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Timing Synchronization and Channel Estimation in
Free-Space Optical OOK Communication Systems

Antonio A. D’Amico, Giulio Colavolpe, Tommaso Foggi, Michele Morelli

Abstract—Fast and reliable synchronization in free-space op-
tical (FSO) communications is a crucial task that has received
little attention so far. Since in these applications the data rate is
much higher than in traditional radio-frequency (RF) systems,
novel technological constraints may arise in the design of the
synchronization algorithms, as for example the need to operate
at symbol rate instead with an oversampled data stream.

In this work, we consider an FSO link and investigate the
problem of channel estimation, symbol timing recovery and frame
detection using a known synch pattern. The modulation format
is on-off keying (OOK) and the received signal is plagued by a
mixture of thermal and shot noise. By applying the least-squares
criterion, we derive a novel synchronization scheme that can
jointly retrieve all the unknown parameters using symbol-spaced
samples. Although designed without taking the noise statistics
into account, the estimator performance is assessed in a realistic
scenario where shot noise is present. Comparisons are made
with the relevant Cramér-Rao bound for the joint estimation
of the synchronization parameters and signal-dependent noise
variances.

Numerical simulations and complexity analysis indicate that
the resulting scheme performs satisfactorily with an affordable
processing load. Hence, it represents a promising solution for fast
synchronization in high-speed FSO communications.

I. INTRODUCTION

Free-space optical (FSO) communication is a promising
technology to meet the increasing demand for data services.
Compared to conventional radio-frequency (RF) transmissions,
it offers the opportunity of license-free access, high security
level, increased data rates and improved resilience to inter-
ference and jamming [?], [?]. Thanks to the aforementioned
advantages, FSO has been suggested for both line-of-sight
(LOS) wireless terrestrial links and satellite applications [?].
More recently, the use of this technology has been explored for
downlink transmissions from low-Earth-orbit (LEO) satellites
to ground stations [?], [?].

One major challenge encountered in an FSO link is the
susceptibility to atmospheric turbulence caused by a non-
uniform distribution of the temperature and pressure along the
transmission path. Such a phenomenon, known as scintillation,
generates random fluctuations in the amplitude and phase of
the received light, similar to the channel fading experienced in
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RF transmissions, with a coherence time ranging from 0.1 to
10 ms [?]. Furthermore, adverse weather conditions like rain,
fog and smoke, may result into a remarkable attenuation of the
received optical power [?]. In these scenarios, interleaving and
forward error correction coding become mandatory for reliable
data reception. Since successful data decoding requires a
proper design of the detection thresholds as well as the correct
localization of the codewords within the received sample
stream, accurate channel state information and timing synchro-
nization is needed at the receiver. In digital communications,
the timing synchronization process is typically split into two
successive steps. The first one, called bit synchronization,
looks for the optimum sampling instants where the output
from the matched filter is maximum. The second one, called
frame synchronization, is implemented by inserting a known
training pattern, called unique word (UW), into the transmitted
data sequence and searching for its position in the received
waveform.

Most available schemes for bit synchronization in optical
links are conceived for continuous transmissions and employ
a classical non-data-aided (NDA) or decision directed (DD)
closed-loop (CL) structure. The timing error detector, which
is the core device of any CL scheme, is typically designed
through some heuristic approach or by resorting to classical
techniques, including the early-late gate synchronizer [?], the
Gardner algorithm [?] or the Mueller & Müller method [?].
Prominent examples in this category are found in [?] for
pulse-position modulation (PPM), in [?]-[?] for on-off keying
(OOK) signaling and in [?] for optical signals with a large
dynamic range. As an alternative to CL methods, NDA open-
loop (OL) algorithms have been suggested in [?] in the context
of 2-PPM modulation and in [?] for OOK signaling. Joint
bit synchronization and data detection for PPM and OOK
systems is proposed in [?] by resorting to the maximum
likelihood (ML) estimation principle. The resulting scheme is
computationally demanding as it applies the Viterbi algorithm
to a properly designed trellis diagram.

Once bit synchronization has been acquired, frame align-
ment is typically achieved by correlating the received symbol
stream with a local copy of the UW. In [?], the authors derive
the optimum ML rule for frame detection by extending the
pioneering work of Massey [?] to a Poisson optical channel.
A high signal-to-noise ratio (SNR) approximation of the ML
rule can be found in [?]. More recently, the issue of UW
recognition has been investigated in [?] for an OOK system
affected by shot noise, where the noise power is higher for
a received 1 than for a received 0. The main drawback of
this scheme is that it requires knowledge of the channel
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fading coefficient and signal-dependent noise variances, which
must be retrieved in some manner. One possible solution is
presented in [?], where the joint estimation of all the unknown
parameters is embedded into the UW detection process.

In packet-based transmissions, data-aided (DA) OL algo-
rithms are the favourite choice for fast timing synchroniza-
tion. One reason is that they exhibit improved accuracy
with respect to NDA methods. Furthermore, they provide
the timing estimate at the end of a specified observation
window, while CL schemes are characterized by a prolonged
acquisition period which is hardly consistent with this kind
of applications. More importantly, DA-OL methods offer the
opportunity to combine bit and frame synchronization into a
single-step operation, which makes them particularly attractive
for applications where fast timing acquisition is required. In
packet radio systems, joint bit and frame synchronization is
regularly achieved by oversampling the received signal at a
frequency multiple of the symbol rate and feeding the resulting
stream to a sliding window correlator. The timing estimate
is eventually obtained by searching for the maximum from
the correlator. This approach was recently suggested in [?]
for visible light communications and in [?] for bandlimited
optical channels. In high-rate FSO communications, however,
the oversampling operation represents a critical issue for the
following reasons:

1) it requires expensive analog-to-digital converters
(ADCs), characterized by ultra-low latency and very
high speed. Such stringent requirements may ask for
sophisticated hardware equipments and/or some form of
parallel implementation [?], where different sampling
devices operate in parallel after being shifted one from
another by a fraction of the signaling period;

2) it increases the ADC power consumption [?], which
is undesirable in many practical applications. This is
especially true in LEO satellite communications, where
rechargeable batteries provide power supply when the
solar panels of the satellite are not exposed to the
sun. Considering that in some cases the satellite spends
about 30% of its time in the Earth’s umbra [?], power
efficiency is essential for increasing the lifetime of the
batteries;

3) once an ADC with a specified sampling frequency has
been selected, the symbol-rate turns out to be inversely
proportional to the oversampling factor, which makes
signal oversampling unsuited for high-speed communi-
cations.

The presence of the preamble is also useful to acquire chan-
nel state information. Observing that in satellite systems long
codewords with length of tens or hundreds of milliseconds are
commonly used, the coherence time of the FSO channel can be
in the order of a few data blocks. Accordingly, a new channel
estimate is needed at every new received codeword in order
to optimally set the threshold levels for data decoding. Some
methods for estimating the channel attenuation in an FSO link
are illustrated in [?] and [?].

In this paper, we investigate the synchronization problem
in a packet-based FSO communication link. We consider

OOK signaling and assume that an avalanche photo-diode
(APD) is employed as a photodetector at the receiver side. In
particular, we look for some feasible architecture that exhibits
the following two desirable properties: 1) bit synchronization,
frame detection and channel estimation is achieved in a joint
fashion in order to speed-up the timing acquisition process as
much as possible; 2) symbol rate samples are used to complete
the synchronization task so as to avoid all the shortcomings
related to the oversampling operation. To the best of our
knowledge, these features cannot be simultaneously found in
any timing recovery scheme available in the literature, thereby
motivating further research on this topic. In order to meet
such requirements, we concentrate on the class of DA-OL
schemes and assume that a UW is periodically embedded in
the bitstream. Since the APD introduces shot noise with signal-
dependent power, the system model is the same as that adopted
in [?], except that no prior knowledge is assumed regarding the
mean signal level and noise power. A first contribution of our
work is the evaluation of the Cramér-Rao bound (CRB) for the
joint estimation of the timing offset, channel attenuation and
noise variances. This result is not available in the literature and
proves to be useful for the analysis and design of synchroniza-
tion schemes that are called to operate in the presence of shot
noise. Although a bound for joint timing and channel recovery
has previously been presented in [?], it only applies to signals
plagued by thermal noise with signal independent power. The
second contribution is the derivation of a new synchronization
algorithm which determines the position of the UW and
jointly provides estimates of the channel coefficient and timing
offset in a closed form. The proposed method is based on
the least squares (LS) estimation principle, which makes no
assumption about the noise statistics. This approach has the
advantage of leading to a practical scheme that simultaneously
meets the requirements of fast synchronization and symbol
rate sampling, which are of paramount importance in high-
speed FSO communications. Compared to the optimum ML
approach, it results into some performance loss as it ignores
any useful information conveyed by the signal-dependent noise
power regarding the time instants at which a bit transition
occurs. The loss is quantified by comparing the accuracy of
the proposed method with the relevant CRB. It is worth noting
that this is the first time that a timing recovery scheme is tested
in the presence of signal-dependent noise power.

The rest of the paper is organized as follows. Next section
introduces the system model and some basic notation. In
Sect. III, we present the proposed synchronization algorithm
and assess its processing requirements. The CRB analysis for
the joint estimation of all the unknown parameters, including
the noise variances, is conducted in Sect. IV. We discuss
simulation results in Sect. V and offer some conclusions in
Sect. VI.

Notation: Matrices and vectors are denoted by boldface
letters, A−1 is the inverse of a matrix A and ‖v‖ the norm of
a vector v. We use E{·} to indicate the statistical expectation,
while (·)T is the transposition operator. The symbol ⊗ is
adopted for the continuous-time convolution and, finally, we
denote by λ̃ a trial value of an unknown parameter λ.
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II. SYSTEM MODEL

In this section, we first introduce the mathematical model of
the photocurrent signal produced by the APD (continuous-time
signal model). Next, we provide the analytical expression of
the sample stream at the output of the receive filter (discrete-
time signal model).

A. Continuous-time signal model

We consider a packet-based FSO communication link em-
ploying a non-return-to-zero (NRZ) OOK modulation format.
The transmitted signal is expressed by

s(t) =
∑
i

aip(t− iT ) (1)

where T is the signaling period, ai ∈ {0, 1} denotes the
ith binary data symbol and p(t) is a normalized rectangular
shaping pulse with unit energy

p(t) =

{
1/
√
T

0
0 ≤ t ≤ T
otherwise. (2)

Data transmission is organized in successive frames, each
of which consists of NF symbol periods. In order to mark
the start of each frame, a UW of L pilot symbols is pe-
riodically inserted in the transmitted data stream. Without
loss of generality, we assume that the pilots in (??) have
indices i ∈ {0, 1, . . . , L − 1} and are collected into a vector
aUW = [a0, a1, . . . , aL−1].

At the receiver side, an APD is used for direct detection of
the transmitted data. The photocurrent signal provided by the
APD is proportional to the intensity of the incoming field and
is given by

r(t) = hs(t− τ) + w0(t) + wsh(t) (3)

where h is the channel state, τ is an unknown delay specifying
the UW position in the receiver time scale, w0(t) accounts for
thermal noise and, finally, wsh(t) represents the shot noise
introduced by the APD, which is statistically independent of
w0(t). The channel coefficient h is related to the average
received optical power Pavg by the following relationship

h =
2RPavg

√
T

e
(4)

where R denotes the APD responsivity and e = 1.60217662 ·
10−19 is the electron charge (in coulombs). Due to the
atmospheric turbulence encountered in both terrestrial and
satellite FSO links, the received optical power suffers from
random fluctuations which may result into significant signal
fading. Accordingly, the receiver has no prior knowledge of
the channel realization h, which must therefore be regarded as
an unknown parameter. In practical applications, the coherence
time of the channel fluctuations varies from 0.1 to 10 ms, while
the signalling rate can be as large as hundreds or thousands of
Mbps [?]. In such a case, we can confidently assume that h
remains constant over many symbol periods and, in particular,
over a frame interval.

The thermal noise w0(t) is modeled as a white Gaussian
process with one-sided power spectral density N0 expressed
by

N0 =
i2th

e2M2
(5)

where ith denotes the current thermal density and M is the
APD multiplication factor. While thermal noise is present in
r(t) at any time instant, shot noise only appears when a unitary
symbol ai = 1 is received. Hence, we can express wsh(t) in
(??) as

wsh(t) =
√
Tηsh(t)

∑
i

aip(t− τ − iT ) (6)

where ηsh(t) is a white Gaussian process with one-sided power
spectral density Nsh. The latter depends on the channel fading
coefficient through

Nsh =
2Fh√
T

(7)

with F denoting the APD noise figure. Finally, denoting by
w(t) = w0(t) + wsh(t) the overall noise contribution, from
(??) and (??) we have

w(t) =
√
T

[
w0(t)

∑
i

(1− ai)p(t− τ − iT )

+ w1(t)
∑
i

aip(t− τ − iT )

] (8)

where w1(t) = w0(t) + ηsh(t) has power spectral density
N1/2, with N1 = N0 +Nsh, and we have used the identity

√
T
∑
i

p(t− τ − iT ) ≡ 1. (9)

B. Discrete-time signal model

In a typical OOK receiver for FSO communications, the
photocurrent signal r(t) is integrated over each bit period
before further processing. This is achieved by passing r(t)
through an integrate-and-dump filter (IDF), where the dumping
operation is performed once per symbol interval. Although
symbol rate operation is a highly desirable feature in high-
speed communications in order to relax the ADC specifica-
tions, it is interesting to assess its impact on the performance of
synchronization algorithms. For this reason, in the subsequent
analysis we consider a more flexible setting in which the
integrator output is dumped with period Tc = T/N , where
N ≥ 1 is the oversampling factor. By selecting different values
of N , we can disclose how much information is possibly lost
when symbol-spaced samples are employed as observation
variables.

The mathematical model of the signal provided by the IDF
is obtained through the following procedure. Firstly, we call
x(t) = r(t)⊗ g(t) the waveform obtained by feeding r(t) to
a rectangular filter with impulse response

g(t) =

{
1/
√
T

0
0 ≤ t ≤ Tc
otherwhise (10)

and denote by x(k) the sample of x(t) taken at tk = (k+1)Tc.
Secondly, we observe that the sequence {x(k)} is just the
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sample stream provided by the IDF. A simple expression for
x(k) can be found by rewriting s(t) in (??) and w(t) in (??)
as

s(t) =
∑
i

cig(t− iTc) (11)

and

w(t) =
√
T

[
w0(t)

∑
i

(1− ci)g(t− τ − iTc)

+w1(t)
∑
i

cig(t− τ − iTc)

] (12)

where the quantities {ci} are obtained through the N -time
repetition of each data symbol, i.e.,

ci = ai\N (13)

with i\N denoting the integer division of i by N . Using
(??), the UW sequence aUW is thus transformed into an
NL−dimensional vector cUW = [c0, c1, . . . , cNL−1]. To pro-
ceed further, we decompose the delay τ as

τ = k0Tc + εTc (14)

where k0 is a non-negative integer called integer timing offset,
while ε ∈ [0, 1) is the fractional timing offset (FTO). Then,
sample x(k) is expressed by

x(k) =
1√
T

∫ (k+1)Tc

kTc

[hs(α− k0Tc − εTc) +w(α)]dα (15)

which, after standard computations and bearing in mind (??)
and (??), can be rewritten as

x(k) =
h

N
dk−k0(ε) + n(k). (16)

In the above expression, we have defined

dk(ε) = ck + εbk (17)

with
bk = ck−1 − ck (18)

while the noise terms {n(k)} are statistically independent
random variables. When conditioned to dk−k0

(ε), they are
Gaussian distributed with zero-mean and variance

σ2
n(k − k0, ε,N0, N1) =

N0

2N
[1− dk−k0(ε)] +

N1

2N
dk−k0(ε).

(19)

III. ESTIMATION OF THE SYNCHRONIZATION
PARAMETERS

A. Problem formulation

In order to establish the communication link, the receiver
must preliminarily activate a synchronization procedure so as
to correctly align its time scale to the incoming signal. This
is achieved by recovering the timing offsets k0 and ε, which
provide frame and bit synchronization, respectively. Channel
state information is also necessary for the design of the
optimum thresholds employed in the data detection process. In
this section, we show how to complete such a synchronization
task. As mentioned previously, we look for a solution that can

operate even in the absence of any oversampling (N = 1)
and is able to estimate the unknown parameters {k0, ε, h} in
a joint fashion in order to achieve fast timing acquisition. For
this purpose, we divide the sequence {x(k)} into overlapped
segments of length NL equal to the dimension of vector
cUW . Each segment corresponds to a different hypothesized
value k̃0 of the integer timing offset and is denoted by
x(k̃0) = [x(k̃0), x(k̃0 + 1), . . . , x(k̃0 +NL−1)]T . The length
NL is chosen such that, when k̃0 = k0, the observation
vector x(k0) contains the whole UW, while minimizing the
contamination from unknown information-bearing symbols.
Assuming that the UW is present in each frame of length
TF = NFT , the search for the UW position can be restricted
to the interval k̃0 ∈ I , with I = {0, 1, 2, . . . , NFN − 1}.

Intuitively speaking, the presence of shot noise may prove
useful for the purpose of timing recovery due to the abrupt
variation of the noise power induced by a transition 1→ 0 or
0 → 1 in the entries of cUW . The ML estimation principle
provides the optimal way for exploiting information conveyed
by such noise power fluctuations. Unfortunately, the exact
ML solution for the problem at hand leads to a computa-
tionally intractable multi-dimensional optimization process,
thereby motivating the search for some alternative suboptimal
methods. For this reason, in what follows the synchronization
parameters are recovered by resorting to the LS concept, which
makes no assumption on the noise statistics. The impact of
shot noise on the performance of the resulting schemes will
be assessed later by means of computer simulations.

From (??), the entries of x(k0) are given by

x(k+k0) = h(αk+εβk)+n(k+k0) 0 ≤ k ≤ NL−1
(20)

with

αk =
1

N
ck (21)

and

βk =
1

N
(ck−1 − ck) = αk−1 − αk. (22)

Letting α = [α0, α1, . . . , αNL−1]T and β =
[β0, β1, . . . , βNL−1]T , we can put (??) in matrix form
as

x(k0) = h(α+ εβ) + n(k0) (23)

where n(k0) = [n(k0), n(k0+1), . . . , n(k0+NL−1)]T is the
noise vector. It is worth noting that vector α is totally specified
by the UW elements collected into aUW , while β depends
on the sequence {a−1, a0, . . . , aL−1}, which is known except
possibly for a−1. To simplify the discussion we set a−1 = 0,
which amounts to assuming that a null pilot symbol is inserted
in front of the UW. This way, the entries of α and β can be
considered as known quantities at the receiver.

The LS estimation procedure is now applied to vectors
x(k̃0) (with k̃0 ∈ Ik0

) for jointly retrieving the synchronization
parameters {k0, ε, h}.



5

B. Least-squares estimation

From the mathematical model of x(k0) given in (??), the
LS estimate of {k0, ε, h} is obtained by looking for the global
minimum of the objective function

ΦLS(k̃0, ε̃, h̃) =
∥∥∥x(k̃0)− h̃(α+ ε̃β)

∥∥∥2 . (24)

The minimum is found through the following procedure. We
begin by keeping k̃0 fixed and let ε̃ and h̃ vary. Hence, putting
to zero the derivatives of ΦLS(k̃0, ε̃, h̃) with respect to ε̃ and
h̃ yields

ε̂(k̃0) =
Av(k̃0)− Cu(k̃0)

Bu(k̃0)− Cv(k̃0)
(25)

ĥ(k̃0) =
Bu(k̃0)− Cv(k̃0)

AB − C2
(26)

where u(k̃0) and v(k̃0) are obtained from the observation
vector x(k̃0) as

u(k̃0) = αTx(k̃0) (27)

v(k̃0) = βTx(k̃0) (28)

while the coefficients

A = ‖α‖2 (29)

B = ‖β‖2 (30)

C = αTβ (31)

can be precomputed and stored in the receiver. We proceed
further by plugging the results (??) and (??) back into (??).
This yields the LS metric for the estimation of k0 in the form

ΨLS(k̃0) =
∥∥∥x(k̃0)

∥∥∥2−Av2(k̃0) +Bu2(k̃0)− 2Cu(k̃0)v(k̃0)

AB − C2
.

(32)
As a final step, we suggest to normalize ΨLS(k̃0) to the

energy
∥∥∥x(k̃0)

∥∥∥2 of the sliding observation window. Such
an operation has a couple of advantages. On one hand, it
allows one to control the dynamic range of the metric, which
otherwise increases with NL. On the other hand, extensive
simulations indicate that the normalization process leads to
improved system performance. The estimate of k0 is eventu-
ally obtained as

k̂0 = arg max
k̃0∈Ik0

{
ΓLS(k̃0)

}
. (33)

with

ΓLS(k̃0) =
Av2(k̃0) +Bu2(k̃0)− 2Cu(k̃0)v(k̃0)

(AB − C2)
∥∥∥x(k̃0)

∥∥∥2 . (34)

Once k̂0 is available, it is used in (??) and (??) to get the
estimates of ε and h. We refer to the above procedure as the
least-squares estimator (LSE) of the timing offset and signal
amplitude.

C. Remarks

1) Although derived for a general oversampling factor N ,
LSE can provide joint bit and frame synchronization from
symbol-spaced samples (N = 1). This makes it particularly
attractive for fast timing recovery in high-speed FSO com-
munications. After a careful review of the related literature,
we were not able to find any other scheme exhibiting such
favourable advantages.

2) The aforementioned features of LSE are a consequence
of the signal model shown in (??). This means that LSE is
suitable for OOK transmissions with NRZ shaping pulses,
while it cannot be applied in the presence of bandlimited pulse
shaping and/or multilevel signaling formats.

3) An alternative approach for timing acquisition is to split
the bit and frame synchronization tasks into two successive
stages. In particular, bit synchronization can be firstly accom-
plished by resorting to any conventional NDA-OL scheme, as
for example the celebrated Oerder and Meyr estimator (OME)
reported in [?]. This provides a timing estimate which is
subsequently used to adjust the phase of the sampling device.
Frame acquisition is eventually acquired by correlating the
symbol rate samples with a local copy of the UW. Compared
to LSE, this approach results into a longer acquisition as a
consequence of its two-stage structure. Furthermore, all the
available NDA-OL timing estimators require a large enough
oversampling factor, which may be a serious concern in FSO
applications.

4) The joint estimation of the timing and channel parameters
{k0, ε, h} was previously investigated in [?] for bandlimited
optical intensity channels. The resulting scheme, denoted as
the Gappmair estimator (GE), is based on the ML estimation
principle and can easily be adapted to OOK transmissions as
well. It basically employs a grid-search to locate the maximum
of the correlation between the UW and the oversampled
received signal. A parabolic interpolation is eventually used for
a fine identification of the correlation peak. A major drawback
of this method is that a sufficiently large oversampling factor
must be selected to avoid aliasing problems.

D. Complexity analysis

In assessing the processing requirements of LSE, we
observe that the entries of α and β belong to the set
{−1/N, 0, 1/N}, so that no multiplication is needed to com-
pute u(k̃0) and v(k̃0) from (??) and (??). In particular,
denoting by L0 the number of unitary symbols in aUW , it
turns out that u(k̃0) is obtained with NL0−1 additions, while
v(k̃0) is evaluated through LT − 1 additions, where LT is the
overall number of transitions 1→ 0 and 0→ 1 in the entries of
aUW . As for the signal energy

∥∥∥x(k̃0)
∥∥∥2, it can be recursively

updated by means of the following iterative equation∥∥∥x(k̃0)
∥∥∥2 =

∥∥∥x(k̃0 − 1)
∥∥∥2 + x2(k̃0 +NL− 1)− x2(k̃0 − 1)

(35)
with only two multiplications and two additions. Assuming
that the coefficients A,B,C are available, the metric ΓLS(k̃0)
is next obtained with 7 supplementary products and 2 addi-
tions. The computation of ε̂(k̂0) and ĥ(k̂0) is not accounted
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TABLE I
COMPUTATIONAL REQUIREMENTS OF THE DIFFERENT ESTIMATORS

Estimators Number of flops per symbol period
LSE N(NL0 + LT + 11)
GE N(NL0 − 1)

OME L0 + 4N − 1

for since these quantities are only evaluated once at the end of
the estimation procedure. Summarizing all the above results,
it turns out that the overall complexity of LSE amounts to
N(NL0 +LT +2) additions plus 9N multiplications for each
symbol period.

The timing metric employed by GE is the oversampled
correlation between the APD photocurrent signal and a local
copy of the UW, which is accomplished through N(NL0−1)
additions every symbol period. As for OME, it requires 2
real multiplications plus 2 real additions for each received
sample. Hence, performing timing synchronization through
OME followed by the symbol rate correlation with the UW
requires 2N multiplications and L0+2N−1 additions for each
symbol interval. The complexity of the investigated schemes
is summarized in Tab. I in terms of floating point operations
(flops).

IV. CRB ANALYSIS

It is interesting to compare the performance of LSE with
the relevant CRB. While the derivation of LSE has been
previously conducted without taking the presence of shot noise
into account, we now consider a more realistic scenario where
the noise power is modeled as reported in (??). Inspection
of (??) reveals that the power spectral density of the shot
noise is strictly related to the channel fading coefficient h and
the APD noise figure F . Although such a relationship can
reduce the number of unknown parameters involved in the
estimation procedure, it is not considered in the subsequent
analysis. The reason is that in practice only the nominal value
of F is known, while its exact value is not available due
to long-term fluctuations arising from possible modifications
of the operating conditions. Random fluctuations are also
expected in the terms ith and M appearing in (??), which
make N0 an unknown quantity. Putting these facts together,
we conclude that the terms {h,N0, N1} can reasonably be
treated as independent unknown parameters. Accordingly, in
this section we evaluate the CRB for the joint estimation of
{ε, h,N0, N1}. Such a bound is not available in the literature
and represents a major outcome of our study. In the foregoing
analysis, we assume that the integer-valued parameter k0 has
been successfully detected and, without any loss of generality,
is fixed to zero. Furthermore, we let x(k0) = x to simplify
the notation.

Putting k0 = 0 into (??) and (??), yields

x(k) =
h

N
dk(ε) + n(k) (36)

where the noise terms {n(k)} are Gaussian distributed with
zero-mean and variance

σ2
n(k, ε,N0, N1) =

N0

2N
[1− dk(ε)] +

N1

2N
dk(ε). (37)

Hence, the log-likelihood function (LLF) of x is given by

Λ(ε, h,N0, N1) = −1

2

NL−1∑
k=0

{
ln[σ2

n(k, ε,N0, N1)]

+
[xk − hdk(ε)/N ]2

σ2
n(k, ε,N0, N1)

}
.

(38)

The Fisher information matrix (FIM) stemming from
Λ(ε, h,N0, N1) is computed in Appendix A. Unfortunately,
its expression is rather cumbersome and cannot be inverted in
a closed-form. The analysis becomes much easier when ε = 0.
In such a specific situation, we have dk = ck and

σ2
n(k, ε,N0, N1) =

N0

2N
(1− ck) +

N1

2N
ck. (39)

Furthermore, we define the two sets U0 = {k ∈
{0, 1, . . . , NL−1} : ck = 0} and U1 = {k ∈ {0, 1, . . . , NL−
1} : ck = 1}, collecting the indices k for which the pilot
symbol ck is either 0 or 1. Let NL0 and NL1 be the cardinality
of U0 and U1, respectively, where L0 and L1 denote the
number of null and unitary symbols in aUW . Then, we can
rewrite (??)-(??) as

[Fϕ]1,1 =
(N1 −N0)2

2

(
K0

N2
0

+
K1

N2
1

)
+

2h2

N

(
K0

N0
+
K1

N1

)
(40)

[Fϕ]2,2 =
2L1

N1
(41)

[Fϕ]3,3 =
NL0

2N2
0

(42)

[Fϕ]4,4 =
NL1

2N2
1

(43)

where
K0 =

∑
k∈U0

c2k−1 =
∑
k∈U0

ck−1 (44)

and

K1 =
∑
k∈U1

(ck−1−1)2 =
∑
k∈U1

(1−ck−1) = NL1−
∑
k∈U1

ck−1.

(45)
Collecting (??) and (??), yields

K0 −K1 =

NL−1∑
k=0

ck−1 −NL1 = c−1 − cNL−1 (46)

which reduces to K0 = K1 when c−1 = cNL−1. We also
observe that K0 represents the number of transitions 1→ 0 in
the UW sequence and its maximum value is thus L/2. In the
following derivations, we put K0 = K1 = ρL/2, with ρ ≤ 1.
Hence, we can rewrite (??) as [Fϕ]1,1 = ρµε, with

µε =
L

4

[
(N1 −N0)2(N2

0 +N2
1 )

N2
0N

2
1

+
4h2(N0 +N1)

NN0N1

]
(47)

while the other entries of the FIM shown in (??)-(??) become

[Fϕ]1,2 = − ρhL

NN1
(48)

[Fϕ]1,3 =
ρL(N1 −N0)

4N2
0

(49)
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[Fϕ]1,4 = −ρL(N1 −N0)

4N2
1

(50)

[Fϕ]2,3 = [Fϕ]2,4 = [Fϕ]3,4 = 0. (51)

Summarizing all the above results, we note that the FIM takes
the form

Fϕ =

[
ρµε ρuT

ρu A

]
(52)

where A is a diagonal matrix

A =diag
{

2L1

N1
,
NL0

2N2
0

,
NL1

2N2
1

}
(53)

and u is a tridimensional vector

u =

[
− hL

NN1
,
L(N1 −N0)

4N2
0

, − L(N1 −N0)

4N2
1

]T
. (54)

From (??), the inverse of Fϕ is found to be

F−1ϕ =

[
CRB(ε) −CRB(ε) · vT

−CRB(ε) · v B

]
(55)

where the bound for the estimation of ε is

CRB(ε) =
1

ρµε − ρ2(uTA−1u)
(56)

with

uTA−1u =
L2

8N

[
4h2

NN1L1
+ (N1 −N0)2

(
1

L0N2
0

+
1

L1N2
1

)]
.

(57)
Furthermore, we have v = ρ · (A−1u) and

B =

(
A− ρ

µε
· uuT

)−1
= A−1 + [CRB(ε)]vvT . (58)

The diagonal elements of B provide the bounds for the
estimation of (h,N0, N1) in the form

CRB(h) =
N1

2L1
+

(
ρLh

2NL1

)2

CRB(ε) (59)

CRB(N0) =
2N2

0

NL0
+

[
ρL(N1 −N0)

2NL0

]2
CRB(ε) (60)

CRB(N1) =
2N2

1

NL1
+

[
ρL(N1 −N0)

2NL1

]2
CRB(ε) (61)

which generalize the corresponding results obtained in [?] in
the presence of ideal bit synchronization.

V. SIMULATION RESULTS

A. Simulation set-up

Computer simulations have been run to assess the perfor-
mance of the proposed synchronization scheme in a typical
FSO scenario with a signalling rate of 10 Gbps. Direct
detection of OOK symbols is achieved through an APD char-
acterized by the parameters listed in Tab. II. The photocurrent
signal is affected by both thermal and shot noise, with one-
sided power spectral densities N0 and Nsh as specified in
(??) and (??), respectively. In particular, we observe that N0

TABLE II
APD PARAMETERS

Parameter Value
ith 10−12 [ A/

√
Hz]

F 5
R 0.9 [ A/W]
M 20
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Fig. 1. Probability of failure as a function of Pavg for N = 1 and ε = 0,
0.25 or 0.5.

only depends on ith and M , which are kept fixed throughout
simulations. On the other hand, combining (??) and (??) yields

Nsh =
4FR

e
Pavg (62)

where Pavg is varied in the subsequent analysis so as to assess
its impact on the system performance. Each data frame is
composed by a payload section of 9L = 1143 OOK symbols
preceded by the UW. The latter is a maximum-length sequence
with L1 = 64 and L0 = 63.

B. Performance assessment

A failure event is declared to occur whenever the timing
estimation error is greater than T/2 in magnitude, which
corresponds to an incorrect detection of the UW position. The
failure probability is thus defined as

Pf = Pr {|τ̂ − τ | > T/2} (63)

where τ is given in (??) and

τ̂ = (k̂0 + ε̂)Tc. (64)

Fig. 1 illustrates Pf as a function of Pavg, expressed in
decibel milliwatts (dBm), for N = 1 and ε = 0, 0.25 and 0.5.
The curve labeled IBS (Ideal Bit Synchronization) is obtained
under genie-aided FTO estimation (i.e., ε̂ = ε = 0) and
looking for the maximum of the objective function (??) with

respect to (k̃0, h̃) after a normalization by
∥∥∥x(k̃0)

∥∥∥2. As is
seen, LSE achieves the best performance with ε = 0. In such
a case, the loss with respect to the IBS curve is less than 1
dB, but increases to 3 dB when ε = 0.5. Intuitively speaking,
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Fig. 2. Probability of failure as a function of Pavg, with ε uniformly distributed
in [0, 1) and N = 1, 2 or 4.

the dependence of Pf on ε could be ascribed to the significant
amount of intersymbol interference (ISI) that affects the entries
of x(k0) as ε approaches ±0.5.

Although the main advantage of LSE is the possibility
of operating with symbol-spaced samples, it is interesting
to assess the impact of the oversampling factor N on the
system performance. In Fig. 2 we show Pf versus Pavg
when ε is uniformly distributed over [0, 1) and N = 1, 2
and 4. These results indicate that a gain of nearly 1 dB
is obtained in passing from N = 1 to N = 2, while no
significant improvement can be attained by further increasing
the oversampling factor. Observing that the use of symbol-
spaced samples as observation variables results into a tolerable
loss of the LSE performance, a good trade-off between system
complexity and detection capability is achieved by choosing
N = 1.

In Fig. 3 we compare LSE, GE and OME in terms of
Pf vs. Pavg. The FTO is still uniformly distributed over
[0, 1) and each estimator operates with a specific value of
N . In particular, the LSE curve is obtained with N = 1,
while N = 2 is chosen for GE because this scheme cannot
work in the absence of any signal oversampling. As for
OME, it first retrieves bit synchronization by applying the
algorithm in [?] to an observation window of length LT . In
this stage N = 4 is used, which is the minimum oversampling
factor leading to satisfactory performance. Frame detection is
next accomplished using symbol-spaced samples taken at the
adjusted time instants. We see that LSE outperforms the other
schemes, while dispensing from any oversampling operation.
At Pf values in the order of 10−3, the gain with respect to
OME is nearly 1.5 dB and increases to 3 dB when considering
GE.

The accuracy of the channel estimates is measured in terms
of their normalized mean square estimation error (NMSEE),
which is defined as

NMSEE(h) = E


(
ĥ− h
h

)2
 . (65)
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Fig. 3. Probability of failure for LSE, GE and OME as a function of Pavg,
with ε uniformly distributed in [0, 1).
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Fig. 4. Normalized MSE for channel gain estimation as a function of Pavg,
with ε uniformly distributed in [0, 1). Comparisons between LSE, GE and
OME.

In Fig. 4 we report NMSEE(h) for LSE, GE and OME1

as a function of Pavg. For each considered scheme, the
oversampling factor is the same as in Fig. 3 and ε is still
uniformly distributed over the range [0, 1). The relevant CRB,
computed from numerical inversion of the FIM, is also shown
as a benchmark. It is worth pointing out that these results have
been obtained by assuming ideal detection of the UW position,
i.e., letting k̂0 = k0. The reason is that measuring the channel
estimation accuracy in the presence of a failure event is totally
useless, as in such a case the data payload is lost anyway due
to the incorrect frame acquisition. As is seen, the accuracy of
LSE is close to the CRB at any value of Pavg (conditioned on
k̂0 = k0), which is quite surprising since the bound has been
evaluated by considering the presence of shot noise in the
signal model, while the noise statistics are totally overlooked

1It is worth noting that the estimate of h is not an outcome of the Order
and Meyr algorithm, but it is rather extracted from the subsequent correlation
between the synchronized baud-rate samples and the local copy of the UW.



9

-60 -55 -50 -45 -40 -35 -30 -25 -20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 5. Normalized MSE for the estimation of τ as a function of Pavg, with
ε = 0 and N = 1 or 2.

by LSE. This fact suggests that no useful information about
the channel coefficient can be extracted from the shot noise
statistics. The OME performs similarly to LSE, except for an
irreducible floor that appears in the NMSEE curve at large
values of Pavg. Such a floor is more evident with GE as a
consequence of the parabolic interpolation employed by this
scheme, which results into some estimation error even in the
absence of noise. Extensive computer simulations (not shown
for space limitations) reveal that the accuracy of LSE in terms
of NMSEE(h) is virtually independent of N . This fact can
easily be explained for ε = 0 and in the absence of shot noise,
since in these hypotheses the output from an IDF that operates
at symbol rate is a sufficient statistic for the ML estimation
of h. Our measurements suggest that a similar conclusion also
applies in a more general setting, where ε 6= 0 and the received
samples are plagued by shot noise.

We now present a last set of experiments illustrating the
accuracy of the timing estimates provided by LSE. As a
performance indicator, we use the mean square estimation
error normalized to the symbol period T , which is defined
as

NMSEE(τ) = E

{(
τ̂ − τ
T

)2
}

(66)

with τ̂ given in (??). Fig. 5 shows NMSEE(τ) as a function
of Pavg for ε = 0 and N = 1 or 2. These results are
still obtained under the assumption of ideal UW detection
(k̂0 = k0), with the CRB curves taken from (??). In contrast
to what was observed for the channel estimates, parameter
N has a significant impact on the timing estimation accuracy.
Indeed, a gain of approximately 3 dB arises when passing from
N = 1 to N = 2 for both the experimental curves and the
relevant bounds. When compared to the CRB, LSE exhibits a
remarkable loss of performance, which increases with Pavg. To
see how this comes about, consider the special case ε = 0, with
a bit transition 1→ 0 or 0→ 1 occurring at t = kTc. In such a
situation, two consecutive IDF outputs x(kTc) and x(kTc+Tc)
placed across the transition are not only characterized by a

0 0.1 0.2 0.3 0.4 0.5
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Fig. 6. Normalized MSE for the estimation of τ as a function of ε, for three
different values of Pavg and N = 1.

different mean value, but also exhibit different power noise
levels. Such an abrupt variation of the noise power provides
useful information for the timing recovery process which is
accounted for in the CRB, while it is not exploited by LSE,
which operates without taking the noise statistics into account.
In our simulation set-up, the amount of shot noise introduced
by the APD increases with the average received optical power
as specified in (??). This justifies why, for ε = 0, LSE
performs poorly with respect to the bound as Pavg grows large.

In Fig. 6 we report NMSEE(τ) versus the fractional timing
error for N = 1 and three different values of Pavg. It is
worth observing how the performance of LSE is virtually
independent of ε, while the relevant CRB steadily increases
with ε and comes close to the corresponding LSE curve when
ε = 0.5. We can justify such a strong dependence of the
CRB on ε by recalling that, in general, two IDF outputs
placed around a bit transition exhibit a difference in their
average noise power that may prove useful for the purpose
of timing recovery. Such a difference achieves a maximum
value of (N1 − N0)/(2N) when ε = 0 and progressively
reduces as ε approaches 0.5. This fact is easily seen if we
consider the extreme situation in which N = 1, ε = 0.5
and the UW is composed of alternating zeroes and ones. In
this scenario, each entry of the noise vector n(k0) has the
same average power σ2

n = (N0 + N1)/(2N), so that any
possible information provided by the shot noise regarding the
bit transition is totally lost. This means that in the proximity
of ε = 0.5 there is little to gain from exploiting the statistics
of n(k0) and, consequently, LSE performs close to the CRB.

In Fig. 7, LSE is compared with GE and OME in terms
of NMSEE(τ) vs. Pavg. The oversampling factor is N = 2
for GE and N = 4 for OME, while LSE operates at symbol
rate (N = 1). Since the fractional timing offset ε is uniformly
distributed over [0, 1), the CRB is obtained by averaging the
expression (??) with respect to ε. At sufficiently large SNR
values, we see that the accuracy of LSE is less than 2 dB far
from the bound. This seems in contrast to what was observed
in Fig. 5, where the LSE and the CRB lines are characterized



10

-60 -55 -50 -45 -40 -35 -30 -25 -20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 7. Normalized MSE for the estimation of τ as a function of Pavg, with
ε uniformly distributed in [0, 1). Comparisons between LSE, GE and OME.

by different slopes. Such an apparent disagreement can be
explained by recalling that the results of Fig. 5 are obtained
with ε = 0, which corresponds to a situation where the
loss of LSE with respect to the bound is maximum. Hence,
when ε varies in the interval [0, 1), we logically expect a
certain reduction of this loss, thereby justifying the results
of Fig. 7. It is worth noting that both the OME and GE
curves exhibit an irreducible floor at large values of Pavg. In
the medium SNR regime, OME and LSE perform similarly,
while GE is marginally better for Pavg < −50 dB. In the
latter case, however, the accuracy of all investigated schemes
is unsatisfactory and the only possible option to achieve
acceptable performance is an increase of the UW length.

C. Complexity comparison

We complete our study by comparing the investigated
schemes in terms of their computational complexity. In our
simulation set-up we have L0 = LT = 63, while the
oversampling factor is N = 1 for LSE, N = 2 for GE and
N = 4 for OME. Combining these figures with the results
shown in Tab. I, it turns out that LSE requires 137 flops
per symbol period, while GE and OME needs 250 and 78
flops, respectively. Although OME is less demanding than
the other schemes in terms of number of required flops, it
operates with an oversampling factor N = 4, which represents
a strong disadvantage in high-rate FSO communications. A
similar drawback is faced by GE, whose application requires
the highest number of flops in conjunction with N = 2. In
contrast, LSE can provide fast synchronization with reason-
able complexity and, notably, without requiring any signal
oversampling.

VI. CONCLUSIONS

We have addressed the problem of channel estimation,
timing recovery and frame acquisition in a packet-based
FSO communication system employing an OOK modulation
format. Since an APD is employed at the receiver as a

photodetector, the noise variance is signal-dependent due to
the presence of shot noise. By applying the LS estimation
principle, we have derived a scheme, named LSE, which can
provide estimates of all the unknown parameters in a joint
fashion, so as to speed-up the synchronization process as
much as possible. A significant part of this work has been
devoted to the evaluation of the CRB for the joint estimation
of the unknown parameters, including the signal-dependent
noise variances. Observing that LSE operates by ignoring
the noise statistics, the CRB has proved to be useful for
assessing the loss incurred by LSE with respect to an optimum
ML synchronization scheme that can effectively exploit the
abrupt variations of the noise power as a consequence of a bit
transition.

Computer simulations conducted in the presence of thermal
and shot noise indicate that the proposed method performs well
and, in many situations, its accuracy is close to the relevant
CRB. Compared to alternative timing recovery schemes that
need signal oversampling, a major advantage of LSE is the
possibility of operating with symbol-spaced samples, while
requiring an affordable complexity in terms of number of flops.
This makes LSE particularly attractive for FSO transmissions,
where the symbol rate is extremely high and the cost for signal
oversampling may be relevant in terms of hardware equipment
and ADC power consumption.

VII. APPENDIX A

In this Appendix we highlight the major steps leading to
the FIM for the estimation of the unknown parameters ϕ =
{ε, h,N0, N1}. This matrix has entries

[Fϕ]k1,k2
= −E

{
∂2Λ(ϕ)

∂ϕ(k1)∂ϕ(k2)

}
1 ≤ k1, k2 ≤ 4 (67)

where Λ(ϕ) is the LLF in (??), while ϕ(k) denotes the kth
element of ϕ. Bearing in mind (??) and (??), we get

∂dk(ε)

∂ε
= bk (68)

∂σ2
n(k, ε,N0, N1)

∂ε
=

(N1 −N0)bk
2N

(69)

∂σ2
n(k, ε,N0, N1)

∂N0
=

1− dk(ε)

2N
(70)

∂σ2
n(k, ε,N0, N1)

∂N1
=
dk(ε)

2N
. (71)

Then, substituting (??) into (??) and using (??)-(??), after
lengthy computations the entries of the FIM are found to be

[Fϕ]1,1 =
(N1 −N0)2

8N2

NL−1∑
k=0

b2k
σ4
n(k, ε,N0, N1)

+
h2

N2

NL−1∑
k=0

b2k
σ2
n(k, ε,N0, N1)

(72)

[Fϕ]2,2 =
1

N2

NL−1∑
k=0

d2k(ε)

σ2
n(k, ε,N0, N1)

(73)
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[Fϕ]3,3 =
1

8N2

NL−1∑
k=0

[1− dk(ε)]2

σ4
n(k, ε,N0, N1)

(74)

[Fϕ]4,4 =
1

8N2

NL−1∑
k=0

d2k(ε)

σ4
n(k, ε,N0, N1)

(75)

[Fϕ]1,2 =
h

N2

NL−1∑
k=0

dk(ε)bk
σ2
n(k, ε,N0, N1)

(76)

[Fϕ]1,3 =
(N1 −N0)

8N2

NL−1∑
k=0

[1− dk(ε)]bk
σ4
n(k, ε,N0, N1)

(77)

[Fϕ]1,4 =
(N1 −N0)

8N2

NL−1∑
k=0

dk(ε)bk
σ4
n(k, ε,N0, N1)

(78)

[Fϕ]2,3 = [Fϕ]2,4 = 0 (79)

[Fϕ]3,4 =
1

8N2

NL−1∑
k=0

dk(ε)[1− dk(ε)]

σ4
n(k, ε,N0, N1)

. (80)
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