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Background: Lipidomics is emerging for biomarker discovery in cardiovascular disease,

and circulating lipids are increasingly incorporated in risk models to predict cardiovascular

events. Moreover, specific classes of lipids, such as sphingomyelins, ceramides, and

triglycerides, have been related to coronary artery disease (CAD) severity and plaque

characteristics. To avoid unnecessary testing, it is important to identify individuals at low

CAD risk. The only pretest model available so far to rule out the presence of coronary

atherosclerosis in patients with chest pain, but normal coronary arteries, is the minimal

risk tool (MRT).

Aim: Using state-of-the-art statistical methods, we aim to verify the additive predictive

value of a set of lipids, derived from targeted plasma lipidomics of suspected CAD

patients, to a re-estimated version of the MRT for ruling out the presence of coronary

atherosclerosis assessed by coronary CT angiography (CCTA).

Methods: Two hundred and fifty-six subjects with suspected stable CAD recruited

from five European countries within H2020-SMARTool, undergoing CCTA and blood

sampling for clinical biochemistry and lipidomics, were selected. The MRT was validated

by regression methods and then re-estimated (reMRT). The reMRT was used as a

baseline model in a likelihood ratio test approach to assess the added predictive value of

each lipid from 13 among ceramides, triglycerides, and sphingomyelins. Except for one

lipid, the analysis was carried out on more than 240 subjects for each lipid. A sensitivity

analysis was carried out by considering two alternative models developed on the cohort

as baseline models.

Results: In 205 subjects, coronary atherosclerosis ranged from minimal lesions to overt

obstructive CAD, while in 51 subjects (19.9%) the coronary arteries were intact. Four

triglycerides and seven sphingomyelins were significantly (p < 0.05) and differentially

expressed in the two groups and, at a lesser extent, one ceramide (p = 0.067).

The probability of being at minimal risk was significantly better estimated by adding

either Cer(d18:1/16:0) (p = 0.01), SM(40:2) (p = 0.04), or SM(41:1) at a lesser

extent (p = 0.052) to reMRT than by applying the reMRT alone. The sensitivity analysis
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confirmed the relevance of these lipids. Furthermore, the addition of SM(34:1), SM(38:2),

SM(41:2), and SM(42:4) improved the predictive performance of at least one of the other

baseline models. None of the selected triglycerides was found to provide an added value.

Conclusions: Plasma lipidomics can be a promising source of diagnostic and prognostic

biomarkers in cardiovascular disease, exploitable not only to assess the risk of adverse

events but also to identify subjects without coronary atherosclerosis, thus reducing

unnecessary further testing in normal subjects.

Keywords: biomarkers evaluation, coronary artery disease, lipidomics, coronary computed tomography

angiography, likelihood ratio test, pre-test clinical models

INTRODUCTION

The latest European Society of Cardiology (ESC) guidelines for
the diagnosis and management of chronic coronary syndromes
(1) recommend coronary CT angiography (CCTA) as the first-
line diagnostic test for patients with low–intermediate clinical
likelihood of obstructive coronary artery disease (CAD). One
of the novelties of the latest ESC guidelines is the concept of
clinical likelihood of CAD, which utilizes several conventional
risk factors of CAD as pretest probability modifiers (1, 2).
Among the existing validated pretest probability (PTP) models
of obstructive CAD, a few can be used to rule out CAD (1, 3). The
minimal risk tool (MRT) model has been recently introduced as
a novel PTP model using only conventional variables measured
in clinical practice to identify patients with chest pain, normal
coronary arteries, and no adverse events at follow-up who derive
minimal benefit and value from first-line diagnostic tests of CAD
such as CCTA (4). The performance of MRT has been tested
in different populations (5, 6), and an updated model has been
proposed (6). Furthermore, thanks to the current advancements
in analytical technologies, many additional metabolites and
lipids can be easily measured in plasma samples and tested
as candidate biomarkers of cardiometabolic risk. Metabolomics
and lipidomics are promising sources of novel biomarkers
of cardiovascular disease (7): in particular, specific plasma
lipid species have been suggested to play a role in the
pathogenesis of atherosclerosis (8–11), metabolic disorders,
and clinical manifestations of cardiovascular disease in general
(12). In addition, we have recently demonstrated that, even
under optimal cholesterol-lowering treatments, CAD severity
and atherosclerotic non-calcific plaque burden are significantly
associated with specific circulating lipid species among the classes
of sphingomyelins (SMs) and phosphatidylethanolamines (PEs),
supporting their clinical exploitation as biomarkers of obstructive
CAD with potentially vulnerable lesions (13).

In agreement with Hlatky et al. (14) and Moons et al. (15),
a new-generation biomarker should not only have a diagnostic
value per se, i.e., a statistically significant association with the
outcome, but it should also provide a significant added value
to the improvement of risk estimation when combined with
other risk markers. Recently, for instance, the discrimination
improvement of the polygenic risk scores with respect to
the pooled cohort risk equations was called into question by
statistical analyses carried out on large populations (16).

In this proof-of-concept study, we evaluated the value of
lipidomics-derived markers in the existing pretest for the
diagnostic workup of CAD patients using state-of-the-art
statistical methods (17). We first carried out a full validation
of the MRT on a population with a relatively low prevalence
of subjects at minimal risk. Then, for the first time, in
stable CAD patients (H2020-689068-SMARTool Project clinical
trial, ClinicalTrials.gov identifier: NCT04448691), we evaluated
whether and which plasma lipids can significantly contribute to
improve the identification of subjects at minimal risk. Finally, a
sensitivity analysis was conducted by considering also their added
value to two alternative models predicting minimal risk inspired
by PTP models of CAD.

MATERIALS AND METHODS

Patient Population
The study population consists of 256 subjects from the clinical
trial of the SMARTool Project (H2020-689068-SMARTool
Project clinical trial, Clinicaltrial.gov identifier: NCT04448691).
Subjects with suspected coronary artery disease and a median
pretest probability of obstructive CAD of 65% (interquartile
range, 33–75%)—intermediate risk (18)—were recruited in
seven clinical centers from five European countries (Finland,
Italy, Poland, Spain, and Switzerland). Clinical data, risk
factors, clinical biochemistry, and stored plasma samples were
retrospectively collected. Coronary atherosclerosis was assessed
by CCTA, and plasma samples were used for standard clinical
biochemistry and lipidomics analysis. Previous cardiac surgery,
coronary revascularization, or major adverse cardiovascular
events in the last 6 months, chronic kidney disease and atrial
fibrillation were the main exclusion criteria.

Clinical and Laboratory Data
All variables included in theMRTwere evaluated for this analysis,
except for symptoms of physical/mental stress, unknown for all
subjects, and ethnicity, the entire population being Caucasian.
Hypertension was defined as a blood pressure>140/90mmHg on
at least two occasions (>130/80mmHg for patients with diabetes)
or requiring antihypertensive treatment. Diabetes was defined as
a history of diabetes, an elevated fasting serum glucose >126
mg/dl (7 mmol/l), or antidiabetic therapy. Dyslipidemia was
defined as an elevated cholesterol level [total cholesterol >200
mg/dl (5.18 mmol/l), low-density lipoprotein >130 mg/dl (3.37
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mmol/l), or high-density lipoprotein<40 mg/dl (1.04 mmol/l) in
men and <50 mg/dl (1.30 mmol/l) in women] or treatment with
cholesterol-lowering medications. Smoking history was defined
as current or past smoking. Plasma concentrations of cardiac
troponin T were measured using the high-sensitive method
on COBAS E411 with Elecsys Troponin T-hs STAT by Roche
Diagnostics (Basel, Switzerland) (19).

Plasma Lipid Measurements
The plasma samples of all patients were stored in the IFC
Biobank. For lipid extraction, they were thawed at room
temperature and immediately processed. Total lipid extraction
from an aliquot of plasma was performed according to the
procedure of Folch et al. (20). The specific quantitative procedure
used for HPLC-MS/MS analysis is reported in Michelucci
et al. (13).

Coronary CCTA Analysis
Coronary CCTA was performed according to a predefined
standard operating procedure to ensure optimal image quality.
All images were analyzed blinded to clinical data by a separate
Core Laboratory (Leiden University Medical Center) by two
independent cardioradiologists. The coronary arteries were
assessed according to the modified 17-segment American Heart
Association classification (21) and the Coronary Artery Disease
Reporting and Data System (CAD-RADS) guidelines (22).
Patients were defined as either normal or with CAD according
to the following criteria: normality was defined as no evidence of
coronary atherosclerosis at CCTA scan, a coronary calcium score
of 0, and no previous cardiovascular events at clinical history;
the presence of CAD was assessed by CCTA (CAD-RADS classes
1–5) and/or a calcium score >0. All normal subjects were also
free of adverse events in the following 4–8 years, in agreement
with (4).

Descriptive Statistical Analysis
Continuous variables were described using means and standard
deviations (µ ± σ ), or medians (µ0.5) and interquartile ranges
(IQRs, reported as the lower–upper quartile interval) when data
distributions showed a marked lack of symmetry and/or the
presence of several suspected outliers. Categorical variables were
described using frequencies and percentages. Group comparisons
with respect to continuous variables were performed using
either the t-test or the Mann–Whitney test, when graphical
indications of non-normality existed; Pearson’s chi-square test
or Fisher’s exact test was used for comparisons with respect to
categorical variables. Two-tailed tests were considered, and the
significance level was set at α = 0.05. All analyses were performed
using R Statistical Software (R Project for Statistical Computing,
RRID:SCR_001905) (23).

Missing data imputation has been applied with a threshold
of <1% to ensure that the analysis and its results were not
significantly guided by the imputation method selected. The
mean or the median has been considered each time as the
imputed value, and the gender of the subject has also been taken
into account when the distribution of the variable in the genders
differed significantly.

MRT Validation
Calibration of theMRTmodel on our cohort was visually checked
by plotting the predicted vs. the observed risk within each
decile of risk, as estimated by the MRT, and then tested for
significance with the Hosmer–Lemeshow (HL) statistic, as usual.
The validation analysis was then deepened by testing calibration
in-the-large, as well as both the overall and specific effects of
the predictors by logistic regression techniques (24), even by
re-estimating the model, if necessary.

LRT Analysis
The capability of each lipid statistically associated with the
outcome to improve the prediction of subjects at minimal risk
was evaluated by a likelihood ratio test (LRT) between the
(possibly re-estimated) MRT as the baseline model and an
enhanced model obtained by adding the lipid to the baseline
model (25, 26). To apply the test, we firstly computed the logit
transformation, xi, of the risks predicted by the baseline model
(i.e., xi is the linear combination obtained from the estimated
parameters and the selected risk factors in the baseline model).
Then, the LRT evaluates the incremental value brought by any
lipid to the estimation of the binary outcome of being at minimal
risk, yi, by comparing the likelihood of the logistic model
corresponding to the baseline linear combination (univariable,
yi = α0 + α1xi) to the likelihood of the enhanced linear
combination (bivariable, yi = β0+β1li+β2xi) obtained by adding
(on top) the lipid of interest, li, to the baseline linear prediction
risk. The calibration in-the-large of the baseline model on the
subset of subjects defined by the considered lipid was checked
and the goodness-of-fit verified by the Hosmer–Lemeshow test,
each time. Log transformations of lipids were also considered for
skewed distributions. The LRT was carried out by using the R
package “lmtest” (27).

A possibly re-estimated minimal risk tool is our main baseline
model. To carry out a sensitivity analysis on the added value of
the considered set of lipids, two other baseline models based on
current literature have been developed on the SMARTool cohort.
Firstly, a multivariable logistic regression model including age,
sex, and typicality of chest pain (basic model) has been estimated.
The choice of predictors is clearly inspired by the Diamond–
Forrester model and by the ESC guidelines, commonly used as
the basis for any comparison when CAD is addressed. Of course,
the basic model is a completely new model due to the minimal
risk endpoint here considered. Secondly, a multivariable logistic
regression model including age, sex, typicality of chest pain,
and high-sensitive cardiac troponin T (basic-hs-cTnT model)
has been considered as per the recently recognized role of high-
sensitive troponin as an independent predictor of coronary artery
disease (28–31). The validity of these two models as baseline
models was checked by the Hosmer–Lemeshow test and c-
statistics [area under the receiver operating characteristic (ROC)
curve (AUC) value].

Finally, a multivariable logistic regression model was also
fitted using the backward variable selection method with all the
lipids that resulted in a significantly incremental predictive value
for at least one of the considered baseline models. The final
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TABLE 1 | Selected demographic and clinical characteristics.

Clinical characteristicsa Normal (n = 51) CAD (n = 205) p-valueb

Demography

Age (years), µ ± σ 58.4 ± 7.35 63.4 ± 7.93 ≪0.001

Female sex 72.5% 28.8% ≪0.001

Clinical factors

BMI 27.3 ± 3.53 [49] 27.6 ± 3.80 [202] 0.64

Current smoker 9.8% 17.6% 0.255

Hypertension 52.9% 70.7% 0.024

Diabetes 9.8% 24.9% 0.032

Dyslipidemia 84.3% 86.3% [204] 0.893

Family history of CAD 49.0% 43.4% 0.573

Clinical symptoms

Typical chest pain 35.3% 18.0% 0.003

Atypical chest pain 49.0% 44.9%

Non-anginal chest pain 15.7% 37.1%

Biomolecular characterization

Triglycerides (mg/dl), µ0.5 (IQR) 89 (70–124) 112.5 (81–158.3) [204] 0.007

Total cholesterol (mg/dl), µ0.5 (IQR) 199 (161–231) 181 (146–212) 0.045

HDL-C (mg/dl), µ0.5 (IQR) 56.0 (47.5–62.5) 50.0 (41–59) [204] 0.016

Hs-cTnT (ng/L), µ0.5 (IQR) 3.59 (3.00–4.96)[45] 6.99 (4.43–9.32) [180] ≪0.001

Therapies

Statins 39.2% 55.6% 0.052

ACE inhibitors/ARBs 31.4% 54.1% 0.006

Diuretics 11.8% 19.0% 0.31

β-blockers 47.1% 43.9% 0.80

Aspirin 49.0% 64.4% 0.063

Summaries are derived on available data and do not account for imputations.
aFor categorical variables, data are presented as percentages. Pearson’s chi-square test or Fisher’s exact test was used for comparisons. For continuous variables, either the mean

and standard deviation, µ ± σ , or the median and interquartile range expressed as an interval, µ0.5 (IQR), is specified from time to time, according to either normality or non-normality

graphical indications. The test is either the two-sided t-test or the Mann–Whitney test, respectively. The number of subjects with available data is reported in square brackets if different

from the total number in the group (normal and CAD).
bp≪ 0.001 means order of magnitude <-4.

combination of lipids was in turn tested for improvement by the
LRT approach.

RESULTS

Study Population
The cohort consisted of 96 women (37.5%) and 160 men; the
mean age was 62.4 (±8.1) years, and 16 subjects (6.3%, four
women) were <50 years old. The mean age was not significantly
different between the two sexes (63.3 vs. 61.8 years, p = 0.14).
Only statins were used as lipid-lowering therapies, and 52.3%
of subjects were on statins (52.1% of women and 52.5% of
men). The demographic and clinical characteristics of the 256
subjects are listed in Table 1 according to their classification
in the two groups. The summary values do not account for
imputation. Subjects defined as normal (51, 19.9%) were mostly
females (72.5 vs. 28.8%, p ≪ 0.001), were significantly younger
(mean = 58.4 vs. 63.4 years, p ≪ 0.001), and had a lower
prevalence of hypertension (52.9 vs. 70.7%, p = 0.024) and
diabetes (9.8 vs. 24.9%, p = 0.032) than the CAD patients. They
also had significantly higher high-density lipoprotein cholesterol

(HDL-C; median= 56.0 mg/dl, IQR= 47.5–62.5 mg/dl) than the
other subjects (median = 50.0 mg/dl, IQR = 41.0–59.0 mg/dl,
p = 0.016). These results are in line with the findings obtained
both in the derivation cohort by Fordyce et al. (4) and in the
Dan-NICAD validation cohort (6). Moreover, significantly fewer
subjects at minimal risk used angiotensin-converting enzyme
(ACE) inhibitors/angiotensin receptor blocker (ARBs) (p =

0.006). The difference in the use of either statins or aspirin was
only weakly significant (p < 0.065).

While traditional risk factors and most of the lipids had
at most 0.1% missing data, a stronger presence of missing
data was found for high-sensitive cardiac troponin T (hs-
cTnT), Cer(d18:1/18:0), SM(34:1), SM(40:3), and SM(40:1). In
the former case, we imputed the missing data to either the
mean/median or the prevalent category. In the latter, no
imputation technique was applied.

Table 2 shows the summary statistics of the distributions
of the 20 selected lipids according to the two groups of
normal and CAD subjects. All but Cer(d18:1/18:0), TG(50:1),
TG(50:2), SM(40:1), and SM(42:1) were proven to have strongly
significantly different distributions in the two groups, while
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TABLE 2 | Considered ceramides, triglycerides, and sphingomyelins.

Lipid species Normal (µmol/L)a

(n = 51)

CAD (µmol/L)a

(n = 205)

p-valueb

Cer(d18:1/16:0) 0.52 (0.31–0.75) 0.43 (0.29–0.62) 0.067

Cer(d18:1/18:0) 0.09 (0.06–0.11) [46] 0.09 (0.06–0.14) [181] 0.61

TG(50:1) 185.5 (108.5–235.5) 198.2 (144.4–269.9) 0.12

TG(50:2) 66.1 (42.8–109.9) 81.7 (55.9–116.5) 0.09

TG(52:2) 182.6 (158.5–219.1) 205.8 (175.5–853.7) 0.008

TG(52:3) 74.1 (62.0–99.4) 92.8 (73.0–112.4) 0.004

TG(54:2) 50.8 (31.5–63.4) 56.2 (40.3–85.32) 0.027

TG(54:3) 72.1 (51.8–86.6) 82.2 (59.7–99.0) 0.016

SM(34:1) 139.7 (131.6–151.4) [46] 134.3 (121.8–143.7) [180] 0.013

SM(36:2) 24.4 (19.9–27.7) 20.9 (17.6–24.7) 0.002

SM(38:2) 14.0 (12.1–16.2) 12.4 (10.3–14.7) 0.001

SM(38:1) 49.0 (42.6–54.99) 44.6 (37.6–54.0) 0.078

SM(40:3) 7.3 (6.4–9.2) [50] 6.6 (5.3–9.0) [191] 0.046

SM(40:2) 69.4 (61.8–81.2) 61.2 (52.2–73.2) 0.002

SM(40:1) 114.9 (94.2–124.6) [48] 107.1 (92.5–122.5) [195] 0.19

SM(41:2) 49.9 (40.7–60.3) 41.8 (33.8–52.3) 0.003

SM(41:1) 58.9 (49.3–72.2) 52.0 (42.4–68.4) 0.035

SM(42:4) 7.6 (6.4–10.1) 6.8 (5.6–9.2) 0.030

SM(42:3) 99.9 (89.7–115.2) [50] 94.7 (77.9–109.1) [204] 0.024

SM(42:1) 87.7 (67.0–100.0) 79.0 (65.3–97.5) [203] 0.15

Summaries are derived on available data and do not account for imputations.
aMedian and interquartile range expressed as an interval, µ0.5 (IQR).
bThe test is the two-sided Mann–Whitney test. The number of subjects with available data

is reported in square brackets if different from the total number in any of the two groups

(normal and CAD).

TABLE 3 | Updated minimal risk tool: estimated coefficients.

Variable Coeff. SE pa

Intercept 2.625 1.720 0.127

Age −0.120 0.028 ≪0.001

Female sex 2.396 0.412 ≪0.001

Never smoking 1.037 0.609 0.089

No diabetes 1.116 0.567 0.049

No hypertension 0.685 0.388 0.078

ap≪ 0.001 means order of magnitude <-4.

Cer(d18:1/16:0) showed only a weakly significant difference
(p = 0.067). In particular, the triglyceride (TG) levels are
lower in the normal group while SMs are higher, as well as
Cer(d18:1/16:0). All the lipids with significant p-values were
considered for improvement testing. Additionally, despite its
weaker significance, Cer(d18:1/16:0) was retained due to its
established relevance in the assessment of the severity of stenosis
(32).

MRT Validation and Re-Estimation
The probability of minimal risk in the SMARTool cohort was
firstly computed using the published MRT coefficients (4).
Regression assessment of calibration-in-the-large did not show

FIGURE 1 | Receiver operating characteristic (ROC) curves of the minimal risk

tool (MRT) model and the re-estimated MRT model (reMRT) on the

SMARTOOL cohort.

a significant difference between the mean observed outcome
and the MRT predicted probability (19.9 vs. 21.1%, p = 0.62).
The predicted vs. observed risk plots (Supplementary Figure 1)
highlighted possible miscalibration, in men especially (HL-p =

0.09): the overall HL test based on the default of 10 groups
(deciles) resulted in a good fit (p = 0.20), but the test was
proven to be highly sensitive to the choice of group number (33),
as indicated by HL-p values close to the significance level (p <

0.075) for the group numbers from 5 to 9 and for a few higher
group numbers. The overall effect of the MRT predictors was
significantly reduced in our cohort (p = 0.003), and in particular,
the effect of sex was significantly smaller in the PROMISE cohort
than that in the SMARTool population (p = 0.001). These results
indicated that the model required updating. Among the MRT
variables, only age, sex, smoking, diabetes, and hypertension were
retained by the backward selection procedure (Table 3). The re-
estimated model (reMRT) demonstrated an improved and more
stable overall goodness of fit (p = 0.14) in men as well (p = 0.57),
while the fit was worse in women (p = 0.02). The discrimination
capability of reMRT was slightly higher (0.8463 vs. 0.8327, p =

0.31; 95% De Long confidence interval = 0.7856–0.9071) than
that of the MRT, but the difference was not significant (see the
comparison of the two ROC curves in Figure 1).

To better understand the effect of re-estimation, changes in
risk classification due to updating have been described by the net
reclassification index (NRI) at event rate (34). Table 4 shows that
the reMRT improved the correct classification of CAD patients
(NRI– = 0.117, lower limit = 0.06, upper limit = 0.17), while
it slightly worsened the classification of normal subjects (NRI+
= −0.098, lower limit = −0.20, upper limit = 0). The total

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 July 2021 | Volume 8 | Article 682785

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bodini et al. Lipids Improve Rule-Out of CAD

TABLE 4 | Reclassification tables between the minimal risk tool (MRT) original

model and the re-estimated model (reMRT) on the SMARTOOL cohort.

Normal subjects reMRT

CAD Normal Total

MRT CAD 7 1 8

Normal 6 37 43

Total 13 38 51

CAD subjects reMRT

CAD Normal Total

MRT CAD 131 5 136

Normal 29 40 69

Total 160 45 205

NRI+ = −0.098, NRI– = 0.117, NRI = 0.019.

CAD, coronary artery disease; NRI, net reclassification index.

TABLE 5 | Significance of the incremental values of selected lipids over the

re-estimated minimal risk tool (reMRT) and the two alternative baseline models for

the purpose of sensitivity analysis.

Lipid species LRT-p value

reMRT Basic model Basic-hs-cTnT model

Cer(d18:1/16:0) 0.01 0.01 0.02

TG(52:2) 0.41 0.36 0.89

TG(52:3) 0.49 0.54 0.83

TG(54:2) 0.76 0.25 0.92

TG(54:3) 0.50 0.33 0.57

SM(34:1) 0.12 0.003 0.01

SM(36:2) 0.30 0.34 0.17

SM(38:2) 0.16 0.09 0.03

SM(40:3) 0.88 0.15 0.12

SM(40:2) 0.04 0.006 0.001

SM(41:2) 0.18 0.03 0.01

SM(41:1) 0.052 0.054 0.005

SM(42:4) 0.77 0.17 0.03

SM(42:3) 0.76 0.24 0.10

The p-value of the likelihood ratio test (LRT) is reported for the reMRT model, including

age, sex, smoking, diabetes, and hypertension; the basic model, including age, sex, and

symptoms; and the basic-hs-cTnT (high-sensitive cardiac troponin T) model, including

age, sex, symptoms, and high-sensitive cardiac troponin T (hs-cTnT). Bold charcter

highlight significant incremental values.

NRI(p) at p = 19.9% was 0.019 (lower limit = −0.09, upper
limit= 0.13).

LRT Analysis: Predictive Improvement of
Lipids
Except for SM(34:1) with only 226 values, the LRT was carried
out on a subset of at least 240 subjects for each lipid (see Table 2).
The probability of being at minimal risk was significantly better
estimated by adding either Cer(d18:1/16:0) (p = 0.01), SM(40:2)
(p = 0.04), or SM(41:1) at a lesser extent (p = 0.052) to reMRT

TABLE 6 | Multivariable logistic regression estimated model.

Variable Coeff. SE p-valuea

Intercept −8.325 1.676 ≪0.001

Cer(d18:1/16:0) 0.675 0.244 0.006

SM(34:1) 0.027 0.010 0.006

SM(38:2) 0.136 0.084 0.106

SM(40:2) 0.038 0.026 0.138

SM(42:4) −0.196 0.112 0.080

The model was estimated on 226 subjects.
ap≪ 0.001 means order of magnitude <-4.

than by applying the reMRT alone. The sensitivity analysis
confirmed this result, as shown in Table 5. In fact, both the basic
model and the basic-hsTnTmodel were suitable for the sensitivity
analysis due to a good fit to the data (HL-p > 0.50) and a
high discrimination capability (AUC values of 0.8323 and 0.8807,
respectively), as shown in Supplementary Table 1. Moreover,
a few additional contributions were identified. Compared to
reMRT, the prediction capabilities of the basic model were also
enhanced by SM(34:1) (p = 0.003) and SM(41:2) (p = 0.03).
Finally, compared to the previous two baseline models, the
prediction capabilities of the basic-hs-cTnT model were also
improved by SM(38:2) and SM(42:2) (p= 0.03 in both cases).

As a further step, the lipids Cer(d18:1/16:0), SM(40:2),
SM(34:1), SM(41:1), SM(41:2), SM(38:2), and SM(42:4) were
simultaneously considered in a multivariable logistic model to
evaluate their joint value for predictive improvement. The model
was fitted on the 226 subjects with complete data on all these
variables. With the backward selection method, SM(41:1) and
SM(41:2) were discarded.

The selected model is summarized in Table 6. The enhanced
linear predictor was then obtained by adding (on top)
the linear predictor coming from Table 6 to the reMRT
and the other baseline models. The LRT indicated a very
strong predictive improvement when Cer(d18:1/16:0), SM(40:2),
SM(34:1), SM(38:2), and SM(42:4) are jointly considered (p <

0.00001), regardless of the baseline model.
Table 5 shows that none of the differently expressed

triglycerides brought significant added value, regardless of the
baseline model (p ≥ 0.25).

DISCUSSION

It is well-known that coronary artery disease is present only in
a percentage of patients referred to diagnostic testing for chest
pain and that as many as one-fourth of the CCTAs performed
as the recommended first-line test are unnecessary. Therefore,
the application in clinical practice of a predictive model able
to directly exclude the majority of patients without coronary
lesions from unnecessary diagnostic testing before referral is
highly relevant to optimize patient management and for cost
effectiveness (35–37). Minimizing unnecessary tests, procedures,
and costs is an increasing need in the last years (4, 24, 38). The
usually suggested way of ruling out CAD is based on a pretest
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probability of obstructive CAD lower than a given threshold,
usually from 5 to 15%, for instance (1, 39, 40).

Such a rule-out strategy may not be completely efficient,
as also recently demonstrated (41). When a model built to
discriminate obstructive CAD like ESC-PTP is used to also
discriminate the absence of atherosclerosis, this eventuality is
part of the game, as also noted by Adamson et al. (5). Indeed,
when predictive probability models are empirically derived, a set
of variables proving to be good predictors of obstructive CAD
can fail to discriminate subjects at minimal risk, and vice versa
(42, 43). Themajor novelty introduced by theMRT is its being the
first model proposing an endpoint directly aimed at identifying
those subjects with normal arteries (3), and for this reason, we
have chosen it as the baseline model for testing the added value
of a few targeted lipids as novel and useful biomarkers to rule
out CAD.

Several serum sphingolipids have been proposed as
independent biomarkers of clinically manifest CAD. Lipid-
based test scores, such as CERT2 (10), are widely recognized for
their prognostic value for any type of cardiovascular event, and
significant associations with non-calcified coronary artery plaque
burden assessed by CCTA have been reported (44). Recently,
it has been found that, in statin users, the CAD severity and
atherosclerotic lipid burden assessed by CCTA are significantly
associated with specific circulating lipid species among the
classes of SMs and PEs (13). Sphingolipids play an important
role in intracellular signal transduction and regulate cellular
processes such as proliferation, maturation, and apoptosis;
they are also involved in cellular stress responses. It is known
that atherosclerosis can increase sphingomyelinase (SMase)
activity, consequently altering ceramide and sphingomyelin
plasma concentrations (45). Additionally, SMs are reported
to be the second most abundant phospholipid component
and the major sphingolipid in HDL particles (46), which
play a crucial role in atheroprotection by driving reverse
cholesterol transport, and lipid changes in HDL composition
can reduce their cholesterol efflux capacity. In details, the
beneficial role attributed to HDL-C actually is thought to reflect
the multiple cardioprotective properties of HDL particles,
which primarily include its capacity to efflux cholesterol from
peripheral cells (reverse cholesterol transport, RCT), but may
also involve antioxidative, anti-inflammatory, anti-apoptotic,
anti-thrombotic, anti-infectious, and anti-diabetic activities
(47). Nevertheless, conflicting evidences are recently emerging
on the protective role of HDL-C in cardiovascular health.
Observations of hereditary syndromes featuring scant HDL-C in
the absence of premature atherosclerotic disease and very high
levels of this lipoprotein that do not appear to grant additional
benefits indicate that HDL-C level per se may not be a good
predictor of cardiovascular disease. Indeed, current knowledge
suggests that the biological activity of HDL may not depend
solely on its concentration but also on its quality, as alterations
in various structural components lead to a state of dysfunction
independently of their serum concentrations (48). In this
context, the cholesterol efflux capacity of HDL appears a more
effective feature in predicting cardiovascular disease than does
the HDL-C level. SM species are reported to be one of the most

abundant lipid components in HDL particles and, according
to their surface distributions, play a key role on cholesterol
efflux capacity. Dysfunctional HDL exhibits 25% less lipids per
milligram of protein, reflecting lower contents of SM and PC,
and a substitution of 50% of cholesteryl ester for TG (49). These
lipid changes can alter the anti-atherogenic HDL assets, reducing
their cholesterol efflux capacity and hindering RCT. Accordingly,
from a pathophysiological point of view, the dysregulation of
particular lipid species might reflect the functionality of HDLs
better than the overall HDL-C plasma level.

The results of the present proof-of-concept study extend
the clinical relevance of all these previous evidences by
demonstrating that the plasma concentrations of some plasma
sphingolipids, which are significantly associated with coronary
atherosclerosis per se, provide an increased predictive value when
added to the MRT model for ruling out CAD.

We validated the MRT on a small population with a low
prevalence of subjects at minimal risk. In principle, theMRT is an
appropriate pretest stratification model also for our population,
where no links between patient-reported symptom presentation
and obstructive CAD is observed, in agreement with previous
studies (50–52). At a first analysis, the model has shown
calibration in-the-large on the SMARTool cohort and a good
fit. A more in-depth validation procedure, however, allowed us
to gain deeper insights into the need for a model re-estimation,
essentially due to a significantly higher effect of the gender
variable in our cohort than that in the PROMISE cohort. The re-
estimated model, reMRT, did not include the basic lipid profile
of the patients (dyslipidemia and HDL) or a family history of
CAD in the selected predictors. From a methodological point of
view, a comparison with the validations carried out on the SCOT-
HEART (5) and the Dan-NICAD (6) populations is not possible.
In the former case, erroneous coefficients were used (4, 52); in the
latter, a different validation procedure based on calibration plots
was applied.

Then, the reMRT was used as a baseline model to assess the
improvements provided by each of a few targeted lipids in the
prediction of subjects at minimal risk. Among the considered
outcome-associated lipids, one ceramide, Cer(d18:1/16:0),
and two sphingomyelins, SM(40:2) and SM(41:1), were
able to add predictive value to the model in ruling out
coronary atherosclerosis.

The sensitivity analysis confirmed the results obtained
in reMRT: Cer(d18:1/16:0), SM(40:2), and SM(41:1) added
significant value to the other two different models as well, slightly
weaker in the case of SM(41:1) only.

In addition, when the basic-hs-cTnT model is considered as a
baselinemodel, also SM(34:1), SM(38:2), SM(41:2), and SM(42:4)
added a significant value. This finding supports the potential
additive predictive value of SMs also in combination with a
novel sensitive biomarker such as high-sensitive troponin T (hs-
cTnT), currently regarded as a marker of not only myocardial
injury in acute coronary syndrome but also of CAD severity
in stable ischemic heart disease (53). In our analysis, hs-cTnT,
which had a strong association with the normal condition in
our study population (p ≪ 0.001), is in turn able to significantly
increase the probability of excluding the presence of CAD when
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added to the reMRT model (p = 0.008). Moreover, when
we limited to the subpopulation of 225 subjects with complete
data on all the variables, the basic-hs-cTnT model showed
the highest discrimination capability among the three baseline
models [0.8807 vs. 0.8467 (reMRT) and 0.8392 (basic), DeLong
95% confidence interval= 0.8288–0.9327], albeit not statistically
significant when compared to reMRT (p = 0.20), as expected due
to the high AUC values and small sample size (54).

The major limitation of this study is the low absolute
number of subjects in the two groups (normal and CAD)
undergoing plasma lipidomics and CCTA. Moreover, the lipid
and hs-cTnT concentrations were not available in about one-
tenth of patients, further reducing the study cohort in part
of the analysis. Finally, an unbalance in gender, with a low
number of females in the overall cohort (37.5%) due to an
enrollment strategy focused on suspected coronary artery disease
and indication to perform CCTA and a strong prevalence
(72.5%) of females in the group of normal subjects, must be
acknowledged. Although this limit has been partially addressed
by recalibration and re-estimation of the MRT model in our
cohort, we cannot completely exclude a gender effect on the
main findings of our study. This would represent a major
concern when developing a clinical PTP model based on the
current results: a larger and more gender-balanced derivation
and validation population would then be necessary, as already
planned for future development.

CONCLUSIONS

We found that the plasma concentrations of specific
sphingolipids [Cer(d18:1/16:0), SM(40:2), and SM(41:1)]
can improve the accuracy of pretest stratification of suspected
CAD patients referred to CCTA when added to the MRT
model. The correct identification of these subjects, who
derive minimal benefit and value from diagnostic tests
such as the CCTA, meets the clinical need of a more cost-
efficient use of diagnostic imaging with a reduction of
unnecessary radiation exposure for subjects and operators.
The results of our proof-of-concept study support the future
exploitation of plasma lipidomics-derived biomarkers in
clinical practice, not only to improve the prediction of
obstructive CAD, vulnerable plaques, or long-term adverse
cardiovascular outcomes but also to help ruling out coronary
atherosclerosis in patients referred to CCTA as the first-line test
for suspected CAD.
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