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Abstract
In this paper we consider parabolic problems with stress tensor depending only on the sym-
metric gradient.Bydeveloping a newapproximationmethod (which allows to use energy-type
methods typical for linear problems)weprovide an approach to obtain global regularity results
valid for general potential operators with (p, δ)-structure, for all p > 1 and for all δ > 0.
In this way we prove “natural” second order spatial regularity—up to the boundary—in the
case of homogeneous Dirichlet boundary conditions. The regularity results, are presented
with full details for the parabolic setting in the case p > 2. However, the same method also
yields regularity in the elliptic case and for 1 < p ≤ 2, thus proving in a different way results
already known.

Mathematics Subject Classification 35B65 · 35Q35 · 35K55

1 Introduction

In this paper we consider an initial boundary value problem for general nonlinear parabolic
systems

∂u
∂t − div S(Du) = f in I × �,

u = 0 on I × ∂�,

u(0) = u0 in �,

(1.1)
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where the operator S depends only on the symmetric gradient Du = 1
2 ((∇u)�+ ∇u) and

has (p, δ)-structure (cf. Definition 2.15). Here I := (0, T ) for some T > 0 is a finite time
interval, and � ⊂ R

3 is a sufficiently smooth, bounded domain. The paradigmatic example
for the operator in (1.1) is given via

S(Du) := (δ + |Du|)p−2Du δ ≥ 0, 1 < p < ∞. (1.2)

In this paper we only treat the case p > 2. However, the method of proof, based on an
(A, q)-approximation (cf. Sect. 2.4) works for every p ∈ (1,∞). We focus to the case
p > 2, since our main result in the case p ∈ (1, 2] has been already proved in a different
way (cf. [12]) and the method of the present paper simplifies a lot for these exponents. Note
that the elliptic problem corresponding to (1.1) can be treated in the same way with much
shorter proofs. Moreover, all our result possess corresponding analogues in d-dimensional
domains � ⊂ R

d , d ≥ 2. For simplicity we only treat the case d = 3.
Our main goal is to prove a result of “natural” second-order spatial regularity for weak

solutions. This corresponds to proving, under appropriate (minimal) assumptions on the data,
that weak solutions satisfy∫

I

∫

�

(δ + |Du|)p−2|∇Du|2 dx ds ≤ C,

which can be also equivalently re-written as F(Du) ∈ L2(I ;W 1,2(�)) with

F(Du) := (δ + |Du|) p−2
2 |Du|. (1.3)

We say “natural” as opposed to some recent results proving S ∈ L2(I ;W 1,2(�)), which is
equivalent to proving that∫

I

∫

�

∣∣∇((δ + |Du|)p−2Du
)∣∣2 dx ds ≤ C,

which is called “optimal” second-order spatial regularity. The two notions of regularity are
rather different in the spirit: the optimal regularity is linked with nonlinear versions of the
singular integral theory, while the natural regularity is based on energy methods. This yields
estimates in quasi-norms, which are of crucial relevance especially for the numerical analysis
of the problem, and in particular to study optimal convergence rates of spatial discretizations
(cf. Barrett and Liu [2]).

The problem has a long history and many result concern mainly the problem: (a) in the
scalar or elliptic case; (b) with operators S depending on the full gradient; (c) the interior
regularity. We refer to the classical results by DiBenedetto [20], Gilbarg and Trudinger [26],
Ladyžhenskaja et al. [28, 29], Liebermann [30], Uhlenbeck [40], Ural’ceva [41], just to cite
a few; or the ones linked more to applications Bensoussan and Frehse [9], Nečas [34], and
Fuchs and Seregin [24]. Even if the studies started in the sixties, we observe that the field is
still extremely active and very recent results are those in [3, 4, 17, 18].

Our treatment of the case of systems with dependence only on the symmetric gradient
and up-to-the boundary is new, to the best of the author’s knowledge. We extend the so
called A-approximation technique from [32] such that it allows a treatment of all exponents
p ∈ (1,∞). Here, we focus on the regularity of the quantity in (1.3). Thus, this work can
be seen as a natural extension of previous results we have done in the case p ∈ (1, 2] for
the steady problem in [12] and for the unsteady continuous/discrete in [13]. Note that our
approach allows to treat the full range of exponents p ∈ (1,∞), as in the scalar case, even
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if we give full details only in the case p > 2, as the case p ∈ (1, 2) is already treated in a
different way. Notice that the results in [18] hold only for p > 3

2 , which has been improved
in [1], reaching p > 4 − 2

√
2. The limitation on p > 3/2 was also present in prior results

of “natural” regularity in the symmetric gradient case [5], but it has then later removed
completely in [11] to the case p > 1.

The techniques employed for p > 2 are rather different from those previously used in
the case for p < 2, where calculations can be more easily justified by approximation of the
system by means of adding the term −ε�u (and then showing that estimates for a system
with leading linear part could be made independent of ε > 0). Anyway, the technique we
use can be also employed in the case p ∈ (1, 2] to prove in an alternative way the regularity
results already known. This requires some technical adjustments which are left for a further
investigation, since the technicalities are complex enough already in the case p > 2. The
introduction of a different regularization of the problem is due to the fact that for p > 2
the perturbation with the heat equation is not enough to justify the computations; hence,
we developed a new (multiple) approximation technique, by a sequence of operators, such
that the last is an affine one, which allows to use standard energy techniques leading to
W 2,2-results.

1.1 Sketch of the proof of themain result

Toprove themain regularity result (cf. Theorem3.4)we proceed as follows: (a)we introduce a
propermultiple approximation of the operatorS; (b)weprove interior and tangential estimates
for second order derivatives by difference quotient methods; (c) we use the equations point-
wise to recover the remaining derivative; (d) make again use of the point-wise equations and
integration by parts in the full domain to obtain estimates independent of the approximation
parameters; (e) and finally we pass to the limit with the multiple approximation parameters.

For the reader’s convenience, we explain here the main ideas in the case that the operator
S is given by (1.2) and that instead of (1.1) its steady counterpart is treated. Most of the
calculations are elementary, but involved, and use various well-established techniques from
the regularity theory of partial differential equations. Since they are linked in a quite intricate
and delicate way and one has to be careful in tracking the dependence on various parameters,
we sketch the proof now and then develop a full theory in the next sections.

A fundamental step in the approximation of general operators by ones with linear growth
dates back to [32], where generalized Newtonian fluids are treated. The results proved there
are obtained by using for A ≥ 1 the following approximation1 SA defined via

SA(P) =
{

(δ + |Psym|)p−2Psym if |P| ≤ A,

c2Psym + c1 if |P| > A,

with appropriately chosen constants ci = ci (A, δ, p) to ensure an appropriate regularity of
the stress tensor SA. Hence, the tensor SA grows linearly for large P. This can be also restated
by writing that

SA(P) := (ωA)′(|Psym|)
|Psym| Psym,

1 The precise form of the approximation in [32] is slightly different, since there the potential of the stress
tensor was depending on |Du|2, instead of |Du| here.
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where ωA : R
≥0 → R

≥0 is a regular N-function such that (ωA)′(0) = 0, (ωA)′(t) =
(δ + t)p−2t for t ≤ A and (ωA)′(t) = c2t + c1 for t > A.

Remark 1.1 In Sect. 2 we will show that -roughly speaking- once the results is established for
this explicit example, then it can be extended to a rather wide class of nonlinear operators.

To obtain results for the original problem we first consider the approximate problem

− div SA(DuA) = f in �,

uA = 0 on ∂�.
(1.4)

For regular enough f one can directly prove the existence of weak solutions satisfying∫

�

|FA(DuA)|2 dx ≤ C,

where

FA(P) :=
√

(ωA)′(|Psym|)
|Psym| Psym.

Note that |FA(P)|2 ∼ δ2 + |Psym|2, with constants depending on A. The special role of the
quantity

aA(t) := (ωA)′(t)
t

,

is evident from the definitions of SA and FA.
The estimates for the second order spatial derivatives are obtained by using the difference

quotient technique in the interior and along tangential directions (after appropriate local-
ization of the equations). Once this step is done, one gets that the equations are satisfied
almost everywhere. Thus, the equations can be used point-wise to determine (by ellipticity)
estimations in the direction normal to the boundary. The outcome of this procedure, which is
typical for second order elliptic equations, leads to the estimates (cf. Propositions 3.15, 3.16)

δ p−2
∫

�0

|∇DuA|2 dx ≤
∫

�0

|∇FA(DuA)|2 dx ≤ C1 ∀ �0 ⊂⊂ �,

δ p−2
∫

�

|∇DuA|2 dx ≤
∫

�

|∇FA(DuA)|2 dx ≤ C2(A),

where the constantC1 is independent of A. In addition, one gets that also tangential derivatives
are regular up to the boundary with a bound independent of A. Note that the linear growth of
the operator SA results in an L2-setting, which allows us to use the classical Korn inequality
and to handle the dependence of the operator on the symmetric gradient (instead of on the
full gradient) in the equations. An important feature of this step is that the proved regularity
is sufficient to justify the following step and to remove the dependence on A in the estimates
in the direction normal to the boundary.

This is achieved by testing the equations locally near the boundary by second order
derivatives in the normal direction, and adapting a method introduced by Seregin and Shilkin
[37] for 1 < p < 2 (cf. [12, 13]). This results in the estimate (cf. Propositions 3.20, 3.21)

δ p−2
∫

�

|∇DuA|2 dx ≤
∫

�

|∇FA(DuA)|2 dx ≤ C3,
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for some C3 which is independent of A.
The final step is the passage to the limit A → ∞. By uniform boundedness it directly

follows that FA(DuA) has a weak limit F̂ ∈ W 1,2(�) and by using also the uniform bound
on second order derivatives, it follows thatDuA → Du almost everywhere. Combining these
two information, the definition of FA, and the lower semi-continuity of the norm it follows
that

F̂ = lim
A→∞FA(DuA) = F(Du) weakly in W 1,2(�) and a.e. in �,

∫

�

|∇F(Du)|2 dx ≤ C3.

It remains to prove thatu is the unique solution of the steadyversion the original problem (1.1).
From the construction of SA follows SA(P) → S(P) for every P ∈ R

3×3. This fact, coupled
with the almost everywhere convergence of DuA, implies that

lim
A→∞ SA(DuA(x)) → S(Du(x)) a.e. x ∈ �,

which is nevertheless not enough to infer directly that

lim
A→∞

∫

�

SA(DuA) · Dw dx =
∫

�

S(Du) · Dw dx ∀w ∈ C∞
0 (�),

and to pass to the limit in theweak formulation. To this endwe need -for instance- additionally
an uniform bound on SA(DuA) in Lq(�) for some q > 1. This implies that SA(DuA)⇀Ŝ in
Lq(�), and that the limit can be identified as Ŝ = S(Du), by a classical result.

Observe that from the definition of SA it follows (cf. Proposition 2.29, Lemmas 2.32,
2.35) that

|SA(DuA)| ≤
{
c (δ p−1 + |DuA|p−1) p > 2,
c δ p−2|DuA| 1 < p ≤ 2,

while the proved estimate F(DuA) ∈ W 1,2(�), which is uniformly with respect to A, implies
by Sobolev embedding (in three-dimensions) that ‖F(DuA)‖6 ≤ C . Using the properties of
FA, it follows that (cf. Proposition 2.29, Lemmas 2.32, 2.35)

‖DuA‖6 ≤ C p > 2,
‖DuA‖3p ≤ C 1 < p ≤ 2.

Hence we get that SA(DuA) is bounded uniformly in L6/(p−1)(�) for p > 2 and in L3p(�)

for 1 < p ≤ 2, which implies that the above argument to pass to the limit in the weak
formulation works only for 1 < p < 7.

To remove the restriction p < 7 in the regularity result2 we introduce and perform a
multiple approximation of the operator, which is roughly speaking the following: for given
decreasing sequences p > q1 > q2 > · · · > qN =: 2 and AN > AN−1 > · · · > A1 ≥ 1 we

2 The restriction depends on the space dimension and it is more stringent in the time-evolution case, due to
different parabolic embedding results.
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set

SN (P) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(δ + |Psym|)p−2Psym if |P| ≤ A1,

c2,q1 |Psym|q1−2Psym + c1,q1 if A1 < |P| ≤ A2,
...

...

c2,qN−1 |Psym|qN−1−2Psym + c1,qN−1 if AN−1 < |P| ≤ AN ,

c2,qNP
sym + c1,qN if AN < |P|,

where the various constants ci,m are chosen such that the operator SN belongs to the class
C1. If the exponents qn are chosen such that

3qn
qn−1

> 1 n = 1, . . . , N ,

it is possible to perform the limiting process step by step, sending to infinity AN (with An

for n ≤ N − 1 fixed), then taking the limit AN−1 → ∞ with the previous ones fixed, and
so on. This procedure requires to prove the precise dependence of the lower and the upper
bounds of the multiple approximation with respect to the parameters3 An .
Plan of the paper The analysis of the approximate operators is the content of Sect. 2 of
the paper, where the procedure is carried out with full details for general operators, derived
from a potential and having (p, δ)-structure. Moreover, for the derivation of the estimates
for second derivatives, one also has to handle precisely the behavior of the related operators
Fn . In particular, we will see that a peculiar role is played by handling tensors derived from
a potential U satisfying U ′(t)/t ∼ U ′′(t), which we call balanced. This allows us to reduce
many of the estimations to computable explicit cases, cf. Remark 1.1.

Next, in Sect. 3 the existence and regularity for solution of the approximate problems is
treated in detail. Particular care is given to the full justification of the calculations: the results
are rather natural from a formal point of view, while the rigorous treatment of all integrals
needs certain approximations and the application of difference quotients, in order to be sure
that we do not workwith infinite quantities. First, some An dependent estimates are proved, in
order to justify manipulating the system (1.4) point-wise and then to derive uniform estimates
by (improved) generalized energy methods. The limiting process is carried out in the more
technical parabolic case, using space-time compactness results and convergences (at the price
of a more restrictive choice of the parameters qn).

2 Nonlinear operators and N-functions

The goal of this section is to define an approximation, which possesses nice properties,
for operators appearing in (1.1). The approximation is inspired by [32], while the proof of
its properties is close to [36]. However, our notions are defined slightly different, which
simplifies and shortens the argumentation.

2.1 Notation

We use c,C to denote generic constants, which may change from line to line, but are not
depending on the crucial quantities. Moreover, we write f ∼ g if and only if there exists
constants c,C > 0 such that c f ≤ g ≤ C f .

3 Moreover, some care has to be taken in the choice of the An to ensuremonotonicity of the resulting potentials.
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For a bounded, sufficiently smooth domain� ⊂ R
3 we use the customaryLebesgue spaces

(L p(�), ‖ . ‖p), p ∈ [1,∞], and Sobolev spaces (Wk,p(�), ‖ . ‖k,p), p ∈ [1,∞], k ∈ N.
We use the notation ( f , g) = ∫

�
f g dx, whenever the right-hand side is well defined. We do

not distinguish between scalar, vector-valued or tensor-valued function spaces in the notation
if there is no danger of confusion. However, we denote scalar functions by roman letters,
vector-valued functions by small boldfaced letters and tensor-valued functions by capital
boldfaced letters. If the norms are considered on a set M different from �, this is indicated
in the respective norms as ‖ . ‖p,M , ‖ . ‖k,p,M . We equip W 1,p

0 (�) (based on the Poincaré
lemma) with the gradient norm ‖∇ . ‖p . We denote by |M | the 3-dimensional Lebesgue
measure of a measurable set M . As usual the gradient of a vector field v : � ⊂ R

3 → R
3

is denoted as ∇v = (∂iv
j )i, j=1,2,3 = (∂iv)i=1,2,3, while its symmetric part is denoted as

Dv := 1
2

(∇v + ∇v�). The derivative of functions defined on tensors, i.e., U : R
3×3 → R,

is denoted as ∂U = (∂i jU )i, j=1,2,3 where ∂i j are the partial derivatives with respect to the
canonical basis of R

3×3.

2.2 N-functions

We start with a discussion of some non-trivial properties of N-functions that we need in the
sequel. For a detailed discussion of Orlicz spaces and N-functions we refer to [27, 33, 35,
36].

Definition 2.1 (N-function and regular N-function) A function ϕ : R
≥0 → R

≥0 is called
N-function if ϕ is continuous, convex, strictly positive for t > 0, and satisfies4

lim
t→0+

ϕ(t)

t
= 0, lim

t→∞
ϕ(t)

t
= ∞.

If ϕ additionally belongs to C1(R≥0) ∩ C2(R>0) and satisfies ϕ′′(t) > 0 for all t > 0, we
call ϕ a regular N-function.

The use of regular N-functions is sufficient for our purposes. Thus, in the rest of the paper
we restrict ourselves to this case. For a treatment in the general situation we refer to the
above mentioned literature. Note that for a regular N-function we have ϕ(0) = ϕ′(0) = 0.
Moreover, ϕ′ is increasing and limt→∞ ϕ′(t) = ∞.

The following notion plays an important role in the sequel.

Definition 2.2 (�2-condition) A non-decreasing function ϕ : R
≥0 → R

≥0 is said to satisfy
the �2-condition if for some constant K ≥ 2 it holds

ϕ(2t) ≤ Kϕ(t) ∀ t ≥ 0. (2.1)

We write ϕ ∈ �2 if ϕ satisfies the �2-condition. The �2-constant of ϕ, denoted by �2(ϕ),
is the smallest constant K ≥ 2 satisfying (2.1).

We have the following results.

Lemma 2.3 For a regular N-function ϕ the following properties are satisfied:

(i) For all t ≥ 0 there holds

ϕ(t) ≤ ϕ′(t)t ≤ ϕ(2t).

4 In the following we use the convention that ϕ′(0)
0 := 0.
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(ii) If ϕ ∈ �2, then we have for all t ≥ 0

ϕ(t) ≤ ϕ′(t)t ≤ �2(ϕ) ϕ(t).

(iii) It holds that ϕ ∈ �2 if and only if ϕ′ ∈ �2. In this situation we have �2(ϕ) ≤
2�2(ϕ

′) ≤ (�2(ϕ))2.

Proof Assertion (i) is contained in [36,Lemma 5.1]. Assertion (ii) follows from (i). Assertion
(iii) is proved in [36,Lemma 5.2]. ��

For a regular N-function ϕ we define the complementary function ϕ∗ by

ϕ∗(t) :=
t∫

0

(ϕ′)−1(s) ds.

It is easily seen from this definition, using elementary properties of inverse functions (cf. proof
of [36,Lemma 6.4]), that ϕ∗ is again a regular N-function. We have the following versions
of Young inequality.

Lemma 2.4 (Young type inequalities) Let the regular N-function ϕ be such that ϕ, ϕ∗ ∈ �2.
Then, for all t, u ≥ 0 there holds

tu ≤ ε ϕ(t) + (�2(ϕ
∗))M ϕ∗(u),

tu ≤ ε ϕ∗(t) + (�2(ϕ))M ϕ(u),

tϕ′(u) ≤ ε ϕ(t) + �2(ϕ) (�2(ϕ
∗))M ϕ∗(u),

ϕ′(t)u ≤ ε ϕ∗(t) + (�2(ϕ))N ϕ(u)

for all ε ∈ (0, 1), M ∈ N such that ε−1 ≤ 2M, and N ∈ N such that �2(ϕ) ε−1 ≤ 2N .

Proof The first two inequalities follow immediately from the classical Young inequality

tu ≤ ϕ(t) + ϕ∗(u),

ϕ, ϕ∗ ∈ �2, and ψ(ε t) ≤ ε ψ(t), valid for all convex functions ψ , t ≥ 0 and ε ∈ (0, 1).
The last two inequalities follow from the first ones and the equivalence

(�2(ϕ
∗))−1ϕ(t) ≤ ϕ∗(ϕ′(t)) ≤ �2(ϕ) ϕ(t), (2.2)

valid for all t ≥ 0 (cf. [36,(5.17)]). ��
In the study of nonlinear problems like (1.1) and of N-functions the property (2.3) below
plays a fundamental role. To keep the presentation shorter we call functions satisfying it
“balanced function”.

Definition 2.5 (Balanced function) We call a regular N-function ϕ balanced, if there exist
constants γ1 ∈ (0, 1] and γ2 ≥ 1 such that for all t > 0 there holds

γ1 ϕ′(t) ≤ t ϕ′′(t) ≤ γ2 ϕ′(t). (2.3)

The constants γ1 and γ2 are called characteristics of the balanced N-function ϕ, and will be
denoted as (γ1, γ2).

This property transmits itself to complementary functions.
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Lemma 2.6 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Then, the comple-
mentary N-function ϕ∗ is a balanced N-function with characteristics (γ −1

2 , γ −1
1 ).

Proof The assertion is proved in [36,Lemma 6.4]. The proof uses only the condition (2.3),
and the formula for the derivative of the inverse function applied to (ϕ∗)′(t) = (ϕ′)−1(t). ��
Balanced N-functions always satisfy the �2-condition (cf. [8]).

Lemma 2.7 For a balanced N-function ϕ we have that ϕ, ϕ∗ ∈ �2. In particular, for all
t ≥ 0 there holds

ϕ(2t) ≤ 2γ2+1 ϕ(t),

ϕ∗(2t) ≤ 2
1
γ1

+1
ϕ∗(t),

i.e., the �2-constants of ϕ and ϕ∗ possess an upper bound depending only on γ1 and γ2.

Proof From condition (2.3) it follows for all t > 0 that

d

dt
log(ϕ′(t)) = ϕ′′(t)

ϕ′(t)
≤ γ2

1

t
,

which implies by integration with respect to t over (s, 2s), s > 0, and using the exponential
function that

ϕ′(2s)
ϕ′(s)

≤ 2γ2 .

A further integration with respect to s over (0, t), t > 0, proves, for all t > 0, that

ϕ(2t) ≤ 2γ2+1ϕ(t),

showing the assertion for ϕ. The assertion for ϕ∗ follows analogously by using Lemma 2.6.
��

Corollary 2.8 For a balanced N-function ϕ we have

ϕ(t) ∼ ϕ′(t) t ∼ ϕ′′(t) t2 for all t > 0,

with constants of equivalence depending only on the characteristics of ϕ.

Proof This follows immediately from Lemmas 2.3 and 2.7 since ϕ is balanced. ��
Lemma 2.9 Let ϕ a balanced N-function with characteristics (γ1, γ2). Let U ∈ C1(R≥0) ∩
C2(R>0) with U (0) = U ′(0) = 0 satisfy for some c0, c1 > 0 and for all t > 0

c0 ϕ′′(t) ≤ U ′′(t) ≤ c1 ϕ′′(t). (2.4)

Then, also U is a balanced N-function with characteristics (γ2
c0
c1

, γ1
c1
c0

), which satisfies for
all t ≥ 0

c0 ϕ′(t) ≤ U ′(t) ≤ c1 ϕ′(t),
c0 ϕ(t) ≤ U (t) ≤ c1 ϕ(t).

(2.5)

Proof The inequalities in (2.5) follow from (2.4) by integration using thatU ′(0) = ϕ′(0) = 0.
From (2.5) and (2.3) it follows thatU is a balancedN-functionwith characteristics as indicated
in the assertion. ��
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It turns out that the function aϕ : R
≥0 → R

≥0, defined for regular N-functions ϕ via

aϕ(t) := ϕ′(t)
t

, (2.6)

plays an important role in the investigation of problem (1.1).

Lemma 2.10 Let ϕ be a regular N-function such that ϕ, ϕ∗ ∈ �2. Then, for all P,Q ∈ R
3×3

there holds

aϕ(|P| + |P − Q|) ∼
1∫

0

aϕ(|θ P + (1 − θ)Q|) dθ,

with constants of equivalence depending only on �2(ϕ) and �2(ϕ
∗).

Proof This follows immediately from [36,Lemma 6.6] by using Lemma 2.3, the convexity
of ϕ, ϕ ∈ �2, and 2−1(|P| + |Q|) ≤ |P| + |P − Q| ≤ 2(|P| + |Q|). ��

It is convenient to introduce for all p ∈ (1,∞) and all δ ∈ [0,∞) the function ωp,δ :
R

≥0 → R
≥0 via

ω(t) = ωp,δ(t) :=
t∫

0

(δ + s)p−2s ds ∀ t ≥ 0,

which is precisely the N-function associated with the definition of the tensor S from (1.2).
If p and δ are fixed we often simply write ω(t) := ωp,δ(t). Nevertheless, we will track the
possible dependence of constants in terms of these two parameters. Clearly, ωp,δ is a regular
N-function for all p ∈ (1,∞) and all δ ∈ [0,∞). The advantage is that we have exact control
of all relevant constants for these functions. We have the following basic properties.

Lemma 2.11 For any δ ∈ [0,∞) and for any p ∈ (1,∞) there holds

ωp,δ(t) ≤ (ωp,δ)
′(t) t ≤ 2p+1ωp,δ(t) ∀ t ≥ 0,

min{1, p − 1} (ωp,δ)
′(t) ≤ (ωp,δ)

′′(t) t ≤ max{1, p − 1} (ωp,δ)
′(t) ∀ t > 0.

(2.7)

In particular, ωp,δ , p ∈ (1,∞), δ ≥ 0, are balanced N-functions with characteris-
tics (min{1, p−1},max{1, p−1}) and �2-constants depending only on p. Moreover, by
the previous results also (ωp,δ)

∗ are balanced N-functions with characteristics (min{1,
(p−1)−1},max{1, (p − 1)−1}) and �2-constants depending only on p.

Proof The first assertion in (2.7) follows from Lemma 2.3 (ii) and [36,Lemma 5.3], since
�2((ωp,0)

′) = 2p−1. The second assertion (2.7) follows from direct computations. ��

2.3 Nonlinear operators with (p,ı)-structure

In this section we collect the main results on nonlinear operators derived from a potential
and having (p, δ)-struct- ure.

Definition 2.12 (Operator derived fromapotential) We say that anoperatorS : R
3×3 → R

3×3
sym

is derived from a potential U : R
≥0 → R

≥0, if S(0) = 0 and for all P ∈ R
3×3 \ {0} there
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holds5

S(P) = ∂U (|Psym|) = U ′(|Psym|)
|Psym| Psym = aU (|Psym|)Psym

for some U ∈ C1(R≥0) ∩ C2(R>0) satisfying U (0) = U ′(0) = 0.

Remark 2.13 For ease of notation, in many cases we will also write S = ∂U for an operator
derived from the potentialU and note that from its definition it follows that S(P) = S(Psym),
for all P ∈ R

3×3.
Note also that we consider the operator S with domain R

3×3, since we study the prob-
lem (1.1) in the setting of three space-dimensions. Clearly, the same definition and results
below can be applied to a general operator defined on R

d×d , with d ≥ 2.

Remark 2.14 Note that in investigations of the regularity of solution of (1.1), or its steady
analogues, for operators derived from a potential U , the lower and upper bounds of the
quantity

(aU )′(t) t
aU (t)

= U ′′(t) t
U ′(t)

− 1,

play an important role (cf. the discussion in [3, 17–19].
IfU is a balancedN-function these bounds are closely related to the characteristics (γ1, γ2)

of U . In fact, we have

γ1 − 1 ≤ (aU )′(t) t
aU (t)

≤ γ2 − 1.

Definition 2.15 (Operator with ϕ-structure) Let the operator S : R
3×3 → R

3×3
sym , belonging

to C0(R3×3; R
3×3
sym ) ∩ C1(R3×3 \ {0}; R

3×3
sym ), satisfy S(P) = S

(
Psym

)
and S(0) = 0.

We say thatS hasϕ-structure if there exist a regularN-functionϕ and constants γ3 ∈ (0, 1],
γ4 > 1 such that the inequalities

3∑
i, j,k,l=1

∂kl Si j (P)Qi j Qkl ≥ γ3 aϕ(|Psym|) |Psym|2, (2.8a)

∣∣∂kl Si j (P)
∣∣ ≤ γ4 aϕ(|Psym|), (2.8b)

are satisfied for all P,Q ∈ R
3×3 with Psym �= 0 and all i, j, k, l = 1, 2, 3. The constants γ3,

γ4, and �2(ϕ) are called the characteristics of S and will be denoted by (γ3, γ4,�2(ϕ)).
In the special case ϕ = ωp,δ with p ∈ (1,∞) and δ ∈ [0,∞) we say that S has (p, δ)-

structure and call (γ3, γ4, p) its characteristics.

Closely related to an operator with ϕ-structure is the function Fϕ : R
3×3 → R

3×3
sym defined

via

Fϕ(P) := √aϕ(|Psym|)Psym =
√

ϕ′(|Psym|)|Psym|
|Psym| Psym, (2.9)

5 Here we use the notation (2.6) also for a more general function U (not necessarily a balanced or even a
regular N-function).
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where the second representation holds only for Psym �= 0. However, this form is convenient
since it shows that Fϕ is derived from the potential

ψ(t) :=
t∫

0

√
ϕ′(s)s ds. (2.10)

It is easily seen that ψ ∈ C1(R≥0) ∩ C2(R>0). In the special case of an operator S with
(p, δ)-structure we have with ω = ωp,δ

F(P) := Fω(P) = √aω(|Psym|)Psym = (δ + |Psym|) p−2
2 Psym, (2.11)

which is consistent with the notation used in the previous literature, as explained in the
introduction, cf. (1.3).

To derive a very important result for operators with ϕ-structure we need the following
result, which explains also the link (and the choice of a similar name) between the charac-
teristics of a balanced N-function ϕ, and the characteristics of an operator derived from a
potential ϕ.

Proposition 2.16 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let T = ∂ϕ

be derived from the potential ϕ. Then, T has ϕ-structure with characteristics depending only
on γ1 and γ2.

Proof It follows from Lemma 2.7 that the �2-constant of ϕ depends only on γ 2. We have
for all P ∈ R

3×3 with Psym �= 0

∂kl Ti j (P) = ϕ′(|Psym|)
|Psym|

(
δ
sym
i j,kl − Psym

i j Psym
kl

|Psym|2
)

+ ϕ′′(|Psym|) Psym
i j Psym

kl

|Psym|2 , (2.12)

where δ
sym
i j,kl := 1

2 (δikδ jl + δilδ jk). Using (2.3) we obtain from this, for all j, k, l,m,

∣∣∂kl Ti j (P)
∣∣ ≤ 2

ϕ′(|Psym|)
|Psym| + ϕ′′(|Psym|) ≤ (2 + γ2) aϕ(|Psym|),

which proves (2.8b). From (2.12), (2.3), and γ1 ≤ 1 we obtain for P,Q ∈ R
3×3 with

Psym �= 0

3∑
i, j,k,l=1

∂kl Ti j (P)Qi j Qkl

= ϕ′(|Psym|)
|Psym|

(
|Qsym|2 − |Psym · Qsym|2

|Psym|2
)

+ ϕ′′(|Psym|) |Psym · Qsym|2
|Psym|2

≥ γ1
ϕ′(|Psym|)

|Psym|

(
|Qsym|2 − |Psym · Qsym|2

|Psym|2
)

+ γ1
ϕ′(|Psym|)

|Psym|
|Psym · Qsym|2

|Psym|2
= γ1 aϕ(|Psym|) |Qsym|2,

which proves (2.8a). ��

We can now formulate the following crucial result for our investigations (cf. [36,Section 6]).
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Proposition 2.17 Let ϕ be a balanced N-function with characteristics (γ 1, γ 2). Let S have
ϕ-structure with characteristics (γ3, γ 4,�2(ϕ)) and letFϕ be defined in (2.9). Then, we have
for all P,Q ∈ R

3×3 that(
S(P) − S(Q)

) · (P − Q) ∼ aϕ(|Psym| + |Psym − Qsym|) |Psym − Qsym|2 (2.13)

∼ |Fϕ(P) − Fϕ(Q)|2, (2.14)

|S(P) − S(Q)| ∼ aϕ(|Psym| + |Psym − Qsym|) |Psym − Qsym|, (2.15)

where the constants of equivalence depend only on γ1, γ 2, γ 3, and γ4.

Proof First of all note that, due to Lemmas 2.7 and 2.6, ϕ and ϕ∗ satisfy the �2-condition
with �2-constants depending only on γ 1 and γ 2.

Using (2.8) and Lemma 2.10 we get that for all P,Q ∈ R
3×3 with Psym �= 0(

S(P) − S(Q)
) · (P − Q)

=
1∫

0

3∑
i, j,k,l=1

∂kl Si j
(
θP + (1 − θ)Q

)
(P − Q)i j (P − Q)kl dθ

∼
1∫

0

aϕ(|θPsym + (1 − θ)Qsym|) dθ |Psym − Qsym|2

∼ aϕ(|Psym| + |Psym − Qsym|) |Psym − Qsym|2,
which proves (2.13) with constants of equivalence depending only on γ1, γ2, γ 3, and γ4.
From (2.13) we immediately obtain, also using that S is symmetric,

aϕ(|Psym| + |Psym − Qsym|) |Psym − Qsym|2 ≤ c
(
S(P) − S(Q)

) · (P − Q)

≤ c |S(P) − S(Q)||Psym − Qsym|,
with constants depending only on γ1, γ2, γ 3, and γ4. This proves one inequality in (2.15).
The other follows from

|S(P) − S(Q)| =
( 3∑

i, j=1

( 3∑
k,l=1

1∫

0

∂kl Si j
(
θP + (1 − θ)Q

)
(P − Q)kl dθ

)2) 1
2

≤ c

1∫

0

aϕ(|θPsym + (1 − θ)Qsym|) dθ |Psym − Qsym|

≤ c aϕ(|Psym| + |Psym − Qsym|) |Psym − Qsym|,
with constants dependingonly onγ1, γ2, γ 3, andγ4.Here,weused again (2.8b), the symmetry
of ∂kl Si j with respect to k, l, and Lemma 2.10.

To show (2.14) we use that Fϕ defined in (2.9) possesses ψ-structure, where ψ is defined
in (2.10). We have using (2.3), for all t > 0, that

ψ ′′(t) t =
(
ϕ′′(t) t + ϕ′(t)

)
t

2
√

ϕ′(t) t
∼ ϕ′(t) t√

ϕ′(t) t
= ψ ′(t).

This shows that ψ is a balanced N-function with characteristics (
1+γ1
2 ,

1+γ2
2 ). Thus, Propo-

sition 2.16 yields that Fϕ has ψ-structure with characteristics depending only on γ1 and γ2.
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The already proven equivalence (2.15) reads in this case as

|Fϕ(P) − Fϕ(Q)|2 ∼ (aψ(|Psym| + |Psym − Qsym|))2 |Psym − Qsym|2, (2.16)

with constants of equivalence depending only on γ1 and γ2. From the definition of ψ we get,
for all t > 0,

(
aψ(t)

)2 =
(√

ϕ′(t) t
t

)2

= aϕ(t),

which together with (2.16) yields (2.14). This finishes the proof. ��
Let us finish this section by proving a useful result for the operator occurring in (1.1).

Proposition 2.18 Let the operator T = ∂U, derived from a potential U, have ϕ-structure,
with characteristics (γ3, γ4,�2(ϕ)). If ϕ is a balanced N-function with characteristics
(γ1, γ2), then U is a balanced N-function satisfying for all t > 0

γ3

γ2
ϕ′′(t) ≤ U ′′(t) ≤ γ4

γ1
ϕ′′(t). (2.17)

The characteristics of U is equal to
( γ3

γ4

γ 2
1

γ2
,

γ4
γ3

γ 2
2

γ1

)
.

Proof For P = t√
3
Id, t > 0, Q = 1√

3
Id we get |P| = t , |Q| = 1. Thus, (2.8a), (2.8b), and

the definition of aϕ yield

γ3
ϕ′(t)
t

≤
3∑

i, j,k,l=1

∂kl Ti j (P)Qi j Qkl = U ′′(t) ≤ γ4
ϕ′(t)
t

.

This implies (2.17), since ϕ is balanced. The remaining assertions follow from Lemma 2.9.
��

Remark 2.19 Proposition 2.18 states that U is a balanced N-function with characteristics
depending only on the characteristics of S and on the characteristics of ϕ. Consequently,
Lemmas 2.7 and 2.6 yield that U and U∗ satisfy the �2-condition, with �2-constants
depending only on the characteristics of S and the characteristics of ϕ.

2.4 Approximations of a nonlinear operator

We now define the (A, q)-approximation and prove the relevant properties, needed in the
sequel. Note that the (A, q)-approximation in the special case p ≥ 2 and q = 2 was
introduced in a slightly different form in [32] (in that reference the potential depends on
|Psym|2). The idea behind is that the operator induced by the (A, q)-approximation for q = 2
has linear growth at infinity (cf. [32,Lemma 2.22]) and consequently, one can work on the
level of this (A, 2)-approximation within the standard Hilbertian theory.

Definition 2.20 (A, q)-(approximation of a scalar real function) Given a function U ∈
C1(R≥0) ∩ C2(R>0) satisfying U (0) = U ′(0) = 0 we define for A ≥ 1 and q ≥ 2 the
(A, q)-approximation U A,q ∈ C1(R≥0) ∩ C2(R>0) via

U A,q(t) :=
{
U (t) t ≤ A,

α2,q t
q + α1,q t + α0,q t > A.
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Consequently, the constants αi,q = αi,q(U ), i = 0, 1, 2, are given by

α2,q = 1

q(q − 1)

U ′′(A)

Aq−2 ,

α1,q = U ′(A) − 1

q − 1
U ′′(A) A,

α0,q = U (A) −U ′(A) A + 1

q
U ′′(A) A2.

Remark 2.21 Ifϕ is a regularN-function andq = 2, the definitionof the (A, 2)-approximation
ϕA,2 and the properties of ϕ immediately imply that there exists a constant c(A, ϕ) such that
for all t ≥ 0 there holds

aϕA,2(t) = (ϕA,2)′(t)
t

≤ c(A, ϕ).

Next, we define the (A, q)-approximation of an operator derived from a potential.

Definition 2.22 ((A, q)-approximation of an operator derived from a potential) Let the oper-
ator S = ∂U be derived from the potentialU . Then, we define for given A ≥ 1 and q ≥ 2 the
(A, q)-approximation SA,q := ∂U A,q of S as the operator derived from the potential U A,q ,
i.e., SA,q satisfies SA,q(0) = 0 and for all P ∈ R

3×3 \ {0} there holds

SA,q(P) := ∂U A,q(|Psym|) = (U A,q)′(|Psym|)
|Psym| Psym = aU A,q (|Psym|)Psym.

As explained in the introduction, for an operator with (p, δ)-structure, for large p, we need
also multiple approximations, which we define now.

Definition 2.23 (Multiple approximation of an operator) Let the operator S have (p, δ)-
structure for some p ∈ (2,∞) and δ ∈ [0,∞) and let S be derived from the potential U .
For given N ∈ N and qn ∈ [2, p], n = 0, . . . , N with q0 = p, qN = 2 and qn > qn+1,
n = 0, . . . , N − 1, and An ≥ 1, n = 1, . . . , N with An+1 ≥ An + 1, n = 1, . . . , N − 1, we
set

U 0 := U , S0 := S, ω0 := ωp,δ, F0 := Fω0 , a0 := aω0 ,

and then recursively

Un := (Un−1)An ,qn , Sn := ∂Un, ωn := (ωn−1)An ,qn , Fn := Fωn , an := aωn ,

for n = 1, . . . , N . We call Un , Sn , ωn , Fn , and an , n = 1, . . . , N , multiple approximation
of U , S, ωp,δ , F, and a, respectively.

Remark 2.24 As we will see later on (for the parabolic problem in three-space dimensions)
strictly speaking the multiple approximation is not needed for p ∈ (1, 13

3 ). Since in the
definition of a multiple approximation the case N = 1 is included, also a single (A, q)-
approximation is a special case of a multiple approximation. To unify the presentation we
also call the (A, 2)-approximation for p ∈ (1, 13

3 ) multiple approximation. In this case we
have U 1 = U A,2, S1 = SA,2 = ∂U 1, ω1 = (ω0)A,2 = (ωp,δ)

A,2, F1 = Fω1 , and a1 = aω1 .

In the following we derive various properties of multiple approximations for an operator
S which is derived from a potential U and has (p, δ)-structure. In particular, we need to
carefully track any possible dependence of the various constants and on the parameters An ,
n = 1, . . . , N . We start with a single approximation, showing in particular independence of
the characteristics of ϕA,q on A ≥ 1.
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Lemma 2.25 Letϕ be a balancedN-functionwith characteristics (γ1, γ2). Then, for all A ≥ 1
and q ≥ 2 the (A, q)-approximation ϕA,q is a balanced N-function with characteristics(
γ1,max {γ2, q − 1}).
Proof By construction we have

ϕA,q ∈ C1(R≥0) ∩ C2(R>0), ϕA,q(0) = (ϕA,q)′(0) = 0,
(ϕA,q)′′(t) > 0 for t > 0.

For t ≤ A we have ϕA,q(t) = ϕ(t), while ϕA,q (t)
t = α2,q tq−1 + α1,q + α0,q

t , for t > A,
which implies that ϕA,q is a regular N-function, since

lim
t→0+

ϕA,q(t)

t
= 0 and lim

t→+∞
ϕA,q(t)

t
= ∞,

where we used in the first limit that ϕ is an N-function. From ϕA,q(t) = ϕ(t), for t ≤ A, we
get, for all t ∈ (0, A], that

γ1(ϕ
A,q)′(t) ≤ (ϕA,q)′′(t) t ≤ γ2 (ϕA,q)′(t), (2.18)

since ϕ is balanced. On the other hand, for t ≥ A we have

(ϕA,q)′(t)
(ϕA,q)′′(t) t

= qα2,q tq−1 + α1,q

q(q − 1)α2,q tq−1 =: gA(t).

Observe that for fixed A ≥ 1 there holds limt→∞ gA(t) = 1
q−1 , while

gA(A) = ϕ′(A)

ϕ′′(A) A
∈
[
γ −1
2 , γ −1

1

]
.

From (gA)′(t) = − 1
tq−2

α1,q
qα2,q

it follows that the sign of the derivative depends only on

α1,q = ϕ′(A) − ϕ′′(A) A. Thus, gA(t) is monotone. Distinguishing between α1,q ≥ 0 and
α1,q ≤ 0, using γ1 ≤ 1 and γ2 ≥ 1, as well as (2.18), one easily sees that for all t ≥ 0 there
holds

min
{ 1

γ2
,

1

q − 1

}
≤ gA(t) ≤ 1

γ1
,

implying the assertion. ��
Corollary 2.26 For all A ≥ 1 and q ≥ 2 the (A, q)-approximation (ωp,δ)

A,q of ωp,δ with
p ∈ (1,∞) and δ ∈ [0,∞) is a balanced N-function with characteristics(

min {1, p − 1},max {1, p − 1, q − 1}).
Proof This follows immediately from Lemmas 2.11 and 2.25. ��

We have the following analogue of Proposition 2.18 for (A, q)-approximations of U and
ϕ.

Lemma 2.27 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let the operator
S = ∂U have ϕ-structure with characteristics (γ3, γ4,�2(ϕ)). For A ≥ 1 and q ≥ 2 let
U A,q and ϕA,q be the (A, q)-approximation of U and ϕ, respectively. Then, there holds for
all t > 0

γ3

γ2
(ϕA,q)′′(t) ≤ (U A,q)′′(t) ≤ γ4

γ1
(ϕA,q)′′(t).
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Proof By definition we have U A,q(t) = U (t) and ϕA,q(t) = ϕ(t) for t ≤ A. Thus, the

assertions for t ≤ A follow from (2.17). For t ≥ A we have (U A,q)′′(t) = U ′′(A) tq−2

Aq−2 and

(ϕA,q)′′(t) = ϕ′′(A) tq−2

Aq−2 . Thus, for t ≥ A the assertion follows again from (2.17). ��

The properties of the function U A,q proved in the previous lemmas allow us to show that
the operator SA,q has ϕA,q -structure.

Proposition 2.28 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let the oper-
ator S = ∂U have ϕ-structure with characteristics (γ3, γ4,�2(ϕ)). For A ≥ 1 and q ≥ 2
let U A,q and ϕA,q be the (A, q)-approximation of U and ϕ, respectively. Then, the operator
SA,q := ∂U A,q has both U A,q -structure and ϕA,q -structure, with characteristics depending
only on γ1, γ2, γ3, γ4, and q.

Proof The operator SA,q is derived from the potential U A,q which, according to Propo-

sition 2.18 and Lemma 2.25, is a balanced N-function with characteristics
( γ3

γ4

γ 2
1

γ2
,

max {q − 1, γ4
γ3

γ 2
2

γ1
}). Thus, the proof of Proposition 2.16 shows that SA,q hasU A,q -structure

with characteristics

(γ3
γ4

γ 2
1

γ2
, 2 + max

{
q − 1,

γ4

γ3

γ 2
2

γ1

}
,�2(U

A,q)
)
,

where �2(U A,q) depends only on max {q − 1, γ4
γ3

γ 2
2

γ1
}, according to Lemma 2.7. Now

Lemma 2.27 yields that the operator SA,q has ϕA,q -structure with characteristics

(γ 2
3

γ4

γ 2
1

γ 2
2

,
γ4

γ1

(
2 + max

{
q − 1,

γ4

γ3

γ 2
2

γ1

})
,�2(ϕ

A,q)
)
.

Lemmas 2.25 and 2.7 yield that �2(ϕ
A,q) depends only on max {γ2, q − 1}. This finishes

the proof. ��
We have the following crucial result (cf. Proposition 2.17).

Proposition 2.29 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let the oper-
ator S = ∂U have ϕ-structure with characteristics (γ3, γ4,�2(ϕ)). For A ≥ 1 and q ≥ 2 let
ϕA,q and SA,q be the (A, q)-approximation of ϕ and S, respectively, and let FϕA,q be defined
in (2.9). Then, we have for all P,Q ∈ R

3×3 that

(SA,q(P) − SA,q(Q)) · (P − Q) ∼ aϕA,q (|Psym| + |Psym − Qsym|) |Psym − Qsym|2,
∼ |FϕA,q (P) − FϕA,q (Q)|2,

|SA,q(P) − SA,q(Q)| ∼ aϕA,q (|Psym| + |Psym − Qsym|) |Psym − Qsym|,
where the constants of equivalence depend only on γ1, γ2, γ3, γ4, and q.

Proof This is a direct consequence of Propositions 2.28 and 2.17. ��
Remark 2.30 For the limiting processes, it is of fundamental relevance that in Proposition 2.29
the constants do not depend on A ≥ 1.

Based on Proposition 2.29 we can prove the validity of equivalent expressions for
∇Fϕ(Du) which play a crucial role in the proof of regularity for the problem (1.1) (cf.
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[12, 13, 37]). To this end, we define for a sufficiently smooth operator S : R
3×3 → R

3×3
sym

the functions Pi : R
3×3 → R, i = 1, 2, 3 via

Pi (P) := ∂iS(P) · ∂iP =
3∑

j,k,l,m=1

∂ jk Slm(P) ∂i Pjk ∂i Plm,

and emphasize that there is no summation over the index i .
If Sn , n ∈ {1, . . . , N }, is a multiple approximation of S we define analogously

P
n
i : R

3×3 → R, i = 1, 2, 3, for n ∈ {1, . . . , N }, via

P
n
i (P) := ∂iSn(P) · ∂iP =

3∑
j,k,l,m=1

∂ jk S
n
lm(P) ∂i Pjk ∂i Plm .

Proposition 2.31 Let the operator S = ∂U have (p, δ)-structure for some p ∈ (1,∞) and
δ ∈ [0,∞), with characteristics (γ3, γ4, p). For given N ∈ N let Sn,
n ∈ {1, . . . , N } be a multiple approximation of S. If for a vector field v : � ⊂ R

3 → R
3

there holds Fn(Dv) ∈ W 1,2(�), then we have for i = 1, 2, 3 and a.e. in � the following
equivalences

|∂iFn(Dv)|2 ∼ an(|Dv|) |∂iDv|2
∼ P

n
i (Dv),

|∂iSn(Dv)|2 ∼ an(|Dv|) P
n
i (Dv).

(2.19)

where the constants of equivalence depend only on γ3, γ4, p, and qn, for
n = 1, . . . , N.

Proof For h > 0 and i = 1, 2, 3 let�+
i v(x) := v(x+h ei )−v(x) and d+

i v(x) := h−1�+
i v(x)

be the classical increments and difference quotients in direction ei of the canonical basis.
The standard theory of difference quotients (cf. [16]) and Fn(Dv) ∈ W 1,2(�) yield that
d+
i Fn(Dv) → ∂iFn(Dv) a.e. and in L2

loc(�) as h → 0 and
∫

�h

|d+
i Fn(Dv)|2 dx ≤ c,

where the constant c is independent of h, and where we used the notation

�h := {x ∈ �
∣∣ d(x, ∂�) > 2h

}
.

Thus, Proposition 2.29, Lemma 2.35 for p ≤ 2, and Lemma 2.32 for p > 2 yield that
∫

�h

|d+
i Dv|2 dx ≤ c,

with c independent of h (even if it may depend on δ and An). Consequently, we obtain
that Dv ∈ W 1,2(�), and d+

i Dv → ∂iDv, �+
i Dv → 0 a.e. and in L2

loc(�), as h → 0.
Proposition 2.29 yields

|d+
i Fn(Dv)(x)|2 ∼ an(|Dv(x)| + |�+

i Dv(x)|) |d+
i Dv(x)|2,

which implies, using the above proved convergences, (2.19)1 as h → 0.
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Proposition 2.28 shows that Sn has ωn-structure, which implies

P
n
i (Dv) =

3∑
j,k,l,m=1

∂ jk S
n
lm(Dv) ∂i D jkv ∂i Dlmv ∼ an(|Dv|)|∂iDv|2,

showing (2.19)2. To prove (2.19)3 we use the definition of P
n
i and (2.19)1,2 to get

an(|Dv|) (Pn
i (Dv)

)2 ≤ an(|Dv|) |∂iSn(Dv)|2|∂iDv|2 ∼ P
n
i (Dv) |∂iSn(Dv)|2,

which implies

an(|Dv|) P
n
i (Dv) ≤ c |∂iSn(Dv)|2.

On the other hand, the fact that Sn has ωn-structure and (2.19)1,2 imply that Pi (P) = 0 if
and only if P = 0. Consequently, we obtain

|∂iSn(Dv)|2 ≤
3∑

k,l=1

|∂klSn(Dv) ∂i Dklv|2 ≤ c
(
an(|Dv|))2 |∂iDv|2

≤ c an(|Dv|) |∂iFn(Dv)|2 ≤ c an(|Dv|) P
n
i (Dv).

Note that all constants just depend on the quantities indicated in the formulation of the
assertion. This yields the reverse estimate, proving (2.19)3. ��

To derive a priori estimates and to perform the limiting process we need estimates, which
do not involve the parameters An , for n = 1, . . . , N . We restrict ourselves to the case that
ϕ = ωp,δ = ω with p ∈ (1,∞) δ ∈ [0,∞) and distinguish between the cases p ≤ 2 and
p > 2 for the sake of a simpler presentation.

2.5 Some estimates specific to the case p > 2

In this section we prove some results, which are specific of the case p > 2. In particular, in
the case p ≥ 13

3 we need multiple approximations, which makes the results more technical.

Lemma 2.32 For given p > 2, δ > 0, and N ∈ N let an, n ∈ {1, . . . , N }, be a multiple
approximation of a0. Then, there exist Ân = Ân(δ, p, q1, . . . , qn) ≥ 1 such that for all
An ≥ max {δ, Ân} the function an is non-decreasing and satisfies for all t ≥ 0

1

(p − 1)2q1−2 δ p−2 ≤ 1

p − 1

δ p−qn

2q1−2 aωqn ,δ (t) ≤ an(t),

an(t) ≤ p − 1

qn − 1
2p−2 (An−1)

p−qn−1 aωqn−1,δ (t),

an(t) ≤ p − 1

qn − 1
2p−2 a0(t).

(2.20)

Proof For ease of presentation we show the assertion just in the first two cases, i.e., n = 1, 2.
The remaining cases follow in the same way and are left to the interested reader.

The case (n = 1) : For simplicity we set A := A1 and q := q1. For t ≤ A we have
a1(t) = a0(t) = (δ + t)p−2. Thus, q0 = p > q ≥ 2 implies

δ p−2 ≤ δ p−q (δ + t)q−2 ≤ (δ + t)p−2,
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and 1
(p−1)2q−2 ≤ 1 ≤ p−1

q−1 (1 + δ)p−2, which proves (2.20) for n = 1 and t ≤ A. Moreover,

(δ + t)p−2 is an increasing function in t .
For t ≥ A we have

a1(t) = q α2,q t
q−2(1 + α1,q

q α2,q tq−1

) =: q α2,q t
q−2gA(t), (2.21)

where αi,q = αi,q(ω
0), i = 1, 2. The expressions for the coefficients αi,q , i = 1, 2, imply

gA(A) = (q − 1) (ω0)′(A)

(ω0)′′(A)A
, limt→∞ gA(t) = 1, and

(gA)′(t) = α1,q(1 − q)

q α2,q tq
= (q − 1)2

Aq−1

tq

( 1

q − 1
− (ω0)′(A)

(ω0)′′(A)A

)
. (2.22)

From the properties of ω0 it follows that limt→∞ (ω0)′(t)
(ω0)′′(t)t = 1

q−1 and that (ω0)′(t)
(ω0)′′(t)t is strictly

monotone increasing. Thus, for A ≥ Â(p, q, δ) the expression in the parenthesis in (2.22)
is non-negative and thus gA is a non-decreasing function. Consequently, we get that a1 is
a non-decreasing function, since q α2,q tq−2 is increasing for q > 2 (non-decreasing for
q = 2). Using these properties and that ω0 is balanced we obtain that for t ≥ A ≥ Â there
holds

q − 1

p − 1
≤ gA(t) ≤ 1. (2.23)

It remains to estimate the factor in front of gA in (2.21). From the expression for α2,q we get

that q α2,q tq−2 = (ω0)′′(A)
q−1

( t
A

)q−2. Thus, using (2.7), t ≥ A ≥ δ ≥ 0, and 2 ≤ q < p we
obtain

q α2,q t
q−2 ≤ p − 1

q − 1

(δ + A)p−2

Aq−2 tq−2 = p − 1

q − 1

( δ

A
+ 1
)p−2

Ap−q tq−2

≤ p − 1

q − 1
2p−2 Ap−q (δ + t)q−2 = p − 1

q − 1
2p−2

(δ + t

A

)q−p
(δ + t)p−2

≤ p − 1

q − 1
2p−2 (δ + t)p−2. (2.24)

For A ≥ δ we get that t ≥ 2−1 (δ + t) for all t ≥ A. Using this, the definition of ω0, (2.7),
2 ≤ q < p and t ≥ A ≥ δ ≥ 0 we obtain

q α2,q t
q−2 ≥ 1

q − 1

(δ + A)p−2

Aq−2 tq−2 ≥ 1

q − 1
(δ + A)p−q 1

2q−2 (δ + t)q−2

≥ δ p−q

q − 1

1

2q−2 aq,δ(t) ≥ δ p−2

p − 1

1

2q−2 . (2.25)

The inequalities (2.23)–(2.25) imply (2.20) for n = 1 and t ≥ A ≥ max{δ, Â}. This com-
pletes the proof for n = 1.
(n = 2) : For simplicity we set B := A2 ≥ A1 =: A and r := q2, q := q1. For t ≤ B we
have a2(t) = a1(t). Thus, p > q > r ≥ 2 implies

δ p−2 ≤ δ p−r (δ + t)r−2 ≤ δ p−q (δ + t)q−2,

which together with (2.20) for n = 1 shows (2.20)1 for n = 2 and t ≤ B. The estimate
(2.20)2,3 for n = 2 and A ≤ t ≤ B follows from a2(t) = a1(t), (2.21), (2.23), the estimates
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in (2.24) and r < q; while for t ≤ A it follows from a2(t) = a0(t), δ ≤ A, 2 ≤ r < q < p,
and

(δ + t)p−2 = (δ + t)p−q (δ + t)q−2 ≤ 2p−q (δ + t)q−2.

For t ≥ B we have

a2(t) = r α2,r t
r−2(1 + α1,r

q α2,r tr−1

) =: r α2,r t
r−2hB(t), (2.26)

where αi,r = αi,r (ω1), i = 1, 2. The expressions of the coefficients αi,r , 1 = 1, 2, imply

hB(B) = (r − 1) (ω1)′(B)

(ω1)′′(B)B
, limt→∞ hB(t) = 1, and

(hB)′(t) = α1,r (1 − r)

r α2,r tr
= (r − 1)2

Br−1

tr

( 1

r − 1
− (ω1)′(B)

(ω1)′′(B)B

)
. (2.27)

In the proof of Lemma 2.25 we showed that limt→∞ (ω1)′(t)
(ω1)′′(t) t = 1

q−1 and that (ω1)′(t)
(ω1)′′(t) t

is strictly monotone. Thus, for B ≥ B̂(p, q, r , δ) the expression in the parenthesis in (2.27)
is non-negative and thus hB is a non-decreasing function. Consequently, we get that a2 is
a non-decreasing function, since r α2,r tr−2 is increasing for r > 2. Using these properties
and Lemma 2.25 for ω1 we obtain that for t ≥ B ≥ B̂ there holds

r − 1

p − 1
≤ hB(t) ≤ 1. (2.28)

It remains to estimate the factor in front of hB in (2.26). From the expressions for α2,r and

(ω1)′′(B) we get that r α2,r tr−2 = (ω1)′′(B)
r−1

( t
B

)r−2 = (ω0)′′(A)
r−1

( B
A

)q−2( t
B

)r−2. Thus, using
(2.7), the definition of ω1, 2 ≤ r < q < p and 0 ≤ δ ≤ A ≤ B ≤ t we obtain

r α2,r t
r−2 ≤ p − 1

r − 1

( δ

A
+ 1
)p−2 ( t

B

)r−q
Ap−q tq−2

≤ p − 1

r − 1
2p−2 Ap−q (δ + t)q−2 = p − 1

r − 1
2p−2

(δ + t

A

)q−p
(δ + t)p−2

≤ p − 1

r − 1
2p−2 (δ + t)p−2.

For B ≥ A ≥ δ we get that t ≥ 2−1 (δ + t) for all t ≥ B. Using this, the definition of ω0,
(2.7), 2 ≤ r < q < p and t ≥ B ≥ A ≥ δ ≥ 0 we obtain

r α2,r t
r−2 ≥ 1

r − 1

(δ + A)p−2

Aq−2 Bq−r tr−2 ≥ 1

r − 1
(δ + A)p−q Bq−r 1

2r−2 (δ + t)r−2

≥ δ p−r

r − 1

1

2r−2 ar ,δ(t) ≥ δ p−2

r − 1

1

2r−2 .

The last two inequalities and (2.28) imply (2.20) for n = 2 and t ≥ B ≥ max{A, B̂}. This
completes the proof for n = 2. ��

In the proof of regularity we will need mainly the following corollary.

Corollary 2.33 Let the operator S = ∂U, derived from the potential U, have (p, δ)-structure
with p > 2 and δ > 0, and characteristics (γ3, γ4, p). For N ∈ N let ωn, Fn, Sn,
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n ∈ {1, . . . , N }, be a multiple approximation of ω0, F0, S0. Then, for all An ≥ max {δ, Ân}
with Ân from Lemma 2.32 and all t ≥ 0 there holds

δ p−2

(p − 1)2q1−1 t2 ≤ δ p−qn

(p − 1)2q1−2 ωqn ,δ(t) ≤ ωn(t) ≤ p − 1

qn − 1
2p−2 ω0(t),

ωn(t) ≤ p − 1

qn − 1
2p−2 (An−1)

p−qn−1 ωqn−1,δ(t),

(ωn)∗(t) ≤ (p − 1)2q1−3

δ p−2 t2. (2.29)

Moreover, for all P ∈ R
3×3 there holds

|Fn(P)|2 ∼ ωn(|Psym|),
c δ p−qn |Fωqn ,δ (P)|2 ≤ |Fn(P)|2,

|Sn(P)| ≤ c (An−1)
p−qn−1 (ωqn−1,δ)

′(|Psym|)
(2.30)

with constants c depending only on γ3, γ4, qn, q1 and p.

Proof The proof of the estimates (2.29)1,2 is a direct application of the previous lemma, the
definition in (2.6), ωn(0) = ωqn ,δ(0) = ωqn−1,δ(0) = 0 and integration.

Estimate (2.29)3 follows from (2.29)1,2 and the equivalent definition of the complementary
function since

(ωn)∗(t) := sup
s≥0

s t − ωn(s)

≤ sup
s≥0

s t − δ p−2

(p − 1)2q1−1 s2

= (p − 1)2q1−3

δ p−2 t2.

The estimates (2.30) follow immediately from the definition of multiple approximations of
S, F, ω, a; Proposition 2.29 and (2.29). ��

Let us finish this section with a more technical estimate needed in the proof of regularity
in the case p > 2.

Lemma 2.34 For given p > 2, δ ≥ 0 and N ∈ N let an, ωn and n ∈ {1, . . . , N }, be a
multiple approximation of a0 and ω0 with An ≥ max {δ, 1}, respectively. Then, there exists
a constant c = c(p, q1, . . . , qn) such that for all s, t ≥ 0 there holds

an(t) s2 ≤ c
(
δ p + ωn(s) + ωn(t)

)
. (2.31)

Proof The assertion follows essentially from Young inequality and the expressions for the
coefficients of the approximations. However, we have to distinguish several cases. For ease
of presentation we show the assertion just in the first two cases, i.e., n = 1, 2. The remaining
cases follow in the same way and are left to the interested reader.

The case (n = 1) For simplicity we set A := A1 and q := q1. For t ≤ A we have
a1(t) = a0(t) = (δ + t)p−2. For s, t ≤ A Young inequality with p

2 and p
p−2 , δ ≥ 0 and

p > 2 yield

(δ + t)p−2 s2 ≤ c
(
(δ + t)p + s p

) ≤ c
(
δ p + (δ + t)p−2t2 + (δ + s)p−2s2

)
,
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which implies (2.31) for s, t ≤ A, since Corollary 2.8 implies

(δ + t)p−2t2 ∼ ω0(t) = ω1(t), (2.32)

valid for t ≤ A.
Next, assume that s, t ≥ A. Since ω1 is balanced with characteristics (1, p − 1), the

definition of ω1 implies for t ≥ A that there holds

a1(t) = (ω1)′(t)
t

∼ (ω1)′′(t) = (ω0)′′(A)

Aq−2 tq−2, (2.33)

with constants of equivalence depending only on p. This and Young inequality with q
2 and

q
q−2 imply

a1(t) s2 ≤ c(p, q)
(ω0)′′(A)

Aq−2

(
tq−2 t2 + sq−2 s2

) = c
(
(ω1)′′(t) t2 + (ω1)′′(s) s2

)
,

which yields (2.31) for s, t ≥ A, since Corollary 2.8 shows (ω1)′′(t) t2 ∼ ω1(t).
Next, assume s ≤ A ≤ t . Using (2.33), Young inequality with p

p−2 and p
2 , δ ≥ 0, (2.32),

(2.33), and again (ω1)′′(t) t2 ∼ ω1(t) we obtain

a1(t) s2 ≤ c(p)

(( (ω0)′′(A)

Aq−2

) p
p−2

t
q−2
p−2 p + s p−2 s2

)

≤ c

(
(ω0)′′(A)

Aq−2 tq−2 t2
( (ω0)′′(A)

Aq−2

) p
p−2−1

t
q−2
p−2 p−q + ω1(s)

)

≤ c

(
ω1(t)

( (ω0)′′(A)

Aq−2

) 2
p−2

t2
q−p
p−2 + ω1(s)

)
.

(2.34)

Using (ω0)′′(A) ∼ (δ + A)p−2, max{1, δ} ≤ A and q < p we get

( (ω0)′′(A)

Aq−2

) 2
p−2

t2
q−p
p−2 ≤ c

(δ + A)2

A2

t2
q−p
p−2

A2 q−2
p−2−2

≤ c
( t

A

)2 q−p
p−2 ≤ c,

which together with the last estimate implies (2.31) for s ≤ A ≤ t .
Finally, for t ≤ A ≤ s we get

a1(t) s2 = (δ + t)p−2 s2 = (δ + t)p−2
( (ω0)′′(A)

Aq−2

)− 2
q
( (ω0)′′(A)

Aq−2

) 2
q
s2.

We use Young inequality with q
q−2 and q

2 , (2.33) and again (ω1)′′(t) t2 ∼ ω1(t) to arrive at

a1(t) s2 ≤ c(p, q)

(
(δ + t)q

p−2
q−2

( (ω0)′′(A)

Aq−2

) −2
q−2 + (ω0)′′(A)

Aq−2 sq−2 s2
)

.

From (ω0)′′(A) ∼ (δ + A)p−2, p > q ≥ 2, t ≤ A and δ ≥ 0 we obtain

(δ + t)q
p−2
q−2

( (ω0)′′(A)

Aq−2

) −2
q−2 ≤ c (δ + t)p (δ + A)

q p−2
q−2 −p+2−2 p−2

q−2

≤ c (δ + t)p ≤ c (δ p + (δ + t)p−2 t2),

which together with (2.32), (2.33) and the last estimate yields (2.31) for t ≤ A ≤ s. This
finishes the proof for n = 1.

The case (n = 2) For simplicity we additionally set B := A2 and r := q2. For s, t ≤ B
we have a2(t) = a1(t). Thus, the assertion (2.31) for n = 2 is already proved in the case
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n = 1 above. In the case s, t ≥ B we proceed exactly as in the case s, t ≥ A for n = 1 just
replacing ω1, ω0, q and A by ω2, ω1, r and B, respectively.

In the case s ≤ B ≤ t we have to distinguish between s ≤ A and A ≤ s ≤ B. In the
former case we use the analogue of (2.33) for a2 and proceed as in (2.34) to arrive at

a2(t) s2 ≤ c(p)

(
ω2(t)

( (ω1)′′(B)

Br−2

) 2
p−2

t2
r−p
p−2 + ω2(s)

)
.

Using (ω1)′′(B) = (ω0)′′(A)

Aq−2 Bq−2 ≤ (p − 1) (δ+A)p−2

Aq−2 Bq−2, 1 ≤ A ≤ B and r < q < p we
get the estimate

( (ω1)′′(B)

Br−2

) 2
p−2

t2
r−p
p−2 ≤ c

(δ + A)2

A2

( A
B

)2 p−q
p−2
( t

B

)2 r−p
p−2 ≤ c,

which together with the last estimate implies (2.31) for s ≤ A ≤ B ≤ t . For A ≤ s ≤ B ≤ t
we have

a2(t) s2 ≤ (ω1)′′(B)

Br−2 tr−2
( (ω0)′′(A)

Aq−2

)− 2
q
( (ω0)′′(A)

Aq−2

) 2
q
s2.

Using Young inequality with q
q−2 and q

2 , the analogue of (2.33) for a2 and a1, and

(ω2)′′(t) t2 ∼ ω2(t) we get

a2(t) s2 ≤ c(p, q)

(
tq

r−2
q−2

( (ω0)′′(A)

Aq−2

) −2
q−2
( (ω1)′′(B)

Br−2

) q
q−2 + (ω0)′′(A)

Aq−2 sq−2 s2
)

≤ c

(
ω2(t) t2

r−q
q−2

A2

((ω0)′′(A))
2

q−2

( (ω1)′′(B)

Br−2

) 2
q−2 + ω2(s)

)
.

From (ω1)′′(B) = (ω0)′′(A)

Aq−2 Bq−2, q > r ≥ 2 and t ≥ B we obtain

t2
r−q
q−2

A2

((ω0)′′(A))
2

q−2

( (ω1)′′(B)

Br−2

) 2
q−2 =

( t

B

)2 r−q
q−2 ≤ 1,

which together with the last estimate yields (2.31) for A ≤ s ≤ B ≤ t .
In the case t ≤ B ≤ s we have to distinguish between t ≤ A and A ≤ t ≤ B. In the

former case we have

a2(t) s2 = (δ + t)p−2
( Br−2

(ω1)′′(B)

) 2
r
( (ω1)′′(B)

Br−2

) 2
r
s2,

which by Young inequality with r
r−2 and r

2 , and the analogue of (2.33) for a2 yields

a2(t) s2 ≤ c(p, r)

(
(δ + t)r

p−2
r−2

( Br−2

(ω1)′′(B)

) 2
r−2 + ω2(s)

)

≤ c

((
δ p + a0(t)

)
(δ + t)2

p−r
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)
.

From (ω1)′′(B) = (ω0)′′(A)

Aq−2 Bq−2, q > r ≥ 2, δ ≥ 0 and B ≥ A ≥ t we obtain

(δ + t)2
p−r
r−2

B2

((ω1)′′(B))
2

r−2

≤
( δ + t

δ + A

)2 p−r
r−2
( A
B

)2 q−r
r−2 ≤ 1,
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which together with a0(t) = a2(t), t ≤ A, and the last estimate yields (2.31) for t ≤ A ≤
B ≤ s. For A ≤ t ≤ B ≤ s we have

a2(t) s2 ≤ (ω0)′′(A)

Aq−2 tq−2
( Br−2

(ω1)′′(B)

) 2
r
( (ω1)′′(B)

Br−2

) 2
r
s2,

which, by Young inequality with r
r−2 and r

2 and (2.33) for a2 and a1, yields

a2(t) s2 ≤ c(p, r)

(
tr

q−2
r−2

((ω0)′′(A))
r

r−2

Ar q−2
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)

≤ c

(
ω2(t) t2

q−r
r−2

((ω0)′′(A))
2

r−2

A2 q−2
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)
.

Using (ω0)′′(A) ∼ (δ + A)p−2 and (ω1)′′(B) = (ω0)′′(A)

Aq−2 Bq−2, q > r ≥ 2 and B ≥ t we
obtain

t2
q−r
r−2

((ω0)′′(A))
2

r−2

A2 q−2
r−2

B2

((ω1)′′(B))
2

r−2

≤ c
( t

B

)2 q−r
r−2 ≤ 1,

which together with the last estimate yields (2.31) for A ≤ t ≤ B ≤ s. This finishes the
proof of the case n = 2. ��

2.6 Some estimates specific of the case 1 < p ≤ 2

For completeness we deduce estimates for the case p ∈ (1, 2], which are the counterpart of
those proved in the previous section and which can be used to prove the regularity results
also in the case p ∈ (1, 2]. Note that in this case it is enough to use a single approximation
with q = 2.

Lemma 2.35 For p ∈ (1, 2] and δ > 0 let ω = ωp,δ and a = aω. For A ≥ 1 and q = 2 we
set ωA := ωA,2 and aA := aωA,2 . Then, the function aA is non-increasing and satisfies for
all t ≥ 0

(p − 1) a(t) ≤ aA(t) ≤ δ p−2,

(p − 1) (δ + A)p−2 ≤ aA(t).
(2.35)

Proof The statement is clear for t ≤ A using aA(t) = a(t) = (δ + t)p−2, 0 ≤ δ, t ≤ A, and
p ≤ 2. Moreover, (δ + t)p−2 is a non-increasing function in t .

For t ≥ AwehaveaA(t) = ω′′(A)+ω′(A)−ω′′(A) A
t . Thus,weget thataA(A) = (δ+A)p−2,

limt→∞ aA(t) = (δ + A)p−3
(
δ + (p − 1)A

)
and (aA)′(t) = −ω′(A)−ω′′(A) A

t2
≤ 0 in view

of (2.7), and p ≤ 2, hence proving that aA is non-increasing also for t > A (contrary to the
case p > 2 we do not have any restriction on the choice of A). This yields

(δ + A)p−2 ≥ aA(t) ≥ (δ + A)p−3((p − 1)A + δ) ≥ (p − 1) (δ + A)p−2,

which implies the assertions using δ p−2 ≥ (δ + A)p−2 and (δ + A)p−2 ≥ (δ + t)p−2 in view
of t ≥ A, and p ≤ 2. ��
As in the case p > 2 we would need mainly the following corollary in the proof of regularity.
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Corollary 2.36 Let the operator S, derived from the potential U, have (p, δ)-structure for
some p ∈ (1, 2] and δ > 0, with characteristics (γ3, γ4, p). Denote ω = ωp,δ , F = Fω and
for A ≥ 1 set ωA := ωA,2, FA := FωA and SA := SA,2. Then, there holds for all t ≥ 0 that

(p − 1) ω(t) ≤ ωA(t) ≤ δ p−2

2
t2,

p − 1

2
(δ + A)p−2 t2 ≤ ωA(t),

(ωA)∗(t) ≤ (p − 1) (�2(ω
∗))M ω∗(t),

(2.36)

where M ∈ N0 is chosen such that (p− 1)−1 ≤ 2M. Moreover, for all P ∈ R
3×3 there holds

|FA(P)|2 ∼ ωA(|Psym|),
c |F(P)|2 ≤ |FA(P)|2,
|SA(P)| ≤ c δ p−2|Psym|,

(2.37)

with constants c depending only on γ3, γ4, and p.

Proof Assertions (2.36)1,2 follow from (2.35)1,2, the definition of a, aA, ω(0) = ωA(0) = 0
and integration. Using the first inequality in (2.36)1 we get for all t ≥ 0 that

(ωA)∗(t) = sup
s≥0

s t − ωA(s)

≤ (p − 1) sup
s≥0

s
t

p − 1
− ω(s)

= (p − 1) ω∗( t

p − 1

)
≤ (p − 1) (�2(ω

∗))M ω∗(t),

with M ∈ N0 as chosen above. This proves (2.36)2. The inequalities in (2.37) follow from
Proposition 2.29 with Q = 0, the definition of aA, the fact that ω, ωA are balanced, (2.36)1,
the equivalences for F and S in Proposition 2.17, and Lemma 2.35. ��

3 On the existence and uniqueness of regular solutions

In this section we prove our main result, namely Theorem 3.4, i.e., the existence and unique-
ness of regular solutions of (1.1), solely based on appropriate assumptions on the regularity
(but not on the size) of the data. From now on we will restrict to the case p > 2, but with a
few (but non completely trivial) changes the same arguments can be applied also to the case
p ∈ (1, 2], where a single approximation would be enough. Even if the theory of approxi-
mation gives a unified approach valid for all p, we decided to focus on the case p > 2 since
many estimates should be changed, starting already from the a priori estimates and we think
that explaining the steps that need to be changed in the case p ≤ 2would fragment the presen-
tation in such a way that the readability of the paper would be much more difficult. Since the
result in the case p ≤ 2 is already contained in [12, 13, 37], using a different approximation,
we preferred to skip them. Nevertheless, they will be presented in a forthcoming paper [14].

Definition 3.1 (Regular solution) Let the operator S in (1.1), derived from a potential U ,
have (p, δ)-structure for some p ∈ (1,∞), and δ ∈ [0,∞) fixed but arbitrary. Let � ⊂ R

3

be a bounded domain with C2,1 boundary, and let I = (0, T ), T ∈ (0,∞), be a finite time
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interval. Then, we say that u is a regular solution of (1.1) if u ∈ L p(I ;W 1,p
0 (�)) satisfies

for all ψ ∈ C∞
0 (0, T ) and all w ∈ W 1,p

0 (�)

T∫

0

(∂u(t)

∂t
,w
)

ψ(t) + (S(Du(t)),Dw) ψ(t) dt =
T∫

0

(f(t),w) ψ(t) dt,

and fulfils

u ∈ L∞(I ;W 1,2
0 (�)) ∩ W 1,2(I ; L2(�)),

F(Du) ∈ L∞(I ; L2(�)) ∩ L2(I ;W 1,2(�)),

Remark 3.2 Note that we are focusing on the “natural” second order spatial regularity,
especially we are proving that F(Du) ∈ L2(I ;W 1,2(�)). In the parabolic case it is pos-
sible, at the price of some more restrictive hypotheses on the data, also to prove that
F(Du) ∈ W 1,2(I ; L2(�)). This result can be obtained independently on what we prove
later on and nevertheless implies also some simplifications of the argument concerning the
treatment of the time derivative. The regularity of ∂F(Du)

∂t would be needed in case of time-
discretization to prove optimal convergence results, as done in [13].

Remark 3.3 To formulate clearly the dependence on the data in the various estimates we
introduce the quantity

|||u0, f|||2 :=
∫

�

|u0|2 + ω(|Du0|) dx +
T∫

0

∫

�

|f|2 dx dt .

Using the equivalences ωp,δ(t) + δ p ∼ t p + δ p and ω∗(t) ∼ (δ p−1 + t)p
′−2t2, valid for

all p ∈ (1,∞), t, δ ≥ 0 with constants of equivalence just depending on p, together with
Korn and Poincarè inequalities, one easily checks that |||u0, f||| is finite if u0 ∈ W 1,p

0 (�)

and f ∈ L2(I × �), provided that p ≥ 6
5 .

We can now state the main result of this paper.

Theorem 3.4 Let the operator S in (1.1), derived from a potential U, have (p, δ)-structure
for some p ∈ (2,∞), and 6 δ ∈ (0,∞) fixed but arbitrary. Let� ⊂ R

3 be a bounded domain
with C2,1 boundary, and let I = (0, T ), T ∈ (0,∞), be a finite time interval. Assume that
u0 ∈ W 1,p

0 (�) and f ∈ L2(I × �).
Then, the system (1.1) has a unique regular solution with norms depending only on the

characteristics of S, δ−1, T , �, and |||u0, f|||.
To prove Theorem 3.4 we use an approximate problem, obtained by replacing the operator

S = ∂U with (p, δ)-structure by the last item SN = ∂UN of a special multiple approximation
Sn , n = 1, . . . , N , of S, i.e.,

SN (P) = (ωN )′(|Psym|)
|Psym| Psym = aN (|Psym|)Psym,

which we define now.

6 For a discussion of the case δ = 0 we refer to Remark 3.17.
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Definition 3.5 (Special multiple approximation) Let the operator S = ∂U , derived from a
potentialU , have (p, δ)-structure for some p > 2 and δ > 0 with characteristics (γ3, γ4, p).
We call Sn,Un, ωn , and an , n = 1, . . . , N , a special multiple approximation of S,U , ωp,δ ,
and aωp,δ if it is a multiple approximation generated by N := � p−2

2 �, exponents
qn := p − 2n for n = 1, . . . , N − 1 and qN := 2,

and parameters An , n = 1, . . . , N satisfying the conditions in Definition 2.23 and in Corol-
lary 2.33.

Remark 3.6 (i) Let Sn , n = 1, . . . , N , be a special multiple approximation as in Defini-
tion 3.5. Lemma 2.11 and a successive application of Proposition 2.28, and Lemma 2.7
yields that for each n = 1, . . . , N the operator Sn has ωn-structure with characteristics
depending only on the characteristics of S, i.e., on γ3, γ4, p, due to the special choice
of q j , j = 1, . . . , N . The special choice of q j , j = 1, . . . , N , Lemmas 2.11 and 2.25
imply that the characteristics of ωn , n = 1, . . . , N , depends only on p. Thus, the con-
stants in Proposition 2.31 as well as in Proposition 2.29 and Corollary 2.33 applied to
Sn , n = 1, . . . , N , depend only on the characteristics of S.

(ii) In view of (i), Lemma 2.32, and Remark 2.21 the operator SN has (2, δ)-structure with
characteristics depending on p, γ3, γ4, ωN−1, and AN .

In view of the previous remark we can work in the W 1,2-setting, which is sufficient to
justify all forthcoming computations, which is the main reason for the introduction of these
approximations.

3.1 The approximate problem and some global regularity in time

We have the following result on existence and uniqueness of solutions with certain additional
regularity of the approximate problem.

Proposition 3.7 Let the operatorS = ∂U, derived from the potentialU, have (p, δ)-structure
for some p ∈ (2,∞) and δ ∈ (0,∞). Assume that u0 ∈ W 1,p

0 (�) and f ∈ L2(I × �). Let
SN be the last item of a special 7 multiple approximation Sn, n = 1, . . . , N, of S as in
Definition 3.5. Then, the approximate problem

∂uN

∂t − div SN (DuN ) = f in I × �,

uN = 0 on I × ∂�,

uN (0) = u0 in �,

(3.1)

possesses a unique strong solution uN , i.e., uN ∈ W 1,2(I ; L2(�)) with FN (DuN ) ∈
L∞(I ; L2(�)), which satisfies for all ψ ∈ C∞

0 (0, T ) and all w ∈ W 1,2
0 (�)

T∫

0

(∂uN (t)

∂t
,w
)

ψ(t) + (SN (DuN (t)),Dw) ψ(t) dt =
T∫

0

(f(t),w) ψ(t) dt . (3.2)

7 Observe that the results of this section, prior to the passage to the limit, are in fact valid for any sequence of
parameter qn as described in the definition of the multiple approximation.
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In addition, the solution uN satisfies the estimate

esssupt∈I ‖uN (t)‖22 + ‖FN (DuN (t))‖22 + δ p−2‖∇uN (t)‖22

+ δ p−2

T∫

0

‖DuN (t)‖22 dt +
T∫

0

∥∥∥∂uN (t)

∂t

∥∥∥
2

2
dt ≤ C

(
1 + |||u0, f|||2

)
,

(3.3)

with C depending only on the characteristics of S, δ p−2, and �.

Proof The proof is based on a standard Faedo-Galerkin approximation of (3.1). The existence
of solutions of the Galerkin approximations follows from the standard Carathéodory theory
for systems of ordinary differential equations. As pointed out in Remark 3.6, the operator
SN has (2, δ) structure, hence the system can be treated essentially as the heat equation. In
particular, once the existence of the Galerkin solution uN

k , k ∈ N, is obtained, passing to
the limit as k → ∞ can be done within the standard theory of evolutionary problems with
monotone operators.

Since this is a standard procedure, we just derive the a priori estimates necessary for it.
The first a priori estimate, derived by using uN

k as test function in the Galerkin approxi-
mation for uN

k , is the following one:

1

2

d

dt
‖uN

k ‖22 + c ‖FN (DuN
k )‖22 ≤ cε

∫

�

(ωN )∗(|f|) dx + ε

∫

�

ωN (|uN
k |) dx

≤ cε

∫

�

(ωN )∗(|f|) dx + εC
∫

�

ωN (|DuN
k |) dx,

where we used in the first line Proposition 2.29 with Q = 0 together with Young inequality,
and in the second line∫

�

ωN (|uN
k |) dx ≤ CP

∫

�

ωN (|∇uN
k |) dx ≤ CPCK

∫

�

ωN (|DuN
k |) dx,

which follows from modular versions of Poincarè and Korn inequalities in Orlicz spaces (cf.
[7, 22, 38]). Moreover, we absorb the last term on the right-hand side of the previous estimate
using

∫
�

ωN (|DuN
k |) dx ∼ ‖FN (DuN

k )‖22 in view of Corollary 2.33. Note that all constants
are independent of An , n = 1, . . . , N , and depend only on the characteristics of S and on
�, due to Remark 3.6 and [7, 22, 38]. Moreover, from Corollary 2.33 and the definition of
|||u0, f|||, it follows that

T∫

0

∫

�

(ωN )∗(|f|) dx ds ≤ c(p) δ p−2 |||u0, f|||2 < ∞.

Hence, after the limiting procedure k → ∞ we arrive at

esssupt∈I ‖uN (t)‖22 +
T∫

0

‖FN (DuN (s))‖22 ds + δ p−2

T∫

0

‖DuN (s)‖22 ds ≤ c |||u0, f|||2,

where we also used Corollary 2.33. Next, we take
∂uN

k
∂t as test function in the Galerkin

approximation, use the fact that SN = ∂UN is derived from the potential UN ∼ ωn in view
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of Lemmas 2.27, 2.9 and Proposition 2.18, to arrive at

t∫

0

∥∥∥∂uN
k (s)

∂t

∥∥∥
2

2
ds +

∫

�

ωN (|DuN
k (t)|) dx ≤ c

∫

�

ωN (|Duk0|) dx + c

t∫

0

‖f(s)‖22 ds.

Since p > 2, we use Corollary 2.33 to arrive at∫

�

ωN (|Duk0|) dx ≤ c(p)
∫

�

ω(|Duk0|) dx.

These properties together with Corollary 2.33 imply, after the limiting procedure k → ∞,
that for a.e. t ∈ [0, T ]

‖FN (DuN (t))‖22 + δ p−2‖∇uN (t)‖22 +
T∫

0

∥∥∥∂uN (s)

∂t

∥∥∥
2

2
ds ≤ c

(
1 + |||u0, f|||2

)
,

where we also used Corollary 2.33 and Korn inequality.
The uniqueness of the solution uN follows in a standard manner. ��

Remark 3.8 Note that by the fundamental theorem of calculus of variations the weak formu-
lation (3.2) is equivalent to

(∂uN (t)

∂t
,w
)

+ (SN (DuN (t)),Dw) = (f(t),w), (3.4)

being satisfied for a.e. t ∈ I and all w ∈ W 1,2
0 (�).

In order to prove existence and uniqueness of regular solutions to (1.1), by taking the
various limits An → ∞, we need to prove further regularity for the solution uN , namely on
the second order spatial derivatives, in such a way that DuN converges almost everywhere.
The regularity in the spatial variables requires an ad hoc treatment (localization) for the
Dirichlet boundary value problem. To do this we adapt the argument introduced in [32]
(treating the case p > 2) and that in [12, 13] (treating the case p < 2). We sketch the
relevant steps, pointing out the main new aspects which are present in the time-dependent
case.

3.2 Description and properties of the boundary

We assume that the boundary ∂� is of class C2,1, that is for each point P ∈ ∂� there are
local coordinates such that in these coordinates we have P = 0 and ∂� is locally described
by a C2,1-function, i.e., there exist RP , R′

P ∈ (0,∞), rP ∈ (0, 1) and a C2,1-function
gP : B2

RP
(0) → B1

R′
P
(0) such that

(b1) x ∈ ∂� ∩ (B2
RP

(0) × B1
R′
P
(0)) ⇐⇒ x3 = gP (x1, x2),

(b2) �P := {(x ′, x3)
∣∣ x ′ = (x1, x2) ∈ B2

RP
(0), gP (x ′) < x3 < gP (x ′) + R′

P } ⊂ �,

(b3) ∇gP (0) = 0, and ∀ x ′ = (x1, x2)� ∈ B2
RP

(0) |∇gP (x ′)| < rP ,

where Bk
r (0) denotes the k-dimensional open ball with center 0 and radius r > 0. Note that

rP can be made arbitrarily small if we make RP small enough. In the sequel we will also
use, for 0 < λ < 1, the scaled open sets λ�P ⊂ �P , defined as follows

λ�P := {(x ′, x3)
∣∣ x ′ = (x1, x2)

� ∈ B2
λRP

(0), gP (x ′) < x3 < gP (x ′) + λR′
P }.
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To localize near ∂� ∩ ∂�P , for P ∈ ∂�, we fix smooth functions ξP : R
3 → R such that

(�1) χ 1
2�P

(x) ≤ ξP (x) ≤ χ 3
4�P

(x),

where χA(x) is the indicator function of the measurable set A. For the remaining interior
estimate we localize by a smooth function 0 ≤ ξ0 ≤ 1 with spt ξ0 ⊂ �0, where �0 ⊂ � is
an open set such that dist(∂�0, ∂�) > 0. Since the boundary ∂� is compact, we can use an
appropriate finite sub-covering which, together with the interior estimate, yields the global
estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the notation we
fix P ∈ ∂�, h ∈ (0, RP

16 ), and simply write ξ := ξP , g := gP . We use the standard notation
x = (x ′, x3)� and denote by ei , i = 1, 2, 3 the canonical orthonormal basis in R

3. In the
following lower-case Greek letters take values 1, 2. For a function f with spt f ⊂ spt ξ we
define for α = 1, 2 tangential translations:

fτ (x
′, x3) = fτα (x ′, x3) := f

(
x ′ + h eα, x3 + g(x ′ + h eα) − g(x ′)

)
,

tangential differences�+ f := fτ − f , and tangential difference quotientsd+ f := h−1�+ f .
For simplicity we denote ∇g := (∂1g, ∂2g, 0)� and use the operations (·)τ , (·)−τ , �+(·),
�+(·), d+(·) and d−(·) also for vector-valued and tensor-valued functions, intended as acting
component-wise.

We will use the following properties of the difference quotients, all proved in [6].

Lemma 3.9 Let v ∈ W 1,1(�) be such that spt v ⊂ spt ξ . Then

∇d±v = d±∇v + (∂3v)τ ⊗ d±∇g,

Dd±v = d±Dv + (∂3v)τ
s⊗ d±∇g,

div d±v = d±divv + (∂3v)±τd
±∇g,

∇v±τ = (∇v)±τ + (∂3v)±τd
±∇g,

where (v ⊗ w)i j := viw j , i, j = 1, 2, 3, and v
s⊗ w := 1

2

(
v ⊗ w + (v ⊗ w)�

)
.

As for the classical difference quotients, Lq -uniform (with respect to h > 0) bounds for
d+ f imply that ∂τ f belongs to Lq(spt ξ).

Lemma 3.10 It holds8 that, if f ∈ W 1,1(�), then we have for α = 1, 2

d+ f → ∂τ f = ∂τα f := ∂α f + ∂αg ∂3 f as h → 0, (3.5)

almost everywhere in spt ξ , (cf. [32]).
If we define, for 0 < h < RP

�P,h = {x ∈ �P
∣∣ x ′ ∈ B2

RP−h(0)
}
,

and if f ∈ W 1,q
loc (�), 1 ≤ q < ∞, then

∫

�P,h

|d+ f |q dx ≤ c
∫

�P

|∂τ f |q dx.

8 Note that ∂τ f denotes a tangential derivative, and to avoid confusion with time derivatives, the latter will

be always denoted as ∂ f
∂t .
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Moreover, if d+ f ∈ Lq(�P,h0), 1 < q < ∞, and if

∃ c1 > 0 :
∫

�P,h0

|d+ f |q dx ≤ c1 ∀ h0 ∈ (0, RP ) and ∀ h ∈ (0, h0),

then ∂τ f ∈ Lq(�P ) and ∫

�P

|∂τ f |q dx ≤ c1.

Remark 3.11 All assertions of the previous lemma also hold in Orlicz spaces generated by
N-functions φ ∈ �2, as can be easily seen by adapting the proof carried out in [23] to this
situation.

The following variant of formula of integration by parts will be often used.

Lemma 3.12 Let spt g ∪ spt f ⊂ spt ξ = spt ξP and 0 < h < RP
16 . Then∫

�

f g−τ dx =
∫

�

fτ g dx.

Consequently,
∫
�

f d+g dx = ∫
�

(d− f )g dx. Moreover, if in addition f and g are smooth

enough and at least one vanishes on ∂�, then∫

�

f ∂τ g dx = −
∫

�

(∂τ f )g dx.

Also the following properties of the difference quotient will be used in the sequel.

Lemma 3.13 Let spt g ⊂ spt ξ . Then

(d−g)τ = −d+g, (d+g)−τ = −d−g, d−gτ = −d+g.

Lemma 3.14 Let spt g ∪ spt f ⊂ spt ξ . Then

d±( f g) = f±τ d
±g + (d± f ) g.

3.3 A first regularity result in space

We start proving spatial regularity for the approximate problem. The estimates proved in this
intermediate step are uniform with respect to An , n = 1, . . . , N , only (a) in the interior of �

and (b) in the case of tangential derivatives. On the contrary estimates depend on An in the
normal direction. Nevertheless, this allows later on to use the equations point-wise to prove
in a different way estimates independent of An , n = 1, . . . , N , in the normal direction. Thus,
we can pass to the limit with An → ∞, to treat the original problem in the non-degenerate
case.

We observe that by using a translation method, the result below is proved rigorously for
the solutions we constructed.

Proposition 3.15 Let the operator S = ∂U, derived from the potential U, have (p, δ)-
structure for some p ∈ (2,∞), and δ ∈ (0,∞) with characteristics (γ3, γ4, p). Let � ⊂ R

3
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be a bounded domainwithC2,1 boundary and assume thatu0 ∈ W 1,p
0 (�) and f ∈ L2(I×�).

Let SN be the last item of the special multiple approximation Sn, n = 1, . . . , N, of S from
Definition 3.5.

Then, the unique strong solutionuN of the approximate problem (3.1) satisfies for a.e. t ∈ I

t∫

0

∫

�

ξ20 |∇FN (DuN (s))|2 + δ p−2ξ20 |∇2uN (s)|2 dx ds ≤ c0,

t∫

0

∫

�

ξ2P |∂τFN (DuN (s))|2 + δ p−2ξ2P |∂τ∇uN (s)|2 dx ds ≤ cP ,

(3.6)

where c0 = c0(δ2−p‖f‖22, |||u0, f|||, ‖ξ0‖1,∞, γ3, γ4, p), while the constant related to
the neighborhood of P is such that cP = cP (δ2−p‖f‖22, |||u0, f|||, ‖ξP‖1,∞, ‖gP‖C2,1 ,

γ3, γ4, p).
Here, ξ0(x) is a cut-off functionwith support in the interior of� and, for arbitrary P ∈ ∂�,

the tangential derivative
is defined locally in �P via (3.5).

Propositions 3.15 and 3.7 imply uN (t) ∈ W 2,2(�) and ∂uN

∂t (t) ∈ L2(�) for a.e. t ∈ I .
Hence, equations (3.1) hold point-wise a.e. in I × �.

We employ this to deduce the following result, by using the equations in a point-wise
sense, yielding however a critical dependence on the approximation of the operator.

Proposition 3.16 Under the assumptions of Proposition 3.15 there exists a constant C1 > 0
such that, provided in the local description of the boundary there holds rP < C1 in (b3),
where ξP is a cut-off function with support in �P , there holds for a.e. t ∈ I

t∫

0

∫

�

ξ2P |∂3FN (DuN (s))|2 + δ p−2ξ2P |∂3DuN (s)|2 dx ds ≤ CN , (3.7)

where CN = CN (δ2−p, δ2−p‖f‖22, |||u0, f|||, ‖ξP‖1,∞, ‖gP‖C2,1 , γ 3, γ 4, p, AN , ωN−1).

Remark 3.17 We consider only the case δ > 0 and in the estimates of the two above propo-
sitions all dependencies on δ are traced in a precise and explicit way, showing how they
deteriorate in the degenerate case. The degenerate problem could be treated by assuming
more stringent assumptions on the regularity of the data (namely the regularity of the right-
hand side f). The same phenomenon iswell-known to happen even for the p-Laplace problem.
In that case sharpness of additional assumptions and links with the fractional regularity of
the solution are proved and discussed in detail by Brasco and Santambrogio [15] and the
references therein.

Proof of Proposition 3.15 Fix P ∈ ∂� and define in �P

w := d−(ξ2d+(uN | 1
2�P

)),

where ξ := ξP , g := gP , and h ∈ (0, RP
16 ) and use the function w extended by zero outside

of �P as a test function in (3.4). This yields, using the properties of the difference quotient
in Lemmas 3.9, 3.12, 3.14, for a.e. t ∈ I

t∫

0

∫

�

ξ2d+ ∂uN (s)

∂t
· d+uN (s) dx ds +

t∫

0

∫

�

ξ2d+SN (DuN (s)) · d+DuN (s) dx ds
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= −
t∫

0

∫

�

ξ2d+SN (DuN (s)) · (∂3uN (s)
)
τ

s⊗ d+∇g dx ds

− 2

t∫

0

∫

�

d+SN (DuN (s)) · ξ∇ξ
s⊗ d+uN dx ds

+
t∫

0

∫

�

SN ((DuN )τ ) · (2ξ∂3ξd
+uN ) s⊗ d+∇g dx ds

+
t∫

0

∫

�

SN ((DuN )τ ) · (ξ2d+∂3uN ) s⊗ d+∇g dx ds

+
t∫

0

∫

�

f(s) · d−(ξ2d+uN (s)) dx ds =:
5∑
j=1

t∫

0

I j (s) ds.

Proposition 2.29 yields for a.e. s ∈ I the following equivalence∫

�

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ∼
∫

�

ξ2d+SN (DuN (s)) · d+DuN (s) dx,

with constants depending only on the characteristics of S, due to Remark 3.6. This equiv-
alence provides the “natural” quantity on the left-hand side. We estimate the integrals I j ,
j = 1, . . . , 5, similarly as in [6]. Note that all constants in the following can depend on the
characteristics of S and that other dependencies will be indicated.

We start estimating the first one as

I1 ≤ c
∫

�

ξ2|d+DuN | aN (|DuN | + |�+DuN |)|(∇uN )τ | |d+∇g| dx

≤ c ‖g‖C1,1

⎛
⎝
∫

�

ξ2 aN (|DuN | + |�+DuN |)|d+DuN |2 dx
⎞
⎠

1/2

×

×
⎛
⎝
∫

�

ξ2aN (|DuN | + |�+DuN |)|(∇uN )τ |2 dx
⎞
⎠

1/2

≤ ε ‖ξ d+FN (DuN )‖22 + C
(
δ p +

∫

�

ωN (|DuN |) dx
)
,

where we used Proposition 2.29, Hölder and Young inequalities, Lemma 2.34, the convexity
and�2-condition of the balanced N-functionωN , the substitution theorem and Korn inequal-
ity. The constant C depends on ‖g‖C1,1 and ε−1. Note that in view of

∫
�

ωN (|DuN |) dx ∼
‖FN (DuN )‖22, estimate (3.3), and the substitution theorem the right-hand side of the last esti-
mate is finite. This comment also applies to the estimates of the other terms I j , j = 1, . . . , 5.

The second term is estimated more or less in the same way

I2 ≤ c
∫

�

ξ |d+DuN | aN (|DuN | + |�+DuN |)|∇ξ ||d+uN | dx
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≤ c ‖∇ξ‖2∞
(∫

�

ξ2 aN (|DuN | + |�+DuN |)|d+DuN |2 dx
)1/2

×

×
( ∫

�∩spt ξ
aN (|DuN | + |�+DuN |)|d+uN |2 dx

)1/2

≤ ε ‖ξ d+FN (DuN )‖2 + C(ε−1, ‖ξ‖1,∞)
(
δ p +

∫

�

ωN (|DuN |) dx
)
,

where we additionally used Remark 3.11.
To estimate the integral I3 we use that due to Proposition 2.29 there holds |SN (P)| ≤

c (ωN )′(|Psym|). Using this, Young inequality, (2.2), the substitution theorem, Remark 3.11
and Korn inequality we get

|I3| ≤ c(‖ξ‖1,∞, ‖g‖C2,1)

∫

�

(ωN )∗(|SN ((DuN )τ )|) + ωN (|d+uN |) dx

≤ C(‖ξ‖1,∞, ‖g‖C2,1)

∫

�

ωN (|DuN |) dx.

The integral I4 is estimated by using Lemmas 3.12–3.14 to obtain

|I4| =
∣∣∣
∫

�

(− ξ2d+SN (DuN )d+∇g + SN (DuN )d+(∇g) d−(ξ2)
) s⊗ ∂3uN

+ SN (DuN )(ξ2)−τ d
−d+∇g

s⊗ ∂3uN dx
∣∣∣

≤ ε ‖ξ d+FN (DuN )‖22 + c(ε−1, ‖ξ‖1,∞, ‖g‖C2,1)
(
δ p +

∫

�

ωN (|DuN |) dx
)
,

where the first term was treated as I1, while the other two were treated as I3 .
On the other hand, the integral related to the right-hand side can be estimated as follows

I5 ≤ c(ε−1) δ2−p‖f‖22 + ε δ p−2
∫

�

|d−(ξ2d+uN )|2 dx

≤ c(ε−1) δ2−p‖f‖22 + c(‖ξ‖1,∞, ‖g‖C1,1) δ p−2
∫

�

|DuN |2 dx

+ ε c δ p−2
∫

�

ξ2 |d+DuN |2 dx

≤ c(ε−1) δ2−p‖f‖22 + c(‖ξ‖1,∞, ‖g‖C1,1) δ p−2
∫

�

|DuN |2 dx

+ ε c
∫

�

|d+FN (DuN )|2 dx,

whereweused standard properties of the difference quotient in L2,Korn inequality, the substi-
tution theorem, as well as Proposition 2.29, and Lemma 2.32, which yield δ p−2|d+DuN |2 ≤
c |d+FN (DuN )|2.
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Observing that d+ ∂uN

∂t = ∂d+uN

∂t , choosing ε > 0 sufficiently small, and using (3.3) we
proved that for a.e. t ∈ I

1

2

∫

�

ξ2|d+uN (t)|2 dx + c

t∫

0

∫

�

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds

≤ 1

2

∫

�

ξ2|d+u0|2 dx + c(‖ξ‖1,∞, ‖g‖C2,1 , δ2−p‖f‖22, |||u0, f|||, γ3, γ4, p)

≤ C0(‖ξ‖1,∞, ‖g‖C2,1 , δ2−p‖f‖22, |||u0, f|||, γ3, γ4, p),

(3.8)

where we also used the assumption on the data. SinceC0 does not depend on h > 0, it follows
by Lemma 3.10 that for a.e. t ∈ I

t∫

0

∫

�

ξ2
∣∣∂τFN (DuN (s))

∣∣2 dx ds ≤
t∫

0

∫

�

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds ≤ C0,

proving the estimate for the first term in (3.6)2. Next, observe that Proposition 2.29 and
Lemma 2.32 imply

δ p−2

t∫

0

∫

�

ξ2|d+DuN (s)|2 dx ds ≤
t∫

0

∫

�

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds ≤ C0.

Nowwe proceed exactly as in the proof of [11,(3.12)–(3.14)] for the special choice φ(t) = t2

to get

δ p−2

t∫

0

∫

�

ξ2|d+∇uN (s)|2 dx ds

≤ δ p−2

t∫

0

∫

�

ξ2|d+DuN (s)|2 dx ds + c(‖ξ‖1,∞, ‖g‖C1,1) δ p−2

t∫

0

∫

�

|DuN (s)|2 dx ds

≤ C0 + c(‖ξ‖1,∞, ‖g‖C1,1) δ p−2

t∫

0

∫

�

|DuN (s)|2 dx ds. (3.9)

This, the a priori estimate (3.3), and Lemma 3.10 finally shows for a.e. t ∈ I

δ p−2

t∫

0

∫

�

ξ2|∂τ∇uN |2 dx ≤ C(‖ξ‖1,∞, ‖g‖C2,1 , δ2−p‖f‖2, |||u0, f|||, γ3, γ4, p),

proving the estimate for the second term in (3.6)2.
The same argument used with a test function ξ0 with compact support in �, and standard

difference quotients can be used to prove (3.6)1. ��
Corollary 3.18 Under the assumptions of Proposition 3.15 there holds a.e. in I × �

∣∣∂τFN (DuN )
∣∣2 ∼ aN (|DuN |)|∂τDuN |2

with constants depending only on the characteristics of S.
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Proof Proposition 2.29 implies
∣∣d+FN (DuN )

∣∣2 ∼ aN (|DuN | + |�+DuN |)|d+DuN |2.
The estimates (3.8), (3.9) andLemma 3.10 yield that a.e. in I×� there holds d+FN (DuN ) →
∂τFN (DuN ) and d+DuN → ∂τDuN as h → 0. These observations immediately imply the
assertion. ��

Now we prove the result on the regularity in the “normal” direction from (3.7), which is
valid up to the boundary, but is dependent on the chosen multiple approximation.

Proof of Proposition 3.16 Thanks to the previous results we can re-write the equations in (3.1)
a.e. in I × � as follows

−∂uN
i

∂t
+

3∑
k=1

∂k3S
N
i3(Du

N )∂3Dk3uN +
2∑

α=1

∂3αS
N
i3(Du

N )∂3D3αuN = fi ,

where

fi := − fi −
2∑

γ,σ=1

∂γσ S
N
i3(Du

N )∂3Dγ σuN −
3∑

k,l=1

∂kl S
N
iβ(DuN )∂βDkluN ,

for i = 1, 2, 3.We nowproceed as in [12,Eq. (3.3)] andmultiply these equations by ∂3 D̂i3uN ,
where D̂αβuN = 0, for α, β = 1, 2, D̂α3uN = D̂3αuN = 2Dα3uN , for α = 1, 2, D̂33uN =
D33uN and sum over i = 1, 2, 3. Since SN has ωN -structure we get

−
3∑

i=1

∂uN
i

∂t
∂3 D̂i3uN + γ aN (|DuN |)|b|2 ≤ |f||b| a.e. in I × �,

where bi := ∂3Di3uN and where the constant γ just depends on the characteristics of S.
By straightforward manipulations (cf. [11,Sections 3.2 and 4.2]) we obtain that a.e. in

I × �P it holds

|f| ≤ c
(
|f|aN (|DuN |

) (
|∂τ∇uN | + ‖∇g‖∞|∇2uN |

)
,

|b| ≥ 2|̃b| − |∂τ∇uN | − ‖∇g‖∞|∇2uN |,
for b̃i := ∂233u

N
i , i = 1, 2, 3. Consequently we get a.e. in I × �P

−
3∑

i=1

∂uN
i

∂t
∂3 D̂i3uN + 2γ aN (|DuN |)|̃b|2

≤ c
[
|f| + aN (|DuN |)

(
|∂τ∇uN | + ‖∇g‖∞|∇2uN |

)]
|b|.

We then add on both sides, for α = 1, 2 and i, k = 1, 2, 3, the term (which is finite a.e.)

2γ aN (|DuN |) |∂α∂i u
N
k |2,

use the estimate |b| ≤ |∇2uN | and Young inequality, yielding

−
3∑

i=1

∂uN
i

∂t
∂3 D̂i3uN + 2γ aN (|DuN |)|∇2uN |2

≤ γ aN (|DuN |)|∇2uN |2+ c |f|2
aN(|DuN |) +c aN(|DuN |)(|∂τ∇uN |2+‖∇g‖2∞|∇2uN |2),
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where in the right-hand side we used also the definition of the tangential derivative (cf. (3.5)).
Next, we choose the sets �P such that ‖∇g‖∞ = ‖∇gP (x1, x2)‖∞,�P is small enough, so
that we can absorb the last term from the right-hand side. We finally arrive at the following
pointwise inequality

−
3∑

i=1

∂uN
i

∂t
∂3 D̂i3uN + γ aN (|DuN |)|∇2uN |2

≤ c

( |f|2
aN (|DuN |) + aN (|DuN |) |∂τ∇uN |2

)
a.e. in I × �P .

(3.10)

We multiply (3.10) by ξ2, and integrate for a.e. t ∈ I over the sub-domain

(0, t) × �P,ε := (0, t) × {x ∈ �P
∣∣ gP + ε < x3 < gP + R′

P

}
,

for 0 < ε < R′
P . This shows, using also Young inequality, that

γ

t∫

0

∫

�P,ε

ξ2aN (|DuN |)|∇2uN |2dx ds

≤
t∫

0

∫

�P,ε

c ξ2
( |f|2
aN (|DuN |) + aN (|DuN |) |∂τ∇uN |2

)
+ ξ2

∣∣∣∣∂u
N

∂t

∣∣∣∣ |∇2uN | dx ds

≤
t∫

0

∫

�

c ξ2

( |f|2 + ∣∣ ∂uN

∂t

∣∣2
aN (|DuN |) + aN (|DuN |) |∂τ∇uN |2

)
dx ds

+ γ

2

t∫

0

∫

�P,ε

ξ2aN (|DuN |)|∇2uN |2 dx ds.

Nowwe absorb the last term from the right-hand side in the left-hand side. Moreover, we use
that aN is bounded from below by c δ p−2 (cf. Lemma 2.32), the assumption on f and (3.3) to
estimate the first term on the right-hand side. To handle the second term we first use that aN

is bounded from above by a constant c depending on p, γ3, γ4, ωN−1, and AN (cf. Remark
2.21, Remark 3.6) and then we use the estimate (3.6)2. These estimates result in

T∫

0

∫

�P,ε

ξ2aN (|DuN |)|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, |||u0, f|||).

By monotone convergence for ε → 0, this shows that

T∫

0

∫

�

ξ2aN (|DuN |)|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, cP ).

Using Lemma 2.32 we finally get also

δ p−2

T∫

0

∫

�

ξ2|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, cP ).
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The last two estimates together with Proposition 2.31 and the definition of the tangential
derivatives (cf. (3.5)) finish the proof of Proposition 3.16. ��

3.4 Uniform estimates for the second order spatial derivatives

We now improve the estimate in the normal direction in the sense that we will show that they
are bounded uniformly with respect to the parameters An , for all n = 1, . . . , N . The used
method is an adaption to the time evolution problem and the case p > 2 of the treatment in
[12, 37] in the case p < 2 (cf. [13]). In particular, it involves a technical steps to justify the
treatment of the time derivative, which is an adaptation of the method used in [31, 39].

Lemma 3.19 Let ∂� ∈ C2,1 and let v ∈ L2(I ;W 2,2(�) ∩ W 1,2
0 (�)) ∩ W 1,2(I ; L2(�)).

Then, for all t ∈ [0, T ] it holds

−
t∫

0

∫

�

∂v
∂t

∂233v dx dt = 1

2
‖∂3v(t)‖22 − 1

2
‖∂3v(0)‖22.

Proof Note that the assumptions on v already imply, by parabolic interpolation, that v ∈
C(I ;W 1,2

0 (�)). We give an elementary proof, by heat regularization, since the direct inte-
gration by parts is not justified under the given assumptions. In fact, we have that ∂v

∂t = 0
on the boundary, but is it not clear if this holds also in the sense of traces. Let us define
φ := ∂v

∂t − �v ∈ L2(I × �) and ψ := v(0) ∈ W 1,2
0 (�) and approximate these functions by

sequences of smooth and compactly supported functions φn and ψn , respectively. Let vn be
the solution of boundary initial value problem

∂vn
∂t − �vn = φn in I × �,

vn = 0 on I × ∂�,

vn(0) = ψn in �.

(3.11)

By energy methods, one obtains directly that there exists a unique solution vn belonging to
L2(I ;W 2,2(�) ∩ W 1,2

0 (�)) ∩ W 1,2(I ; L2(�)). Moreover, we have

‖vn − vk‖L2(I ;W 2,2(�)∩W 1,2
0 (�))∩W 1,2(I ;L2(�))

≤ c ‖φn − φk‖L2(I×�) + c ‖ψn − ψk‖W 1,2(�) for k, n ∈ N,

which implies that (vn) is a Cauchy sequence in the spaces on the left-hand side. Let u be
the limit in L2(I ;W 2,2(�) ∩ W 1,2

0 (�)) ∩ W 1,2(I ; L2(�)) of the sequence vn . By passing
to the limit in (3.11) we see that u − v is a solution of (3.11) with vanishing data. Thus, by
uniqueness we proved that

vn → v in L2(I ;W 2,2(�) ∩ W 1,2
0 (�)) ∩ W 1,2(I ; L2(�)) ∩ C(I ;W 1,2

0 (�)). (3.12)

Next, testing by the “second order time derivative” of vn , which can be justified with the help
of an Galerkin approximation (cf. [10, 21]), one gets that

∥∥∥∥∂vn(t)
∂t

∥∥∥∥
2

2
+

t∫

0

∥∥∥∥∂∇vn(s)
∂t

∥∥∥∥
2

2
ds ≤ c

t∫

0

∥∥∥∥∂φn(s)

∂t

∥∥∥∥
2

2
ds + c ‖ψn‖2W 2,2(�)

≤ c(n).
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This proves that ∂vn
∂t ∈ L2(I ;W 1,2(∂�)) ↪→ L2(I ;W 1/2(∂�)). Thus, ∂vn

∂t = 0 holds in the
sense of traces in L2(I ;W 1/2(∂�)) and we obtain

−
t∫

0

∫

�

∂vn
∂t

∂233vn dx dt =
t∫

0

∫

�

∂2vn
∂t∂3

∂3vn dx dt = 1

2
‖∂3vn(t)‖22 − 1

2
‖∂3vn(0)‖22.

Passing with n → ∞, which is justified by (3.12), we proved the assertion. ��
Proposition 3.20 Let the same hypotheses as in Theorem 3.4 be satisfied with δ > 0 and
let the local description gP of the boundary and the localization function ξP satisfy (b1)–
(b3) and (�1) (cf. Sect. 3.2). Then, there exists a constant C2 > 0 such that the solution
uN ∈ L∞(I ;W 1,2

0 (�)) ∩ L2(I ;W 2,2(�)) of the approximate problem (3.1), ensured in
Proposition 3.7, satisfies for every P ∈ ∂� and for a.e. t ∈ I

t∫

0

∫

�

ξ2P |∂3FN (DuN (s))|2 dx ds ≤ C,

provided rP < C2 in (b3), with C depending on the characteristics of S, δ2−p‖f‖22 ,|||u0, f|||, ‖ξP‖1,∞, ‖gP‖C2,1 , and C2.

Proof We adapt the strategy in [12,Proposition 3.2] to the time-dependent problem. Fix an
arbitrary point P ∈ ∂� and a local description g = gP of the boundary and the localization
function ξ = ξP satisfying (b1)–(b3) and (�1). In the following constants c,C can always
depend on the characteristics ofSN , hence on those ofS, i.e., on γ3, γ4, and p. Firstwe observe
that Proposition 2.31 and Remark 3.6 yield that there exists a constant C0, depending only
on the characteristics of S such that

1

C0
|∂3FN (DuN )|2 ≤ P

N
3 (DuN ) a.e. in I × �.

Thus, we get, using also the symmetry of both DuN and SN ,

1

C0

t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds

≤
t∫

0

∫

�

ξ2∂3S
N
αβ(DuN ) ∂3DαβuN dx ds +

t∫

0

∫

�

ξ2∂3S
N
3α(DuN ) ∂αD33uN dx ds

+
t∫

0

∫

�

3∑
j=1

ξ2∂3S
N
j3(Du

N ) ∂23u
N
j dx ds

=: J1 + J2 + J3. (3.13)

The termsJ1 andJ2 can be estimated exactly as in [12], if one replaces φ′′(|DuN |) used there
with the equivalent quantity aN (|DuN |). Let us sketch the main steps. All missing details can
be found in [12]. To treat J2 we multiply and divide by

√
aN (|DuN |), use Proposition 2.31

and Young inequality, to show that, for any given λ > 0, it holds

|J2| ≤ λ

t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds + cλ−1

2∑
β=1

t∫

0

∫

�

ξ2|∂βFN (DuN )|2 dx ds,
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for some constant cλ−1 depending on λ−1. To treat the term J1 we first use the algebraic
identity ∂3DαβuN = ∂αD3βuN + ∂βD3αuN − ∂β∂αuN

3 . The first two terms in the resulting
equation are treated as J2, while in the term with ∂β∂αuN

3 we use the definition of tangential
derivatives (3.5). This results in three terms, where one is again treated as J2. This procedure
leads to9

|J1|7 ≤ λ

t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1
(
1 + ‖∇g‖2∞

) 2∑
β=1

t∫

0

∫

�

ξ2|∂βFN (DuN )|2 dx ds

+
t∫

0

∫

�

ξ2|∂3SN (DuN )| |∇2g| |DuN | dx ds

+
∣∣∣∣

t∫

0

∫

�

ξ2∂3S
N
αβ(DuN ) ∂α∂τβu

N
3 dx ds

∣∣∣∣.

(3.14)

In the last but one term in (3.14)wemultiply anddivide by
√
aN (|DuN |), useProposition 2.31,

Young inequality and aN (|DuN |)|DuN |2 ∼ |FN (|DuN |)|2 (cf. Proposition 2.29), yielding
that it is estimated by

λ

t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds + cλ−1 ‖∇2g‖2∞
t∫

0

∫

�

|FN (DuN )|2 dx ds.

To handle the last term in (3.14) we want to perform the crucial partial integration, which
reads (neglecting the localization ξ )

t∫

0

∫

�

∂3S
N
αβ(DuN ) ∂α∂τβu

N
3 dx ds =

t∫

0

∫

�

∂αS
N
αβ(DuN ) ∂3∂τβu

N
3 dx ds

=
t∫

0

∫

�

∂αS
N
αβ(DuN ) ∂τβ D33uN dx ds.

This partial integration replaces the term with ∂3SN (DuN ), which cannot be estimated in
terms of tangential derivatives, by a termwith ∂αSN (DuN ), which can be estimated in terms of
tangential derivatives. Again, we multiply and divide by

√
aN (|DuN |), use Proposition 2.31,

Young inequality, Corollary 3.18, and the definition of the tangential derivatives, yielding

9 The estimated terms correspond to the terms A and B3 in [12].
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that the last term is estimated by

c
2∑

α=1

t∫

0

∫

�

|∂αFN (DuN )|2 dx ds + c
2∑

β=1

t∫

0

∫

�

|∂τβF
N (DuN )|2 dx ds

≤ c
2∑

α=1

t∫

0

∫

�

|∂ταF
N (DuN )|2 dx ds + c ‖∇g‖2∞

t∫

0

∫

�

|∂3FN (DuN )|2 dx ds.

The presence of the localization ξ leads to several additional terms, which all can be handled
as in [12]. All together we arrive at the following estimate

|J1| + |J2| ≤ (
λ + cλ−1 ‖∇g‖2∞

) t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1

2∑
β=1

t∫

0

∫

�

ξ2|∂τβF
N (DuN )|2 dx ds

+ cλ−1
(
1 + ‖∇ξ‖2∞

) t∫

0

∫

�

|FN (|DuN |)|2 dx ds.

(3.15)

In this estimate we used for the terms with ∂βFN (DuN ) the definition of the tangential
derivative in (3.5) to get∫

�

ξ2|∂βFN (DuN )|2 dx ≤
∫

�

ξ2|∂τβF
N (DuN )|2 dx

+ ‖∇g‖2∞
∫

�

ξ2|∂3FN (DuN )|2 dx.
(3.16)

Also the term J3 is treated essentially as in [12]. Since in this step the equation (3.1) is used,
in addition we have to handle the term with the time derivative. More precisely, we re-write
the equations (3.1) as follows

∂3S
N
j3(Du

N ) = ∂uN
j

∂t
− f j − ∂β S

N
jβ(DuN ) a.e. in I × �,

multiply it by ∂33uN , use the algebraic identity

∂ j∂ku
N
i = ∂ j DikuN + ∂k Di juN − ∂i D jkuN , (3.17)

treat all terms without the time derivative as I3 in [12,p. 186] and integrate by parts the term

involving ∂uN

∂t , use Lemma 3.19, to get the following

J3 =
3∑
j=1

t∫

0

∫

�

ξ2
∂uN

j

∂t
∂233u

N
j − ξ2

(
f j + ∂β S

N
jβ(DuN )

)(
2∂3Dj3uN − ∂ j D33uN ) dx ds

= −1

2

∫

�

ξ2|∂3uN (t)|2 dx+ 1

2

∫

�

ξ2|∂3uN (0)|2 dx−2
3∑
j=1

t∫

0

∫

�

ξ∂3ξ
∂uN

j

∂t
∂3u

N
j dx ds
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+
3∑
j=1

t∫

0

∫

�

ξ2
(
f j + ∂β S

N
jβ(DuN )

)(
2∂3Dj3uN − ∂ j D33uN ) dx ds

≤ −1

2

∫

�

ξ2|∂3uN (t)|2 dx + 1

2

∫

�

ξ2|∂3uN (0)|2 dx

+ (λ + cλ−1 ‖∇g‖2∞
) t∫

0

∫

�

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1

2∑
β=1

t∫

0

∫

�

ξ2|∂τβF
N (DuN )|2 dx ds + c

t∫

0

∫

�

ξ3|∂3uN |2 dx ds

+ c ‖∇ξ‖2∞
t∫

0

∫

�

∣∣∣∂u
N

∂t

∣∣∣
2

dx ds + cλ−1

t∫

0

∫

�

|f|2
aN (|DuN |) dx ds, (3.18)

where we used again (3.16). Now we choose in the estimates (3.15), (3.18) first λ > 0 small
enough and then the covering of the boundary ∂� such that ‖∇g‖∞ is small enough in order
to absorb in the left-hand side of (3.13) the term involving ∂3FN (DuN ). This way we obtain
the following estimate

∫

�

ξ3|∂3uN (t)|2 dx + 1

C0

t∫

0

∫

�

ξ2|∂3FN (DuN (s))|2 dx ds

≤
∫

�

ξ3|∂3u0|2 dx + c
2∑

β=1

T∫

0

∫

�

ξ2|∂τβF
N (DuN (s))|2 dx ds

+ c

T∫

0

∫

�

|f(s)|2
aN (|DuN (s)|) + |FN (DuN (s))|2 +

∣∣∣∂u
N (s)

∂t

∣∣∣
2

dx ds

+ c

T∫

0

∫

�

ξ3|∂3uN (s)|2 dx ds

with constants depending only on the characteristics of S, ‖g‖C2,1 , and ‖ξ‖1,∞.
Using the uniform estimates (3.3), (3.6) and the lower bound in Lemma 2.32, which yields

T∫

0

∫

�

|f|2
aN (|DuN |) dx ds ≤ Cδ2−p

T∫

0

∫

�

|f|2 dx ds,

we get from the last estimate the assertion of Proposition 3.20. ��

Choosing now an appropriate finite covering of the boundary (for the details see also [11]),
Propositions 3.15 and 3.20 yield the following result:
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Proposition 3.21 Let the same hypotheses as in Theorem 3.4 with δ > 0 be satisfied. Then,
it holds for a.e. t ∈ I

t∫

0

‖∇FN (DuN (s))‖22 ds ≤ C

with C depending only on the characteristics of S, |||u0, f|||, δ2−p‖f‖22, δ p−2 and ∂�. In
particular is C independent of An, n = 1, . . . , N.

3.5 Multiple passage to the limit

From Propositions 3.7 and 3.21 we obtain the following estimate, uniform with respect to
An ≥ 1, n = 1, . . . , N , and valid for a.e. t ∈ I .

‖uN (t)‖21,2+‖FN (DuN (t))‖22 +
t∫

0

∥∥∥∥∂uN (s)

∂t

∥∥∥∥
2

2
+‖∇FN (DuN (s))‖22 ds ≤ C (3.19)

with C depending only on the data of the problem (1.1).
Note that the functions uN and FN depend (implicitly) on the parameters An . Since

these parameters are relevant for the various limiting processes, we now start to write
these dependencies in an explicit way. The uniform estimates for uN (t, x, A1, . . . , AN ) and
FN (DuN (t, x, A1, . . . , AN )) are inherited by taking appropriate limits of the various An . In
particular, we will define (when the limit exists in appropriate spaces)

uN−1(t, x, A1, . . . , AN−1) := lim
AN→∞ uN (t, x, A1, . . . , AN−1, AN ),

and then inductively

un−1(t, x, A1, . . . , An−1) = lim
An→∞ un(t, x, A1, . . . , An−1, An) n = 1, . . . , N ,

in such a way that the function u := u0 will be shown to be the unique regular solution to
the initial boundary value problem (1.1).

Proof of Theorem 3.4 From estimate (3.19) we obtain that uN is uniformly bounded
in W 1,2(I ; L2(�)) ∩ L∞(I ;W 1,2(�)) and that FN (DuN ) is uniformly bounded in
L∞(I ; L2(�)) ∩ L2(I ;W 1,2(�)).

These bounds directly imply that there exists a sequence ANk → ∞ (which we call again

AN ), a vector field uN−1(t, x, A1, . . . , AN−1), and a tensor field F̂N−1

limAN→∞ uN = uN−1 weakly in W 1,2(I ; L2(�)),

limAN→∞ uN = uN−1 weakly* in L∞(I ;W 1,2(�)),

limAN→∞ FN (DuN ) = F̂N−1 weakly in L2(I ;W 1,2(�)),

limAN→∞ FN (DuN ) = F̂N−1 weakly* in L∞(I ; L2(�)).

(3.20)

From ‖FN (DuN )‖L2(I ;W 1,2(�) ≤ C it follows, using Proposition 2.31, the lower bound on
aN proved in Lemma 2.32, and the identity (3.17), that

δ p−2‖∇2uN‖L2(I ;W 2,2(�)) ≤ C (3.21)
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withC depending only on the data of the problem (1.1), but independent of AN . The estimates
(3.19), (3.21) and the Aubin-Lions compactness lemma imply that (up to a further sub-
sequence)

lim
AN→∞DuN = DuN−1 a.e. in I × � and strongly in L2(I × �),

for all fixed An , with n = 1, . . . , N − 1. Next, we observe that since

lim
AN→∞ aN (t) = aN−1(t),

uniformly for t belonging to compact sets in R
≥0 (but in reality even more since aN (t) =

aN−1(t) for all 0 ≤ t ≤ AN ), it follows by the definition of FN and SN that a.e. in I × �

and for all fixed An , n = 1, . . . , N − 1, there holds

lim
AN→∞FN (DuN (A1, . . . , AN−1, AN )) = FN−1(DuN−1(A1, . . . , AN−1)),

lim
AN→∞SN (DuN (A1, . . . , AN−1, AN )) = SN−1(DuN−1(A1, . . . , AN−1)).

(3.22)

In fact, by the definition of multiple approximation it follows that for all given P ∈ R
3×3 and

for all fixed A1, . . . , AN−1 it holds

lim
AN→∞FN (P, A1, . . . , AN−1, AN ) = FN−1(P, A1, . . . , AN−1),

lim
AN→∞SN (P, A1, . . . , AN−1, AN ) = SN−1(P, A1, . . . , AN−1),

hence

FN (DuN (t, x, A1, . . . , AN−1, AN )) − FN−1(DuN−1(t, x, A1, . . . , AN−1)),

= FN (DuN (t, x, A1, . . . , AN−1, AN )) − FN−1(DuN (t, x, A1, . . . , AN−1, AN )),

+ FN−1(DuN (t, x, A1, . . . , AN−1, AN )) − FN−1(DuN−1(t, x, A1, . . . , AN−1)),

and the first line on the right-hand side vanishes for large enough AN , by the properties of
the multiple approximation; while the second one converges to zero due to the continuity of
FN−1 and the point-wise convergence of DuN . The same argument applies also to SN .

The classical result stating that theweak limit inLebesgue spaces and the a.e. limit coincide
(cf. [25]) and (3.20) imply that

F̂N−1 = FN−1(DuN−1(A1, . . . , AN−1)) in L2(0, T ;W 1,2(�)).

This identification, the convergences in (3.20), and the lower semicontinuity of norms
proves that, for a.e. t ∈ I , it holds

‖uN−1(t)‖2W 1,2 + ‖FN−1(DuN−1(t))‖22

+
t∫

0

∥∥∥∥∂uN−1(s)

∂t

∥∥∥∥
2

2
+ ‖∇FN−1(DuN−1(s))‖22 ds ≤ C

(3.23)

with a constant C depending on the data of the problem (1.1), but independent of An , for
n = 1, . . . , N − 1.

We have now to pass to the limit in the weak formulation (3.2) of the approximate prob-
lem (3.1). Since, in view of (3.20), we easily deal with the time derivative and the right-hand

123



  137 Page 46 of 49 L. C. Berselli, M. Růžička

side f , the crucial point is the justification of the limit

T∫

0

(SN (DuN (t)),Dw) ψ(t) dt →
T∫

0

(SN−1(DuN−1(t)),Dw) ψ(t) dt, (3.24)

for all ψ ∈ C∞
0 (I ) and all w ∈ C∞

0 (�). At the moment we already know that
limAN→∞ SN (DuN ) = SN−1(DuN−1) holds a.e. in I × �. Thus, to conclude it is suffi-
cient to show that SN (DuN ) is bounded uniformly with respect to N in Lq(I ×�), for some
q > 1. To this end we observe that Corollary 2.33, Proposition 2.17, the definition of FωqN ,δ

in (2.11), and qN ≥ 2 imply that for all P ∈ R
3×3 there holds

|FN (P)|2 ≥ c δ p−qN |FωqN ,δ (P)|2 = c δ p−qN (δ + |Psym|)qN−2|Psym|2
≥ c δ p−qN |Psym|qN .

(3.25)

The a priori bound (3.19) and parabolic embedding imply that FN (DuN ) is bounded in

L
10
3 (I × �) by a constant depending only on the data of problem (1.1). This together with

(3.25) and 5
3q ≥ q + 4

3 , valid for all q ≥ 2, implies

‖DuN‖
LqN+ 4

3 (I×�)
≤ C

with a constant independent of AN . Corollary 2.33 also implies that

|SN (DuN (t, x))| ≤ c Ap−qN−1
N−1 (ωqN−1,δ)

′(|DuN (t, x)|)
≤ C Ap−qN−1

N−1

(
δqN−1−1 + |DuN (t, x)|qN−1−1).

Hence, the latter estimates prove that

‖SN (DuN )‖L(4/3+qN )/(qN−1−1)(I×�)
≤ C(AN−1),

where the constant C depends on the data of the problem (1.1), on AN−1, but is independent

of AN . Thus, we can infer that there exists ŜN−1 such that (up possibly to a further relabelled
sub-sequence)

lim
AN→∞ SN (DuN ) = ŜN−1 weakly in L(4/3+qN )/(qN−1−1)(I × �), (3.26)

provided (4/3 + qN )/(qN−1 − 1) > 1, which is equivalent to

qN−1 − qN <
7

3
,

which motivated the choice of qn in Definition 3.5. Using again the classical result stating
that the weak limit in Lebesgue spaces and the a.e. limit coincide (cf. [25]) we infer from
(3.22) and (3.26) that

ŜN−1 = SN−1(DuN−1(A1, . . . , AN−1)) in L( 43+qN )/(qN−1−1)(I × �),

which in turn implies (3.24). Thus we proved that uN−1 satisfies (3.23) and

T∫

0

(∂uN−1(t)

∂t
,w
)

ψ(t) dt+
T∫

0

(SN−1(DuN−1(t)),Dw) ψ(t) dt =
T∫

0

(f(t),w) ψ(t) dt,

for all ψ ∈ C∞
0 (I ) and all w ∈ C∞

0 (�).
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At this point we can repeat exactly the same argument by replacing N with N − 1. Thus,
one obtains inductively that for all n = 1, . . . , N − 1 there holds

T∫

0

(∂un−1(t)

∂t
,w
)

ψ(t) dt +
T∫

0

(Sn−1(Dun−1(t)),Dw) ψ(t) dt =
T∫

0

(f(t),w) ψ(t) dt,

for all ψ ∈ C∞
0 (I ) and all w ∈ C∞

0 (�). After N iterations we find, using also the density of

C∞
0 (�) in W 1,p

0 (�) in the last step, that the vector field u0 =: u is a regular solution of the
original problem problem (1.1). This finishes the proof of Theorem 3.4. ��

Let us finish with stating the corresponding result to Theorem 3.4 in the steady case. This
result can be proved, with many simplifications due to the absence of the time derivative and
the better embedding results in the steady case (cf. Sect. 1.1), exactly in the same way as the
unsteady result Theorem 3.4. Thus, we have the following result:

Theorem 3.22 Let � ⊂ R
3 be a bounded domain with C2,1 boundary, and assume that

f ∈ L2(�). Let the operator S, derived from a potential U, have (p, δ)-structure for some
p ∈ (2,∞), and δ ∈ (0,∞) fixed but arbitrary.

Then, there exists a unique regular solution of the steady version of the system (1.1), i.e.,
u ∈ W 1,p

0 (�) fulfils for all w ∈ C∞
0 (�)

∫

�

S(Du) · Dw dx =
∫

�

f · w dx,

and satisfies F(Du) ∈ W 1,2(�) with norm depending only on the characteristics of S, δ−1,
�, and ‖f‖2.
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22. Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad.

Sci. Fenn. Math. 35(1), 87–114 (2010)
23. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathe-

matical Society, Providence (1998)
24. Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized

Newtonian Fluids. Lecture Notes in Mathematics, vol. 1749. Springer, Berlin (2000)
25. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgle-

ichungen. Akademie-Verlag, Berlin (1974)
26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

(2001). (Reprint of the 1998 edition)
27. Krasnoselskiı̆,M.A.,Rutickiı̆, J.B.:ConvexFunctions andOrliczSpaces. Translated from theFirstRussian

Edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961)
28. Ladyžhenskaya, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations. Translated from the

Russian by Scripta Technica, Inc. Translation Editor: Leon Ehrenpreis. Academic Press, NewYork (1968)
29. Ladyžhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic

Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23.
American Mathematical Society, Providence (1967)

30. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal.
12(11), 1203–1219 (1988)

31. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Volume I. Die
Grundlehren der mathematischen Wissenschaften, Band 181. Springer, New York (1972). (Translated
from the French by P. Kenneth)
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