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Abstract: Annually, over 100 million tons of nitrogen fertilizer are applied in wheat fields to ensure
maximum productivity. This amount is often more than needed for optimal yield and can potentially
have negative economic and environmental consequences. Monitoring crop nitrogen levels can
inform managers of input requirements and potentially avoid excessive fertilization. Standard
methods assessing plant nitrogen content, however, are time-consuming, destructive, and expensive.
Therefore, the development of approaches estimating leaf nitrogen content in vivo and in situ
could benefit fertilization management programs as well as breeding programs for nitrogen use
efficiency (NUE). This study examined the ability of hyperspectral data to estimate leaf nitrogen
concentrations and nitrogen uptake efficiency (NUpE) at the leaf and canopy levels in multiple
winter wheat lines across two seasons. We collected spectral profiles of wheat foliage and canopies
using full-range (350–2500 nm) spectroradiometers in combination with leaf tissue collection for
standard analytical determination of nitrogen. We then applied partial least-squares regression, using
spectral and reference nitrogen measurements, to build predictive models of leaf and canopy nitrogen
concentrations. External validation of data from a multi-year model demonstrated effective nitrogen
estimation at leaf and canopy level (R2 = 0.72, 0.67; root-mean-square error (RMSE) = 0.42, 0.46;
normalized RMSE = 12, 13; bias = −0.06, 0.04, respectively). While NUpE was not directly well
predicted using spectral data, NUpE values calculated from predicted leaf and canopy nitrogen levels
were well correlated with NUpE determined using traditional methods, suggesting the potential of
the approach in possibly replacing standard determination of plant nitrogen in assessing NUE. The
results of our research reinforce the ability of hyperspectral data for the retrieval of nitrogen status
and expand the utility of hyperspectral data in winter wheat lines to the application of nitrogen
management practices and breeding programs.

Keywords: hyperspectral phenotyping; nitrogen use efficiency; partial least-squares regression;
proximal sensing; spectroscopy; wheat

1. Introduction

Wheat is one of the most widely cultivated cereal crops in the world. Annually,
220 million ha of wheat are planted, producing over 670 million tons of grain, which is
mostly used as a food source for humans and animals [1]. Because of the widespread
consumption, this cereal plays an essential role in global food security, representing ~20%

Remote Sens. 2021, 13, 3991. https://doi.org/10.3390/rs13193991 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4401-3896
https://orcid.org/0000-0002-4536-1200
https://orcid.org/0000-0003-4784-4537
https://doi.org/10.3390/rs13193991
https://doi.org/10.3390/rs13193991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193991
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193991?type=check_update&version=4


Remote Sens. 2021, 13, 3991 2 of 22

of total caloric intake and protein ingestion for many [1]. Recent studies have shown a
continued increase in wheat consumption by humans, which established a new record in
2018–2019 of approximately 602 million metric tons (MMT) of wheat consumed world-
wide [2]. Additionally, projections estimate that the demand for wheat will increase by
nearly 60% within the next 30 years due to projected human population growth [3]. This
predicted increase in consumption poses a significant challenge for wheat breeders and
producers, especially considering the estimated decrease in available areas for cultivation
and an increase of extreme weather events [1].

The USA predominantly produces winter wheat (70–80% of total wheat planted) due
to the cultivars’ high yield potential [4]. Winter wheat is planted in late summer and
early fall, then germinates and establishes roots, and has a vernalization period in the
winter, where a temperature below 8 ◦C is necessary to induce flowering [5]. Wheat grain
is composed of approximately 12–15% of protein [6], and consequently wheat needs a
high rate of nitrogen uptake that in turn requires an elevated rate of nitrogen fertilization
for optimal productivity [7]. The high fertilization rate is due to the low efficiency of
nitrogen uptake and remobilization to grain during filling [8,9]. Consequently, a large
amount of nitrogen is applied in fields annually, over 100 million tons globally, to ensure
optimal wheat productivity [10], and wheat fertilization represents nearly 20% of the
total fertilizer input used in crop plants globally [11]. The high amount of fertilizer input
required for optimal wheat production, however, can harm the environment and represents
a substantial production cost for farmers [1,9,10,12,13]. Developing approaches to quantify
wheat nitrogen status in the field can aid in determining optimal fertilizer inputs which
will help mitigate the adverse effects of under- and over-fertilization.

In addition to improving the management of field-based fertilization, selecting lines
with enhanced nitrogen use efficiency (NUE) can help mitigate the high demand by wheat
for nitrogen fertilizer inputs. NUE is defined as the ability of a plant to increase grain
dry-weight yield per unit of nitrogen uptake from the soil [14,15] and is composed of
two key elements: nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency
(NUtE) [16]. Monitoring nitrogen fertilizer input, as well as quantifying NUE, requires ac-
curate nitrogen determination in plant tissue, especially at the scale for in-field monitoring
and assessing agronomic breeding populations. Traditional methods are labor-intensive
and time-consuming, requiring tissue collection and chemical analysis. These analyses
also provide temporally limited information, and because of the costs, measurements are
collected infrequently, limiting information about nutrient dynamics throughout a growing
season. Thus, there is a critical need to develop more rapid and efficient methods for
assessing NUE, in vivo and in situ, to assist breeding programs [17].

Recent advances in sensor-based approaches for monitoring plant status have revealed
promising outcomes [18], and hyperspectral reflectance has gained considerable attention
by demonstrating the ability to estimate plant chemical composition. The ability of hyper-
spectral data to confirm plant chemical composition relies on variation in the absorption
of light due to differential patterns of vibrational excitation of molecular bonds, primar-
ily C-H, N-H, and O-H bonds, at specific wavelengths in the visible (VIS; 400–700 nm),
near-infrared (NIR; 700–1100 nm), and short-wave infrared (SWIR; 1100–2500 nm) ranges.
Thus, variations in plant spectral profiles are determined by the chemical and physical
composition of the vegetation [19,20], and the use of spectral data from vegetation, com-
bined with mathematical methods, has been demonstrated to be an efficient approach to
accurately predict plant traits, such as water status, physiological processes, and primary
and secondary metabolites [21–33].

While previous studies showed that hyperspectral data applied to nitrogen assessment
in wheat is an efficient method for estimating nitrogen concentrations in
wheat [22,23,29,32,34–36], those studies were mostly conducted using a single measure-
ment approach and often did not explore either the scalability of hyperspectral data over
measurement scales (e.g., leaf vs. canopy) or the transferability of models across sea-
sons [31]. Furthermore, the ability of spectral data to scale across different genotypes
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within species and years is not well understood and needs further study to identify the
range of applications for the use of hyperspectral data in agronomic practices [30,31,37].

To address these knowledge gaps, we examined the ability of hyperspectral data to
identify traits related to nitrogen dynamics in different wheat lines, across two growing
seasons, and assessed the ability of hyperspectral data in estimating NUpE in a wheat
breeding population. Specifically, we (1) developed predictive models using hyperspectral
data to estimate nitrogen concentration at leaf and canopy levels, (2) assessed model
performance to estimate nitrogen concentration across different wheat lines and growing
seasons, (3) estimated NUE directly from spectral data, and (4) used predicted nitrogen
values to calculate NUE components and test the accuracy of this method with conventional
NUE calculations.

2. Materials and Methods
2.1. Experimental Design

This project was conducted at the Agronomy Center for Research and Education at
Purdue University (ACRE), West Lafayette, IN, USA (40◦47′10”N, −87◦01′04”W, annual
precipitation: 1047 nn/year, average annual temperature: 11.5 ◦C). The soil type at ACRE is
described as a combination of: Rockfield silt loam, Fincastle silt loam, and Toronto silt loam
(USDA Web Soil Survey). Additional information about detailed soil characteristics can be
found in Appendix A, Table A1. The 2017 experiment was planted in September 2016 and
included four different wheat lines, showing a range of yield performance under nitrogen
fertilization regimes, selected from the Purdue soft-red winter wheat breeding program,
listed in Appendix B, Table A2. The 2018 experiment was planted in October 2017 and
included 32 different lines, also selected from the Purdue soft-red winter wheat breeding
program, showing a range of yield performance under nitrogen fertilization regimes, and
listed in Appendix B, Table A2. The goal of this paper was to determine the ability of
hyperspectral data to estimate foliar nitrogen levels and to assess the utility of the approach
in breeding wheat lines for NUE and not to assess responses of individual wheat lines to
different fertilizer levels. Specific information about the responses of different wheat lines
to variable fertilization and the resulting NUE can be found in [38].

In both years, all wheat lines were planted in eight replicate plots for each genotype:
four plots with baseline fertilization and four plots with baseline and supplemental fertiliza-
tion. Plot dimensions were 1.22 m × 3.05 m and contained seven rows with 15 cm intervals;
seeds were planted at a density of 370 seeds m−2. In both years, prior to planting, all
plots were fertilized with monoammonium phosphate ((NH4)H2PO4 (N, P, K: 11-52-0)) at a
rate of 24.6 kg ha−1. In the spring following planting, four replicates of each line received
supplemental fertilizer treatments with urea (N, P, K: 46-0-0) treated with Limus (BASF,
Germany) during the stem elongation growth stage (Zadoks 30) at a rate of 112.09 kg ha−1

establishing a low, consisting of lines that were fertilized only prior to planting, and a high,
consisting of lines fertilized both prior and after planting, fertilization treatments. Detailed
soil composition is described in Appendix A, Table A1.

2.2. Spectral and Reference Tissue Collections
2.2.1. Data Collection 2017

Hyperspectral data were collected from leaf and canopy levels using full-range spec-
troradiometers (HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY, USA). Collec-
tions were carried out on all four wheat lines at six different time points (TPs) over
one growing season. Each TP represented a different physiological plant stage: boot-
ing (TP1-26/04/2017; Zadoks 45), onset of heading (TP2-08/05/2017; Zadoks 50), heading
(TP3-15/05/2017; Zadoks 58), flowering (TP4-22/05/2017; Zadoks 60), post-anthesis (TP5-
06/06/2017; Zadoks 68), and maturity (TP6-12/06/2017; Zadoks 91). Each plot was
subdivided into three subplots, and spectral and foliar collections were carried out in one
randomly selected subplot within each plot. A total of 288 samples, with paired spectral
and foliar measurements, were collected and distributed as follows: 32 samples from TP1
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and TP2 (4 lines × 2 fertilization treatments × 4 plots = 32) and 64 samples from TP3, TP4,
TP5, and TP6 each (4 lines × 2 fertilization treatments × 8 plots × 4 time points = 256).
During the first two time points (TP1 and TP2), weather and logistical constraints limited
us to sampling only four of the eight total plots. Canopy reflectance measurements were
conducted between 11:00 and 13:00 h., under clear sky conditions, using an eight-degree
foreoptic (representing approximately a 12 cm−2 area) mounted to a tripod at one meter
above the canopy, with a foreoptic angle approximately at nadir of the target. Following
the canopy measurements, four flag leaves were collected and stored in separate paper
bags on ice. After returning to the laboratory (<2 h), leaf reflectance was measured on the
adaxial leaf surface, using the same spectroradiometer but fitted with a fiber optic cable
attached to a plant probe with a leaf clip, containing an internal halogen light source fitted
in a lens tube adapter for small spot (ideal for viewing samples with narrow area, such as
wheat leaves). Relative reflectance for both leaf and canopy measurements was determined
by dividing vegetation radiance by the radiance of a 99% reflective white panel (Spectralon,
Labsphere, North Sutton, NH, USA) that was collected either just above the canopy, for
canopy measurements, or mounted within the internal leaf clip, for leaf measurements,
measured every 15 or 12 spectral collections for leaf and canopy measurements, respec-
tively. After measurements, leaf samples were flash-frozen in liquid nitrogen and stored in
a freezer at −20 ◦C until they were oven-dried at 90 ◦C for seven days. After reaching a
constant dry mass, samples were ground for chemical analysis using a ball mill.

2.2.2. Data Collection 2018

Hyperspectral data were collected from leaf and canopy levels from all 32 wheat lines at
a single time point: heading and the beginning of flowering (from 24/05/2018 to 06/06/2018;
Zadoks 58–60). Each plot was subdivided into two subplots, and spectral and foliar collections
were carried out in one randomly selected subplot within each plot for spectral and leaf
collection. The reason for this reduction in subplot sampling was to reduce sampling time
so samples were of comparable growth stages. A total of 128 samples with paired spectral
and foliar measurements were collected (32 lines × 2 treatment × 2 plots = 128). The sample
selection for nitrogen analysis was carried out assigning random samples from subplots
collected across all genotypes and both treatments, and the spectral data collection and
tissue sampling and processing for leaf and canopy measurements followed the same
protocol as described in the 2017 data collection.

2.3. Standard Nitrogen Analysis

Analysis of nitrogen concentrations from foliar tissue collected from both years was
performed using a Thermo Finnigan Flash 1112 elemental analyzer (San Jose, CA, USA).
Atropine (CE Elantech, Lakewood, NJ, USA) was used as a standard [39,40]. The total leaf
nitrogen concentration, in percentage dry mass, for the 2017 and 2018 datasets, ranged
from 0.64 to 4.85 and 1.24 to 4.88, respectively.

2.4. Chemometric Modeling

We generated chemometric models to predict nitrogen concentration in wheat from
spectral data using partial least-squares regression (PLSR) [41,42]. In cases where predictor
variables are highly correlated and outnumber response variables, such as often the case
with hyperspectral data, classical regression techniques can produce unreliable beta coeffi-
cient estimates [42]. In contrast to standard regression approaches, PLSR reduces many
inter-correlated predictor variables into relatively few, uncorrelated latent variables and is
a preferred method in chemometrics [29,43–48]. The number of latent variables included in
each model was determined by the reduction of the predicted residual error sum of squares
(PRESS) statistic [49] following leave-one-out (LOO) cross-validation. The latent variables
were then combined into a linear model to predict nitrogen concentrations.

To avoid the influence of canopy geometry and solar intensity during canopy mea-
surements and to optimize PLSR models, reflectance data were vector-normalized [50].
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The first derivative of spectral data was then calculated on the normalized reflectance data
to highlight spectral differences for both leaf and canopy measurements. The wavelength
range 400–2400 nm was used in both leaf and canopy models to capture absorption fea-
tures related to both protein and chlorophyll content [19]. When using canopy spectral
data, the wavelength region between 1800 and 2000 nm was omitted to remove the noise
caused by atmospheric water absorption. Preliminary models identified poorly predicted
outliers, detected by elevated reflectance in the visible wavelength region, spectral jumps
that occur when the leaf clip is not fully engaged, or inconsistencies or errors in the refer-
ence data [29,48,50–58]. Outliers removed accounted for approximately 10 and 15% of the
dataset for leaf and canopy collections, respectively.

For the 2017 data, we evaluated the model performance by conducting 500 randomized
permutations of the entire 2017 dataset using 70% of the data, divided into 80:20 split
for calibration and cross-validation, respectively, with the remaining 30% held out for
external validation. For each permutation, we tracked the model goodness of fit (R2),
overall error rate (root-mean-square error, RMSE), and normalized root-mean-square error
(NRMSE) over the data range together with a bias to assess model performance when
applied to the validation dataset. These randomized analyses generated a distribution of
fit statistics allowing for the assessment of model stability as well as uncertainty in model
predictions. We also determined the contribution of individual wavelength for the PLSR
using the variable importance for the projection (VIP) selection statistic and standardized
(i.e., centered and scaled) coefficients selection statistics, which explain the contribution of
a single wavelength for the variance in the latent variables [44,58]. The modeling approach
was performed using the ‘pls’ package in R (www.r-project.org accessed on 2 October 2019).

To assess cross-year transferability of spectral models, we applied models that were
developed to predict nitrogen concentrations in 2017 to the spectral data collected in 2018.
To determine if we could improve the model fit by adding data collection in 2018, we
included 50% of the reference data (spectral data that had a paired reference nitrogen
measurement) collected in 2018 (64 samples) and created a cross-year model, following the
same modeling approach described above, and used the remaining 50% of the reference
data (64 samples) collected in 2018 as external validation.

Categorization of Standardized Coefficients and VIP within Regions of Chlorophyll and
Protein Absorption Features

To align spectral features with chlorophyll and protein absorption features, we catego-
rized wavelength coefficients and VIP statistics (Appendix D, Tables A4 and A5) having
a higher contribution to model performance into general regions of literature-published
chlorophyll and protein absorption features. First, we averaged standardized coefficients
and VIP values every 30 nm starting at 400 nm to account for multicollinearity. Then,
we ranked the top 30 averaged standardized coefficient values. For the VIP statistic, we
excluded all values that were below 0.8, as suggested by [41], then averaged the VIP
values as we did for coefficients, and then ranked the top 30 VIP values. Next, we selected
literature-published chlorophyll and protein absorption features (Appendix C, Table A3)
and binned wavelengths 40 nm on center of the published wavelength peak (i.e., 20 nm
before and 20 nm after the described peak). This process was carried out to capture mi-
nor absorption features associated with chlorophyll and protein outside of the singular
wavelength absorption feature. Finally, we identified averaged wavelength coefficients and
VIP values that fell within the binned values for each chlorophyll and protein absorption
feature range (Appendix D, Tables A6–A8).

2.5. NUE Quantification

We used two approaches to investigate the potential of spectral data to benefit NUE
estimation. First, we tested the ability of spectral data to directly predict NUpE, following
a similar chemometric modeling protocol described above, with the exception that we used
only LOO cross-validation. We used this approach because the logistical constraints of
collecting the biomass and chemical data to calculate NUpE, a component of NUE, limited

www.r-project.org
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the number of samples we were able to collect, and the total number of samples used in
this analysis was considerably smaller (n = 39) than the number of samples collected for
previous chemometric modeling of nitrogen concentrations. Second, we calculated NUpE
using spectrally predicted nitrogen to test the accuracy of predicting component processes
of NUE using spectral data. Reference NUpE was calculated using the nitrogen straw
values, and estimated NUpE was calculated by substituting mid-season nitrogen values
predicted by spectral models for straw values. NUpE was calculated as the following:

NUpE =
Grain N + Straw N

N Supplied

where Grain N is the nitrogen concentration in the grain, Straw N is the whole-plant
(leaves, stems, tillers, organs) nitrogen level, and N Supplied is the quantity of nitrogen
applied via fertilizer (kg N ha−1) [38].

3. Results
3.1. Chemometric Models
3.1.1. Modeling and Cross-Year Validation 2017

The 2017 model accurately predicted nitrogen at both leaf and canopy levels, although
there was a decline in external validation performance (Table 1, Figure 1), and these declines
were comparable.

Table 1. Performance metrics of the 2017 model: number of latent variables (LVs), goodness of fit (R2), root-mean-square
error (RMSE), normalized root-mean-square error (NRMSE), and bias for calibration (C), cross-validation (CV), and external
validation (EV). Data generated via cross-validation using 500 random permutations of the dataset with 70% of the total
data divided into 80:20 split for C and CV, respectively, for models predicting nitrogen concentrations from wheat foliage
using hyperspectral data. EV was generated by applying coefficients generated in the C:CV approach to the 30% of the data
excluded from the C:CV approach. Data shown as mean ± standard deviation.

Data
Level

LV R2 RMSE NRMSE
(%) Bias

C CV EV C CV EV C CVEV C CV EV
Leaf 5 0.90 ± 0.00 0.84 ± 0.02 0.71 0.24 ± 0.01 0.31 ± 0.02 0.45 8 10 14 4.10 × 10−18 ± 0.02 −0.0002 ± 0.05 −0.009
Canopy 6 0.87 ± 0.01 0.85 ± 0.02 0.73 0.27 ± 0.01 0.3 ± 0.02 0.42 9 9 13 4.89 × 10−18 ± 0.02 −0.0015 ± 0.04 0.003

Figure 1. Models for 2017: observed vs. predicted external validation values of nitrogen levels from the 2017 dataset.
(a) External validation of nitrogen estimates using leaf-level spectral measurements. (b) External validation of nitrogen
estimates using canopy-level spectral measurements. Error bars for estimated values represent the standard deviation generated
from 500 model permutations using an 80:20 calibration:cross-validation approach. Dashed line: 1:1 relationship. R2: model
goodness of fit; RMSE: root-mean-square error (% dry mass); NRMSE: normalized root-mean-square error (%). TP1, time
point 1 = booting (Zadoks 45); TP2, time point 2 = onset of heading (Zadoks 50); TP3, time point 3 = heading (Zadoks 58); TP4,
time point 4 = flowering (Zadoks 60); TP5, time point 5 = post-anthesis (Zadoks 68); TP6, time point 6 = maturity (Zadoks 91).
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Figure 2. Standardized coefficients and variable importance for the projection (VIP) selection for 2017 models.
(a,c) Standardized coefficients of 2017 models for leaf-level and canopy-level measurements, respectively; (b,d) VIP
of 2017 models for leaf-level and canopy-level measurements, respectively. Shaded areas: regions of absorption feature
present between 400 and 2400 nm for chlorophyll (green) and protein (red). Specific absorption features within these regions
are listed in Appendix C Table A3.

The 2017 nitrogen prediction models applied to the 2018 dataset revealed a skewed
nitrogen prediction (Figure 3), with a decrease in R2 (0.71 to 0.69 and 0.73 to 0.45 for leaf
and canopy models, respectively), an overall change in RMSE (0.45 to 0.41 and 0.42 to 0.52
for leaf and canopy models, respectively) and NRMSE (14 to 11 and 13 to 12 for leaf and
canopy models, respectively), and an increase in bias (0.009 to −0.34 and 0.003 to −1.17 for
leaf and canopy estimates, respectively).

3.1.2. Multi-Year Models: Combining 2017 and 2018 Datasets

The multi-year model showed improved results compared with the cross-year predic-
tions. The multi-year model yielded an accurate predictive model for nitrogen for leaf and
canopy levels (Table 2) with good external validation (Figure 4).
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Similar to the 2017 models, the multi-year models presented peaks for standardized
coefficients and VIP profiles for nitrogen prediction in spectral regions with known chloro-
phyll and protein absorption features (Figure 5, Appendix D Tables A7 and A8). Multi-year
coefficients and VIP values were highly correlated with 2017 outputs for leaf (Pearson’s
correlation r = 0.64, p < 0.001, and 0.94, p <0.001, for coefficients and VIP values, respectively,
n = 2001) and canopy (Pearson’s correlation r = 0.68, p < 0.001, and 0.98, p < 0.001, for
coefficients and VIP values, respectively, n = 1801) models. Standardized coefficients and
VIP statistics generally aligned with wavelengths at approximately 430, 500, 630 700, 790,
900, 1000, 1300, 1400, 1900, 2000, 2100, 2300, 2350 and 2390 nm (Figure 5 and Appendix
D Tables A7 and A8). Again, similar to the 2017 models, the multi-year leaf-level models
leveraged relatively more coefficients in the SWIR region compared to the canopy model,
which had more coefficients in the VNIR region (Appendix D Table A8).

Figure 3. Observed vs. predicted values of nitrogen level estimates for 2018 collections using coefficients from the
2017 model. (a) Estimates generated using leaf-level spectral measurements; (b) estimates generated using canopy-level
spectral measurements. Error bars for estimated values represent the standard deviation generated from 500 model
permutations using an 80:20 calibration:cross-validation approach. Dashed line: 1:1 relationship. R2: model goodness of fit;
RMSE: root-mean-square error; NRMSE: normalized root-mean-square error.

Table 2. Multi-year models’ performance: number of latent variables (LVs), model goodness of fit (R2), root-mean-square
error (RMSE), normalized root-mean-square error (NRMSE), and bias for calibration (C), cross-validation (CV), and external
validation (EV). Data generated via cross-validation using 500 random permutations of the dataset with 70% of the total
data divided into 80:20 split for C and CV, respectively, for models predicting nitrogen concentrations from wheat foliage
using hyperspectral data. EV was generated by applying coefficients generated from the C:CV approach to the 30% of the
data excluded from the C:CV approach. Data shown as mean ± standard deviation.

Data
Level

LV R2 RMSE NRMSE
(%) Bias

C CV EV C CV EV C CV EV C CV EV
Leaf 6 0.89 ± 0.01 0.84 ± 0.01 0.72 0.01 ± 0.01 0.32 ± 0.01 0.42 7 10 12 −1.2 × 10−17 ± 0.00 −0.0043 −0.06
Canopy 5 0.87 ± 0.01 0.84 ± 0.02 0.67 0.26 ± 0.01 0.29 ± 0.02 0.46 9 10 13 5.98 × 1018 ± 0.00 −0.0016 0.04

3.2. NUE Prediction

Models directly predicting NUpE were less accurate than the models predicting
nitrogen. NUpE models presented an average R2 of 0.52 and 0.37, an average RMSE of 0.30
and 0.28, an average NRMSE of 8 and 9, and an average bias of 0.01 and 0.01 for leaf and
canopy levels, respectively (Figure 6). NUpE calculations were strongly correlated at both
leaf and canopy levels (Pearson’s correlation r = 0.86, p <0 .001, n = 18, and 0.76, p = 0.004,
n = 12, respectively) when we compared NUpE using reference nitrogen or nitrogen levels
predicted by the multi-year model (Figure 7). We also found that using spectrally predicted
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nitrogen for NUpE calculations resulted in an overestimation of NUpE values. Normalizing
NUpE for both estimation and reference data, however, decreased bias by 95 and 93% and
revealed a higher correlation with r = 0.93, p = 0.001, and bias = 0.11 for leaf level and
r = 0.87, p = 0.0002, and bias = 0.17 for canopy level, respectively.

Figure 4. Multi-year models: observed vs. predicted external validation values of nitrogen levels derived from the multi-
year dataset. (a) External validation of nitrogen estimates generated using leaf-level spectral measurements. (b) External
validation of nitrogen estimates generated using canopy-level spectral measurements. 2017: 2017 dataset, 2018: 2018 dataset.
Error bars for estimated values represent the standard deviation generated from 500 model permutations using an 80:20
calibration:cross-validation approach. Dashed line: 1:1 relationship. R2: model goodness of fit; RMSE: root-mean-square
error; NRMSE: normalized root-mean-square error.

Figure 5. Multi-year models: standardized coefficients and variable importance for the projection (VIP) selection for
multi-year models. (a,c) Standardized coefficients of the multi-year models for leaf-level and canopy-level measurements,
respectively; (b,d) VIP of the multi-year models for leaf-level and canopy-level measurements, respectively. Shaded areas:
absorption features present between 400 and 2400 nm for chlorophyll (green) and protein (red). Specific absorption features
within these regions listed in Appendix C Table A3.
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Figure 6. Observed vs. predicted values of NUpE estimated using spectral data. (a) Cross-validated NUpE estimates
determined using leaf-level spectral measurements. (b) Cross-validated NUpE estimates determined using canopy-level
spectral measurements. Error bars for estimated values represent the standard deviation generated from 500 model
permutations using an 80:20 calibration:cross-validation approach. Dashed line: 1:1 relationship. R2: model goodness of fit;
RMSE: root-mean-square error; NRMSE: normalized root-mean-square error.

Figure 7. Relationships between nitrogen uptakes (NUpEs) calculated using either reference or estimated nitrogen values.
(a) Leaf-level measurements, (b) canopy-level measurements. R2: model goodness of fit; RMSE: root-mean-square error;
NRMSE: normalized root-mean-square error. NUpE reference: standard NUpE measurement. NUpE estimated: NUpE
calculated using nitrogen predicted values as the input. Dashed line: 1:1 relationship.

4. Discussion

Wheat production has doubled in the last four decades, and the need to increase
production of this globally important crop, while minimizing fertilization inputs, is critical.
In this paper, we show that (1) hyperspectral data, collected at multiple different scales,
can be used for estimation of foliar nitrogen levels in wheat, (2) updating of models to
include a greater genetic variability and nitrogen range improves prediction accuracy, and
(3) spectral estimates of foliar nitrogen, at different scales, can potentially be used as a
replacement for reference data to identify NUE components in a breeding population.

The use of hyperspectral data to estimate plant traits, including nitrogen, is becom-
ing more common with the expansion of precision and digital agriculture, and recent
studies have demonstrated positive results for monitoring nitrogen status in several
crops [27,31,34,39,53–60]. While several of these studies explored the ability of hyper-
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spectral data to access nitrogen content in crops, including winter wheat, most studies
have focused on the VIS and NIR wavelength ranges, relying primarily on relationships
with chlorophyll content to interpret nitrogen content [60]. It is possible that using multiple
wheat stages over the season in the models from 2017 influenced the estimation outcomes
because of changes in leaf color. However, the linkage between chlorophyll and nitrogen
can vary among different ecosystems, environmental conditions, and biotic and abiotic
stressors [59,60]. Methods that rely solely on chlorophyll content for nitrogen assessment
can be misleading, especially in the context of nitrogen fertilization management, once
several other factors lead to chlorophyll reduction in leaves, such as sulfur deficiency,
vegetative stage of the plants, and disease [60], and thus measurements are likely more
sensitive to changes in leaf color (i.e., green vs. senescent vegetation). Chlorophyll accounts
for a smaller portion of nitrogen contained within leaves compared with protein (e.g., Ru-
bisco), which can account for over 50% of nitrogen content in plant tissue [60–64]. Rubisco
also is a principal source for nitrogen remobilization as well and is a key enzyme driving
photosynthesis [61]. Full-spectrum data can leverage both chlorophyll and protein absorp-
tion features that are closely related to leaf nitrogen content. Our findings suggest that
spectral data can accurately predict nitrogen at both leaf- and canopy-level measurements,
corroborating with the findings of other studies [27,29,31,60,61,64].

Our assessment of a single-season model revealed a high prediction accuracy for nitro-
gen in the 2017 leaf-level model. This response was likely bolstered by data collected across
the growing season in 2017 that captured a wide range of nitrogen concentrations in leaves,
especially at lower levels of nitrogen in mature leaves due to nitrogen remobilization [64].
The estimation of nitrogen from samples collected in 2018 using the model built solely
from the model developed in 2017, however, revealed a decline in model performance
when compared with the 2017-only model. We anticipated this decline because of the
introduction of increasing genetic variability and a greater range of nitrogen and because
we included a wider range of lines from the NUE breeding population used in 2017. A
decline in model performance when transferring models across years to novel genetic ma-
terial has been previously demonstrated [65]. We found that when the model was updated
to capture the new cultivars and increased range of nitrogen levels (i.e., 2017 and 2018
multi-year model) performance returned to near-original performance. These outcomes
highlight the importance of updating predictive spectral models as novel genetic material
and values outside the original model range become available and increase transferability
across years and genotypes but highlight that developmental stage and environment also
likely influence these results.

We found that the wavelengths having significant contributions to models estimating
nitrogen were related to chlorophyll and protein absorption features, which we expected
given the contribution of these compounds to nitrogen levels in vegetative tissue [59]. We
also found the wavelength region near 1400 nm was an important feature for predicting
nitrogen at both leaf and canopy levels. In fresh leaves, this feature is found in a wavelength
range strongly influenced by water absorption yet has previously been shown to contribute
to spectral models estimating nitrogen in fresh and dry samples [51,66–70]. This outcome,
coupled with those of other studies, suggests that, even while contained in a region strongly
affected by water absorption, this feature plays an important role in nitrogen retrievals
using spectral data.

Spectral data have been directly, through statistical approaches, or indirectly, via in-
dices, used to estimate plant physiology, chemical composition, and water
status [21,24,28,29,32,33,37,54,58]. Spectral data have also been used to assess within-
plant nitrogen dynamics, including NUE and the sub-component NUpE [71]. NUpE is
affected by several factors, including the vegetative stage of the plant, soil nitrogen content,
and above-ground biomass [39]. While we found that spectral data did not directly esti-
mate NUpE well, we could use spectrally predicted nitrogen as a reasonable surrogate for
reference nitrogen when calculating NUpE. Although we found that bias in the relationship
between NUpE calculated using either reference or spectrally predicted nitrogen was high,
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this can possibly be accounted for because the reference nitrogen for the traditionally
calculated NUpE values was end-of-season nitrogen and had much lower nitrogen levels
than the mid-season spectrally predicted nitrogen, which was much higher, explaining
the overestimation of predicted NUpE values. One potential issue with modeling NUpE
directly using mid-season foliar spectral data is the potential temporal disconnection with
the nitrogen levels estimated during the mid-season and the yield data needed to calcu-
late NUpE. One logistical drawback we encountered when trying to model NUpE using
spectral data was a small sample size, which potentially did not provide a sufficient range
of NUpE to characterize a relationship between spectral data and NUpE. The lack of a
direct spectral relationship with NUpE contrasts with recent studies relating spectral data
with NUE parameters [72,73]. Previous work has shown a significant correlation of canopy
reflectance and the Maccioni index in the grain filling phase but highlighted the importance
of large-plot research to study the relationship of vegetation indexes and nitrogen use
dynamics [71]. It has also been suggested that heading is the optimal time to predict NUE
using canopy reflectance, but the correlation between reflectance and NUE during the head-
ing phase declined over a second season [63]. Regardless of the lack of a direct relationship
between spectral data and NUpE, the ability of spectrally estimated mid-season nitrogen
to calculate NUpE shows that spectral data have considerable potential in monitoring
nitrogen dynamics in wheat, especially in a breeding context.

5. Conclusions

Our results demonstrate that hyperspectral data, combined with chemometric model-
ing, is an effective method to monitor nitrogen dynamics in a diverse breeding population
of wheat. We found reasonable transferability of models across years using full-range
spectral data and improved model performance as we included greater genetic, devel-
opmental, and environmental variation of spectral and reference data. We also found
promising model performance for canopy-based models, suggesting the potential for scal-
ing measurements from leaves to fields using unmanned or manned aerial vehicles and
highlighting the ability for whole-field monitoring of nitrogen management as a potential
replacement for classical phenotyping approaches. Our research builds on the importance
of including genotypic, phenotypic, and temporal variation in developing hyperspectral
models estimating plant functional traits [30,31]. Moreover, we feel an important outcome
of this research is the incorporation of hyperspectral data into crop nitrogen management
and plant breeding for enhanced NUE. Outcomes of this work highlight the potential of
hyperspectral data for precision nitrogen assessment in crops in both management and
breeding contexts.
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Appendix A

Table A1. Detailed soil characteristics of the experimental plots.

Components Plot 5 North Plot 5 South

Phosphorus (Bray P1lbs/acre) 43 53

Potassium (pounds/acre) 195 188

Calcium (pounds/acre) 2326 2214

Magnesium (pounds/acre) 715 621

Base Sat’n (%) 97 100

Calcium Sat’n (%) 62 66

Ca/Mg Ratio 2 2.2

CEC (meq/100 g) 11.09 9.95

Potassium Sat’n (%) 2.52 2.71

Magnesium Sat’n (%) 31 30

Mg/K Ratio 12.5 11.2

pH 6.93 7

Lime Index 69.73 70

Appendix B

Table A2. List of wheat winter lines used in both years of experiments with respective yield indication.
Wheat lines: 2017—2017 dataset; 2018—2018 dataset. Specific information on cultivar yield responses
to variable fertilizer levels can be found in [38]. Copyright © 2020 Russell, Guzman and Mohammadi.
This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

Dataset Wheat Line ID (Purdue ID)

2017

04606RA1-7-1-4 (PU01)

053A1-2-5-3-5 (PU02)

10101RA1-6-2 (PU26)

11407A1-6 (PU24)

2018

0175A1-31-4-1 (PU17)

03549A1-18-25-4 (PU05)

04606RA1-7-1 (PU07)

04606RA1-7-1-4 (PU01)

04606RA1-7-1-6 (PU23)

04719A1-16-1-1-47-4 (PU19)

05247A1-7-3-29 (PU10)

05247A1-7-3-98 (PU08)

05247A-7-7-3-1 (PU25)

05251A1-1-77-16-3 (PU22)
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Table A2. Cont.

Dataset Wheat Line ID (Purdue ID)

0537A1-3-12-1 (PU14)

053A1-2-5-3-5-3 (PU02)

0566A1-3-1-48 (PU09)

0570A1-2-39-2-4 (PU06)

0570A1-8-5-1 (PU03)

057RA1-8-5-3 (PU13)

057RA1-8-5-33 (PU11)

06497A1-7-3 (PU21)

07117B1-29-7-9-9-4-3-6-3 (PU29)

0722A1-1-1-7 (PU04)

07469A1-6-1-1 (PU18)

0762A1-2-8 (PU15)

08334A1-31 (PU12)

10101RA1-6-2 (PU26)

10221A1-8-1 (PU27)

10222A1-9-2 (PU30)

1041RB1-10 (PU16)

10447A1-5 (PU28)

10565C1-1 (PU20)

11407A1-6 (PU24)

CHECK—P25R40

CHECK—P25R62

Appendix C

Table A3. Specific absorption bands related to plant chlorophyll a and b combined, chlorophyll a, or chlorophyll b and
protein and the respective absorption mechanisms described in literature (Curran et al., 1989; Gitelson et al., 1995; Datt et al.,
1998; Curran et al., 2001; Kumar et al., 2005; Berger et al., 2020) [19,59,73–76].

Chemical WL Highest Peak Absorption Mechanisms Literature Described the WL

Chlorophyll a 420 Electron transition Kumar et al., 2005
Chlorophyll a 430 Electron transition Curran et al., 1989
Chlorophyll b 435 Electron transition Kumar et al., 2005
Chlorophyll b 460 Electron transition Curran et al., 1989
Chlorophyll a 490 Electron transition Kumar et al., 2005
Chlorophyll 530 Electron transition Curran et al., 2001

Chlorophyll a 550 Electron transition Datt et al., 1998 and Gitelson et al., 1995
Chlorophyll 630 Electron transition Curran et al., 2001

Chlorophyll b 640 Electron transition Curran et al., 1989
Chlorophyll b 643 Electron transition Kumar et al.,
Chlorophyll a 660 Electron transition Curran et al., 1989; Kumar et al., 2005
Chlorophyll 675 Electron transition Datt et al., 1998
Chlorophyll 700 Not described Curran et al., 2001; Gitelson et al., 1995

Protein 910 C-H stretch, 3rd overtone Curran et al., 1989
Protein 1020 N-H stretch Curran et al., 1989
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Table A3. Cont.

Chemical WL Highest Peak Absorption Mechanisms Literature Described the WL

Protein 1500 Not described Kumar et al., 2005
Protein 1510 N-H stretch, 1st overtone Curran et al., 1989
Protein 1520 N-H stretch, 1st overtone Berger et al., 2020
Protein 1680 C-H strecth, 1st overtone Kumar et al., 2005
Protein 1690 C-H strecth, 1st overtone Berger et al., 2020
Protein 1730 C-H stretch Kumar et al., 2005
Protein 1940 O-H strech, O-H deformation Curran et al., 1989; Kumar et al., 2005
Protein 1960 N-H assymmetry Berger et al., 2020
Protein 1980 N-H assymmetry Curran et al., 1989
Protein 2050 N-H stretch, N=H rotation Kumar et al., 2005
Protein 2060 N-H stretch, N=H rotation Curran et al., 1989
Protein 2130 N-H stretch Curran et al., 1989
Protein 2170 Not described Kumar et al., 2005

Protein 2180 N-H rotation, C-H stretch,
C-O stretch, C=O stretch Curran et al., 1989

Protein 2200 N-H rotation, C-H stretch,
C-O stretch, C=O stretch Berger et al., 2020

Protein 2240 C-H stretch Curran et al., 1989
Protein 2270 C-H stretch Berger et al., 2020

Protein 2290 C-H rotation, C=O stretch,
N-H stretch Kumar et al., 2005

Protein 2300 C-H rotation, C=O stretch,
N-H stretch Curran et al., 1989

Protein 2350 CH2 rotation, C-H
deformation Curran et al., 1989

Appendix D

Table A4. Standardized coefficient values of wavelengths associated with chlorophyll a and b combined, chlorophyll a, or
chlorophyll b, and protein absorption feature for 2017 and multi-year models at both leaf and canopy levels. Bold values,
standardized coefficient value within the top 30 highest standardized coefficients. NA, wavelength removed from the
canopy data.

2017 Models Multi-Year Models

WL Highest Peak Chemical Leaf Level Canopy Level Leaf Level Canopy Level
420 Chlorophyll a 0.42 0.09 0.69 0.09
430 Chlorophyll a 0.29 0.05 0.59 0.08
435 Chlorophyll b 0.26 0.05 0.57 0.09
460 Chlorophyll b 0.2 0.05 0.33 0.09
490 Chlorophyll a 0.19 0.06 0.21 0.10
530 Chlorophyll 0.37 0.08 0.58 0.13
550 Chlorophyll a 0.31 0.12 0.38 0.20
630 Chlorophyll 0.05 0.06 0.10 0.13
640 Chlorophyll b 0.06 0.05 0.13 0.11
643 Chlorophyll b 0.06 0.04 0.13 0.10
660 Chlorophyll a 0.06 0.03 0.15 0.07
675 Chlorophyll 0.14 0.14 0.31 0.21
700 Chlorophyll 0.38 0.25 0.58 0.32
910 Protein 0.1 0.05 0.15 0.11

1020 Protein 0.05 0.04 0.13 0.06
1500 Protein 0.05 0.01 0.05 0.02
1510 Protein 0.03 0.01 0.05 0.02
1520 Protein 0.03 0.01 0.04 0.01
1680 Protein 0.02 0.01 0.05 0.01
1690 Protein 0.02 0.01 0.05 0.01
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Table A4. Cont.

2017 Models Multi-Year Models

WL Highest Peak Chemical Leaf Level Canopy Level Leaf Level Canopy Level
1730 Protein 0.04 0.01 0.06 0.01
1940 Protein 0.05 NA 0.08 NA
1960 Protein 0.06 NA 0.10 NA
1980 Protein 0.07 NA 0.11 NA
2050 Protein 0.16 0.03 0.17 0.05
2060 Protein 0.17 0.03 0.20 0.05
2130 Protein 0.07 0.01 0.18 0.02
2170 Protein 0.05 0.01 0.12 0.04
2180 Protein 0.03 0.01 0.10 0.03
2200 Protein 0.03 0.01 0.07 0.03
2240 Protein 0.08 0.03 0.14 0.05
2270 Protein 0.08 0.03 0.14 0.04
2290 Protein 0.08 0.03 0.15 0.04
2300 Protein 0.09 0.03 0.14 0.04
2350 Protein 0.13 0.03 0.15 0.05

Table A5. Variable importance for the projection (VIP) values of wavelengths associated with chlorophyll a and b combined,
chlorophyll a, or chlorophyll b, and protein absorption feature for 2017 and multi-year models at both leaf and canopy
levels. Bold values, VIP ≥ 0.8. NA, wavelength removed from the canopy data.

2017 Models Multi-Year Models

Wavelength (nm) Chemicall Leaf Level Canopy Level Leaf Level Canopy Level
420 Chlorophyll a 0.8 1.6 0.8 1.6
430 Chlorophyll a 0.9 1.6 0.9 1.6
435 Chlorophyll b 1.0 1.7 1.0 1.7
460 Chlorophyll b 1.1 1.7 1.1 1.7
490 Chlorophyll a 1.5 1.7 1.5 1.7
530 Chlorophyll 1.9 1.4 1.9 1.4
550 Chlorophyll a 1.6 1.7 1.6 1.7
630 Chlorophyll 1.1 1.4 1.4 1.4
640 Chlorophyll b 1.1 1.2 1.2 1.2
643 Chlorophyll b 1.2 1.2 1.2 1.2
660 Chlorophyll a 1.3 1.0 1.3 0.9
675 Chlorophyll 1.5 1.2 1.5 1.2
700 Chlorophyll 1.6 1.4 1.6 1.4
910 Protein 0.7 0.6 0.7 0.7

1020 Protein 0.8 0.4 0.9 0.4
1500 Protein 1.0 0.6 1.0 0.7
1510 Protein 1.0 0.6 1.0 0.7
1520 Protein 1.0 0.6 1.0 0.6
1680 Protein 0.9 1.1 0.9 1.1
1690 Protein 0.9 1.2 0.9 1.1
1730 Protein 1.0 0.9 1.0 0.9
1940 Protein 0.9 NA 0.9 NA
1960 Protein 1.1 NA 1.0 NA
1980 Protein 1.1 NA 1.0 NA
2050 Protein 0.9 0.7 0.9 0.7
2060 Protein 0.9 0.7 1.0 0.7
2130 Protein 0.8 0.3 0.8 0.4
2170 Protein 0.6 0.2 0.7 0.3
2180 Protein 0.6 0.2 0.6 0.3
2200 Protein 0.5 0.2 0.6 0.3
2240 Protein 0.9 0.7 0.9 0.8
2270 Protein 0.7 0.4 0.7 0.4
2290 Protein 0.6 0.3 0.6 0.3
2300 Protein 0.7 0.3 0.6 0.3
2350 Protein 0.7 0.3 0.6 0.3
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Table A6. Top 30 standardized coefficient values and their respective wavelength ranges from 2017 leaf and canopy models.
The coefficients values displayed in this table represent the average standardized coefficient value every 30nm, as described
by the wavelength range (WL Range (nm)). Colors highlighting the three main areas of the full-spectral range: green, visible
(VIS); orange, near-infrared (NIR); and red, short-wave infrared (SWIR).

2017 Models

Leaf Level Canopy Level

WL Range (nm) Coefficient WL Range (nm) Coefficient

400 - 429 0.51 400 - 429 0.10

430 - 459 0.21 430 - 459 0.06

460 - 489 0.18 460 - 489 0.06

490 - 519 0.23 490 - 519 0.07

520 - 549 0.40 520 - 549 0.08

550 - 579 0.21 550 - 579 0.16

670 - 699 0.28 580 - 609 0.12

700 - 729 0.33 610 - 639 0.08

760 - 789 0.12 670 - 699 0.22

790 - 819 0.12 700 - 729 0.34

910 - 939 0.13 730 - 759 0.57

940 - 969 0.14 760 - 789 0.07

970 - 999 0.41 790 - 819 0.11

1120 - 1149 0.09 820 - 849 0.09

1300 - 1329 0.11 850 - 879 0.08

1330 - 1359 0.15 880 - 909 0.05

1360 - 1389 0.16 910 - 939 0.08

1390 - 1419 0.13 940 - 969 0.08

1420 - 1449 0.13 970 - 999 0.06

1450 - 1479 0.11 1000 - 1029 0.04

1870 - 1899 0.28 1030 - 1059 0.05

1900 - 1929 0.11 1060 - 1089 0.04

1990 - 2019 0.11 1120 - 1149 0.04

2020 - 2049 0.14 1150 - 1179 0.04

2050 - 2079 0.18 1240 - 1269 0.04

2230 - 2259 0.09 1330 - 1359 0.05

2290 - 2319 0.09 1360 - 1389 0.08

2320 - 2349 0.12 1390 - 1419 0.14

2350 - 2379 0.11 1420 - 1449 0.07

2380 - 2400 0.13 2370 - 2400 0.05
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Table A7. Variable importance for the projection (VIP) values ≥ 0.8 2017 and multi-year models at both leaf and canopy
levels. The VIP values displayed in this table represent the average VIP value after averaging VIP data every 30nm, as
described by the wavelength range (WL Range (nm)). Colors highlighting the three main areas of the full-spectral range:
green, visible (VIS); orange, near-infrared (NIR); and red, short-wave infrared (SWIR).

2017 Model Multi-Year Models

Leaf Level Canopy Level Leaf Level Canopy Level

WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8

430 - 459 1.1 400 - 429 1.6 430 - 459 1.1 400 - 429 1.5

460 - 489 1.2 430 - 459 1.7 460 - 489 1.2 430 - 459 1.7

490 - 519 1.9 460 - 489 1.7 490 - 519 1.9 460 - 489 1.7

520 - 549 1.9 490 - 519 1.6 520 - 549 1.9 490 - 519 1.6

550 - 579 1.4 520 - 549 1.4 550 - 579 1.3 520 - 549 1.4

580 - 609 1.2 550 - 579 1.7 580 - 609 1.2 550 - 579 1.7

610 - 639 1.1 580 - 609 1.6 610 - 639 1.1 580 - 609 1.7

640 - 669 1.3 610 - 639 1.5 640 - 669 1.3 610 - 639 1.5

670 - 699 1.6 640 - 669 0.9 670 - 699 1.6 640 - 669 0.8

700 - 729 1.7 670 - 699 1.4 700 - 729 1.7 670 - 699 1.4

730 - 759 1.8 700 - 729 1.4 730 - 759 2.0 700 - 729 1.4

760 - 789 1.1 730 - 759 1.7 760 - 789 1.1 730 - 759 1.7

790 - 819 1.1 760 - 789 1.0 790 - 819 1.1 760 - 789 1.0

820 - 849 1.0 790 - 819 1.4 820 - 849 1.0 790 - 819 1.4

850 - 879 0.9 820 - 849 1.5 850 - 879 0.9 820 - 849 1.5

1000 - 1029 0.8 850 - 879 1.4 1000 - 1029 0.9 850 - 879 1.3

1030 - 1059 0.8 880 - 909 0.8 1030 - 1059 0.8 880 - 909 0.8

1120 - 1149 0.9 1060 - 1089 1.4 1090 - 1119 0.8 1060 - 1089 1.4

1270 - 1299 0.8 1210 - 1239 1.4 1120 - 1149 0.9 1210 - 1239 1.4

1300 - 1329 0.9 1240 - 1269 1.3 1210 - 1239 0.8 1240 - 1269 1.2

1330 - 1359 0.9 1270 - 1299 1.1 1270 - 1299 0.8 1270 - 1299 1.2

1360 - 1389 0.9 1420 - 1449 0.8 1300 - 1329 0.9 1420 - 1449 0.8

1390 - 1419 1.1 1600 - 1629 1.2 1330 - 1359 0.9 1600 - 1629 1.2

1420 - 1449 1.0 1660 - 1689 1.2 1360 - 1389 0.9 1660 - 1689 1.1

1450 - 1479 1.0 1690 - 1719 1.1 1390 - 1419 1.1 1690 - 1719 1.1

1480 - 1509 1.0 1720 - 1749 0.9 1420 - 1449 1.0 1720 - 1749 0.9

1510 - 1539 1.0 1450 - 1479 0.9 2040 - 2069 0.8

1540 - 1569 0.9 1480 - 1509 1.0 2220 - 2249 0.8

1570 - 1599 0.9 1510 - 1539 0.9

1600 - 1629 0.8 1540 - 1569 0.9

1660 - 1689 0.9 1570 - 1599 0.9

1690 - 1719 1.1 1600 - 1629 0.9

1720 - 1749 0.9 1660 - 1689 0.9

1750 - 1779 0.9 1690 - 1719 1.0

1780 - 1809 0.8 1720 - 1749 0.9

1810 - 1839 0.9 1750 - 1779 0.9

1840 - 1869 1.0 1780 - 1809 0.8

1870 - 1899 1.1 1810 - 1839 0.9

1900 - 1929 0.9 1840 - 1869 0.9

1930 - 1959 1.0 1870 - 1899 1.1
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Table A7. Cont.

2017 Model Multi-Year Models

Leaf Level Canopy Level Leaf Level Canopy Level

WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8 WL Range (nm) VIP ≥ 0.8

1960 - 1989 1.1 1900 - 1929 0.9

1990 - 2019 1.1 1930 - 1959 1.0

2020 - 2049 0.9 1960 - 1989 1.0

2050 - 2079 0.9 1990 - 2019 1.0

2080 - 2109 0.8 2020 - 2049 0.9

2110 - 2139 0.8 2050 - 2079 1.0

2230 - 2259 1.0 2080 - 2109 0.8

2110 - 2139 0.8

2140 - 2169 0.8

2230 - 2259 0.9

Table A8. Top 30 standardized coefficient values and their respective wavelength ranges from multi-year leaf and canopy
models. The coefficient values displayed in this table represent the average standardized coefficient value every 30 nm, as
described by the wavelength range (WL Range (nm)). Colors highlighting the three main areas of the full-spectral range:
green, visible (VIS); orange, near-infrared (NIR); and red, short-wave infrared (SWIR).

Multi-Year Models
Leaf Level Canopy Level

WL Range (nm) Coefficient WL Range (nm) Coefficient
400 - 429 0.77 400 - 429 0.10
430 - 459 0.45 430 - 459 0.10
460 - 489 0.23 460 - 489 0.09
490 - 519 0.25 490 - 519 0.11
520 - 549 0.64 520 - 549 0.14
550 - 579 0.23 550 - 579 0.24
640 - 669 0.16 580 - 609 0.20
670 - 699 0.52 610 - 639 0.15
700 - 729 0.40 670 - 699 0.31
730 - 759 0.26 700 - 729 0.35
760 - 789 0.15 730 - 759 0.54
790 - 819 0.17 760 - 789 0.18
910 - 939 0.18 790 - 819 0.11
940 - 969 0.24 820 - 849 0.13
970 - 999 0.51 850 - 879 0.08

1000 - 1029 0.15 880 - 909 0.07
1300 - 1329 0.16 910 - 939 0.17
1330 - 1359 0.18 940 - 969 0.18
1360 - 1389 0.30 970 - 999 0.12
1390 - 1419 0.33 1030 - 1059 0.07
1420 - 1449 0.27 1090 - 1119 0.08
1450 - 1479 0.15 1120 - 1149 0.07
1870 - 1899 0.15 1150 - 1179 0.07
1900 - 1929 0.28 1330 - 1359 0.20
2050 - 2079 0.22 1360 - 1389 0.14
2110 - 2139 0.17 1390 - 1419 0.21
2140 - 2169 0.19 1420 - 1449 0.08
2230 - 2259 0.16 1780 - 2009 0.08
2350 - 2379 0.16 2340 - 2369 0.07
2380 - 2400 0.19 2370 - 2400 0.09
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