmanned 
airborne vehicles (UAV).

Reflectance measurements of vegetation are rapid, nonde-
structive, and relatively economical since the costs to oper-
ate such equipment once acquired are minimal compared 
with the costs to run other standard analytical instrumenta-
tion, e.g., spectrophotometry and gas/liquid chromatography 
systems. This technique also allows to investigate markedly 
more individual plant traits in situ and in vivo over numerous 
time periods than standard measurements alone, e.g., those 
carried out with classic ecophysiological approaches or wet 
chemistry. In addition, this approach can monitor plant func-
tions over large geographic areas if scaled to remote sensing 
measurements from space, i.e., satellites, or airborne plat-
forms, e.g., UAV and aircrafts (Cotrozzi et al. 2018).

In a remote sensing context, e.g., forest monitoring, 
imaging systems are usually preferable compared to non-
imaging systems, this being a further categorization of 
spectral sensors. Non-imaging spectral sensors average the 
spectral information with spatial resolution over a definite 
area within their field of view, and are preferable when the 
user wants to learn more about the radiation/vegetation inter-
action, and spatial information such as mapped out is not 
needed e.g., leaf- and ground canopy-level characterization 
of plant traits. Imaging spectral sensors are different and 
supply spectral information with spatial resolution of the 
imaged object; data is generated in the form of a 3D spa-
tial map of spectral variation, where the first two dimen-
sions (x- and y-axes) show the spatial information and the 
third dimension (z-axis) provides the spectral information 
(Fig. 3). For each pixel in an image, multispectral imaging 
(MS-I) devices capture a small number of spectral bands, 
typically three to fifteen, whereas hyperspectral imaging 
(HS-I) instrumentation capture continuous spectral ranges. 

Obviously, imaging spectral data needs more pre-process-
ing (e.g., atmospheric calibration, geometric correction and 
spectral calibration) than non-imaging ones. Nevertheless, 
being an integration of imaging and conventional point 
spectroscopy, imaging spectroscopy receives complemen-
tary information from both domains (Shaw and Burke 2003). 
Point spectroscopy provides information to explain the 
physiology, biochemistry and morphology of plants, while 
the information from imaging technology is used to design 
the dynamics of these vegetation characteristics (Asner and 
Martin 2008; Serbin et al. 2015; Singh et al. 2015; Mishra 
et al. 2017; Mahlein et al. 2018).

In addition, some physically based models have been suc-
cessfully used to simulate leaf reflectance and transmittance 
and to estimate leaf biochemical properties, e.g., radiative 
transfer models where variation in canopy reflectance can be 
modeled by relevant plant functional traits that are known to 
specifically affect light transmission in canopies. The optical 
PROperties SPECTra (PROSPECT, Féret et al. 2017) and 
the Leaf Incorporating Biochemistry Exhibiting Reflectance 
and Transmittance Yields (LIBERTY, specifically designed 
for pine needles; Dawson et al. 1998) are among the most 
widely validated models.

Advancements in the portability and sensitivity of spec-
trometers, together with improvements in computational 
and chemometric efficiency, have allowed the exploitation 
of reflectance data by using different approaches. First, using 
simple vegetation spectral indices (VSI) based on the ratio of 
reflectance at distinct wavelengths that have been developed 
to estimate several foliar traits, e.g., normalized difference 
vegetation index, NDVI (Rouse et al. 1974); photochemi-
cal reflectance index, PRI (Gamon et al. 1997); normalized 
difference water index, NDWI (Gao 1996); chlorophyll 
index, CI (Merzlyak et al. 1999). Second, using multivari-
ate approaches, e.g., partial least squares regression, PLSR 
(Wold et al. 2001), which has become the current standard of 
chemometric modeling, stepwise multiple linear regression, 
SMLR (Grossman et al. 1996), principal component regres-
sion, PCR (Martens 2001), and least absolute shrinkage and 
selection operator, Lasso (Tibshirani 2011) to directly esti-
mate widely investigated physiological, biochemical and 
morphological plant traits as a function of the leaf and veg-
etation hyperspectral profiles (e.g., Serbin et al. 2014, 2015; 
Couture et al. 2016; Marchica et al. 2019; Cotrozzi et al. 
2020). Third, testing spectra themselves as a phenotypic 
expression of the combined signals of the physiological, 
biochemical and morphological features of leaves under par-
ticular environmental conditions (i.e., spectral signatures), 
analyzable through multivariate approaches such as partial 
least squares discriminant analysis (PLSDA) or other classi-
fication techniques such as support vector machine learning 
(Cotrozzi and Couture 2020; Calzone et al. 2021). These 
approaches can be applied on untransformed or pre-treated 
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spectra, i.e., derivative spectra is often used for the elimina-
tion of background signals and for resolving overlapping 
spectral features, with remote sensing collections particu-
larly needing data pre-processing, e.g., signal compression 
and noise reduction (Rasti et al. 2018).

Applications in phytopathology

Vegetation spectroscopy has shown considerable poten-
tial to supply new insights into phytopathology. During 
host-pathogen interactions, a series of processes occur that 
induce variations in the plant’s physiology, biochemistry 
and morphology. As a consequence, these processes during 
pathogenesis and symptom development affect the optical 
properties of vegetation (Fig. 1b; Mahlein 2015). Therefore, 
variations in reflectance due to plant pathogens and diseases 
can be interpreted as highly specific changes in the structure 
and chemical configuration of the leaf tissue in the course 
of pathogenesis, e.g., sequence of chlorotic and necrotic tis-
sue or the presentation of characteristic fungal structures. 
Each host-pathogen interaction has a distinctive spatial and 
temporal progression and influences specific wavelength 
ranges during distinct pathogenesis phases (Khaled et al. 

2018; Mahlein et al. 2018). For instance, the occurrence of 
visible symptoms could be early detected by variations in 
the VIS spectral region, or the loss of leaf water due to the 
challenge of a necrotrophic pathogen could be monitored 
thanks to the water sensitivity of SWIR. As a consequence, 
reflectance spectroscopy has become one of the most power-
ful non-invasive approaches used for the detection (deviation 
from healthy, even at early stage), identification (diagnosis 
of specific symptoms among others and discrimination of 
various diseases) and quantification (assessment of disease 
severity) of plant diseases at multiple scales (Lowe et al. 
2017; Thomas et al. 2018).

Although plant disease research including such spectral 
approaches have risen sharply in the last 20 years, most of 
these studies have been carried out for agricultural appli-
cations, specifically within the areas of precision farming, 
aimed to optimize agricultural procedures and the applica-
tion of agrochemicals by considering in-field and temporal 
variability, and plant phenotyping, aimed to assess mul-
tiple plant traits to evaluate a specific genotype/environ-
ment interaction. Indeed, numerous reviews on the use 
of vegetation spectroscopy for detecting and monitoring 
major crop diseases are available (e.g., Bock et al. 2010; 

Fig. 3  Principle of imaging spectroscopy. Space- and airborne imaging spectral sensors provide spectral information with spatial resolution of 
the imaged object. Figure has been re-drawn from Shaw and Burke (2003)
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Mahlein 2015; Lowe et al. 2017; Khaled et al. 2018; Mahl-
ein et al. 2018; Thomas et al. 2018; Zhang et al. 2020a), 
and highly suggested to the reader interested in learning 
the technical and analytical details of the approach. Con-
versely, the use of vegetation spectroscopy for detecting 
and monitoring forest diseases has been less investigated. 
Lower investments and/or greater experimental difficulties 
might be among the causes of this tendency for forestry, 
and a review devoted to summarizing the state-of-the-art 
of this topic was lacking. Chen and Meentmeyer (2016) 
and Stone and Mohammed (2017) reviewed the application 
of remote sensing approaches for monitoring forest dam-
age by both insects (mainly) and diseases.

Spectroscopic detection of forest diseases

While the idea of applying remote sensing to detect disease-
induced forest damage was considered many decades ago 
(e.g., Heller and Bega 1973), only since the late 1990s has 
the approach began to receive considerable attention for 
managing disease outbreaks, as shown by reviewed papers 
reported in Tables 1 and 2. Two reasons possibly explain 
such slow adoption: (1) an increasing number of studies have 
showed that the frequency and intensity of forest diseases 
have significantly increased over the past two decades as a 
result of globalization, responsible for a worldwide distribu-
tion of pests and pathogens, and climate change (Boyd et al. 
2013), highlighting the need for understanding disease pro-
gression to implement effective mitigation strategies; and, 

Table 1  Spectroscopic assessment of forest diseases (conifers)

Pathogen: F fungus, N nematode
Scale: Ca airborne canopy, Cg ground canopy, Cs satellite canopy, L leaf
Sensor: HS hyperspectral, HS-I HS-imaging, MS-I multispectral-imaging
Approach: LIBERTY  LIBERTY radiative transfer model, SS spectral signatures, VSI vegetation spectral indices

Disease (pathogen) Host Country site Scale Sensor (Wavelengths) Approach References

Sphaeropsis blight 
(Sphaeropsis sap-
inea, F)

Pinus radiata NSW, Australia Ca MS-I (12 bands, 
450−850 nm)

SS + Imaging Coops et al. (2004)

Pinus radiata NSW, Australia L HS (350−1100 nm) VSI, SS, LIBERTY Coops and Stone (2005)
Pinus radiata NSW, Australia Ca MS-I (4 bands, 

680−850 nm)
Imaging Goodwin et al. (2005)

Pinus radiata NSW, Australia Ca MS-I (4 bands, 
680−850 nm)

VSI + Imaging Coops et al. (2006)

Pinus radiata NSW, Australia Ca MS-I (4 bands, 
680−850 nm)

VI + Imaging Sims et al. (2007)

Pine wilt disease 
(Bursaphelenchus 
xylophilus, N)

Pinus massoniana China Cg HS (350–1100 nm) VSI, SS Ju et al. (2014)

Pinus thunbergii South Korea L HS (350–2500 nm) VSI, SS Kim et al. (2018)
Pinus pinaster Portugal Ca MS-I (5 bands, 

475−840 nm), HS-I 
(380−1100 nm)

VSI + Imaging Iordache et al. (2020)

Pinus spp. – – – – Wu et al. (2020)
Pinus massoniana China Cg HS (350−1100 nm) SS, PLSR Zhang et al. (2020b)

Red band needle 
blight (Dothistroma 
septosporum, F)

Pinus radiata NSW, Australia Ca MS-I (10 bands, 
450−850 nm)

VSI + Imaging Coops et al. (2003)

Pinus radiata NSW, Australia L HS (350−2500 nm) VSI, SS Stone et al. (2003)
Pinus contorta, Pinus 

sylvestris
Scotland, UK Ca, L HS-I (450−980 nm), 

HS (350−2500 nm)
VSI, SS + Imaging Smigaj et al. (2019)

Blister rust (Cronar-
tium ribicola, F)

Pinus albicaulis MT, WY, USA Ca HS-I (450−2500 nm) SS + Imaging Hatala et al. (2010)

Pine pitch canker 
(Fusarium circina-
tum, F)

Pinus radiata South Africa Cs MS-I (4 bands, 
447−874 nm)

VSI + Imaging Poona and Ismail 
(2013)

Laminated root rot 
(Phellinus weirii, F)

Pseudotsuga menziesii Canada Ca MS-I (8 bands, 
438−861 nm)

VSI + Imaging Leckie et al. (2004)



27Spectroscopic detection of forest diseases: a review (1970–2020)  

1 3

Table 2  Spectroscopic assessment of forest diseases (broadleaf)

Disease (pathogen) Host Country 
site

Scale Sensor (Wavelengths) Approach References

Sudden Oak Death (Phy-
tophthora ramorum, O)

Quercus agrifolia, Q. 
kelloggii, Q. parvula 
var. shrevei, Lithocarpus 
densiflorus, Arbutus 
menziesii, Umbellularia 
californic

CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Kelly (2002)

[As above] CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Kelly and Meente-
meyer (2002)

Quercus agrifolia CA, 
USA

L HS (350–2500 nm) VSI, SS Pu et al. (2003)

Quercus agrifolia, Q. 
kelloggii, Q. parvula 
var. shrevei, Lithocarpus 
densiflorus, Arbutus 
menziesii, Umbellularia 
californic

CA, 
USA

Ca MS-I (4 bands, 450−-
920 nm)

Imaging Kelly and Liu (2004)

[As above] CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Kelly et al. (2004)

Quercus agrifolia CA, 
USA

L HS (350–2500 nm) SS Pu et al. (2004)

Quercus agrifolia, Q. 
kelloggii, Q. parvula 
var. shrevei, Lithocarpus 
densiflorus, Arbutus 
menziesii, Umbellularia 
californic

CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Liu et al. (2006)

[As above] CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Guo et al. (2007)

[As above] CA, 
USA

Ca MS-I (4 bands, 
450−920 nm)

Imaging Liu et al. (2007)

[As above] CA, 
USA

Ca MS-I (10 bands, 
450−850 nm)

SS + Imaging Pu et al. (2008)

[As above] CA, 
USA

Ca MS-I (50 bands, 
400–14,000 nm)

VSI, 
SS + Imaging

Hultquist et al. (2014)

[As above] CA, 
USA

Ca MS-I (50 bands, 
400−14,000 nm)

SS + Imaging Chen et al. (2015)

[As above] CA, 
USA

Ca HS-I (350−2500 nm) SS + Imaging He et al. (2019)

Japanese oak wilt (Raf-
faelea quercivora, F)

Japanese oak (unknown) Japan Cs, L HS-I (400−1000 nm), 
MS-I (15 bands, 
520−12,000 nm)

VSI + Imaging Uto et al. (2008)

Japanese oak (unknown) Japan L HS-I (400−1000 nm) VSI + Imaging Uto et al. (2009)
Japanese oak (unknown) Japan L HS-I (400−1000 nm) VSI + Imaging Uto et al. (2011)

Oak wilt (Bretziella 
fagacearum, F)

Quercus fusiformis CT, USA Ca MS-I (3 bands, 
520−900 nm)

VSI + Imaging Everitt et al. (1999)

Oak wilt (Bretziella 
fagacearum, F) [and 
bur oak blight (Tubakia 
iowensi, F)]

Quercus ellipsoidalis, 
Quercus macrocarpa

MN, 
USA

Cg, L HS (350−2,400 nm) SS Fallon et al. (2020)
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(2) the collected spectral data have increased dramatically 
during the same time period, mainly due to the abatement 
of data acquisition costs. Geographically, research hotspots 
have been primarily located in North America and Australia, 
with several other studies conducted in Europe, East Asia 
and South Africa.

In this review, the studies are presented according to the 
following three criteria: (1) works on conifers (Table 1) are 
discussed before those on broadleaf species (Table 2); (2) 
within each tree type, genera mostly studied (i.e., higher 
number of reviewed papers) are presented first; and, (3) 
within each genus, diseases mostly studied are listed first. 
For each disease, a brief description, e.g., causal agent, 
distribution, symptoms, is given, and then the related 
studies mentioning the adopted sensors and data analysis 
approaches, the most disease-sensitive spectral regions, and 
the major outcomes.

Pinus spp.

Sphaeropsis blight

Sphaeropsis sapinea (or Diplodia pinea) is among the most 
frequent fungal pathogens affecting conifers worldwide, 
causing shoot blight, crown wilt, cankers and sapwood stain 
that have produced heavy losses in pine stands. Usually top 
and outer branch shoots are first affected, quickly becoming 
pale green, then yellow, orange and red, and finally being 
shed, while the lower crown may stay green and of normal 
density (Stanosz et al. 2002).

Sims et al. (2007) used decision tree analysis to evalu-
ate the crown condition of Pinus radiata D. Don (Monte-
rey pine) stands in southern New South Wales, Australia 
showing discolored leaves due to S. sapinea. Imagery was 
collected by the digital multi-spectral camera (DMSC) II 
system (SpecTerra Services) with four wavelength filters, 
680, 720, 740, and 850 nm in September 2002; 680, 700, 
720, and 750 nm in September 2003. Imagery was acquired 
at a pixel resolution of 0.5 × 0.5 m. Spectral VSI and frac-
tion images (see Goodwin et al. 2005, reported below) were 
used to classify crowns into binary condition classes, i.e., 
proportional discoloration, 0: < 40%, 1: > 40%. The devel-
oped decision tree model identified crown discoloration due 
to S. sapinea with an effective accuracy between 83 (Kappa) 
and 92% overall accuracy. This study confirmed the outputs 
reported by Coops et al. (2006) which analyzed the same 
dataset by evaluating the relation between the crown-condi-
tion variables and the spectral VSI through a standard linear 
regression, and through a classification error matrix, i.e., 
confusion matrix. The slope of the upper red-edge was the 
feature mostly related with crown conditions (R2 = 0.76 and 
0.88 for 2002 and 2003, respectively), with an independent 
classification accuracy of over 90%. In fact, several studies 
have shown that the shape of the red-edge is dependent on 
chlorophyll content (Smith et al. 2004; Zarco-Tejada et al. 
2004) and stress conditions (Mutanga and Skidmore 2007). 
On the same dataset collected in 2002, Goodwin et al. (2005) 
applied a linear spectral unmixing approach to measure the 
fractional abundances of the key image endmembers: sunlit 
canopy, shadow and soil. Applying multiple linear regres-
sion and endmember fraction images, high significance 

Table 2  (continued)

Disease (pathogen) Host Country 
site

Scale Sensor (Wavelengths) Approach References

Mycosphaerella leaf 
disease (Mycopshaere-
lla spp., F)

Eucalyptus globulus Tas, 
Aus-
tralia

L HS (400−1100 nm) VSI, SS Pietrzykowksi et al. 
(2006)

Eucalyptus globulus Tas, 
Aus-
tralia

Ca MS-I (4 bands, 
550−780 nm)

VSI + Imaging Pietrzykowksi et al. 
(2007)

Eucalyptus globulus Vic, 
Aus-
tralia

L HS (400−1100 nm) VSI, SS Barry et al. (2011)

Rapid ʻŌhiʻa Death 
(Ceratocystis spp., F)

Metrosideros polymorpha HI, USA Ca, L HS-I (350−2,485 nm), 
HS (350−2500 nm)

PLSR, SS + 
Imaging

Asner et al. (2018)

Metrosideros polymorpha HI, USA Ca HS-I (350−2,485 nm) SS + Imaging Vaughn et al. (2018)
Dutch elm disease 

(Ophiostoma ulmi, F)
Ulmus americana Canada L HS (350−2500 nm) SS Wilson et al. (1998)

Pathogen: O oomycete, F fungus
Scale: Ca airborne canopy, Cg ground canopy, Cs satellite canopy, L leaf
Sensor: HS hyperspectral, HS-I HS-imaging, MS-I MS-imaging
Approach: PLSR partila least squares regression, SS spectral signatures, VSI vegetation spectral indices
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rates were reported for the color of the crown leader (a six 
class variable; R2 = 0.79) and the overall crown color (pro-
portional discoloration, 0: < 40%, 1: > 40%; R2 = 0.80). In 
general, the sunlit canopy image fraction resulted in the most 
meaningful variable for the estimation of forest condition.

These outputs are in accordance with Coops et al. (2004) 
who adopted a similar linear spectral unmixing approach but 
investigated the potential of the Compact Airborne Spec-
trographic Imager 2 (CASI-2) to detect the same S. sapinea 
infection. Results indicated that four fraction endmember, 
i.e., sunlit canopy, soil, shadow and non-photosynthetic veg-
etation (NPV) images could be accurately obtained from 
the 12 spectral bands of CASI-2 imagery (ranging from 
450 to 850 nm, spatial resolution: 0.8 m). Single crowns 
were detectable on the sunlit crown fraction. Interestingly, 
NPV showed scattered patches of high fractional abundance 
where there were aggregates of brown needles. The step-
wise regressions for modeling the color of the crown leader 
and the overall crown color showed high R2 (0.75 and 0.72, 
respectively), with NPV followed by the shadow fractions 
showing the higher significances.

Concurrently in the same experimental site, Coops and 
Stone (2005) collected needle spectra by a field UNISPEC 
spectrometer (PP Systems; 350−1100 nm), and took needle 
samples to determine chlorophyll a and b, and water con-
tents. Under increasing S. sapinea-induced disease, needles 
with a lowering of chlorophyll content showed an increase 
in reflectance in the VIS region. The shape of the red-edge 
significantly changed among the S. sapinea severity classes 
(i.e., low, moderate, high). Needle chlorophyll concentration 
was mostly correlated with various VSI, especially those 
including reflectance at 705 nm (chlorophyll sensitive) and 
at either 750 or 445 nm (chlorophyll insensitive). A good 
correlation was also reported between moisture content and 
the water band index (Peñuelas et al. 1995), suggesting that 
the inclusion of water sensitive wavelengths (SWIR) may 
also help to better monitor S. sapinea infection by spectral 
data. Furthermore, the LIBERTY radiative transfer model 
was also applied to estimate theoretical needle reflectance 
(400−2500 nm) by changing chlorophyll and water content 
input parameters. Such LIBERTY estimated spectra mostly 
matched both trends and rates of actual spectra, suggest-
ing that the utilization of radiative transfer models, properly 
parameterized, can produce information in discriminating 
needle damage severity.

Pine wilt disease

Pine wilt disease (PWD) is an important quarantine disease 
responsible for the overwhelming death of Pinus species 
caused by the pine wood nematode (PWN) Bursaphelenchus 
xylophilus. This is the only pathogen that is not a microor-
ganism among those discussed in this review. B. xylophilus 

is transmitted by vector pine sawyer beetles in the genus 
Monochamus. At present, PWD is primarily distributed in 
eight countries across North America (United States, Mex-
ico, and Canada), East Asia (China, Japan, South Korea, 
North Korea) and Europe (Portugal, Spain). However, 52 
countries worldwide have listed PWN as a quarantine patho-
gen as PWN can spread by transport of infested wood. At 
an early stage, PWD cannot be detected with the naked eye. 
PWN starts to multiply in xylem cells, obstructing their 
internal ducts. Trees affected by PWD cease resin secretion 
and needles gradually become yellowish. Finally, the needles 
turn brown and the plant dies (Wu et al. 2020).

Spectroscopy assessment of PWD was performed on vari-
ous Pinus species. Ju et al. (2014) and Zhang et al. (2020b) 
investigated the capability of using hyperspectral data over 
the 350−1100 nm spectral range, acquired by an ASD Field-
Spec spectrometer; Analytical Spectral Devices, to distin-
guish Pinus massoniana Lamb. (Chinese red pine) trees 
infected by PWN from healthy ones. Spectral measurements 
were collected ca. 0.5−1 m above the canopy. Ju et al. (2014) 
used first derivative spectra and VSI to reduce data dimen-
sionality and to identify the most important wavelengths for 
detection. The most effective first derivative metric was at 
759 nm, and thus selected to classify the health status of 
P. massoniana. The NDVI, calculated from reflectance at 
810 and 450 nm, in the fully infected stage was strongly 
related to changes of chlorophyll concentration (r = 0.95). 
The researchers concluded that the combined use of spe-
cific spectral features and chlorophyll concentration are an 
efficient method to detect PWN infection around 30 days 
after inoculation. Zhang et al. (2020a, b) also observed 
that samples in different PWD infection states, a five-class 
variable, generated distinctive reflectance and their first-
order derivative profiles, but they used a different spectra 
exploitation approach. To indicate such spectral changes, 
16 spectral characteristics were extrapolated from the green 
(510–580 nm), red (620−680 nm), red-edge (680−760 nm) 
and NIR (780−1100 nm) regions, and were coded as genes 
constituting the chromosome of a genetic algorithm (GA). 
Using the optimal spectral features with suitable fitness from 
the GA, an accurate (R2 = 0.82) PLSR model was developed 
to predict PWD severity.

Kim et al. (2018) focused differently on hyperspectral 
analysis of Pinus thunbergii Parl. (black pine) inoculated 
with PWN in Geoje Island, South Korea. Full range leaf 
reflectance (350–2500 nm) collected with a GER 3700 
spectrometer (Geophysical and Environmental Research 
Corporation) showed PWD-induced changes in the red 
(ca. 600−700 nm) and SWIR (ca. 1400−1500 nm) regions 
within two months from PWN infection. The already exist-
ing vegetation atmospherically resistant index (VARI), the 
vegetation index green (VIgreen) and the normalized wilt 
index (NWI), as well as the green–red spectral area index 
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(GRSAI) they specifically introduced, constantly reported 
significant differences between tree infection conditions ear-
lier than the other tested indices. Notably, the GRSAI, which 
includes the red and green regions, showed less fluctuation 
over time than the other VSI.

Recently, Iordache et  al. (2020) proposed a machine 
learning algorithms detection of PWD in Pinus pinaster 
Aiton (maritime pine) from multi- (MicaSense Red-Edge 
M multispectral camera, MicaSense Inc.; five spectral bands 
centered at 475, 560, 668, 717, and 840 nm) and hyper-
spectral data (MicroHyperSpec A-series hyperspectral 
scanner, Headwall Photonics; 380−1100 nm) acquired over 
two regions of central Portugal affected by PWD. Classifi-
cation schemes for both multi- and hyperspectral imagery 
(spatial resolution: 5 and 10 cm, respectively) used sets 
of 13 selected VSI, and were developed by random forest 
approaches. These classification schemes achieved high 
PWD identification overall accuracies (> 91%). Moreover, 
it was shown that PWD was identifiable by spectral imagery 
even before symptoms could be detected by the naked eye. 
The development of PWD was also detectable in the derived 
maps.

All these results clearly show the practicability of PWD 
detection by spectral imaging and non-imaging, as further 
confirmed by the extensive review by Wu et al. (2020).

Red band needle blight

Red band needle blight, caused by Dothistroma septosorum, 
is a fungal disease with a significant impact on pine forests 
worldwide, affecting over 80 pine species. The development 
of disease symptoms includes initial chlorosis, rapid loss 
of cellular integrity, cellular necrosis (bands) and eventual 
phylloptosis or leaf fall. Infection commonly begins in the 
lower portions of the crown on older foliage and spreads to 
higher parts (Bradshaw 2004).

Smigaj et al. (2019) examined the ability of hyperspec-
tral data for detection of red band needle blight. Airborne 
VIS–NIR hyperspectral data (450−980 nm, 2 m spatial 
resolution) were collected in central Scotland using the 
airborne Aisa FENIX imager (Channel Systems) flown 
over diseased Pinus contorta Douglas (lodgepole pine) 
plantations with variable defoliation and infection sta-
tus. Spectra of foliage affected by red band needle blight 
were also collected in a young Pinus sylvestris L. (Scots 
pine) stand by an ASD FieldSpec Pro spectroradiometer 
(350−2500 nm). The green, red and early NIR spectral 
regions were the most sensitive to the development of 
the disease. First order derivative values of the green 
to red-edge region performed best at separating healthy 
and infected leaves with an accuracy around 90%. The 
best index was the normalized green red difference index 
(NGRDI), including green and NIR regions, followed by 

the enhanced vegetation index (EVI). Transferring the 
results obtained at leaf level to airborne collections carried 
out on lodgepole pine sites, resulted in a good distinction 
comparing the more diseased/defoliated plot and the mar-
ginally affected pine stand using numerous spectral indi-
ces, including PRI, NGRDI and EVI. Smigaj et al. (2019) 
also investigated LiDAR data and suggested that the com-
bination of data from different sensors could improve the 
ability to detect red band needle blight.

In fact, in the early 2000s, leaf and canopy spectral 
assessments of red band needle blight were, respectively, 
investigated by Stone et al. (2003) and Coops et al. (2003) 
over P. radiata plantations in New South Wales, Australia 
which had been ground evaluated and ranked following 
the extent of Dothistroma needle blight (a six-class vari-
able) on an individual tree basis. Stone et al. (2003) used 
an ASD FieldSpec FR spectroradiometer (350–2500 nm) 
and found that the largest reflectance difference between 
healthy and diseased leaves took place on the shoul-
der of the NIR region at 763  nm. Wavelengths in the 
675−691 nm range showed the greatest sensitivity to D. 
septosporum infection, followed by those close to 760 and 
550 nm (shown by first derivative spectra), while the low-
est sensitivity resulted at 434, 493, 506, 709, and 1373 nm. 
The 709/691 nm reflectance ratio best correlated to needle 
damage. Among the other tested VSI, an index calculated 
by the 710−740 nm wavelengths, i.e., the upper red-edge, 
was also strongly related to disease severity (r = − 0.73). 
Conversely, a weak relation was found between the needle 
damage category and the slope maximum of the red-edge.

Coops et al. (2003) acquired airborne remote sensing 
imagery by the CASI-2 (10 bands ranging from 450 to 
850 nm, 0.8 m spatial resolution) and reported that Doth-
istroma needle blight was more severe in the lower crown, 
and significant relationships were found between ground 
evaluation and crown reflectance features, i.e., lower and 
upper slope of the red-edge and red-edge vegetation stress 
index, RVSI, using an ‘halo’ imaging approach which 
ignored the brightest central pixels of each tree crown. 
This method showed an accuracy of over 70%. Independ-
ent accuracy evaluation of the approach showed that the 
technique could successfully detect three levels (the orig-
inal six-class classification system was aggregated into 
three classes) of Dothistroma needle blight.

Blister rust

Blister rust, due to the invasive fungus Cronartium ribicola, 
is a dominant source of stress and mortality to high-altitude 
Pinus albicaulis Engelm. (whitebark pine) within the Greater 
Yellowstone Ecosystem, California as well as mountain pine 
beetle (Dendroctonus ponderosae Hopkins). Prediction and 
control of blister rust is challenging since the pathogen does 
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not diffuse from tree to tree but by way of wind-borne spores 
from the population of its alternate host Ribes spp. The devel-
opment from green to red needles at the outer-most branches 
is an early symptom of blister rust infection and mountain 
pine beetle infestation (Geils et al. 2010).

Hatala et al. (2010) analyzed images acquired by the 
HyMap airborne hyperspectral sensor (HyVista Corpora-
tion Pty. Ltd.; 128 bands across the 450−2500 nm spectral 
range, 2–4 m spatial resolution) to identify the sites of blis-
ter rust-induced stress and mortality in the Greater Yellow-
stone Ecosystem whitebark pine crowns by using sub-pixel 
mixture-tuned matched-filter analysis. Discrepancies in the 
spatial trends of blister rust and mountain pine beetle infes-
tation allowed to distinguish areas dominated by mountain 
pine beetle against blister rust by analyzing variations in 
the spatial scale of significant stress and mortality clusters 
estimated by the Ripley’s K algorithm.

Pitch canker

Pitch canker is an episodic disease caused by the fungus 
Fusarium circinatum. It affects only Pinus forests, with 
Pinus radiata being among the most susceptible. Pitch can-
ker was first reported in North Carolina, USA in the 1940s, 
but the pathogen is now present over the whole southeastern 
United States and in numerous countries worldwide (Haiti, 
Chile, South Africa, Japan, Korea, Mexico, Italy, Portugal 
and Spain). The disease, characterized by strong resin exu-
dation at the infection site on branches, negatively impacts 
growth and is also able to kill seedlings and mature trees 
(Wingfield et al. 2008).

Poona and Ismail (2013) explored the capability of 
transformed high spatial resolution QuickBird satellite 
imagery (DigitalGlobe; 447−512, 499−594, 620−688, and 
755−874 nm, 2.44 spatial resolution) and artificial neural 
networks to detect and map P. radiata plantations affected 
by pitch canker disease in South Africa. Tree crowns were 
outlined by an automated segmentation and classification 
procedure within an object-based image analysis environ-
ment. Various VSI, including the tasseled cap transforma-
tion, were then estimated and included into a neural net-
work model. The feed-forward neural network allowed a 
disease discrimination with an overall accuracy of 82% and 
KHAT of 0.65. These outcomes highlight the potential of 
the approach for future crown-level mapping of the disease 
at an ecosystem level.

Pseudotsuga menziesii (Mirbel) Franco (Douglas‑fir)

Laminated root rot

Phellinus weirii, the fungus causing laminated root rot (this 
is the only root disease discussed in this review), is among 

the most significant single natural agent inducing long-term 
variations in the coastal forests of western North America. 
Pseudotsuga menziesii (Douglas-fir) is highly susceptible 
to P. weirii and is the most economically important host of 
the fungus. P. weirii infection occurs when healthy roots 
encounter infected stumps or diseased roots of a previous 
stand, P. weirii gradually induces root decay, leading to 
weakened uptake of water and nutrients and reduced struc-
tural support. Crown symptoms, reduced growth, needle 
chlorosis and loss, massive production of small cones, usu-
ally occur only after the fungus has compromised a signifi-
cant portion of the root apparatus (Thies 1998).

Leckie et al. (2004) acquired two sets of CASI imagery 
(spatial resolution: 0.6 m) over a Douglas-fir site in Brit-
ish Columbia, Canada in 1995 (five spectral bands from 
456 to 779 nm) and 1996 (eight spectral bands from 438 to 
861 nm). Trees showing different levels of root rot symp-
toms were evaluated in the field, manually outlined on the 
imagery, and associated to their spectral properties. The NIR 
and red bands and band ratio including these two regions 
resulted in most associated to root rot injury, but a blue 
region was also effective. Using these four spectral bands, an 
average classification accuracy of 55−60% was reported for 
healthy, slightly infected, light to moderately severe, 100% 
needle loss, snag and shadowed snag conditions, while the 
accuracy for broader classes was much better, e.g., around 
80% if a tolerance of ± 1 class was allowed. Specifically, 
there was a good relationship between areas of root disease 
with moderate and severely damage trees, while lightly dam-
aged trees were not reliably identified.

Quercus spp.

Sudden oak death

Sudden oak death (SOD), caused by the pathogen Phy-
tophthora ramorum, was first reported in the mid-1990s on 
tanoak (Notholithocarpus densiflorus) and oaks (Quercus 
spp.) in the San Francisco Bay area, then spreading epi-
demically in several coastal forests in California and Oregon, 
USA. This disease has also had a devastating impact on larch 
stands in the United Kingdom. Phytophthora ramorum has 
been either recorded as a regulated species or listed in forest 
legislations in 68 countries worldwide. Symptoms include 
bark cankers, leaf spots and twig dieback (Grünwald et al. 
2019).

Sudden oak death has received the most attention in 
terms of remote sensing. He et al. (2019) combined multi-
sensor remote sensing with species distribution modeling 
to map SOD in a California forested region of 80,000 ha 
from 2005 to 2016. To permit both the fine-scale monitor-
ing of disease development and adequate description at 
broader scales, they used a spectral unmixing approach to 
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extract sub-pixel disease infection produced by a species 
distribution model. They calibrated/validated the approach 
with imagery from high-spatial resolution National Agri-
culture Imagery Program (NAIP) of the USDA Farm Ser-
vice Agency, and hyperspectral Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS; 360−2500 nm, 3 m spatial 
resolution) data, Google Earth® imagery, and field investi-
gation. The outcomes revealed an annual SOD infection of 
7%, with 76−83% overall mapping accuracy. The combina-
tion of multi-sensor remote sensing and species distribution 
modeling markedly decreased the overestimation of disease 
impacts as compared to the unique use of remote sensing 
sensors.

A similar remote sensing study was performed by Pu et al. 
(2008) using a CASI-2 dataset (2 m spatial resolution) for 
detecting SOD-induced tree stress and mortality in another 
California forest, including costa live oak (Quercus agri-
folia), black oak (Q. kelloggii), and valley oak (Q. lobata, 
no SOD host) living in mixed stands with mature madrone 
(Arbutus menziesii) and California bay trees (Umbellularia 
californic). They first developed a multilevel classification 
(0 to 3) design to enhance classification efficiency. The CASI 
raw data were then converted to reflectance and rectified for 
topography, and a principal component (PC) transformation 
of all 48 bands and the visible and NIR bands were individu-
ally carried out to select features from the data. Lastly, the 
processed CASI imagery was classified by a maximum like-
lihood approach and tested for classification accuracies. The 
outcomes showed that classification accuracy of oak tree 
stress mostly increased as the detailed classification level 
increased, ranging from 3 to 76%. Furthermore, PCs from 
VIS and NIR regions led to more accurate classification than 
the PCs from all 48 CASI bands.

The work by Pu et al. (2008) was a follow-up of two stud-
ies at leaf level (Pu et al. 2003, 2004), where reflectance, 
collected by an ASD FieldSpec ProFR spectroradiometer; 
350−2500 nm, and relative water content (RWC, %) were 
determined from hundreds of coast live oak (Q. agrifolia) 
leaf samples with three levels of SOD symptoms, healthy, 
infected and newly dead. Pu et al. (2003) conducted corre-
lation analysis between RWC and absorption features, i.e., 
wavelength position (WP), absorption feature depth, width, 
and area at the 975, 1200, and 1750 nm positions, and three-
band ratio VSI centered at 975 and 1200 nm  (RATIO975 
and  RATIO1200, respectively). Among these features, area 
showed the highest and more stable relation with RWC. 
Pu et al. (2004) extracted the maximum or minimum first 
derivative and its related WP from 10 spectral slopes along 
each reflectance profile. Using all 306 spectra collected 
on healthy, infected and newly dead leaves, maximum or 
minimum derivative values at both sides of the reflectance 
depressions near 1200, 1400, and 1900 nm, the WPs on 

the right of the 1200 nm depression, and both sides of the 
1400 nm and 1940 depressions were highly correlated with 
RWC. With a selection of 260 spectra collected only on 
green and green-yellowish leaves, discarding newly dead 
leaves, the WPs at the right side of the 1400 nm depres-
sion, at the left side of the 1940 nm depression and at the 
red region showed a constant relation with leaf RWC. As 
a result,  RATIO975 and  RATIO1200 indices, as well as the 
spectral feature on the right of the 1400 nm spectral depres-
sion may be crucial spectral indicators for evaluating water 
status and for early detection of SOD before the occurrence 
of symptoms. Overall, this study confirms the importance 
of including the water sensitive SWIR region for monitoring 
necrotrophic pathogens.

Changing perspective, Hultquist et al. (2014) and Chen 
et al. (2015) examined the effects of fire and SOD on for-
ests, focusing on the evaluation of post-fire burn severity 
where trees experienced three stages of disease develop-
ment, pre-fire: early- trees retaining dried foliage and fine 
twigs, middle- trees losing fine crown fuels, and late-stage, 
trees falling. The experimental activities were carried out 
by using Geographic Object-Based Image Analysis (GEO-
BIA) to MASTER MODIS (Moderate Resolution Imaging 
Spectroradiometer)/ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) airborne images with 
high-spatial (4 m) and high-spectral resolutions (50 bands 
covering VIS, NIR and SWIR spectral regions, as well as 
other longer infrared wavelengths, i.e., 400–14,000 nm) that 
were collected immediately after the fire for rapid assess-
ment. Hultquist et al. (2014) investigated the capability of 
the Gaussian process regression (GPR), random forests (RF) 
and support vector regression (SVR) machine learning tech-
niques. RF showed the best performance in burn severity 
assessment, and lower sensitivity to the use of multiple com-
binations of remote sensing variables as well. Chen et al. 
(2015) also investigated two commonly used wavelength 
reduction processes, PCA, principal component analysis, 
and MNF, minimum noise fraction, for the outline of image 
objects and the consecutive accuracy of burn severity mod-
els using either PCA or MNF derived variables. Both PCA 
and MNF were promising for balancing computation effi-
ciency and the accuracy of burn severity models in forests 
subjected to the middle and late stages of SOD progression, 
but not for those in the early stage of the disease.

A number of studies also focused on mapping SOD using 
the airborne data acquisition and registration (ADAR) 5500 
imager (four spectral bands: blue, 450−550, 520−610, 
610−700, and 780−920 nm) in California (Kelly 2002; 
Kelly and Meentmeyer 2002; Kelly and Liu 2004; Kelly 
et al. 2004; Liu et al. 2006, 2007; Guo et al. 2007). These 
studies are not presented in detail since their focus was on 
the imaging approach instead of the spectroscopy one.
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Japanese oak wilt

Japanese oak wilt disease, caused by the fungus Raffae-
lea quercivora and transmitted by the bark beetle Platypus 
quercivorus, is responsible for considerable mortality of 
Fagaceae species in Japan. Following infection, R. quer-
civora impedes the rising of sap through the vessels, finally 
leading to tree death (Kubono and Ito 2002).

Since the detection of affected trees is the only strategy 
to avoid tree mortality, Uto et al. (2008, 2009) proposed an 
automatic detection approach using remotely sensed hyper- 
or multi-spectral data to overcome the problem. After the 
collection of leaf spectra by an Imspector V10 imaging spec-
trograph (Specim, Spectral imaging; 400−1000 nm), they 
first introduced a normalized wilt index (NWI) which was 
then validated on hyperspectral remote sensing data and a 
multispectral satellite imagery acquired by the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER, NASA Jet Propulsion Laboratory). Since the per-
formance of this index on leaves showing various autumnal 
tints was not initially verified, this gap was covered by Uto 
et al. (2011), who proposed another index, i.e., normalized 
difference wilt index,  NDIwilt to be applied for wilt identifi-
cation in leaves collected in October.

Oak wilt (and bur oak blight)

Oak wilt is a severe disease of oaks (Quercus spp.) over 
large regions of the eastern and central United States, 
and is caused by the invasive fungal pathogen Bretziella 
fagacearum, previously known as Ceratocystis fagacearum 
Bretz, which spreads in the outer sapwood. Oak wilt is trans-
mitted by bark beetles and sap-feeding beetles, but can also 
be transmitted over short distances via root grafts between 
adjacent trees. After infection, trees respond by producing 
tyloses and gum which consequently reduce the flow of 
water and nutrients in infected vascular tissues, leading to 
tree wilt and finally death (Koch et al. 2010).

The ability of reflectance measurements to detect oak wilt 
disease was firstly shown by Everitt et al. (1999). They per-
formed a study in south-central Texas, USA where airborne 
reflectance collections in the VIS green (520−600 nm), VIS 
red (630−690 nm) and NIR (760−900 nm) spectral bands 
were made with a Barnes modular multispectral radiometer 
(Barnes Engineering Company) on branches of Quercus 
fusiformis (escarpment live oak) showing different stages 
of disease. Reflectance data collected in the field showed 
that dead, diseased and healthy trees had divergent VIS and 
NIR levels; oak wilt resulted in increasing green and red 
values and in decreasing NIR.

More recently, Fallon et al. (2020) evaluated the capabil-
ity of spectral data to discriminate oak wilt from other pro-
cesses of decline. They exposed greenhouse-grown seedlings 

(Quercus ellipsoidalis and Q. macrocarpa) to drought, or 
to oak wilt or bur oak blight fungi (Tubakia iowensis, a 
common leafspot fungus). They collected leaf and canopy 
reflectance by a Spectra Vista HR 1024i spectroradiometer 
(Spectra Vista Corporation; 400−2400 nm) and instantane-
ous photosynthetic and stomatal conductance levels, then 
ran PLSDA to estimate the exposure type from hyperspec-
tral data. They also detected oak wilt before the onset of 
symptoms, accurately classified the disease in symptomatic 
samples, and showed that classification accuracy from spec-
tral data increased with oak wilt-induced reductions in pho-
tosynthetic performance. Wavelengths found to be mostly 
important for oak wilt diagnosis occurred only in NIR and 
SWIR spectral regions, and were related to water status, 
non-structural carbohydrates and photosynthetic processes. 
They showed that hyperspectral models could discriminate 
oak wilt from other factors of tree damage, and that detec-
tion was related to biological processes linked to oak wilt 
infection and progression. They also found that within the 
canopy, symptom variety could negatively affect detection, 
but that symptomatic leaves and canopies were accurately 
diagnosed by spectral information.

Eucalyptus globulus Labill.

Mycosphaerella leaf disease

Numerous Mycosphaerella spp. have been related to leaf 
diseases of many Eucalyptus spp., generally specified as 
Mycosphaerella Leaf Disease (MLD). Juvenile leaves and 
shoots of Eucalyptus trees are mostly affected by MLD, with 
symptoms including leaf spots, phylloptosis or premature 
leaf drop, twig cankers and reduced tree growth. However, 
many Mycosphaerella spp. are also able to infect adult leaves 
owing to their ability to develop a proto-appressorium that 
allows direct cuticle penetration. As a consequence, some-
times trees are infected by an array of Mycosphaerella spp. 
(Hunter et al. 2011).

Early investigations carried out spectral sensitivity analy-
sis at the leaf level to select wavelengths capable of detect-
ing increasing MLD severity on Eucalyptus globulus Labill. 
Reflectance measurements were performed by Pietrzykowski 
et al. (2006) on healthy and infected juvenile E. globulus 
leaves collected in a plantation in Tasmania, Australia using 
an ASD FieldSpec FR spectroradiometer (400−1000 nm). 
Reflectance at 760 nm gave the largest difference between 
the minimum and maximum of infection severity (a six-class 
variable). The wavelength most sensitive to disease severity 
was at 680 nm, followed by those between 480 and 500 nm. 
Conversely, reflectance near 708 nm and 550 nm was rela-
tively insensitive to disease severity. The VSI most related 
to leaf infection was the ratio between reflectance at 678 and 
550 nm (r = 0.84), which was also used in a linear regression 
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model for accurately estimating leaf infection severity from 
an independent data set (r = 0.95). This index was then 
tested on the same Tasmanian plantation site with airborne 
multispectral imagery (digital multi-spectral camera; four 
spectral bands at 550, 680, 740, and 780 nm, 0.5 m × 0.5 m 
pixel size) to detect necrosis at a site characterized by strong 
MLD infection (Pietrzykowski et al. 2007). Models to detect 
crown-level necrosis using this index reported a classifica-
tion accuracy of 67% (Kappa = 0.54) according to field 
evaluations, and a similar accuracy for a model developed 
to detect crown-level defoliation which included reflectance 
at 780 nm. Although maps drawn by these linear models 
showed precisely the pattern and gradient of MLD severity 
recorded in the field, this accuracy could likely be improved 
by utilizing spectral data at a higher resolution, allowing for 
the calculation of more complex VSI and the exploitation of 
whole spectral regions by multivariate approaches.

Therefore, Barry et al. (2011) carried out two studies 
focused on necrosis detection in pot-grown E. globulus seed-
lings, one in which necrosis was due to artificial infection of 
Tetratosphaeria spp. and one in which necrosis was due to 
injuries superimposed on plants already showing reddening 
or chlorosis. Leaf reflectance profiles were acquired with the 
same ASD FieldSpec FR spectroradiometer (400−1000 nm) 
reported in Pietrzykowski et al. (2006). By spectral sen-
sitivity analysis, they reported that 679−695 nm wave-
lengths were most sensitive to necrosis occurrence, while 
706−726 nm ones were least sensitive. An ad-hoc developed 
VSI (i.e., ratio of reflectance at 688 and 721 nm), was capa-
ble of discriminating necrotic and non-necrotic treatments, 
while other important VSI could not. However, multivariate 
approaches, e.g., penalized discriminant analysis and Lasso, 
applied on the whole spectrum enabled much greater dis-
crimination of all necrotic treatments compared to the VSI. 
Wavelengths between 679 and 695 nm were only sporadi-
cally selected as key wavelengths; therefore, results were not 
similar to the spectral sensitivity data.

Metrosideros polymorpha Gaudich.

Rapid ʻŌhiʻa Death

Rapid ʻŌhiʻa Death (ROD) is a disease greatly killing 
a multitude of Metrosideros polymorpha trees (‘ōhi ‘a, 
Myrtaceae), a native keystone species in Hawaii. In 2010, 
many ‘ōhi’a trees began showing browning foliage, rapidly 
followed by tree mortality. In following years, the extent of 
ROD spread substantially. Two previously unknown fun-
gal pathogens in the genus Ceratocystis were isolated as 
the cause of infection. First symptoms include leaf and/or 
branch yellowing, wilting, and then browning within sev-
eral days to weeks. This browning stage is quite apparent 
some extent specific to ROD infection. Leaves finally drop 

from the infected tree over several weeks to months until 
only bare branches remain (Keith et al. 2015).

Two concomitant studies (Asner et al. 2018; Vaughn 
et al. 2018) were carried out to spectroscopically assess 
ROD. Vaughn et al. (2018) used the Carnegie Airborne 
Observatory (CAO) aircraft laboratory to acquire laser-
guided imaging spectroscopy data (350−2485  nm) 
and high-resolution imagery (24  cm) over more than 
500,000 ha of Hawaii in summer 2017. They established a 
method to map individual tree crowns matching the symp-
toms of both active (brown; desiccated ‘ōhi’a crowns) and 
past (leafless tree crowns) ROD infection by the combina-
tion of two machine learning methods, SVM and a gradi-
ent boosting machine. Using a conservative classification 
design to curtail false-positives, model sensitivity levels 
were 87% and 83%, and precision levels 97% and 95% 
for browning and leafless crowns, respectively. Over the 
Hawaii Island, they recorded 43,134 individual crowns 
displaying the browning phase of ROD, while leafless 
crowns 547,666 in total and more scattered over the island.

The associated study by Asner et  al. (2018) used 
field collections of leaf spectral data with laboratory 
chemical investigations and airborne remote sensing to 
develop a spectral signature for ROD. Leaf spectra were 
collected with an ASD FieldSpec 3 spectroradiometer 
(350−2500 nm), while remote data were collected with 
the same CAO reported above. PLSR-models were devel-
oped to predict several leaf traits. Reflectance spectra 
predicted leaf mass per area, chlorophyll, phenol, car-
bon and water concentrations with high accuracies (R2: 
0.85−0.99), while lower prediction accuracies were found 
for nitrogen, non-structural carbohydrates, cellulose and 
tannin concentrations. They reported that around 80% of 
ROD-infected plants showed distinct decreases in chloro-
phyll, moisture and non-structural carbohydrates, which 
overall led to significant and consistent variations in leaf 
reflectance over the VIS and SWIR regions. Leaf-level 
outcomes were scaled at the canopy level using airborne 
laser-guided imaging spectroscopy, with quantitative 
spectral separability of normal green-leaf canopies from 
suspected ROD-infected brown-leaf canopies in the VIS 
and SWIR spectrum. These achievements provided the 
spectral-chemical basis for detection, mapping and moni-
toring of the development of ROD in Hawaii.

Ulmus americana L.

Dutch elm disease

Dutch elm disease (DED), caused by some ascomycete fungi 
of the genus Ophiostoma (Ophiostoma ulmi s.l.) affect-
ing elm trees (Ulmus spp.), is one of the most destructive 
diseases in forest pathology. DED spread and infection of 
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suitable hosts is due to a synchrony between life cycles of 
the host tree, the pathogen and its vectors, elm bark beetles. 
The first DED symptom is commonly an upper branch with 
leaves starting to wither and yellowing in summer, months 
before autumn leaf shedding. This gradually extents to the 
rest of the tree, with further dieback of branches (Santini 
and Faccoli 2015).

Reflectance measurements of DED-infected trees were 
collected by Wilson et al. (1998) under laboratory conditions 
in the 350−2500 nm wavelength range using an ASD Field-
Spec FR spectroradiometer. Different reflectance profiles 
were reported on leaf samples from trees showing variable 
DED infection (with early and late symptoms). Early disease 
stage resulted in a rapid increase in green and red regions 
and a small decrease in NIR (pigment variations), while the 
late disease stage induced a decrease in green and NIR and 
an increase in SWIR reflectance (water loss). These out-
comes were useful for selection of suitable remote sensors 
to early detect and monitor DED in forests.

Conclusions and future perspectives

This review highlights the capability of vegetation spec-
troscopy in improving the assessment of forest disturbances 
induced by diseases in a timely and cost-effective manner. 
Using several optical sensors from leaf to landscape-level, 
a number of diseases characterized by variable pathogenic 
processes have been detected, identified and quantified 
in numerous sites worldwide. Overall, these studies have 
pointed to the green and red regions of the VIS, the red-edge 
and the early NIR as the spectral regions, i.e. those related to 
chlorophyll changes and symptom development, as being the 
most sensitive to disease development. Early disease stages 
usually produce a rapid increase in green and red reflec-
tance and a small decrease in early NIR, whereas late disease 
stages result in a decrease of green and NIR regions and an 
increase in SWIR, mostly related to water content.

This review also highlights some major issues to be 
addressed in the future. First, many major forest diseases 
and geographic areas remain unexplored by spectroscopic 
studies. Second, further development of high-resolution, 
cost-effective and portable spectral sensors are required for 
improving the assessment of forest diseases, since hyper-
spectral data have mostly shown their capability to assist 
with early detection of tree stress, e.g. slight decline in chlo-
rophyll and leaf water content, providing forest managers an 
opportunity to perform efficient disease control. Third, since 
it has been demonstrated that leaf-level spectroscopy can 
be effectively used as ground reference or training input for 
airborne-based platforms and scaled to field and landscape 
levels, more studies should focus on linking spectral data 
collected at different scales. Fourth, since sensors mounted 

on airborne platforms make data acquisition an expensive 
process, and only a few satellite sensors are operational to 
date (their application has been restrained because of limited 
spatial coverage and high spectral noise), a potential solu-
tion is to assemble hyperspectral sensors on UAV which, 
although largely used in agriculture, have not been operated 
for forest disease assessment. One limitation, however, is 
the obligation to meet UAV regulations and policies that 
may vary considerably from region to region. Fifth, data 
archives, especially those of hyperspectral sensors, have to 
increase both temporal and spatial coverage since long-term 
monitoring is required to assess historical impacts of dis-
eases on forests. Sixth, since the disturbances affecting the 
same forested regions may come from a range of sources, 
and it is also possible that one disturbance may influence 
forest responses to another, further studies should focus on 
differentiating between disease-caused forest damage and 
other types of damage. Since one major challenge is that 
single sensors are typically not suitable to complete this task, 
together with improvements in sensitivity and resolution of 
instrumentation, a likely solution may be the development of 
a multisensory approach. Seventh, accordingly to previous 
issues, algorithms for modelling spectra-disturbance rela-
tionships will need to be continually refined or redeveloped 
to take advantage of new data and novel landscape changes 
caused by pathogens.
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