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Abstract: In the cybersecurity field, the generation of random numbers is extremely important because
they are employed in different applications such as the generation/derivation of cryptographic keys,
nonces, and initialization vectors. The more unpredictable the random sequence, the higher its
quality and the lower the probability of recovering the value of those random numbers for an
adversary. Cryptographically Secure Pseudo-Random Number Generators (CSPRNGs) are random
number generators (RNGs) with specific properties and whose output sequence has such a degree
of randomness that it cannot be distinguished from an ideal random sequence. In this work, we
designed an all-digital RNG, which includes a Deterministic Random Bit Generator (DRBG) that
meets the security requirements for cryptographic applications as CSPRNG, plus an entropy source
that showed high portability and a high level of entropy. The proposed design has been intensively
tested against both NIST and BSI suites to assess its entropy and randomness, and it is ready to be
integrated into the European Processor Initiative (EPI) chip.

Keywords: random number generator; FPGA; entropy; ASIC; EPI

1. Introduction

The generation of random bits (or numbers) represents one of the fundamental and
most significant aspects concerning cybersecurity, because they are employed to generate
and/or derive cryptographic keys, one-time passwords, initialization vectors (IVs) for some
cryptographic algorithms, and more in general non-repeating values (as the nonces and
others). From here, the requirement of having good-quality random numbers becomes a
mandatory feature for those security modules aimed to provide and strengthen the security
level of a system or an application. With good-quality random numbers, they indicated
those sequences of bits generated unpredictably, for which the higher the unpredictability,
the higher the quality (or the security strength). Indeed, if the method used to produce
such streams of bits was predictable, also only in part, this would expose an entire system
to severe security threats. For example, it can be assumed that a cybersecurity device offers
confidentiality protection of data by using a symmetric-key encryption/decryption scheme.
The key employed within the encryption and decryption functions must be protected as
well, because if an attacker was able to discover or to guess such a key, then it would have
access to the content of the communication, compromising the privacy between the entities.
Random numbers could be used to generate or refresh such keys, or also as the initial value
of a packet number that is integrated into the communication to protect against replay
attacks. Anyway, the higher the probability to retrieve the value of those random numbers,
the higher the probability for an adversary to obtain such data.

In addition to next-generation technologies, such as quantum-based random number
generation [1], there are essentially two methods to generate random bits exploitable in
digital circuits. One strategy consists of producing bits non-deterministically, for which the
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value of every output bit is based on a physical process that is intrinsically unpredictable:
this class of Random Bit Generators (RBGs) is commonly known as Non-deterministic Ran-
dom Bit Generator (NRBG). The other approach consists of computing random bits using
a deterministic algorithm, and accordingly, this class of RBGs is known as Deterministic
Random Bit Generator (DRBG). Such a class of RBGs produces sequences of bits from an
initial value that is denoted as seed, and it is required to be the output of a source of ran-
domness. As a result of the deterministic nature of the process, a DRBG is said to produce
pseudo-random bits rather than random bits. Moreover, the seed used to initialize the
DRBG can be compared to a cipher key that must be kept secret; otherwise, its knowledge
can allow an attacker to disclose the future values of pseudo-random sequence, as it is
generated in a deterministic way. If on one hand, the terms DRBG and NRBG refer to the
construction techniques and properties of RBGs, on the other one, their implementations
are usually denoted as Pseudo-Random Number Generators (PRNGs) and True Random
Number Generators (TRNGs), respectively, because they are typically used to generate
random values with a width greater than 1 bit (notably a number). In this field, the adop-
tion of modules named Cryptographically Secure Pseudo-Random Number Generators
(CSPRNGs) also acquired relevance, which are PRNG with specific properties regulated
by standards, and whose output sequence has a degree of randomness such that it cannot
be distinguished from an ideal random sequence within certain limits; for this reason,
they can be employed in cryptographic applications. A CSPRNG can be implemented
both integrating a source of randomness or a TRNG by itself, thus beginning an only
output module that does not require any input (i.e., the seed), and without integrating
such source of randomness: in such case, the CSPRNG module is provided also with an
input interface for seeds that must respect specific and stringent rules specified by the
corresponding standards.

This article focuses on the design and test of an all-digital hardware accelerator for
random number generation, NIST-compliant at entropy level, with sustained throughput
and technology independence. The complete hardware accelerator is to be exploited
within the 7 nm European Processor Initiative [2] ASIC, together with other hardware
accelerators that will rely on it (AES [3], ECC [4], SHA [5]). The paper is organized as
follows. In Section 2, the architecture of the proposed RNG is explained. In particular, this
section covers also the aspects related to the design of both the entropy source and the
DRBG modules as well as the synthesis process on the target technology; Section 3 focuses
on the achieved results in terms of complexity, entropy, and randomness of the proposed
design; Section 4 compares the obtained results with the State of the Art, and finally,
Section 5 points out the conclusions for this work.

2. Design of the Random Number Generator
2.1. RNG Engine

The RNG engine implements a CSPRNG to provide random sequences of bits (or num-
bers) with an entropy level that can be considered sufficient for cryptographic applications
requiring a high level of security (or security strength).

The internal architecture of the RNG engine is illustrated in Figure 1, and it mainly
consists of the integration of an entropy source module and a hash-based DRBG module,
which are respectively described in [6–8]. The former is responsible for the generation of
(internal) seeds that are used to initialize the internal state of the DRBG and that are built
byte by byte, exploiting the Buffer unit to collect them, while the latter produces sequences
of random words that constitute the output data of the whole RNG engine. Both modules
are equipped with their own dedicated health test mechanism that continuously evaluates
the randomness of the generated bitstreams, and both are managed by a control unit that
regulates their usage and interaction, which is also based on the response of the health
test. Moreover, the DRBG module accepts as input also personalization string to further
increase the degree of randomness of output sequences, according to the specifications
of [9,10], and it also seeds from the external: this choice was guided by the fact that the
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entropy level of seeds generated by the entropy source module is strongly dependent
on the technology used for its implementation, and it was not possible to evaluate its
characteristics in advance, using some statistical models. Thus, it was foreseen to permit
the usage of seeds from external to improve the robustness of the RNG engine and prevent
the impossibility of using at least the DRBG part of the CSPRNG, in case the integrated
entropy source module is not able to generate seeds featuring the required amount of
entropy. This solution allows also to continue using the DRBG mechanism of the RNG
engine in case the entropy module shows some flaws during its operation, and that is
signaled by the corresponding Health test unit. Finally, an additional and dedicated output
line has been included in the RNG engine to access and acquire the raw data from the
entropy source module and conduct tests to assess what the entropy level can provide:
such an output line corresponds to the signal debug probe in Figure 1. With respect to the
previous works published in [6–8] , this paper presents the whole design of the RNG engine
and introduces some architectural features for improving its robustness such as the input
ports for external seed and personalization string, the output port for the entropy source
assessment, and the health test modules for both the entropy source and the DRBG module.
In addition, with respect to the work in [6], this work shows the complete evaluation
procedure for the whole RNG engine and demonstrates the portability of the entropy
source in different FPGA technologies.

Entropy 

source

output 

dataHash-based

DRBG

Buffer

Health test DRBG 

Health test 

external seed
debug probe

internal seed

RNG engine control unit

personalization string

Figure 1. Internal architecture of RNG engine.

2.2. Entropy and Design of the All-Digital Entropy Source

Concerning the entropy source module, its development was guided by the purpose of
implementing a digital design featuring the highest level of entropy, and that was portable
on a variety of technologies, exploiting the properties of HDL digital designs. As shown
in [6], such design activity starts with the analysis (and the comparison) of the available
solutions, which all rely on the usage of ROs for the generation of entropy. A RO essentially
consists of a chain of combinational logic gates and cells that closes on itself, forming a circle,
or a loop, in which the output of the last element corresponds also to the input of the first
element of the chain. The output of the last element of the chain is used also as the output
of the RO, and it oscillates between two voltage levels corresponding to the logic states low
(or 0) and high (or 1). The characteristics of the oscillation depend on the topology of the
combinational loop and the logic cells used to build it. Based on this, different approaches
can be used to exploit some intrinsic physical phenomena such as temperature, voltage,
or noise fluctuations to randomize the oscillation and thus generate a random sequence
of 0 s and 1 s by sampling the output of the RO. The most diffused and main solutions
are Transition Effect Ring Oscillator (TERO), originally proposed in [11], Metastable Ring
Oscillator (Meta-RO), proposed for the first time in [12], Fibonacci Ring Oscillator (FiRO),
and Galois Ring Oscillator (GaRO), illustrated in [13] and Fibonacci-Galois Ring Oscillator
(FiGaRO), which is a combination of the last two previous candidates, and it is described,
for example, in [14].

FiRO derives from its namesake LFSR architecture, replacing all D flip-flops with in-
verters. Randomness is introduced by the dependence of the inverter delay on temperature
and supply voltage: as these parameters vary, due to both noise and environmental changes,



Entropy 2022, 24, 139 4 of 18

the ring evolves with different output patterns, resulting in a chaotic and unpredictable
signal. Further randomness can be acquired during the sampling phase with the violation
of setup and hold times. Similarly, GaRO is derived from the Galois LFSR structure, again
replacing all D flip-flops with inverters. The same considerations made with FiRO on the
stochastic evolution of this circuit apply. The structure formed by XORing FiRO and GaRO
is called FiGaRO structure. For more details, please refer to [6], where architectures of the
mentioned oscillators are explained in detail. The selection of the FiGaRO oscillator has
been made after the experimental campaign performed in [6], where it was demonstrated to
be the best among all the other presented oscillators in terms of entropy for an FPGA device.

Table 1 shows the main outcome of the comparative analysis in [6], for which the
FiGaRO approach was selected, because of the advantages offered by its features, including
its independence to the placement of design elements and its enhanced robustness to the
implementation of single FiRO or GaRO.

Table 1. Comparison of design strategies for digital entropy source modules. The approach based on
TERO is illustrated in [11,15–17], the one based on Meta-RO is described in [12], while some examples
of FiROs and GaROs can be found in [13], and the one employing FiGaRO is presented in [13].

Design Strategy Physical Phenomena
Generating Entropy Main Characteristics

TERO
Latches oscillatory
metastability

Low throughputs, large dependence
on placement of logic cells

Meta-RO
Analogue metastability
of inverter gates

PLL required, dependence on
placement of logic cells

FiRO Jitter and metastability Good independence from placing

GaRO Jitter and metastability Good independence from placing

FiGaRO Jitter and metastability
Independence from placing, higher entropy and
robustness respect to single FiRO and GaRO

According to these considerations, our proposed entropy source module has been
implemented by instancing eight parallel FiGaRO stages, to generate a random byte made
of eight independent bits, each one from a different FiGaRO stage. The architecture of
this module is illustrated in Figure 2a, while Figure 2b shows the internal structure of a
FiGaRO stage, which counts four FiROs and four GaROs units mixed through the XOR
gate, as this solution showed in [6] to provide an entropy per bit of 0.995, independently
from the placement and the value of the sampling frequency.

FiGaRO#0

FiGaRO#7

FiGaRO#1

...

... Buffer

Health test 

1
 r

a
n
d
o

m
 b

y
te

FiRO#1 GaRO#1

GaRO#2FiRO#2

FiRO#3 GaRO#3

FiRO#0 GaRO#0

1 random bit

(a) Internal architecture of entropy source module. (b) Internal architecture of a FiGaro stage.

Figure 2. Internal architecture of entropy source module of RNG engine (a), and of FiGaRO stages
composing it (b).

2.3. Design of the Deterministic Random Bit Generator Module

Figure 3 shows the internal architecture of the DRBG module, which relies on a SHA2-
256 core and integrates also a buffer containing the current state and a reseed counter.
The output of the SHA2-256 [5] core is used to generate the output stream of the DRBG;
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therefore, it is constituted by random words of 256 bits, corresponding to the digest of the
hashing unit. The reseed counter is in charge to signal when a new seed is required in input
to the module, to refresh the entropy level of the output random stream, and to avoid it
decreasing too much.

SHA2-256 coreSerial adder

State buffer Reseed counter

FSM

DRBG

Health test 

Multiplexer network

seed
personalization string

output 

data

Figure 3. Internal architecture of DRBG module of RNG engine.

The choice of a hash-based mechanism for the implementation of the DRBG module
can be found in the work presented in the publications [7,8], in which they have investi-
gated the structures and the characteristics in terms of security and performance of the
implementation approach specified by the NIST standard for the construction of crypto-
graphically secure deterministic RBGs, i.e., [9]. We propose and specify the following three
main architectures:

• CTR-DRBG, which relies on the CTR mode of operation of block ciphers;
• Hash-DRBG (ref. [9] specifies also the usage SHA1 function for the Hash-DRBG class;

anyway, it has not been included in the analysis presented in [8] because it offers a
lower security strength to the SHA2 counterpart, and it is considered outdated), which
relies on the SHA2 functions;

• HMAC-DRBG, which relies on the HMAC scheme of hash algorithms.

All these approaches can provide a security strength up to 256 bits, under specific
design rules, and show different characteristics at an architectural level, which reflects also
on performance. Although the CTR-DRBG solution permits implementing more efficient
PRNGs both for the relative metric of throughput per area and for the absolute metrics
of throughput (the highest one) and consumption of logic resources (the lowest one), it
has been discarded, as [18] expresses about the effective capability of this mechanism to
reach maximum security strength: its authors claim that the usage of DRBGs based on
block ciphers should be avoided since the pseudo-random permutation inside each AES [3]
round outputs a sequence that is distinguishable from a random source, while the DRBGs
based on hash functions satisfy the security requirements. On the other hand, the DRBGs
based on HMAC can be interpreted as a more complex version of the ones relying on
hash functions, because they exploit the same underlying hash algorithm to which the
HMAC scheme adds resources, data (the key), and operations (hence latency), therefore
leading to a less efficient solution and introducing the issues related to the establishment
of cryptographic keys. After these considerations, the most convenient choice lies in the
Hash-DRBG approach. In this regard, it is useful to recall that SHA2-224 and SHA2-256 are
in essence the same algorithm that only provides outputs of different sizes, hence requiring
the same amount of resources and showing the same critical path (i.e., the same maximum
frequency) but outputting a different amount of data. For this reason, the function with
the highest data size (SHA2-256) must be preferred, because it offers a higher throughput
at the same area cost. Similarly, such evaluation applies also to the SHA2-384 and SHA2-
512 functions, for which the SHA2-512 algorithm is shown to be more efficient than the



Entropy 2022, 24, 139 6 of 18

SHA2-384 one. Proceeding with a comparison of solutions based on SHA2-256 and SHA2-
512 routines, no matter the implementation strategy, the function for the generation of
512-bit digests requires almost double the resources requested by the 256-bit counterpart
because it operates on vectors of double size: input blocks of 1024 bits, rather than 512 bits,
and internal data path of 64 bits, rather than 32 bits. On the timing performance side,
the two solutions can support approximately the same clock frequency ( fclk) but with
different latencies: 64 clock cycles for the SHA2-256 case and 80 clock cycles for the SHA2-
512 case. Including also the length of the output digests, their throughput (At confirmation
of the considerations on the HMAC-DRBGs approach, the corresponding throughput of
HMAC version of the same 256-bit and 512-bit PRNGs can be expressed, respectively, such
as 1 · fclk bit/s and 1.6 · fclk bit/s) can be expressed, respectively, like 4 · fclk bit/s and
6.4 · fclk bit/s. If including also the area cost, a heuristic efficiency factor can be derived by
computing from the ratio between the throughput and the resources consumption as:

• 4 · fclk
bit/s
area , for the SHA2-256 case;

• 3.2 · fclk
bit/s
area , for the SHA2-512 case.

Therefore, in conclusion, the implementation of a Hash-DRBG module based on the
SHA2-256 function should be preferred to ensure a compact and efficient solution, and that
was the choice for the DRBG block in Figure 1. According to NIST specifications [9],
the length of seed required by this deterministic RBG is 440 bits and the minimum level of
entropy is 256 bits (while the maximum is of 235 bits). The input seed has been extended
to 512 bits both for simplicity of usage, because the SHA2 function takes as input data
blocks of 512 bits, and for relaxing the constraints on the entropy degree (This minimum
level of entropy per bit is calculated as the ratio between the minimum required entropy,
i.e., 256 bits, and the length in bits of input seed after extension, i.e., 512 bits; if using the
length of the bit of input seed specified by the NIST in [9], i.e., 440 bits, the corresponding
minimum level of entropy per bit is 256/440 = 0.582 bits, which constitutes a more stringent
requirement for the seed properties to the previous case) of input seed that must be at least
of 256/512 = 0.5 bits of entropy per bit.

2.4. Synthesis Design

The synthesis process of the RNG engine was performed using the Electronic Design
Automation (EDA) tools Design Compiler by Synopsys [19] and Vivado by Xilinx [20],
targeting, respectively, standard-cell and FPGA technologies. Concerning this step, some
issues are required to be addressed for guiding the logic synthesis to generate a netlist
corresponding to the expected outcome. The main issue faced during the synthesis con-
cerned the ring oscillators (FiROs and GaROs) that are essentially a looped chain of NOT
and XOR gates, as shown by Figure 4 for a GaRO of W inverting elements. The inverting
elements are the NOT gate and the global enable signal of the circuit is en, while the TAP[i]
elements are the coefficient of the polynomial associated to the feedback net: if TAP[i] = 1,
the corresponding connection is a short-circuit; hence, the corresponding XOR gate is
instantiated within the circuit; otherwise, (TAP[i] = 0) the corresponding connection is an
open circuit, and the associate XOR gate is not instantiated.

en

out

feedback

TAP[1] TAP[2] TAP[W - 1]...

Figure 4. Schematic of a GaRO with enable (en signal) and W inverting elements.

When generating the corresponding netlist with the library cells of the target tech-
nology, the synthesis engine performs several optimizations that can include also the
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modification of some parts of the circuit described in HDL but without modifying its
logical functionality. This can happen also to the ring oscillator in Figure 4, and indeed,
this phenomenon was observed during the synthesis of the RNG engine. Figure 5 shows
the typical outcome of the logic synthesis when trying to synthesize a circuit similar to the
one reported in Figure 4.

Figure 5. Typical outcome of the synthesis of a GaRO. This schematic has been extracted by using the
Synopsys Design Compiler tool.

As illustrated in Figure 5, the chain of NOT and XOR gates forming the ring oscillator
loop can be replaced by a single NAND gate by the synthesis process, because they are
logically equivalent. Indeed, it can be easily proved by building the truth table associated
with the NAND gate in Figure 5, by referring to its input ports, i.e., A and B, and its output
port, i.e., Y.

Combining the information in Table 2 with the schematic in Figure 5, it derives that
when input B is 0, the signal on port Y is forced to the high logic level (1), whatever the
initial value of port A, and it remains on that logic level, because due to the feedback wire,
the value of Y is applied also to port A, and when B = 0 and A = 1, Y = 1 (Table 2).
In other words, when the module in Figure 5 is disabled (i.e., B which is connected and
corresponds to the module enable signal, ctrl_1e__, is zero), the loop does not oscillate and
the output of the module (Y) is stable to the logic value 1. On the other hand, when the
module in Figure 5 is enabled (i.e., ctrl_1e__ = B = 1), the oscillation is triggered and the
output Y starts to bounce between the logic states 0 and 1. Assuming A = 1 for instance, Y
becomes 0 (case B = 1 and A = 0 in Table 2), and this value is transmitted to port A, which
moves to the low logic value, too. Now that A = 0, Y moves to the logic value 1 (case B = 1
and A = 0 in Table 2); thus, also, A assumes again the high logic state, and the cycle starts
again from the beginning, being continuously repeated until B = 1. To resolve this issue,
specific constraints have been specified relying on the set_dont_touch attribute that was
integrated within the Synopsys Design Constraint (SDC) file used in the synthesis flow,
to force the synthesis engine to generate a netlist as close as possible to the one in Figure 4
and described accordingly in the RTL code of the RNG. An example of the results of this
strategy is illustrated in Figure 6.

Table 2. Truth table of NAND gate.

B A C = B · A Y = C = B · A

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0
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Figure 6. Outcome of GaRO synthesis with proper constraints. This schematic has been extracted by
using the Synopsys Design Compiler tool and refers to the synthesis of the same RTL code used also
for the synthesis of the circuit represented in Figure 5 but including dedicated synthesis constraints.

3. Results
3.1. Results on FPGA and 7 nm Standard Cell Technologies

In the case of FPGA, the full implementation flow was performed, i.e., logic synthesis,
placement, and routing steps. The target device for this flow was a Xilinx Virtex UltraScale+
HBM FPGA VU37P [21] (device XCVU37P-L2FSVH2892EES9837) that is manufactured us-
ing a 16 nm low-power FinFET+ process technology from TSMC. The main programmable
logic element of this device is named Configurable Logic Block (CLB), and it integrates
several logic resources, including Look-Up Tables (LUTs) (referred to as CLB LUTs), flip-
flops (referred to as CLB Registers), and other logic blocks; specifically, that FPGA counts
162,960 CLB, and each one is provided with eight LUTs (for a total of 1,303,680 CLB LUTs)
and 16 flip-flops (for a total of 2,607,360 CLB Registers or bits). Moreover, such an FPGA
is equipped also with other embedded hardware resources as RAM blocks, DSPs, PLLs,
and others. The tool Vivado EDA has been used for the synthesis and implementation
process, adopting strategies oriented to the optimization of the performance (of timing
and power, notably the synthesis strategy denoted as Flow_PerfOptimized_high and the
implementation strategy denoted as Performance_ExtraTimingOpt, respectively). Table 3
reports the final results of this activity.

Table 3. Implementation results on FPGA VU37P. The percentage data between round brackets refer
to the relative utilization of the corresponding entity with respect to the total of resources offered by
the FPGA device.

Entity Frequency
[MHz]

CLB
(162,960)

CLB LUTs
(1,303,680)

CLB Registers
(2,607,360)

RNG engine 260 2151 9842 7121

Entropy Source 260 384 1567 2137

DRBG 260 1528 7327 3685

Regarding the synthesis results on standard-cell technology, in this case, the Design
Compiler EDA by Synopsys was used, and the target technology was the one proposed
by the EPI project, i.e., the H300 BASE SVT C8 of the 7 nm TSMC process CLN07FF41001
SVT, and released by ARM as part of the package of logic products named Artisan 7 nm
TSMC CLN07FF41001. The operating conditions and the technology corner case used
in the synthesis were 0.90 V for the voltage supply, 125 °C for temperature, and slow
process. Table 4 summarizes the final post-synthesis results on the 7 nm standard-cell
technology by ARM, in which the area data are expressed in Gate Equivalent (GE), being
1 GE corresponding to the area of the two-inputs NAND gate of the ARM Artisan 7 nm
technology with the smallest area, i.e., 0.0768 µ2.
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Table 4. Post-synthesis results for the RNG engine on 7 nm technology. Frequency data are expressed
in GHz, while area data are expressed in kGE.

Entity Frequency [GHz] Area [kGE]

RNG engine 4.325 127.16

Entropy Source 4.325 69.29

DRBG 4.325 46.51

3.2. RNG Assessment

Several suites exist to evaluate the randomness of an RNG; over the years, researchers
have proposed different statistical methods and tests to assess the output sequences of both
hardware and software implementations of RNG. The first and most notorious was the
Diehard, which has been updated and improved to become the suite Dieharder [22]. Other
suites of the test have been proposed in recent years, including the following:

• The ENT suite [23], for example used in [24,25];
• The batteries of tests PractRand [26], employed in [27,28], and TestU01 [29], whose

usage is reported in [27,28,30–33]: both essentially represent an enhancement of
Diehard(er) suite, because they include some improvements such as the possibility
of setting the parameters of some of the offered statical tests (feature not offered
by Diehard(er));

• The NIST Statistical Test Suite (STS) [34], used in [24,25,30];
• The battery of tests described in [35], in order to meet the requirements of the BSI stan-

dards AIS 20 [36], for DRBGs and AIS 31 [37], for TRNGs, whose usage is documented
by [38,39];

A review on the available statistical tests available can be found in [40]. In case of
cryptographic applications, the most indicated statistical suites, as confirmed by [38,41],
are the ones offered by the standardization organizations, i.e., NIST and BSI. Hence, their
usage is indicated to evaluate two fundamental aspects for implementations of RNGs: the
entropy and the randomness of bitstreams. The goal of the former metric concerns the
quantification of how many bits of entropy an RNG module can generate; the latter is to
evaluate how much the sequences of random bits generated by a real RNG differ from the
sequences produced by an ideal RNG. In this work, we adopted both the NIST and BSI
suites for the assessment of our RNG.

The BSI suite is made available as a Java-based tool that can be downloaded at [42],
and it includes a battery of statistical tests divided into two distinct procedures: procedure
A, comprising the tests T0 and T1 through T5, which is aimed to evaluate the randomness
of sequences of bits, and procedure B, comprising the tests T6 to T8, whose purpose is to
calculate the entropy level of such sequences [35], which is an update of both [43,44], gives
mathematical references of the tests, and describes the procedures to be followed for both
TRNGs (AIS 31) and DRBGs (AIS 20).

The NIST offers two distinct suites for the two distinct characteristics to be analyzed:
the Entropy Assessment (EA) suite, illustrated in the standard NIST SP 800-90B [45],
and the already mentioned STS described in the standard NIST SP 800-22 [34]. The former
is required for the evaluation of the entropy and is available as a collection of software
applications written in C++ language that can be downloaded through a git repository
at [46]. The latter can be used for testing the randomness of sequences and is made available
as a C software application, whose most recent version is 2.1.2, and it can be downloaded
from the NIST website at [47].

3.2.1. Entropy Evaluation

The entropy evaluation of an RNG becomes relevant when it is used to generate seeds
for PRNGs or CSPRNGs, as in the case of the entropy source we used in this work to supply
the DRBG. By evaluating the level of entropy, it is then possible to determine if the RNG
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module can satisfy the requirements of the minimal amount of bits of entropy required by
the DRBG mechanism intended to use such seeds as the ones specified by the NIST in [9].
The EA suite for the evaluation of the entropy essentially counts two steps: a preliminary
entropy assessment routine for the calculation of the initial entropy HI and a successive
entropy assessment routine that estimates the entropy per row HR, and the entropy per
column HC, of a 1000 × 1000 matrix of random samples. The routine outputs the final
value of entropy H, which is calculated as the minimum between HI , HR, and HC:

H = min(HI , HR, HC).

The required samples have been acquired from the entropy source module exploiting
the dedicated debug probe signal in Figure 1, and the estimated entropy is as follows:

• 7.888 bits of entropy per byte, corresponding to 0.986 bit of entropy per bit, estimated
with the NIST EA suite;

• 7.999 bits of entropy per byte, corresponding to 0.999 bit of entropy per bit, estimated
with the BSI suite.

The difference among values generated by the two statistical suites may find an
explanation in the fact that, as reported and highlighted by [48,49], the estimators of NIST
SP 800-90B (i.e., NIST EA) are subject to systematic underestimates of entropy. Anyway,
also in the worst case (the NIST suite one), the obtained level of entropy per bit allow
achieving an overall entropy of 0.986 × 512 = 504.832 bits for the seeds generated by the
entropy source module of the RNG engine (Section 2.1, Figure 1) and used as inputs of
DRBG mechanism of the same engine, and such a value largely satisfies the requirement of
entropy of at least 256 bits, according to NIST specifications in [9].

3.2.2. Randomness Tests

For the randomness evaluation, both the NIST STS and the BSI suite are formulated
to test a specific null hypothesis H0 (i.e., the sequence being tested is random), and an
alternative hypothesis Ha (i.e., the sequence being tested is not random). Such hypotheses
are defined to address all the possible cases that can occur in the generation–conclusion
procedure when testing the randomness of a bitstream, as reported by Table 5. The proba-
bility of Type I error, i.e., the event that a random generator is declared being non-random,
is defined as α, called significance level, while the probability of Type II error, i.e., the event
that a non-random generator is declared being random, is denoted by β [34]. The author
of [34] defines a range of admitted values for α and two metrics to evaluate the randomness
of a sequence under test. Such metrics rely on the calculation of the so-called p-value,
which is defined as the probability that a perfect random number generator would have
produced a sequence less random than the tested sequence. Then, the conclusion on the
randomness of a sequence can be determined basing on the relation between the p-value
and α: if p-value ≥ α, then the sequence can be considered random with a confidence of
(1 − α) · 100%; otherwise, if p-value < α, the sequence can considered as non-random with
a confidence of (1 − α) · 100%. For cryptographic applications, α is typically chosen in the
range (0.001–0.01). In addition, also, the number of sequences to be tested is regulated
by the indication that if we defined k as the number of n-bit sequences to be tested, then
k ≥ 1/α: i.e., for α = 0.01, at least 100 sequences have to be tested, while for α = 0.001,
at least 1000 have to be tesetd. Based on this, each of the 15 statistical tests composing the
NIST STS operates as follows:

• The p-value of each sequence is calculated, discarding the sequences for which
p-value < α;

• The ratio between the number of sequences that passed the test (i.e., the one for
p-value ≥ α) and the total number of tested sequences (i.e., k) is computed, and it is
labeled as PRoportion (PR);

• The p-value of sequences that passed the test are distributed in the range [0, 1) by
splitting it into 10 equal sub-intervals, and the uniformity of the distribution of p-value
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is calculated: basing on the chi-square (chi-squared or χ2) function, the uniformity of
distribution is determined by computing a figure that can be considered as a p-value
of p-value (PoP);

Table 5. Possible outcomes of randomness evaluation procedure.

True Situation
Conclusion

Data Are Random
(Accept H0)

Data Are Not Random
(Accept Ha)

Data are random (H0 is true) No error Type I error

Data are not random (Ha is true) Type II error No error

Then, all of the results above are reported for each of the tests, and a final and global
conclusion on the randomness of the generator that produced the tested sequences can be
derived, by declaring it as random, with a confidence of (1 − α) · 100%, if:

• For each test, PR lies in the confidence interval defined as (1 − α)± 3
√

α(1−α)
k ;

• For each test, PoP ≥ 0.0001 (i.e., the p-values of sequences that passed the test are
uniformly distributed).

Regarding the evaluation of the randomness of the DRBG module (and hence of the
overall CSPRNG unit corresponding to the RNG engine), its output sequences have been
tested with both procedure A of the BSI suite (notably the battery of tests T0 and T1 through
T5) and the Fast NIST STS, using the configuration parameters for NIST STS indicated by the
BSI in [35] (α = 0.01, k = 1073, n = 1,000,000, block length of Block Frequency test M = 20,000,
template and block length for Non-Overlapping Template and Overlapping Template
tests m = 10, block lengths of Approximate Entropy, Serial, and Linear Complexity tests,
respectively, m = 8, m = 16, and M = 1000). In both cases, all tests passed, confirming the
indistinguishability of the bistreams generated by the RNG engine from the ones produced
by an ideal RNG, in particular, with a confidence of 99%, according to the specifications
of SP 800-22 document. Figure 7 reports a representation of the results for the proportion
metric, while Figure 8 reports the one for the uniformity metric.
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Figure 7. Graph of NIST STS PR metric results for tested DRBG sequences. The dark golden points
represent the PR values for each test, or sub-test, and the blue dashed lines represent the boundaries
of the confidence interval(s): it the PR value lies outside the confidence interval(s), the test is failed:
three (six) failing tests are tolerated for the widest (narrowest) confidence interval.
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Figure 8. Graph NIST STS PoP metric results for tested DRBG sequences. The dark golden points
represent the PoP values for each test, and the light blue dashed line traces the threshold for the
pass–fail criterion: if the PoP value is greater than (or equal to) threshold, then the test is passed;
otherwise, it is failed. The vertical axis uses the logarithmic scale.

Referring to Figure 7, the dark golden dots represent the PR values for each test, while
the blue dashed lines represent the upper and lower limits of the confidence interval used
to determine if a sequence passed a test: the light blue ones delimit the confidence interval
deriving from the original formula of NIST SP 800-22, i.e., the one with the value 3 for the
constant, and the dark blue ones delimit the corresponding confidence interval using a
value of 2.6 for the constant in the formula, according to [50]. Interpreting the graphical
representation of results, on one hand, multiple dark golden dots (i.e., PR values) on the
same vertical line means that the corresponding test is composed of multiple sub-tests,
and the outcome of each of them is reported; on the other one, it can be noted also that
some of the tested sequences failed some of the test (i.e., the associated dark golden dot
lies outside the confidence interval). This must not be interpreted as a failure of the NIST
STS testing procedure, because, according to [50], a certain number of failing tests can be
tolerated without affecting the outcome of the experiment. The number of tolerated failing
tests is three (or six) when referring to a confidence interval computed using a constant
value of 3 (or 2.6). In the former case, no test (0) exceeded the limit of the confidence
interval related to the constant value of 3, while in the latter case, only five tests lie outside
the confidence interval related to the constant value of 2.6; hence, the final result is that the
tested sequences successfully passed the NIST STS tests, according to the proportion metric.
The same graphical representation approach applies also to Figure 8, showing that the PoP
values (dark golden dots) of all tests are greater than the threshold of 0.0001 (dashed light
blue line) used for the pass–fail criterium, indicating the distributions of p-values were
shown to be uniform, as illustrated by Figure 9.

As an additional step, also, the bitstreams of the entropy source module were tested
with the NIST STS software, and also, in this case, the sequences passed all tests, confirming
that such a unit can be used also as a stand-alone TRNG, being already equipped with
hardware resources to the health test of the raw binary stream.
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Figure 9. Histograms of p-values distributions from NIST STS tests. The three-dimensional histograms
of the distribution of p-values are reported only for single-experiment tests of NIST STS and, according
to the results of PoP metric (Figure 8), their uniformity can be noted.

4. Comparison to the State of the Art

To make a comparison with the state of the art, ref. [39] offers a good reference point,
because it offers a review of several implementations of TRNG on FPGA technologies,
by using the AIS 31 suite for the estimation of entropy. The FPGA analyzed in [39] are
the Intel Cyclone V [51], the Xilinx Spartan 6 [52], and the Microsemi SmartFusion 2 [53],
respectively manufactured on technology nodes at 28, 45, and 65 nm, and the characteristics
reported for the TRNG involve both the entropy per bit and the entropy rate, which were
calculated as the entropy per bit multiplied by the bit rate, according to the main target
application of these modules to generate seeds with a certain amount of bits of entropy (as
expressed above). Even if a TRNG, or an entropy source module, can produce an elevated
level of entropy per bit, it may anyway not be suitable for some applications in case the
generation rate is too low, or, in other words, the latency it features is too high, when
compared to the interval time that can be considered acceptable for the accumulation of a
certain amount of entropy bits. Table 6 includes data extracted from [39] that refer to the
corresponding publications in the literature.

Table 6. Comparison between FPGA implementations of TRNG. Data reported in this table have
been extracted from the results of this works and from [39]. In case multiple citations are present, it
indicates that the analyzed TRNG implementation was built merging the contributions from each of
the works documented in the corresponding citation.

Implementation FPGA Bit Rate
[Mbit/s]

Entropy per Bit
(from BSI Suite)

Entropy Rate
[Mbit/s]

This work Virtex Ultrascale+
VU37P 2080 0.999 2077.92

Spartan 6 0.0042 0.999 0.004

Cyclone V 0.0027 0.990 0.003[54]

SmartFusion 2 0.014 0.980 0.013

Spartan 6 0.54 0.999 0.539

Cyclone V 1.44 0.999 1.438[55]

SmartFusion 2 0.328 0.999 0.327
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Table 6. Cont.

Implementation FPGA Bit Rate
[Mbit/s]

Entropy per Bit
(from BSI Suite)

Entropy Rate
[Mbit/s]

Spartan 6 2.57 0.999 2.567

Cyclone V 2.2 0.999 2.197[56–58]

SmartFusion 2 3.62 0.999 3.616

Spartan 6 0.44 0.981 0.431

Cyclone V 0.6 0.986 0.592[59,60]

SmartFusion 2 0.37 0.921 0.340

Spartan 6 0.625 0.999 0.624

Cyclone V 1 0.987 0.985[11,61]

SmartFusion 2 1 0.999 0.999

Spartan 6 154 0.998 154.121

Cyclone V 245 0.999 244.755[62,63]

SmartFusion 2 188 0.999 188.522

The results in Table 6 show that the entropy source module integrated into the RNG
engine and implemented on the VCU128 demo board offers a level of entropy equal to
the maximum one provided also by other solutions (and very close to the maximum
theoretical one of 1.000), and that it features also the best entropy rate, which is about
8.5 times greater than the best one of other FPGA implementation. In addition, if as-
suming the entropy estimated by the NIST EA, i.e., 0.986, the corresponding bit rate was
2080 × 0.986 = 2050.88 Mbit/s, which is much greater than the best one of the counter-
parts that are 244.755 Mbit/s. This was confirmed also by the work presented in [6] in
which it presented the implementation of a TRNG on an Intel Stratix IV FPGA [64], and on
which basis the entropy source module was integrated into the RNG engine: in that work,
the measured entropy was of 0.995, and the bit rate was 400 Mbit/s, thus leading to an
entropy rate of 398 Mbit/s.

Please note that the largely better performance in terms of throughput is due to
both the FPGA technology being significantly newer and the amount of resources used
(e.g., the more resources you use in parallel, the larger throughput you can achieve). We
reported the throughput as a figure of merit, but we did not center our analysis on that,
knowing that it would not be fair. As a further and general metric to evaluate the entropy
estimation, as suggested by the authors of [65], the minimum value of entropy per bit
should satisfy the requirement of 0.910, as specified by [35] in the form of the Shannon
entropy of 0.997. The Shannon entropy (HS) can be calculated from the value of minimum
entropy (or min-entropy, Hmin, i.e., the one computed by the NIST EA and BSI suite), by the
following formula:

HS = −2−Hmin · log2(2
−Hmin)− (1 − 2−Hmin) · log2(1 − 2−Hmin).

To derive the equation above, we relied on the following assumptions: approximation
of Shannon entropy as the sum of probabilities [36], and the fact that the random bit can
assume only two values (0 and 1). These are also specified and exploited in [65].

Using only the expression above, the minimum value of HS = 0.997 corresponds to
the value of Hmin equal to 0.910. The author of [35] specifies such a value as one of the
requirements that an RNG must respect to be compliant with the class-defined PTG.2,
the one collecting PTRNG whose target is the generation of cryptographic keys, seeds,
and random padding bits. Hence, the corresponding value (the effective values of HS
are 0.99993141 and 0.99999965 for Hmin values of 0.986 (NIST EA) and 0.999 (procedure
B of BSI suite), respectively, that can be rounded both to the value 1.000 when using
4 significant digits for representing those numbers) of HS is 1.000 for both the min-entropy
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values of 0.986 and 0.999, enabling the entropy source module to be an RNG of class PTG.2.
Successively, procedure A of the BSI suite was applied to the random sequences of the
entropy source module, according to [35], and all tests passed, confirming the compliance
to the European requirements for TRNG expressed by the AIS 31 standard.

5. Conclusions

In this work, we implemented a high-entropy and high-throughput RNG, which
demonstrated to be portable in different technologies. We validated the correct imple-
mentation of the RNG engine as a CSPRNG, and we verified that it satisfies the security
requirements for cryptographic applications, because as confirmed by the results, once
seeds with appropriate entropy levels are used, it can generate sequences whose random-
ness cannot be distinguished from the one of an ideal random generator, with the confidence
of 99%. As such characteristics are depending only on the deterministic part of the RNG
engine, it will be maintained also for the EPI chip on the 7 nm standard-cell technology.
In addition, the measured level of entropy contributed to proving the portability of the
digital entropy source module, showing also characteristics in terms of entropy rate, which
outperforms the other main solutions in the field of digital TRNGs. The extracted value of
1.000 for the Shannon entropy per bit makes it a candidate for the PTG.2 class of AIS 31
standard, i.e., a (physical) TRNG for the generation also of certified and highly-qualified
cryptographic keys.
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