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We show that geometric integrals of the type 
´
Ω fdg1 ∧ dg2

can be defined over a two-dimensional domain Ω when the 
functions f , g1, g2 : R2 → R are just Hölder continuous 
with sufficiently large Hölder exponents and the boundary 
of Ω has sufficiently small dimension, by summing over a 
refining sequence of partitions the discrete Stratonovich or 
Itô type terms. This leads to a two-dimensional extension 
of the classical Young integral that coincides with the 
integral introduced recently by R. Züst. We further show 
that the Stratonovich-type summation allows to weaken the 
requirements on Hölder exponents of the map g = (g1, g2)
when f(x) = F (x, g(x)) with F sufficiently regular. The 
technique relies upon an extension of the sewing lemma 
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from Rough paths theory to alternating functions of two-
dimensional oriented simplices, also proven in the paper.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The scope of the present paper is constructing explicitly, via the appropriate discrete 
approximations, the extension of the classical notion of the integral of the differential 2-
form fdg1∧dg2 over any sufficiently nice oriented planar domain Ω ⊂ R2 (one might think 
for simplicity of Ω being just an oriented polygon, or even simpler, a triangle) to the case 
when the maps f : R2 → R, g := (g1, g2) : R2 → R2 are only Hölder continuous, so that 
one might only put the word “differential” above in quotation marks, because g might 
have no derivatives. If g is sufficiently smooth and f just continuous, then fdg1∧dg2 can 
be understood in the modern differential geometry language as fg∗(dx1∧dx2), where dxi

are coordinate 1-forms, i = 1, 2, and g∗ stands for the pull-back via g, or, alternatively, 
in a more analytic language,

ˆ

Ω

fdg1 ∧ dg2 :=
ˆ

Ω

f(x) det
(
∂1g

1(x) ∂2g
1(x)

∂1g
2(x) ∂2g

2(x)

)
dx, (1.1)

∂i standing for partial derivatives in the coordinate direction xi, i = 1, 2. The latter 
integral is the natural building block for integrals of classical (smooth) differential 2-
forms over smooth parameterized 2-dimensional surfaces in Rn via pull-back. One comes 
therefore inevitably to the problem posed when trying to integrate even a very smooth 
differential 2-form ω in Rn over a parameterized Hölder surface ϕ : Ω ⊂ R2 → Rn, 
ϕ(x) = (ϕi(x))ni=1, letting formally

ˆ

ϕ(Ω)

ω :=
ˆ

Ω

ϕ∗ω,

where ϕ∗ω stands for pull-back of ω via ϕ, i.e. ϕ∗ω :=
∑

i,j(aij ◦ ϕ)dϕi ∧ dϕj when 
ω =

∑
i,j aijdxi ∧ dxj .

1.1. History

1.1.1. One-dimensional integrals
The one-dimensional prototype of this problem, that is, extending the integral of a 

differential 1-form udv over an interval [a, b] of the real axis to the maps u, v : R → R

that are only Hölder continuous, has been solved by L.C. Young [24] and independently 
by V. Kondurar [11]. They defined the respective integral 

´ b
udv as a limit in k of a 
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
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converging sequence of Riemann sums of the type 
∑k−1

i=0 u(ai)(v(ai+1) − v(ai)) over an 
appropriate sequence of refining partitions of the interval [a, b] by consecutive points 
a0 := a < a1 < . . . < ak := b, thus mimicking the definition of the classical Riemann 
integral. This provides an extension of the latter to the case u ∈ Cα(R), v ∈ Cβ(R)
when α+ β > 1 (later several generalizations of this result for wider classes of functions 
were provided, see e.g. [25] as well as the recent paper [23] and references therein). It is 
worth remarking that the original proof of Young [24] was quite “handmade”, just by the 
repetitive use of Hölder inequality. Rather, nowadays it is a custom to do it in a more 
“automated” way by using the so-called one-dimensional sewing lemma [4, lemma 2.1], 
which together with the construction of this integral, now usually called Young integral, 
is one of the basic pillars of the modern theory of Rough paths [5,7].1

Note that in the summands u(ai)(v(ai+1) − v(ai)) one could replace u(ai) by, for 
instance,

ū[aiai+1] := 1
2(u(ai) + u(ai+1)),

thus leading to a different notion of integral. Minding the obvious analogy with stochas-
tic Itô (resp. Stratonovich) integration, we will further call these two constructions Itô 
(resp. Stratonovich) summation. The general conditions on functions u and v for the lim-
its in each of these cases to exist have been studied in [16] (in the subsequent paper [21]
even more general weighted averages of u in place of ū[aiai+1] were considered). Finally, 
V. Matsaev and M. Solomyak constructed in [13] a similar integral substituting ū[aiai+1]
by the integral average 

ffl
[ai,ai+1] u, which extends the classical integral of a smooth dif-

ferential 1-form udv over an interval to the case when v ∈ Cβ(R) is Hölder continuous 
and u belongs to the Besov space Bα

1,1 with α + β ≥ 1. In all the mentioned cases the 
result is the same for u ∈ Cα(R), v ∈ Cβ(R) with α + β > 1, but may be different for 
more general functions.

1.1.2. Multidimensional integrals
Subsequently, several ways were proposed to extend the above mentioned one-

dimensional constructions to multidimensional cases, notably [19,3], which however lack 
the very important geometric property of the classical integral of multidimensional forms, 
namely, that of being alternating, i.e. changing sign with the change of domain orienta-
tion (although we also have to mention quite a different and purely geometric approach 
of [9] allowing to treat integration of smooth differential forms over nonsmooth do-
mains, e.g. having fractal boundary, and a quite curious recent construction of [22], 
reducing the multidimensional integral to a one-dimensional one involving a Peano-like 
curve).

1 A historic curiosity: the modern construction of the Young integral via sewing lemma is closer to the 
original one used by Kondurar in [11] although his contribution to the subject seems to be unfortunately 
not so well-known.
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A different approach to the definition of a multidimensional integral of nonsmooth 
“differential forms” has been taken by R. Züst [26]. Applied to the 2D situation which 
is of interest in the present paper, it shows that the integral (1.1) defined over smooth 
maps, admits the unique extension by continuity with respect to the natural topology 
of pointwise convergence with bounded Hölder constants to a multilinear continuous 
functional

(f, g1, g2) ∈ Cα(R2) × Cβ1(R2) × Cβ2(R2) �→ I(f, g1, g2)

vanishing over degenerate rectangles and triangles (namely, those having zero area) and 
alternating in the last two entries, if α + β1 + β2 > 2. This functional can be therefore 
naturally called an integral

ˆ

Ω

fdg1 ∧ dg2 := I(f, g1, g2),

and can be approximated by sums over triangles forming the sufficiently fine dyadic 
decomposition of Ω of the functions of three variables (which can be better thought as 
functions of a triangle) (p, q, r) ∈ (R2)3 �→ ηpqr defined by

ηpqr := fp

ˆ

∂[pqr]

g1dg2, (1.2)

where fp := f(p), the integral above being intended in the sense of Young (note that 
in [26] a slightly different language was used with rectangles instead of triangles; the 
current language is taken from [17] where a unified approach for integration of mul-
tidimensional nonsmooth “differential forms” called “rough differential forms” up to 
dimensions 1 and 2 was suggested). R. Züst himself has further successfully employed 
this integral in several remarkable geometric problems in [27].

It is easy to observe that the definition of the integral of fdg1 ∧ dg2 through the limit 
of sums of terms (1.2) over sequences of refining partitions, is a clear generalization of 
the construction of the one-dimensional Young integral described above. It is inherently 
based upon integration by parts, i.e. is made so that the Stokes theorem

ˆ

Ω

dg1 ∧ dg2 =
ˆ

∂Ω

g1dg2

almost automatically be satisfied for appropriate Ω ⊂ R2 (rectangle in [26] or triangle 
in [17]). This is however not how one usually expects the integral to be defined: in fact, 
the Young integrals over the sides of the triangle [pqr] in (1.2) have themselves to be 
defined either indirectly as continuous extensions of integrals of smooth differential forms 
approximating the “rough differential form” g1dg2 or as a limit of sums of appropriate 
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discrete approximations (on the contrary, the abstract extension of (1.1) from spaces 
of smooth functions to Sobolev or Besov spaces can be done via the techniques from 
[14,2,10] dealing with weak Jacobians).

1.2. Our contribution

It seems therefore more natural to define the integral of the “rough differential forms” 
f dg1∧dg2 by purely discrete approximations. To this aim for f ∈ Cα(R2), gi ∈ Cβi(R2), 
i = 1, 2, with α + β1 + β2 > 2, we write

stratpqr := 1
2

(
fp + fq + fr

3

)
det

(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
,

itopqr := 1
2fp det

(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
for [pqr] ⊂ R2,

(1.3)

where we write fu instead of f(u) and δgiuv := gi(v) −gi(u), i = 1, 2. We refer to strat and 
ito seen as functions of three variables (better viewed as functions of a two-dimensional 
simplex) as Stratonovich germ and to the latter one as Itô germ because of their obvious 
similarity with discrete constructions of the respective integrals in stochastic calculus. 
The terminology of “germs”, meaning just functions of finite-dimensional simplices, is 
borrowed from “germs of rough differential forms” [17], which is in turn inherited from 
the Rough Paths theory [7].

In this paper we show that

(A) if Ω is an oriented simplex (i.e. a triangle), then summing either Itô or Stratonovich 
germs over any sufficiently nice family of its refining triangular partitions (in par-
ticular, dyadic ones) with the appropriately chosen orientation will still lead to 
the same integral defined by Züst, and estimate the rate of convergence (Theo-
rems 4.4, 5.1). The respective integral may be called both Itô and Stratonovich, and 
in fact generalizes the one-dimensional Young integral.
It is worth emphasizing that this result might seem counterintuitive. In fact the 
integral should clearly vanish over degenerate triangles Ω (i.e. those having zero 
area), while neither the Stratonovich nor the Itô germ possesses this property (which 
we will further call nonatomicity), as opposed to the germ η defined by (1.2), nor 
they are in some obvious way asymptotically close to some nonatomic germ (unless 
of course the functions g1 and g2 are differentiable). It is therefore not at all clear 
how can one expect to be nonatomic a limit of sums of germs which are essentially 
not so;

(B) the integral defined in such a way can be extended to a large class of bounded open 
sets Ω ⊂ R2 having sufficiently small box-counting dimension of the topological 
boundary (Theorem 6.2), and in particular can be defined in a very natural way for 
Ω a simple polygon (Proposition 6.1).
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These results give a partial answer to the curious and important question that can 
be termed informally as follows: along what kind of “surfaces” (or, more generally, 
against which de Rham currents) can one integrate the “rough forms” of the type 
fdg1 ∧ dg2 with just Hölder f , g1, g2. It is clearly inherently related to the recent 
work of R. Züst on “functions of fractional bounded variation” [28] and of J. Harrison 
on continuity of integrals with respect to the domain [8], though is essentially be-
yond the scope of the present paper. As a pure speculation however we may suggest 
that further investigation in this direction would surely lead to extension of Stokes’ 
theorem to weak classes of surfaces/currents which may be helpful e.g. in extend-
ing the classical Frobenius integrability theorem and Chow-Rachevsky theorem to 
irregular vector fields or forms like e.g. in [15,12,20];

(C) if f is represented in particular form f(x) = F (x, g(x)), then the conditions of the 
existence of the integral extending the classical one (for smooth forms), i.e. the re-
quirements on Hölder exponents of gi, may be significantly relaxed at the price of 
requiring F : R2 × R2 → R to be sufficiently regular (Theorem 7.1) by employing 
Stratonovich germs. This is however a very particular feature of Stratonovich but 
not of Itô summation as can be seen also in the one-dimensional situation (Re-
mark 7.4). The resulting Stratonovich type integral is shown to satisfy the classical 
chain rule (Proposition 7.6) and may be identified with the “second order Riemann-
Stieltjes” integral introduced in [26], the respective identification leading to a curious 
continuity estimate for the degree of Hölder maps (Remark 7.10).
We also give an interpretation of these results in geometric terms of the existence of 
continuous extensions of De Rham currents associated with the graphs of smooth 
maps g : R2 → R2 to those associated with graphs of Hölder maps with sufficiently 
large Hölder exponents, the continuity being intended in the weak (pointwise) topol-
ogy of currents (Proposition 7.7).

The key role in the proofs will be played by the observation that both the integral 
and the Stratonovich germ are alternating, i.e. they change sign when the triangle over 
which they are defined changes the orientation. In fact, our basic tools will be the natural 
generalization of the two-dimensional sewing lemma and the associated stability theorem 
from [17] to abstract alternating germs, proved in the present work for the first time, in 
Lemmata A.1 and A.4 respectively. Thus, our construction is completely independent of 
that of [17] and, moreover appears to be more effective, allowing to recover Züst integral 
as a limit of suitable sums over partitions (as, e.g., classical Riemann integrals) rather 
than by an indirect inductive procedure.

As shown in [18], Züst integration theory can be applied to the study of well-posedness 
of exterior differential systems in presence of low regularity terms, i.e., “differentials” 
of Hölder continuous functions, extending the classical Frobenius theorem on Pfaffian 
systems. Moreover, in [6], a notion of signature for smooth maps has been introduced, 
and it is natural to argue by analogy with Young and Rough paths theory that the 
construction should extend to Hölder regular maps via Züst integration theory. We expect 
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that our results could be then combined with those of [18] and [6] to obtain explicit 
convergence results for discrete approximations.

Finally, let us mention that completely open question is extending the above results to 
n-forms of the type fdg1∧ . . .∧dgn with arbitrary n ∈ N. The major technical difficulty 
one encounters here is the absence of natural nice subdivisions of n-dimensional simplices 
with generic n ∈ N similar to dyadic subdivisions of segments and triangles (i.e. 1- and 
2-dimensional simplices) that we successfully employ here.

2. Notation and preliminaries

2.1. Spaces

Let D ⊂ Rn be an open set. For an α ∈ (0, 1) we will write Cα(D̄) (abbreviated just 
to Cα when there is no possibility of confusion) for the Hölder space with exponent α. 
For an f ∈ Cα(D̄) we denote by [δf ]α its Hölder seminorm, and ‖f‖α := ‖f‖∞ + [δf ]α
its Hölder norm, where ‖ · ‖∞ stands for the usual supremum norm in the space of 
continuous function C(D̄) (usually abbreviated to C). The notation C1(D̄) (or just C1

for brevity) will stand for the usual space of continuously differentiable functions.

2.2. Simplices, chains, germs and rough differential forms

For an ordered (k + 1)-uple of points S = [p0p1 . . . pk] ∈ Dk+1 we write convS :=
conv{p0p1 . . . pk} and diamS for the convex envelope and the diameter of the set of 
points {p0, . . . , pk} respectively, and call S an (oriented) k-simplex in D, if convS ⊂ D, 
the set of such simplices being denoted by Simpk(D). For a k-simplex S ∈ Simpk(D)
we denote by |S| its k-dimensional volume. A (real polyhedral) k-chain in D is an ele-
ment of the real vector space Chaink(D) generated by k-simplices in D. A k-simplex can 
be identified with the “geometric” simplex convS with a chosen base point p0 and the 
chosen orientation given by the order of the points in the list, so that 0-simplices corre-
spond to points, 1-simplices to oriented segments and 2-simplices are pointed oriented 
triangles.

A k-germ (of a k-differential form in D) is a function ω : Simpk(D) → R,

S = [p0p1 . . . pk] �→ ωS = ωp0p1...pk
.

We also often write 〈S, ω〉 instead of ωS . A k-cochain in D is a linear functional 
ω : Chaink(D) → R,

C �→ 〈C,ω〉 .

For instance, 0-germs are just functions p0 �→ f(p0) = fp0 = 〈[p0], f〉.
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The boundary ∂S of an S ∈ Simpk(D) is the (k − 1)-chain defined by

∂[p0p1 . . . , pk] :=
k∑

i=0
(−1)i[p0 . . . p̂i . . . pk],

the notation p̂i standing for removal of the respective element from the list. The operator 
∂ is naturally extended by linearity to k-chains. The coboundary of a k-germ ω is the 
(k + 1)-germ δω defined by duality with the boundary of simplices, namely,

〈S, δω〉 := 〈∂S, ω〉 .

For instance, for a 0-germ f one has (δf)pq = fq − fp, and for a 1-germ ω one has 
(δω)pqr = ωqr − ωpr + ωpq.

A k-germ ω is called

• nonatomic, if it vanishes on degenerate k-simplices S (i.e. on those having zero k-
dimensional volume |S| = 0). For instance, the germ η defined by (1.2) is nonatomic, 
while the germs strat and ito defined by (1.3) are not;

• alternating, if

〈[p0p1 . . . pk], δω〉 := (−1)σ 〈[σ(p0)σ(p1) . . . σ(pk)], ω〉 ,

for every permutation of vertices σ : {p0, p1 . . . pk} → {p0p1 . . . pk}, (−1)σ standing 
for the sign of permutation (positive for even and negative for odd permutations). 
For instance, among the germs defined by (1.2) and (1.3), strat is alternating, while 
η and ito are not.

Finally, a k-germ ω is called a rough differential k-form, if it is continuous (as a function 
of vertices of a simplex), and both ω and δω are nonatomic. An example of a rough 
differential 1-form (written g1dg2 for gi ∈ Cβi , i = 1, 2, with β1 + β2 > 1) is given by 
the Young integral over the line segment [pq], that is,

〈
[pq], g1dg2〉 :=

ˆ

[pq]

g1dg2.

An example of a rough differential 2-form (written fdg1 ∧ dg2 for f ∈ Cα, gi ∈ Cβi , 
i = 1, 2, with α+β1 +β2 > 2) is given by the integral defined by R. Züst in [26], namely,

〈
[pqr], fdg1 ∧ dg2〉 :=

ˆ

[pqr]

fdg1 ∧ dg2.

The cup product (called external product in [7]) between a k-germ ω and a h-germ ω̃
is the (k + h)-germ ω ∪ ω̃ defined by
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〈[p0p1 . . . pkpk+1 . . . pk+h], ω ∪ ω̃〉 := 〈[p0p1 . . . pk], ω〉 〈[pkpk+1 . . . pk+h], ω̃〉 .

The cup product is associative but in general not commutative, and the following Leibniz 
rule holds [17]: for ω ∈ Germk(D), ω̃ ∈ Germh(D) one has

δ(ω ∪ ω̃) = (δω) ∪ ω̃ + (−1)kω ∪ (δω̃). (2.1)

3. Estimates on germs

We start with the following useful algebraic lemma.

Lemma 3.1. One has

1
2 det

(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
= 1

2 det
(
δg1

pq δg1
qr

δg2
pq δg2

qr

)
= 1

2 det
(
δg1

rq δg1
pr

δg2
rq δg2

pr

)

= A(δg1 ∪ δg2)pqr,

(3.1)

where A stands for the antisymmetrization operator

A(φ ∪ ψ) := 1
2 (φ ∪ ψ − ψ ∪ φ) .

In particular,

itopqr = (f ∪ A(δg1 ∪ δg2))pqr. (3.2)

Proof. It suffices to calculate

det
(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
− det

(
δg1

pq δg1
qr

δg2
pq δg2

qr

)
= det

(
δg1

pq δg1
pr − δg1

qr

δg2
pq δg2

pr − δg2
qr

)

= det
(
δg1

pr δg1
pr

δg2
pr δg2

pr

)
= 0

to show the first equality in (3.1); the third one follows then from the definition of A. 
The second equality is quite analogous from

det
(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
− det

(
δg1

rq δg1
pr

δg2
rq δg2

pr

)
= det

(
δg1

pq − δg1
rq δg1

pr

δg2
pq − g2

rq δg2
pr

)

= det
(
δg1

qp δg1
pq

δg2
qp δg2

pq

)
= 0,

concluding the proof. �
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Notice that A(δg1 ∪ δg2) = δη with η = 1
2
(
g1δg2 − g2δg1).

Lemma 3.2. One has

|itopqr − stratpqr| ≤ [δf ]α[δg1]β1 [δg2]β2 diam([pqr])α+β1+β2 (3.3)

|stratpqr| ≤ ‖f‖∞ [δg1]β1 [δg2]β2 diam([pqr])β1+β2 (3.4)

|δstratpqrs| ≤ 5[δf ]α[δg1]β1 [δg2]β2 diam([pqrs])α+β1+β2 (3.5)

and strat is alternating, namely,

stratpqr = stratrpq = stratqrp = −stratrqp = −stratprq = −stratprq.

Remark 3.3. Clearly, (3.4) holds even for every f ∈ M , where M stands for the space of 
bounded (not necessarily measurable) functions over R2 equipped with the supremum 
norm (still denoted by ‖ · ‖∞).

Proof. The estimate (3.4) as well as the alternating property of strat is immediate from 
the definition of strat. To show (3.3), we calculate

|itopqr − stratpqr| = 1
2

∣∣∣∣∣
(
fp + fq + fr

3 − fp

)
det

(
δg1

pq δg1
pr

δg2
pq δg2

pr

)∣∣∣∣∣
≤ [δf ]α[δg1]β1 [δg2]β2 diam(pqr)α+β1+β2

as claimed. Thus, (3.5) would follow once one proves

|δitopqrs| ≤ [δf ]α[δg1]β1 [δg2]β2 diam([pqrs])α+β1+β2 . (3.6)

To show the latter inequality, we use Lemma 3.1: namely, by (3.2) one has

ito = 1
2
(
(f ∪ δg1 ∪ δg2) − (f ∪ δg2 ∪ δg1)

)
. (3.7)

Therefore, using the fact that

δ(δg1 ∪ δg2) = δg1 ∪ δ(δg2) − δ(δg1) ∪ δg2 = 0,

and analogously δ(δg2 ∪ δg1) = 0, from (3.7) we get

δito = 1
2
(
δ(f ∪ δg1 ∪ δg2) − δ(f ∪ δg2 ∪ δg1)

)
= 1

2
(
(δf ∪ δg1 ∪ δg2) − (δf ∪ δg2 ∪ δg1)

)
.

(3.8)

Since clearly,
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|(δf ∪ δg1 ∪ δg2)pqrs| = |(δf)pq| · |(δg1)qr| · |(δg2)rs|

≤ [δf ]α[δg1]β1 [δg2]β2 diam([pqrs])α+β1+β2 ,

and analogously

|(δf ∪ δg2 ∪ δg1)pqrs| ≤ [δf ]α[δg1]β1 [δg2]β2 diam([pqrs])α+β1+β2 ,

from (3.8) we get (3.6), and therefore (3.5), hence concluding the proof. �
Later in section 7 we will need also the following curious algebraic identity which is 

a peculiar property of only the Stratonovich germ strat and not of the Itô germ ito, and 
could have been also used for an alternative proof of (3.5) in Lemma 3.2.

Lemma 3.4. One has

(δstrat)pqrs = 1
6 det

⎛
⎜⎝ δfpq δfpr δfps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠ .

Proof. By Lemma 3.1 one has

6stratpqr

= fp det
(
δg1

pq δg1
qr

δg2
pq δg2

qr

)
+ fq det

(
δg1

pq δg1
qr

δg2
pq δg2

qr

)
+ fr

(
δg1

pq δg1
qr

δg2
pq δg2

qr

)

= (f ∪ δg1 ∪ δg2 − f ∪ δg2 ∪ δg1)pqr + (δg1 ∪ f ∪ δg2 − δg2 ∪ f ∪ δg1)pqr

+ (δg1 ∪ δg2 ∪ f − δg2 ∪ δg1 ∪ f)pqr.

Hence,

6(δstrat)pqrs = (δf ∪ δg1 ∪ δg2 − δf ∪ δg2 ∪ δg1)pqrs+

(−δg1 ∪ δf ∪ δg2 + δg2 ∪ δf ∪ δg1)pqrs+

(δg1 ∪ δg2 ∪ δf − δg2 ∪ δg1 ∪ δf)pqrs

= det

⎛
⎜⎝ δfpq δfqr δfrs

δg1
pq δg1

qr δg1
rs

δg2
pq δg2

qr δg2
rs

⎞
⎟⎠ = det

⎛
⎜⎝ δfpq δfpr δfps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠ ,

where the latter identity follows by adding the first column to the second one and sub-
sequently the second column to the third one. �
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4. Riemann summation over dyadic partitions

Recall [17] the dyadic decomposition of a 2-simplex [p0p1p2] ∈ Simp2(D)

dya[p0p1p2] := [q0q1q2] + [q1q0p2] + [q2p1q0] + [p0q2q1],

where qi := (pj + p�)/2 for {i, j, �} = {0, 1, 2}. Write also cut[p0p1] := [p0q] + [qp1] and 
fill[p0p1] := [p0qp1], with q := (p0 + p1)/2 (naturally extended to chains).

For n ∈ N define the n-th Stratonovich sum stratn, the side corrector Sn as well as 
the Itô sum iton respectively by the formulae

stratnpqr := 〈dyan[pqr], strat〉 , Sn
pq :=

n−1∑
i=0

〈
fill cuti[pq], strat

〉
,

itonpqr := 〈dyan[pqr], ito〉 .

(4.1)

Lemma 4.1. One has

|Sn+1
pq − Sn

pq| ≤ C ‖f‖∞ [δg1]β1 [δg2]β2 diam([pq])β1+β22n(1−β1−β2), (4.2)

|〈[pqr], (stratn − δSn) − (stratn+1 − δSn+1)〉|
≤ C[δf ]α[δg1]β1 [δg2]β2 diam([pqr])α+β1+β22n(2−α−β1−β2)

(4.3)

with C > 0 a universal constant. In particular, if α + β1 + β2 > 2, then

Spq := lim
n→∞

Sn
pq,

Vpqr := lim
n→∞

stratnpqr = lim
n→∞

(stratnpqr − δSn
pqr) + δSn

pqr

(4.4)

are well defined continuous alternating germs with

Spq : C0 × Cβ1 × Cβ2 → R, Vpqr : Cα × Cβ1 × Cβ2 → R

continuous and

|Sn
pq − Spq| ≤ C1 ‖f‖∞ [δg1]β1 [δg2]β2 diam([pq])β1+β22n(1−β1−β2), (4.5)

|stratnpqr − Vpqr − δ(Sn − S)pqr| ≤
C2[δf ]α[δg1]β1 [δg2]β2 diam([pqr])α+β1+β22n(2−α−β1−β2),

(4.6)

where the constants C1, C2 are positive and finite and depend only on α, β1, β2. More-
over, if [pqr] ⊂ D with diam(D) < ∞, then
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|stratnpqr − Vpqr| ≤ C3 ‖f‖α [δg1]β1 [δg2]β2 diam([pqr])β1+β22n(1−β1−β2), (4.7)

where C3 depends also on diam(D).

Remark 4.2. As one easily deduces from the proof, in view of the Remark 3.3, one 
has, with the notation of the latter, that in fact Spq itself may be defined over the 
larger space M × Cβ1 × Cβ2 and is continuous there when just β1 + β2 > 1. Let us 
also notice that, since α, β1, β2 ∈ (0, 1], the assumption α + β1 + β2 > 2 implies that 
β1 + β2 > 1.

Proof. We apply Lemma A.1 to our germ strat (which is continuous and alternating by 
construction) recalling that it satisfies both (A.1) and (A.2) with

γ1 := β1 + β2 > 1, C1 := ‖f‖∞ [δg1]β1 [δg2]β2 ,

γ2 := α + β1 + β2 > 2, C2 := 5[f ]α[δg1]β1 [δg2]β2

in view of Lemma 3.2. This gives (4.2) and (4.3), as well as the existence of limit germs 
alternating continuous S and V in (4.4) satisfying (4.5), (4.6) and (4.7). Finally, the 
continuity of Spq (with fixed [pq]) as a functional follows from (4.2) and implies the 
continuity of δSpqr : C0 × Cβ1 × Cβ2 → R. Continuity of

Vpqr − δSpqr := lim
n→∞

(stratnpqr − δSn
pqr) : Cα × Cβ1 × Cβ2 → R

follows from (4.3), hence implying the continuity of V , and therefore concluding the 
proof. �

We will need also the following Lemma already formulated in [17, example 4.7].

Lemma 4.3. If β1 = β2 = 1, then

Vpqr =
ˆ

[pqr]

fdg1 ∧ dg2 =
ˆ

[pqr]

f det(∇g1,∇g2).

We are now at a position to prove the first principal result of this paper.

Theorem 4.4. If α + β1 + β2 > 2, then

lim
n→∞

stratnpqr =
ˆ

[pqr]

fdg1 ∧ dg2 (4.8)

= lim
n→∞

itonpqr. (4.9)

In particular, the latter integral is
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(A) nonatomic, i.e.
ˆ

[pqr]

fdg1 ∧ dg2 = 0 when |[pqr]| = 0,

(B) continuous and alternating in [pqr], and
(C) additive, in the sense that when

[pqr] =
k∑

i=1
Δi + N + ∂R,

where Δi are oriented 2-simplices, N is a polyhedral 2-chain consisting of degenerate 
2-simplices (i.e. having area zero), and R is a polyhedral 3-chain in R2, then

ˆ

[pqr]

fdg1 ∧ dg2 =
k∑

i=1

ˆ

Δi

fdg1 ∧ dg2.

Moreover, for [pqr] ⊂ D with diam(D) < ∞,
∣∣∣∣∣∣∣strat

n
pqr −

ˆ

[pqr]

fdg1 ∧ dg2

∣∣∣∣∣∣∣ ≤ C ‖f‖α [δg1]β1 [δg2]β2 diam([pqr])β1+β22n(1−β1−β2),

(4.10)
∣∣∣∣∣∣∣ito

n
pqr −

ˆ

[pqr]

fdg1 ∧ dg2

∣∣∣∣∣∣∣ ≤ C ‖f‖α [δg1]β1 [δg2]β2 diam([pqr])β1+β22n(1−β1−β2) (4.11)

for some C = C(α, β1, β2, diam(D)) > 0.

Proof. By Lemma 4.1, the limit

Vpqr := lim
n→∞

stratnpqr

exists and is a continuous multilinear functional over Cα × Cβ1 × Cβ2 , and

Vpqr(f, g1, g2) =
ˆ

[pqr]

fdg1 ∧ dg2 :=
ˆ

[pqr]

f det(∇g1,∇g2) dx

when f ∈ C0, gi ∈ C1, i = 1, 2. However the unique continuous extension of the latter 
functional defined over C0 × C1 × C1 to Cα × Cβ1 × Cβ2 is the Züst integral, which 
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implies the claim (4.8), (4.10). Properties (A), (B) and (C) are now in fact the properties 
of the Züst integral (theorem 4.10 of [17] where they are stated by saying that the Züst 
germ (1.2) is sewable).

The claims (4.9), (4.11) follow now from (3.3). �
Remark 4.5. One also has the inequality (4.6) which can be rewritten, in view of the 
above Theorem 4.4 as

∣∣∣∣stratnpqr −
ˆ

[pqr]

fdg1 ∧ dg2 − δ(Sn − S)pqr
∣∣∣∣

≤ C ‖f‖α [δg1]β1 [δg2]β2 diam([pqr])α+β1+β22n(2−α−β1−β2)

(4.12)

with C = C(α, β1, β2) > 0. Thus, in order to improve the convergence rate one should 
better approximate Sn − S. This is the case e.g. when on the boundary of [pqr] either 
f is null or one of the gi is constant: in fact, in these cases Sn = 0 and hence also 
S = 0.

Remark 4.6. The 2-germ f ∪ δg1 ∪ δg2 in general does not provide an integral even when 
f , g1 and g2 are smooth. In fact, let f = 1, gi(x1, x2) := xi, i = 1, 2, p = (0, 0), q = (1, 0), 
r = (0, 1). Then 〈dyan[pqr], f ∪ δg1 ∪ δg2〉 → 2|[pqr]| while 〈dyan[pqr], f ∪ δg2 ∪ δg1〉 → 0
as n → ∞, i.e. the limit is not alternating.

Remark 4.7. As mentioned in the introduction, the above theorem allows to define the 
integral of a differential 2-form ω = fdg1∧dg2 on Rn over a parameterized Hölder surface 
ϕ : Ω → Rn, ϕ(x) = (ϕi(x))ni=1, letting

ˆ

ϕ([pqr])

fdg1 ∧ dg2 :=
ˆ

[pqr]

(f ◦ ϕ)d(g1 ◦ ϕ) ∧ d(g2 ◦ ϕ),

provided that f ∈ Cα(Rn), gi ∈ Cβi(Rn), i = 1, 2, ϕ ∈ Cγ(R2; Rn) with

γ(α + β1 + β2) > 2.

Notice however that the above integral differs from the integral obtained partitioning the 
triangle [ϕ(p)ϕ(q)ϕ(r)] with an order diam([pqr])γ(β1+β2) and not diam([pqr])γ(α+β1+β2), 
see [17, proposition 4.29].

Corollary 4.8. If there is an h ∈ Cβ3 , β3 ∈ (0, 1], such that both g1 and g2 are h-
differentiable in the sense

(δgi)pq = aip(δh)pq + o(|p− q|), i = 1, 2
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for every p ∈ D as q → p, and, moreover,

|(δgi)pq − aip(δh)pq| ≤ C|p− q|1+γi (4.13)

for some γi > 1 − β3, i = 1, 2, and C > 0, then dg1 ∧ dg2 = 0 in the sense
ˆ

[pqr]

fdg1 ∧ dg2 = 0

for every f ∈ Cα with α + β1 + β2 > 2 and every [pqr] ⊂ D.

Proof. Without loss of generality, let us assume diam(D) < ∞. Let

ρipq := (δgi)pq − aip(δh)pq.

Then

1
2 det

(
δg1

pq δg1
pr

δg2
pq δg2

pr

)
= 1

2a
1
pa

2
p det

(
δhpq δhpr

δhpq δhpr

)
+ 1

2 det
(
ρ1
pq a1

pδhpr

ρ2
pq a2

pδhpr

)

+ 1
2 det

(
a1
pδhpq ρ1

pr

a2
pδhpq ρ2

pr

)
+ 1

2 det
(
ρ1
pq ρ1

pr

ρ2
pq ρ2

pr

)
.

(4.14)

The first term in the right hand side is null, by the properties of the determinant, hence 
we focus on estimating the remaining ones. Letting γ := γ1 ∧ γ2, from (4.13) we get

1
2

∣∣∣∣∣det
(
ρ1
pq a1

pδhpr

ρ2
pq a2

pδhpr

)∣∣∣∣∣ ≤ C1[h]β3 diam([pqr])1+γ+β3 ,

1
2

∣∣∣∣∣det
(
a1
pδhpq ρ1

pr

a2
pδhpq ρ2

pr

)∣∣∣∣∣ ≤ C1[h]β3 diam([pqr])1+γ+β3 ,

1
2

∣∣∣∣∣a1
pa

2
p det

(
ρ1
pq ρ1

pr

ρ2
pq ρ2

pr

)∣∣∣∣∣ ≤ C2 diam([pqr])2+γ1+γ2 ,

where

C1 := C(‖a1‖∞ diam(D)γ1−γ + ‖a2‖∞ diam(D)γ2−γ),

C2 := C2‖a1‖∞‖a2‖∞.

By (4.14) one has

|stratpqr| ≤ ‖f‖∞2C1 · ([h]β3 diam([pqr])1+γ+β3 + C2 diam([pqr])2+γ1+γ2).
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The assumption γi > 1 − β3, for i = 1, 2, gives γ > 1 − β3 hence 1 + γ + β3 > 2, 
and obviously 2 + γ1 + γ2 > 2. Therefore, for some η > 2 and finite constant C3, not 
depending on [pqr], we have

|stratpqr| ≤ C3 diam([pqr])η.

Hence, by (4.8),
∣∣∣∣∣∣∣
ˆ

[pqr]

fdg1 ∧ dg2

∣∣∣∣∣∣∣ = lim
n→∞

|stratnpqr| ≤ lim
n→∞

C3 diam([pqr])η2(2−η)n = 0,

concluding the proof. �
Remark 4.9. In particular, if g1 is g2-differentiable and, moreover,

|(δg1)pq − ap(δg2)pq| ≤ C|p− q|1+γ (4.15)

for some γ > 1 − β2 and C > 0, then dg1 ∧ dg2 = 0.

5. General partitions

Theorem 4.4 shows that the integral 
´
[pqr] fdg1∧dg2 can be obtained as a limit of sums 

of the Stratonovich germs over dyadic partitions of the simplex [pqr]. Here we show that 
it can be obtained by a similar summation of such germs over more general partitions.

Theorem 5.1. Assume that the simplex [pqr] be partitioned in a finite number of disjoint 
simplices {Δi}Ni=1 not belonging to the sides of [pqr] so that

[pqr] −
N∑
i=1

Δi = ∂P +
M∑
j=1

Qj , (5.1)

where P ∈ Chain3(D) and each Qj ∈ Simp2(D) is a degenerate simplex reduced to a line 
segment belonging to some side of [pqr] such that two sides of each Qj are sides of some 
Δi (with opposite direction). Then

∣∣∣∣∣
N∑
i=1

〈Δi, strat〉 −
ˆ

[pqr]

fdg1 ∧ dg2

∣∣∣∣∣∣∣
≤ C ‖f‖α [δg1]β1 [δg2]β2

⎛
⎝ N∑

i=1
diam(Δi)α+β1+β2 +

M∑
j=1

diam(Qj)β1+β2

⎞
⎠ .

(5.2)
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Proof. The estimate (4.12) applied to each Δi with n := 0 gives
∣∣∣∣ 〈Δi, strat〉 −

ˆ

Δi

fdg1 ∧ dg2 −
〈
Δi, δ(S0 − S)

〉 ∣∣∣∣
≤ C ‖f‖α [δg1]β1 [δg2]β2 diam(Δi)α+β1+β2 .

Summing the latter estimates over i = 1, . . . , N , and recalling that

ˆ

[pqr]

fdg1 ∧ dg2 =
N∑
i=1

ˆ

Δi

fdg1 ∧ dg2

in view of (5.1), we get
∣∣∣∣∣∣∣

N∑
i=1

〈Δi, strat〉 −
ˆ

[pqr]

fdg1 ∧ dg2 −
M∑
j=1

〈
qj , S

0 − S
〉∣∣∣∣∣∣

≤ C ‖f‖α [δg1]β1 [δg2]β2

N∑
i=1

diam(Δi)α+β1+β2 ,

(5.3)

where qj ∈ Simp1(D) is the side of Qj which is not a side of any Δi: in fact, when 
summing the terms

〈
Δi, δ(S0 − S)

〉
=

〈
∂Δi, S

0 − S
〉

over i, we have that every side of some simplex of the partition which is not one of qj (i.e. 
does not belong to a side of [pqr]) appears in this sum twice and in opposite directions, 
and hence is cancelled out from this sum. Moreover, from (4.5) applied with qj instead 
of [pq] and n := 0 we get

|
〈
qj , S

0 − S
〉
| ≤ ‖f‖∞ [δg1]β1 [δg2]β2 diam(qj)β1+β2 ,

which together with (5.3) gives (5.2) since diam qj = diamQj . �
6. Integration over general domains

In section 4 we defined the integral of the “rough differential form” fdg1 ∧ dg2 over 
an arbitrary oriented simplex [pqr] in the domain of definition of f and g. Here we show 
how the latter can be naturally extended to more general domains Ω ⊂ R2.

First, consider the case when Ω is an oriented simple (i.e. not self-intersecting) polygon 
with vertices a0, . . . , ak, enumerated according to the orientation of Ω (say, counter-
clockwise). We will write in this case Ω = [a0 . . . ak]. Consider the triangulation of Ω in 
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two-dimensional simplices {Δi}mi=1 oriented in the same direction of Ω. We set then by 
definition

ˆ

[a0...ak]

fdg1 ∧ dg2 :=
m∑
i=1

ˆ

Δi

fdg1 ∧ dg2. (6.1)

The following statement is valid.

Proposition 6.1. Under conditions of Theorem 4.4 for every b ∈ R2 one has

ˆ

[a0...ak]

fdg1 ∧ dg2 =
k∑

j=0

ˆ

[ajaj+1b]

fdg1 ∧ dg2, (6.2)

where k+1 := 0. In particular, the definition (6.1) is correct (i.e. independent on the par-
ticular triangulation {Δi}), the above integral is alternating (i.e. preserves/resp. changes 
sign with odd/resp. even permutation of the vertices), nonatomic (i.e. zero on polygons 
of zero area), and the map

(f, g1, g2) �→
ˆ

[a0...ak]

fdg1 ∧ dg2

is a continuous multilinear functional over Cα×Cβ1×Cβ2 continuous also in the vertices 
a0, . . . , ak (i.e. continuous with respect to the simultaneous convergence of both functions 
involved and of the vertices).

Proof. Writing Δi := [α1
iα

2
iα

3
i ], one has

m∑
i=1

∂[bα1
iα

2
iα

3
i ] =

m∑
i=1

[α1
iα

2
iα

3
i ] −

m∑
i=1

[bα2
iα

3
i ] +

m∑
i=1

[bα1
iα

3
i ] −

m∑
i=1

[bα1
iα

2
i ],

so that taking into account (6.1), and recalling that

〈
∂[pqrs], fdg1 ∧ dg2〉 = 0,

we get
ˆ

[a0...ak]

fdg1 ∧ dg2 =

m∑
i=1

⎛
⎜⎝ ˆ

2 3

fdg1 ∧ dg2 −
ˆ
1 3

fdg1 ∧ dg2 +
ˆ
1 2

fdg1 ∧ dg2

⎞
⎟⎠ =
[bαiαi ] [bαiαi ] [bαiαi ]
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m∑
i=1

⎛
⎜⎝ ˆ

[α1
iα

2
i b]

fdg1 ∧ dg2 +
ˆ

[α2
iα

3
i b]

fdg1 ∧ dg2 +
ˆ

[α3
iα

1
i b]

fdg1 ∧ dg2

⎞
⎟⎠ ,

the latter equality being due to the alternating property of the integral. Every one-
dimensional edge [pq] of the triangulation not belonging to the boundary of Ω belongs 
to exactly two simplices of the triangulation leading to two terms in the right-hand side 
of the latter equality, 

´
[pqb] fdg1 ∧ dg2 and 

´
[qpb] fdg1 ∧ dg2 which cancel out due to the 

alternating property of the integral. Therefore, the right-hand side of the latter equality 
contains only terms of the type 

´
[pqb] fdg1 ∧ dg2 with [pq] belonging to the boundary of 

Ω; due to the additivity property of the integral they all sum up to the right-hand side 
of (6.2). The rest of the statement follows now immediately from (6.2) together with the 
respective properties of the integral over simplices. �

If Ω is a finite union of disjoint simple oriented polygons Ω1, . . . , Ωl then it is natural 
to set

ˆ

Ω

fdg1 ∧ dg2 :=
l∑

i=1

ˆ

Ωi

fdg1 ∧ dg2, (6.3)

so that the above integral clearly exists under the conditions of Theorem 4.4.
Finally, we are able to define naturally the 

´
Ω fdg1 ∧ dg2 for quite general bounded 

open sets Ω ⊂ R2 with a chosen orientation. To this aim for every k ∈ N let Pk be the 
union of open squares with vertices in 2−kZ2 contained in Ω. Clearly this is a bounded 
open set which is a finite union of simple polygons. We assume all Pk to be oriented in 
the same way as Ω. The following result holds true.

Theorem 6.2. Under conditions of Theorem 4.4, if additionally Ω ⊂ R2 is a bounded 
open set satisfying

dimbox∂Ω < β1 + β2, (6.4)

where dimbox stands for the upper box-counting dimension, there is the limit
ˆ

Ω

fdg1 ∧ dg2 := lim
k

ˆ

Pk

fdg1 ∧ dg2. (6.5)

In this case the map

(f, g1, g2) �→
ˆ

Ω

fdg1 ∧ dg2

is a continuous multilinear functional over Cα × Cβ1 × Cβ2 .
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Proof. Take a d ∈ (dimbox∂Ω, β1 + β2). The set Pk+m \ Pk can be naturally covered 
by triangles by dividing along the diagonal each of the squares of sidelength 2−(k+m)

with disjoint interiors composing it. The total number of such squares is estimated from 
above by the number of squares with vertices in 2−kZ2 touching ∂Ω, hence by C(2k)d
where C > 0 depends only on ∂Ω. Hence the number of triangles in the chosen cover 
of Pk+m \ Pk is estimated by 2C(2k)d(2m)2. Each triangle Δ in this cover has diameter 
D := 2−(k+m), and therefore by (4.10) together with (3.4) one has

∣∣∣∣∣∣
ˆ

Δ

fdg1(x) ∧ dg2(x)

∣∣∣∣∣∣ ≤ C ′Dβ1+β2 ,

where C ′ > 0 depends only on ‖f‖α, [g1]β1 , [g2]β2 . Thus

∣∣∣∣∣∣∣
ˆ

Pk+m

fdg1(x) ∧ dg2(x) −
ˆ

Pk

fdg1(x) ∧ dg2(x)

∣∣∣∣∣∣∣ ≤ 2C(2k)d(2m)2C ′2−(k+m)(β1+β2)

→ 0 as k → +∞

(even uniformly over bounded sets of Cα×Cβ1×Cβ2) because of the assumption β1+β2 >

d. This shows that the sequence of integrals {
´
Pk

fdg1 ∧ dg2}k is Cauchy, and hence the 
existence of the limit as claimed. This limit is clearly multilinear on (f, g1, g2) since so is 
the integral over simple polygons, and its continuity over Cα × Cβ1 × Cβ2 follows from 
that of the integral over polygons and of the fact that the above convergence is uniform 
over bounded sets of Cα × Cβ1 × Cβ2 . �
Remark 6.3. Clearly under the condition (6.4) the integral 

´
Ω fdg1 ∧ dg2 coincides with 

the classical one if f , g1 and g2 are smooth.

Remark 6.4. Combining Theorem 5.1 and Proposition 6.1, we have that the integral ´
Ω fdg1 ∧ dg2 in Theorem 6.2 may be also approximated directly by sums of either 

Stratonovich or Itô germs over sufficiently fine triangulations of Pk (for sufficiently large 
k).

Remark 6.5. If in the construction used in Theorem 6.2 one substitutes the dyadic grids 
2−kZ2 with some other ones (e.g. rotated and/or with sidelength of the cubes converging 
to zero with different speed), one would obtain under conditions of Theorem 6.2 in exactly 
the same way the existence of the limit in (6.5) (but now with different meaning of Pk), 
and its continuity and multilinearity over Cα×Cβ1 ×Cβ2 . Since this limit for smooth f , 
g1 and g2 still coincides with the classical integral, we get therefore that it also coincides 
with 

´
Ω fdg1 ∧ dg2 over the whole Cα ×Cβ1 ×Cβ2 , and hence the role of the particular 

sequence of grids in the definition (6.5) is not essential.
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7. Stratonovich type integrals of more irregular forms

We consider in this section the integrals of the type
ˆ

Ω

F (x, g(x))dg1(x) ∧ dg2(x)

defined for Hölder functions g := (g1, g2) : R2 → R2 when F : R2 × R2 → R. In fact, 
it happens that if one uses a Stratonovich-type construction, i.e. employs alternating 
germs stratpqr defined for f(x) := F (x, g(x)), then the above integral may be defined 
under much less restrictive requirements than those given by Theorem 4.4. In particular, 
we are able to trade regularity of g for the higher regularity of F . Here we only limit
ourselves to the case when the domain of integration Ω ⊂ R2 is an oriented simplex 
(i.e. triangle [pqr]), since the case of more general domains can be easily treated as in 
section 6.

Theorem 7.1. Let F : R2 ×R2 → R such that

(i) u �→ F (u, ·) ∈ C(R2; C1,γ(R2)), γ ∈ (0, 1],
(ii) u �→ F (·, u) ∈ C(R2; Cα),

and let f(x) := F (x, g(x)), where g(x) := (g1(x), g2(x)). If β1 + β2 > 1 and

α + β1 + β2 > 2,

(1 + γ)βi + β1 + β2 > 2, i = 1, 2,
(7.1)

then, with the notation of (4.1) the limit

Vpqr(g) := lim
n→∞

stratnpqr

exists. Moreover, it is continuous and alternating as a function of [pqr] fixed g1 and g2, 
nonatomic in the sense that

Vpqr(g) = 0 when |[pqr]| = 0,

and continuous as the functional of g, so that it is reasonable to denote
ˆ

[pqr]

F (x, g(x))dg1(x) ∧ dg2(x) := Vpqr(g).

Remark 7.2. It is worth observing that (7.1) implies βi > 1/3, i = 1, 2. In fact, assuming 
without loss of generality β1 < β2, we get from (7.1) (2 + γ)β1 + β2 > 2, and hence
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β1 >
2 − β2

2 + γ
≥ 1

3 .

On the other hand, βi > 1/2, i = 1, 2, is clearly sufficient for the second inequality in (7.1)
to hold. Note also that if β1 = β2 = β, and F (x, y) := F (y) for every (x, y) ∈ R2 × R2, 
then the first inequality of (7.1) is automatically satisfied since we may take α to be 
arbitrarily close to 1, and therefore (7.1) is equivalent to β > 2/(3 + γ) (e.g. β > 1/2
when F ∈ C1,1), which is far less restrictive than what is asserted in Theorem 4.4 (the 
latter requires in this case β > 2/3, since f ∈ Cβ).

Remark 7.3. It follows from the proof that the limit germ

Vpqr :=
ˆ

[pqr]

F (x, g(x))dg1(x) ∧ dg2(x))

is continuous also with respect to F (with respect to a topology compatible with (i) 
and (ii)).

Remark 7.4. We notice that an analogous result is easy to obtain in the one-dimensional 
case. Namely, roughly speaking, if g ∈ Cβ(R) is Hölder continuous and F : R × R → R

is Cα(R) in the first variable and C1,γ(R) in the second one, then the Stratonovich-type 
sums

∑
i

1
2 (F (xi, g(xi)) + F (xi+1, g(xi+1))) (δg)xixi+1

over a sequence of partitions (xi)i of [a, b] converge as supi |xi+1 − xi| → 0 when

α + β > 1 and β(2 + γ) > 1. (7.2)

This can be deduced at once starting from the calculation

δθpqr = 1
2 det

(
δfpq δfpr
δgpq δgpr

)

with fp := F (p, gp) and θpq := 1
2 (fp + fq) δgpq. The assumptions on f give the Taylor 

expansion

δfpq = apδgpq + O(|q − p|α + |q − p|β(1+γ))

so that a cancellation occurs in the determinant providing |δθpqr| = O(|q − p|α+β +
|q− p|β(2+γ)), which gives the possibility to apply the one-dimensional sewing lemma [4, 
lemma 2.1] if (7.2) holds. In particular, we notice that if α = γ = 1, then β > 1/3
is allowed, which is well below the threshold of Hölder exponents for the existence the 
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Young integral (defined for β > 1/2). It is worth emphasizing that this is the peculiar 
feature of the Stratonovich integral, not of the Itô one. In fact, if we take just F (x, y) := y, 
then the integral reduces to 

´
[pq] gdg, and for g ∈ Cβ(R) with β ∈ (1/3, 1/2] it is a limit 

of the sum of Stratonovich germs but in general not of Itô germs. This is the case for 
instance when g has infinite total quadratic variation, because the difference between 
the two germs over [pq] is (δg)2pq/2, so that if the integral existed as the limit of sums of 
either of the germs, then the total quadratic variation of g had to be finite.

Proof. Let fu(t) := F (u, x + t(y − x)) for {u, x, y} ∈ R2. Writing

F (u, y) = fu(1)

= fu(0) +
1ˆ

0

(fu)′(s) ds = fu(0) + (fu)′(0) +
1ˆ

0

((fu)′(s) − (fu)′(0)) ds

= F (u, x) + ∇yF (u, ·)(x) · (y − x)

+
1ˆ

0

(
∇yF (u, ·)(x + s(y − x)) −∇yF (u, ·)(x)

)
· (y − x) ds,

we get with x := gu, y := gv the relationship

(δF )uv := F (v, gv) − F (u, gu)

= (δF (·, gv))uv + (δF (u, ·))gugv
= (δF (·, gv)uv + δg1

uv∂y1F (u, ·)(g1
u, g

2
u) + δg2

uv∂y2F (u, ·)(g1
u, g

2
u) + Ruv,

where

Ruv := δg1
uv

1ˆ

0

(
∂y1F (u, ·)(g1

u + sδg1
uv, g

2
u + sδg2

uv) − ∂y2F (u, ·)(g1
u, g

2
u)
)
ds

+ δg2
uv

1ˆ

0

(
∂y2F (u, ·)(g1

u + sδg1
uv, g

2
u + sδg2

uv) − ∂y2F (u, ·)(g1
u, g

2
u)
)
ds,

(7.3)
so that

|(δF (·, gv)uv| ≤ C|v − u|α, (7.4)

|Ruv| ≤ C
(
|δg1

uv| + |δg2
uv|

)
)
(
(δg1

uv)2 + (δg2
uv)2

)γ/2 (7.5)

for (u, v) in a bounded set (the constant C > 0 depending on its diameter). From 
Lemma 3.4 one gets therefore
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(δstrat)pqrs =1
6 det

⎛
⎜⎝ (δF (·, gq))pq (δF (·, gr))pr (δF (·, gs))ps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠+

1
6 det

⎛
⎜⎝Rpq Rpr Rps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠ ,

(7.6)

because

det

⎛
⎜⎝ λ1

pδg
1
pq λ1

pδg
1
pr λ1

pδg
1
ps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠ = det

⎛
⎜⎝ λ2

pδg
2
pq λ2

pδg
2
pr λ2

pδg
2
ps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠ = 0,

where λi
p := ∂yi

F (p, ·)(g1
p, g

2
p), for i = 1, 2. Hence, using (7.4), (7.5) and the assumptions 

on gi, we can bound from above

|(δstrat)pqrs| ≤ C
(
diam([pqrs])α+β1+β2 + diam([pqrs])(1+γ)(β1∧β2)+β1+β2

)
≤ C diam([pqrs])d

(7.7)

with d := (α∧(1 +γ)(β1∧β2)) +β1+β2 and C > 0 (different from line to line) depending 
continuously on F (with respect to the topology compatible with (i) and (ii)) and on 
[δgi]βi

, i = 1, 2. Recalling (3.4) from Lemma 3.2, and that strat is alternating by the 
same Lemma, while d > 2 because of (7.1), we have that Lemma A.1 applies with

γ1 := β1 + β2 > 1, C1 := ‖f‖∞ [δg1]β1 [δg2]β2 ,

γ2 := d > 2, C2 := C,

C being the constant in the last inequality in (7.7), yielding the existence of continuous 
alternating germs

Spq := lim
n→∞

Sn
pq,

Vpqr := lim
n→∞

stratnpqr = lim
n→∞

(stratnpqr − δSn
pqr) + δSn

pqr.

It remains now to prove that fixed [pqr], the map

g ∈ Cβ1 × Cβ2 �→ Vpqr(g)

is continuous. To this aim let {gk} ⊂ Cβ1 × Cβ2 , converging to g pointwise as k → ∞, 
and [δg1

k]β1 + [δg2
k]β2 < C < +∞ for all k ∈ N. Let fk, Rk, Sn

k , Sk, stratnk , stratk, Vk be 
the same as f , R, Sn, S, stratn, strat, V respectively but with g1

k, g2
k instead of g1, g2. 

Clearly, as in (7.7) we have
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|(δstratk)pqrs| ≤ C diam([pqrs])d. (7.8)

The claim follows now by Lemma A.4 with γ2 := d, γ1 = β1 + β2 (in fact, (A.2) is given 
by (7.8), and (A.1) is just (3.4) from Lemma 3.2). �
Remark 7.5. One could strengthen the above Theorem 7.1 by proving the existence and 
continuity with respect to the data of a more general Stratonovich type integral

ˆ

[pqr]

F (x, h(x))dg1(x) ∧ dg2(x),

where F is as in Theorem 7.1, ψ ∈ C2,γ(R2; R2), γ ∈ (0, 1], hi ∈ Cβi(R2), gi := ψi ◦ h, 
i = 1, 2 with h := (h1, h2), ψ := (ψ1, ψ2) and βi > 1/2, i = 1, 2 and satisfy the first 
inequality of (7.1). In fact, letting f(x) := F (x, h(x)), and using the notation of (4.1) we 
would have the existence of the limit

lim
n→∞

stratnpqr =:
ˆ

[pqr]

F (x, h(x))dg1(x) ∧ dg2(x).

To show this, we adapt the arguments of the proof of the above Theorem 7.1, chang-
ing (7.6) with

(δstrat)pqrs =1
6 det

⎛
⎜⎝ (δF (·, gq))pq (δF (·, gr))pr (δF (·, gs))ps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠+

1
6 det

⎛
⎜⎝Rpq Rpr Rps

δg1
pq δg1

pr δg1
ps

δg2
pq δg2

pr δg2
ps

⎞
⎟⎠+

1
6 det

⎛
⎜⎝∇hF (p, hp) · δhpq ∇hF (p, hp) · δhpr ∇hF (p, hp) · δhps

r1
pq r1

pr r1
ps

∇ψ2
hp

· δhpq ∇ψ2
hp

· δhpr ∇ψ2
hp

· δhps

⎞
⎟⎠+

1
6 det

⎛
⎜⎝∇hF (p, hp) · δhpq ∇hF (p, hp) · δhpr ∇hF (p, hp) · δhps

∇ψ1
hp

· δhpq ∇ψ1
hp

· δhpr ∇ψ1
hp

· δhps

r2
pq r2

pr r2
ps

⎞
⎟⎠ ,

(7.9)
where

riuv := δgiuv − (∇ψi)hu
· δhuv, i = 1, 2.

Then the first two terms in (7.9) are estimated by C diam([pqrs])d1 with d1 > 2 as 
in (7.7) because of (7.1) (the second inequality of which is automatically satisfied in 
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view of Remark 7.2 due to the requirement βi > 1/2, i = 1, 2), while the other two are 
estimated by C diam([pqrs])d2 with d2 := 4(β1 ∧ β2) > 2, because

|riuv| ≤ C|u− v|2(β1∧β2),

and thus |δstratpqrs| ≤ C diam([pqrs])d, the constants in all the above estimates depend-
ing continuously on the data. This allows to proceed as in the proof of Theorem 7.1
showing the existence and continuity with respect to the data of the above integral.

Proposition 7.6 (Chain rule). Let F be as in Theorem 7.1, ψ ∈ C2,γ(R2; R2), γ ∈ (0, 1], 
hi ∈ Cβi(R2), and gi := ψi ◦ h, i = 1, 2, where h := (h1, h2), ψ := (ψ1, ψ2). If βi > 1/2, 
i = 1, 2 and the first inequality of (7.1) holds, then

ˆ

[pqr]

F (x, h(x))dg1(x) ∧ dg2(x)

=
ˆ

[pqr]

F (x, h(x)) detDψ(h1(x), h2(x))dh1(x) ∧ dh2(x)
(7.10)

Note that the integral on the right-hand side of (7.10) exists, is continuous and alter-
nating as a function of [pqr] fixed h1 and h2, and continuous as the functional of h1, h2

by Theorem 7.1.

Proof. The equality (7.10) is true when gi are smooth. The general case follows from 
continuity of the integrals on the left and righthand sides of (7.10) with respect to the 
pointwise convergence of gi, i = 1, 2 with uniformly bounded Hölder constants. �

We may give an interpretation of the above results in the spirit of theorem 3.2 from [1]. 
Namely, a smooth (say, C1) function g = (g1, g2) : [pqr] ⊂ R2 → R2 can be naturally 
identified with the smooth surface representing its graph, and therefore, with the De 
Rham 2-current Tg over [pqr] × R2 (endowed with orthogonal coordinates (x, y) :=
(x1, x2, y1, y2)) defined by

Tg(Fdx1 ∧ dx2) :=
ˆ

[pqr]

F (x, g(x)) dx1 ∧ dx2, (7.11)

Tg(Fdxi ∧ dyj) :=
ˆ

[pqr]

F (x, g(x)) dxi ∧ dgj(x), (7.12)

Tg(Fdy1 ∧ dy2) :=
ˆ

[pqr]

F (x, g(x)) dg1(x) ∧ dg2(x), (7.13)

for every f ∈ C2([pqr] ×R2).
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Proposition 7.7. If gi ∈ Cβi , i = 1, 2, with

3β1 + β2 > 2, 3β2 + β1 > 2, (7.14)

then the map g �→ Tg between C1([pqr]; R2) and the space D2([pqr] × R2) of 2-currents 
in [pqr] × R2 endowed with its weak (pointwise) topology admits the unique continuous 
extension to the space Cβ1 × Cβ2 (the continuity being intended, as usual, with respect 
to pointwise convergence with uniformly bounded Hölder constants).

Proof. If gi ∈ Cβi , i = 1, 2, then the formulae (7.11), (7.12) and (7.13) still make 
sense for an F ∈ C2([pqr] × R2) if one interprets the integrals involved in the sense of 
Stratonovich. Namely, one defines the integral

(A) in (7.11), say, in the usual Riemann (or Lebesgue) sense (which in this case is 
equivalent to the Stratonovich integral),

(B) in (7.13) in the sense of Theorem 7.1 (with α := 1, γ := 1), and
(C) in (7.12) again in the sense of Theorem 7.1 but with xi in place of g1, gj in place of 

g2, and F̄ in place of F , where F̄ is defined by

F̄ (x1, x2, y1, y2) :=
{

F (x1, x2, g1(x), y2), i = 1, j = 2,
F (x1, x2, y1, g2(x)), i = 2, j = 1,

and with γ := 1, α := β1 and 1 in place of β1 for the case i = 1, j = 2 or α := β2
and 1 in place of β2 for the case i = 2, j = 1.

Note that (7.14) makes Theorem 7.1 to be applicable with such data.
Continuity of the map g �→ Tg between Cβ1 ×Cβ2 and the space of currents endowed 

with its weak (pointwise) topology is given by Theorem 7.1. The fact that it is the 
unique continuous extension of its restriction to C1 × C1 follows from the density of 
C1 in any Hölder space (with respect to the uniform convergence with bounded Hölder 
constants). �
Remark 7.8. The proof of Proposition 7.7 shows that the formulae (7.11), (7.12)
and (7.13) still make sense for the current Tg with g ∈ Cβ1×Cβ2 when F ∈ C2([pqr] ×R2)
(in fact, even for F ∈ C1,1), if one interprets the integrals appearing there in the sense 
of Stratonovich, i.e. as in Theorem 7.1 (in particular, in (7.11) it may be interpreted as 
the usual Riemann or Lebesgue integral).

Remark 7.9. Theorem 3.2 from [1] says that the map g �→ Tg defined by the formu-
lae (7.11), (7.12) and (7.13) between C1([pqr]; R2) and the space of currents endowed 
with its weak topology admits a unique continuous extension to the Sobolev space 
W 1,1

loc ([pqr]; R2) (even sequentially weakly continuous one). It is worth noting that the 
extended current may be then defined for continuous differential forms (i.e. with F just 
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continuous), while here we have to require that the forms be smoother (in fact, request-
ing F to be C2, we are guaranteed only that the extended current Tg be defined over 
twice continuously differential forms). One may weaken the regularity requirement for 
forms (e.g. requesting that F might be less regular than C2), but this will inevitably 
strengthen the requirement of (7.14) on the regularity of Tg.

Remark 7.10. In order to identify the extension with the “second order Riemann-
Stieltjes” integral introduced in [26], we extend by continuity the identity

ˆ

R2

f(x) deg
(
(h1, h2), [pqr], x

)
dx =

ˆ

[pqr]

f(h1, h2)dh1 ∧ dh2 (7.15)

for every f ∈ C1,γ from smooth functions (h1, h2) to h1 ∈ Cβ1 , h2 ∈ Rβ2 . In combina-
tion with [26, theorem 4.3] this identifies the two integrals. Formula (7.15) follows by 
continuity and approximation.

We also notice that continuity of the right hand side in (7.15) gives the following 
quantitative continuity of degree of Hölder maps:

ˆ

R2

f(x)
(
deg

(
(h1, h2), [pqr], x

)
− deg

(
(k1, k2), [pqr], x

))
dx ≤ ‖f‖1,γ ‖h− k‖β

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors are grateful to Elisabetta Chiodaroli and to the participants of the 
Workshop “Rough calculus and weak geometric structures” (Moscow, 2018) Valentino 
Magnani, Annalisa Massaccesi, Stefano Modena, Khadim War and Roger Züst for stimu-
lating discussions that largely influenced the research leading to this paper. The authors 
also thank an anonymous referee for careful reading the manuscript and suggesting sev-
eral improvements.

Appendix A. Existence, uniqueness and stability of integrals

In this section we assume that ω be an abstract 2-germ in D ⊂ R2 (i.e. not necessarily 
the one defined by (1.3) satisfying

|ωpqr| ≤ C1 diam([pqr])γ1 , (A.1)

|(δω)pqrs| ≤ C2 diam([pqrs])γ2 , (A.2)
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with positive constants γ1, γ2, C1, C2 independent on [pqr] and [pqrs]. We define then 
ωn and Sn by

ωn
pqr := 〈dyan[pqr], ω〉 , Sn

pq :=
n−1∑
i=0

〈
fill cuti[pq], ω

〉
. (A.3)

We prove here the existence of limits limn ω
n and limn S

n and their basic stability 
properties. Note that we do not prove here that the respective germs are nonatomic 
and additive (although in fact this could be proven), as it is usually done in the sewing 
lemma.

Lemma A.1. Under the conditions (A.1) and (A.2) if ω is alternating, then

|Sn+1
pq − Sn

pq| ≤ C1 diam([pq])γ12n(1−γ1), (A.4)

|〈[pqr], (ωn − δSn) − (ωn+1 − δSn+1)〉| ≤ 4C2 diam([pqr])γ22n(2−γ2). (A.5)

In particular, if γ1 > 1 and γ2 > 2, then the germs

Spq := lim
n→∞

Sn
pq,

Vpqr := lim
n→∞

ωn
pqr = lim

n→∞
(ωn

pqr − δSn
pqr) + δSn

pqr

are well defined, continuous (if so is ω), alternating and

|Sn
pq − Spq| ≤

C1

1 − 21−γ1
diam([pq])γ12−n(γ1−1), (A.6)

|ωn
pqr − Vpqr − δ(Sn − S)pqr| ≤

4C2

1 − 22−γ2
diam([pqr])γ22−n(γ2−2). (A.7)

Moreover, if [pqr] ⊆ D with diam(D) < ∞, then

|ωn
pqr − Vpqr| ≤ C3 diam([pqr])γ2−n((γ1−1)∧(γ2−2)), (A.8)

with γ = γ1 ∧ γ2, and

C3 = 3C1

1 − 21−γ1
diam(D)γ1−γ + 4C2

1 − 22−γ2
diam(D)γ2−γ .

Proof. For the readers’ convenience we organize the proof in several steps.
Step 1. To prove (A.5), observe that for some geometric map ρ : Simp2(D) →

Chain3(D), i.e. continuous and commuting with affine transformations, one has

ω1
p0p1p2

− ω0
p0p1p2

= 〈dya[p0p1p2], ω〉 − 〈[p0p1p2], ω〉
= 〈∂ρ([p0p1p2]), ω〉 + 〈fill[p1p2], ω〉 − 〈fill[p0p2], ω〉 + 〈fill[p0p1], ω〉
= 〈ρ([p p p ]), δω〉 + 〈fill ∂[p p p ], ω〉 ,

(A.9)
0 1 2 0 1 2
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and moreover,

ρ([p0p1p2]) =
4∑

i=1
Qi, Qi ∈ Simp3(D),diamQi ≤ diam([p0p1p2]), i = 1, . . . , 4.

(A.10)
The explicit construction of ρ can be given as follows. Write

q0 := (p1 + p2)/2, q1 := (p0 + p2)/2, q2 := (p0 + p1)/2,

and set

ρ([p0p1p2]) = [p0p1p2q0] + [p0q0p2q1] + [p0p1q0q2] + [p0q0q1q2].

Clearly, this is (A.10). To see that (A.9) holds, we use the fact that ω is alternating and 
collect the following identities:

〈∂[p0p1p2q0], ω〉 = 〈[p1p2q0] − [p0p2q0] + [p0p1q0] − [p0p1p2], ω〉
= −〈fill[p1p2], ω〉 − 〈[p0p1p2], ω〉 + 〈[p0p1q0] − [p0p2q0], ω〉 ,

〈∂[p0q0p2q1], ω〉 = 〈[q0p2q1] − [p0p2q1] + [p0q0q1] − [p0q0p2], ω〉
= 〈fill[p0p2], ω〉 + 〈[p0p2q0], ω〉 + 〈[q0p2q1] + [p0q0q1], ω〉 ,

〈∂[p0p1q0q2], ω〉 = 〈[p1q0q2] − [p0q0q2] + [p0p1q2] − [p0p1q0], ω〉
= −〈fill[p0p1], ω〉 − 〈[p0p1q0], ω〉 + 〈[p1q0q2] − [p0q0q2], ω〉

〈∂[p0q0q1q2], ω〉 = 〈[q0q1q2] − [p0q1q2] + [p0q0q2] − [p0q0q1], ω〉 .

By summing all of them, we obtain

〈∂ρ[p0p1p2], ω〉
= −〈[p0p1p2], ω〉 − 〈fill[p1p2], ω〉 + 〈fill[p0p2], ω〉 − 〈fill[p0p1], ω〉

+ 〈[q0p2q1] + [p1q0q2] + [q0q1q2] − [p0q1q2], ω〉
= 〈dya[p0p1p2], ω〉 − 〈[p0p1p2], ω〉 − 〈fill ∂[p0p1p2], ω〉 ,

which yields (A.9).
Therefore by (A.2) and (A.10), we have

| 〈ρ([p0p1p2]), δω〉 | ≤ 4C2 diam([p0p1p2])γ2 . (A.11)

Writing then dyan[pqr] =
∑22n

i=1 Δi with Δi ∈ Simp2(D) being dyadic simplices equal, 
up to translations, to a dilation of [pqr] of a factor 2−n, we get from (A.9)

〈
Δi, ω

1〉− 〈
Δi, ω

0〉 = 〈ρ(Δi), δω〉 + 〈fill ∂Δi, ω〉 ,



32 G. Alberti et al. / Journal of Functional Analysis 286 (2024) 110212
and summing the latter expressions over i = 1, . . . , 22n, we arrive at

ωn+1
pqr − ωn

pqr =
22n∑
i=1

〈
Δi, ω

1 − ω0〉

=
22n∑
i=1

〈ρ(Δi), δω〉 + 〈fill cutn ∂[pqr], ω〉 ,

(A.12)

since if Δi and Δj have a common couple of vertices, say, p0 and p1, then by alternating 
property of ω one has

〈fill[p0p1], ω〉 = −〈fill[p1p0], ω〉 ,

i.e. the respective terms cancel out from the above sum, while the terms coming from 
the sides of dyadic simplices belonging to the boundary of [pqr] remain, their sum giving 
rise to 〈fill cutn ∂[pqr], ω〉. Observing that

〈fill cutn ∂[pqr], ω〉 =
〈
[pqr], δSn+1 − δSn

〉
and rewriting (A.12) with this help, we arrive at

(ωn+1
pqr − (δSn+1)pqr) − (ωn

pqr − (δSn)pqr) =
22n∑
i=1

〈ρ(Δi), δω〉 . (A.13)

Therefore,

|(ωn+1
pqr − (δSn+1)pqr) − (ωn

pqr − (δSn)pqr)| ≤
22n∑
i=1

| 〈ρ(Δi), δω〉 |

≤ 4C2

22n∑
i=1

diam(Δi)γ2 by (A.11)

≤ 4C222n
(

diam([pqr])
2n

)γ2

as claimed.
Step 2. The estimate (A.4) follows with C := C1 just observing that

Sn+1
pq − Sn

pq = 〈fill cutn[pq], ω〉 ,

while in view of (A.1) and of the definition of fill cutn one has

| 〈fill cutn[pq], ω〉 | ≤ C12n
(

diam([pq])
n

)γ1

.
2
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Step 3. Existence of S and V follow now from (A.4) and (A.5) respectively. Since ω is 
alternating, then so are ωn and Sn, and therefore also V and S. Now, the continuity of 
ω implies that of Sn and ωn for each fixed n ∈ N, and hence the continuity of S and V
follow from (A.6) and (A.8) respectively once they are proven. E.g. to prove continuity 
of S, for [pq] ⊂ D and [rs] ⊂ D with D bounded, given an ε > 0, we choose an n ∈ N

such that C diam(D)2n(1−γ1) < ε/3, so that

|Spq − Srs| ≤ |Spq − Sn
pq| + |Sn

pq − Sn
rs| + |Sn

rs − Srs|
≤ 2ε/3 + |Sn

pq − Sn
rs| by (A.6) and the choice of ε,

so that it is enough to find a δ = δ(n, ε) > 0 such that |Sn
pq − Sn

rs| < ε/3 once |p − r| +
|q − s| < δ to get |Spq − Srs| < ε. The proof of continuity of V is completely analogous 
(with the use of (A.8) instead of (A.6)).

Step 4. Finally, we prove (A.6), (A.7) and (A.8). The inequality (A.6) is proven by 
the chain of estimates

|Sn
pq − Spq| =

∣∣∣∣∣
∞∑

k=n+1

(Sk
pq − Sk−1

pq )

∣∣∣∣∣ ≤ C1 diam([pq])γ1

∞∑
k=n

2k(1−γ1) by (A.4)

≤ C1
2n(1−γ1)

1 − 21−γ1
diam([pq])γ1 .

Analogously, (A.7) follows from

|ωn
pqr − Vpqr − δ(Sn − S)pqr| = |(ωn

pqr − δSn
pqr) − (Vpqr − δSpqr)|

=

∣∣∣∣∣
∞∑

k=n+1

(
(ωk

pqr − δSk
pqr) − (ωk−1

pqr − δSk−1
pqr )

)∣∣∣∣∣
≤ 4C2 diam([pqr])γ2

∞∑
k=n

2k(2−γ2) by (A.5)

≤ 4C2
2n(2−γ2)

1 − 22−γ2
diam([pqr])γ2 .

Finally, (A.6) gives

|δ(Sn − S)pqr| ≤
3C1

1 − 21−γ1
diam([pqr])γ12n(1−γ1),

which together with (A.7) implies (A.8), concluding the proof. �
As a result of Lemma A.1 we have that V and S satisfy

|Spq| ≤ C diam([pq])γ1 ,

|ωpqr − (V − δS)pqr| ≤ C diam([pqr])γ2 .
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In particular, if γ1 > 1 and γ2 > 2 this implies

|Spq| ≤ o(diam([pq])) as diam([pq]) → 0, (A.14)

|ωpqr − (V − δS)pqr| ≤ o(diam([pqr])2) as diam([pqr]) → 0. (A.15)

Moreover, since

Spq =
∞∑
i=0

〈
fill cuti[pq], ω

〉
,

then one has

(δS)prq = −ωprq when r = p + q

2 . (A.16)

Finally,

〈dya[pqr], V 〉 = 〈[pqr], V 〉 . (A.17)

Let us notice the following elementary result.

Lemma A.2. Let V ∈ Germ2(D) satisfying (A.17) for every [pqr] ⊂ D and

|Vpqr| = o
(
diam([pqr])2

)
as diam([pqr]) → 0.

Then Vpqr = 0 for every [pqr] ⊂ D.

Proof. From (A.17), we obtain 〈(dya)n[pqr], V 〉 = 〈[pqr], V 〉 for every n ∈ N, yielding

|Vpqr| = | 〈dyan[pqr], V 〉 | = 22no

(
diam([pqr])2

22n

)

= diam([pqr])2o(1) → 0

as n → ∞. �
The following curious result, though not used elsewhere in this paper, gives the unique-

ness of such a couple (S, V ) for a given ω.

Lemma A.3. Given an ω ∈ Germ2(D), the couple of germs (S, V ) ∈ Germ1(D) ×
Germ2(D) satisfying (A.14), (A.15), (A.16) and (A.17) is unique.

Proof. Suppose that there are two couples (Si, Vi) ∈ Germ1(D) × Germ2(D), i = 1, 2
satisfying (A.14), (A.15), (A.16) and (A.17). Then for S := S1 − S2 and V := V1 − V2
we get
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|Spq| ≤ o (diam([pq])) as diam([pq]) → 0, (A.18)

|(V − δS)pqr| = o
(
diam([pqr])2

)
, as diam([pqr]) → 0, and (A.19)

(δS)prq = 0. when r = p + q

2 . (A.20)

For each n ∈ N dividing dyadically the line segment [pq] by consecutive points

rj :=
(

1 − j

2n

)
p + j

2n q, j = 0, . . . , 2n,

we get

Spq =
2n∑
j=0

Srjrj+1

by (A.20), and hence,

|Spq| ≤
2n∑
j=0

|Srjrj+1 | ≤ 2no
(
|pq|
2n

)
= |pq|o (1)

as n → 0, by (A.18), and taking the limit in the above inequality as n → ∞, we get 
Spq = 0. Then (A.19) is reduced to

|Vpqr| = o
(
diam([pqr])2

)
as diam([pqr]) → 0, (A.21)

which implies that V = 0 in view of Lemma A.2, because V = V1 − V2 and both V1, V2
satisfy (A.17). �

Consider now a sequence of continuous alternating germs {ωk} ⊂ Germ2(D) satisfying

|(ωk)pqr| ≤ C1 diam([pqr])γ1 , (A.22)

|(δωk)pqrs| ≤ C2 diam([pqrs])γ2 , (A.23)

with positive constants γ1 > 1, γ2 > 2, C1, C2 independent on [pqr], [pqrs] and k.

(ωn
k )pqr := 〈dyan[pqr], ωk〉 , (Sn

k )pq :=
n−1∑
i=0

〈
fill cuti[pq], ωk

〉
. (A.24)

Lemma A.1 guarantees the existence for each k ∈ N of continuous alternating germs

(Sk)pq := lim
n→∞

(Sn
k )pq,

(Vk)pqr := lim
n→∞

(ωn
k )pqr = lim

n→∞
((ωn

k )pqr − δ(Sn
k )pqr) + (δSn

k )pqr.
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Suppose further that ωk → ω pointwise. Then clearly the latter satisfy (A.1) and (A.1)
and thus Lemma A.1 provides the existence of continuous alternating germs

Spq := lim
n→∞

Sn
pq,

Vpqr := lim
n→∞

ωn
pqr = lim

n→∞
(ωn

pqr − δSn
pqr) + δSn

pqr,

where ωn and Sn are defined by (A.3). The following stability statement is valid.

Lemma A.4. Under the above conditions one has S = limk Sk and V = limk Vk pointwise.

Proof. We note first that

|(Sn
k )pq − Sn

pq| = |〈fill cutn[pq], ω − ωk〉| ≤ C12n
(

diam([pq])
2n

)γ1

→ 0

as n → ∞ uniformly in k, which implies S = limk Sk pointwise via the standard estimate

|(Sk)pq − Spq| ≤ |(Sk)pq − (Sn
k )pq| + |(Sn

k )pq − Sn
pq| + |Spq − Sn

pq|.

Writing

(Vk − δSk) − (V − δS) = − (ωn
k − Vk − δ(Sn

k − Sk))+

(ωn − V − δ(Sn − S)) − (ωn − ωn
k − δ(Sn − Sn

k )) ,

and evaluating the latter relationship at [pqr], using

|(ωn
k )pqr − (Vk)pqr − δ(Sn

k − Sk)pqr| ≤ C2n(2−γ2),

|ωn
pqr − Vpqr − δ(Sn − S)pqr| ≤ C2n(2−γ2)

with C > 0 independent of n and k, we arrive at the estimate

|(Vk − δSk)pqr − (V − δS)pqr| ≤ 2C2n(2−γ2) +
∣∣ωn

pqr − (ωn
k )pqr − δ(Sn − Sn

k )pqr
∣∣ .
(A.25)

Given an ε > 0 we fix an n = n(ε) ∈ N such that the first term on the right-hand side 
of (A.25) does not exceed ε/2, and since limk S

n
k = Sn and limk ω

n
k = ωn pointwise, we 

get that also the second term does not exceed ε/2 for all sufficiently large k. This means

V − δS = lim
k

(Vk − δSk)

pointwise and therefore V = limk Vk pointwise since limk Sk = S, concluding the 
proof. �



G. Alberti et al. / Journal of Functional Analysis 286 (2024) 110212 37
References

[1] G. Alberti, P. Majer, Gap phenomenon for some autonomous functionals, J. Convex Anal. 1 (1) 
(1994) 31–45.

[2] H. Brezis, H.-M. Nguyen, The Jacobian determinant revisited, Invent. Math. 185 (1) (2011) 17–54.
[3] Khalil Chouk, Massimiliano Gubinelli, Rough sheets, arXiv preprint, arXiv :1406 .7748, 2014.
[4] D. Feyel, A. de La Pradelle, Curvilinear integrals along enriched paths, Electron. J. Probab. 11 (34) 

(2006) 860–892.
[5] P.K. Friz, M. Hairer, A Course on Rough Paths, Universitext, Springer, Cham, 2014.
[6] Chad Giusti, Darrick Lee, Vidit Nanda, Harald Oberhauser, A topological approach to mapping 

space signatures, arXiv preprint, arXiv :2202 .00491, 2022.
[7] M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (1) (2004) 86–140.
[8] J. Harrison, Continuity of the integral as a function of the domain, J. Geom. Anal. 8 (5) (1998) 

769–795.
[9] Jenny Harrison, Differential complexes and exterior calculus, arXiv preprint, arXiv :math -ph /

0601015, 2006.
[10] T. Iwaniec, On the concept of the weak Jacobian and Hessian, in: Papers on Analysis 83 (2001) 

181–205.
[11] V. Kondurar, Sur l’integrale de Stieltjes, Rec. Math. [Mat. Sb.] N.S. 2 (44) (1937) 361–366.
[12] S. Luzzatto, S. Türeli, K. War, Integrability of continuous bundles, J. Reine Angew. Math. 752 

(2019) 229–264.
[13] V.I. Macaev, M.Z. Solomjak, Existence conditions for the Stieltjes integral, Mat. Sb. (N.S.) 88 (130) 

(1972) 522–535.
[14] W. Sickel, A. Youssfi, The characterisation of the regularity of the Jacobian determinant in the 

framework of potential spaces, J. Lond. Math. Soc. (2) 59 (1) (1999) 287–310.
[15] S.N. Simić, Hölder forms and integrability of invariant distributions, Discrete Contin. Dyn. Syst. 

25 (2) (2009) 669–685.
[16] H.L. Smith, On the existence of the Stieltjes integral, Trans. Am. Math. Soc. 27 (4) (1925) 491–515.
[17] Eugene Stepanov, Dario Trevisan, Towards geometric integration of rough differential forms, J. 

Geom. Anal. 31 (3) (2021) 2766–2828.
[18] Eugene Stepanov, Dario Trevisan, On exterior differential systems involving differentials of Hölder 

functions, J. Differ. Equ. 337 (2022) 91–137.
[19] N. Towghi, Multidimensional extension of L. C. Young’s inequality, JIPAM. J. Inequal. Pure Appl. 

Math. 3 (2) (2002) 13.
[20] S. Türeli, The ball-box theorem for a class of corank 1 on-differentiable tangent subbundles, J. Dyn. 

Control Syst. 24 (4) (2018) 681–699.
[21] F.M. Wright, J.D. Baker, On integration-by-parts for weighted integrals, Proc. Am. Math. Soc. 22 

(1969) 42–52.
[22] S.C.P. Yam, Analytical and topological aspects of signatures, Ph.D. Thesis, University of Oxford, 

2008.
[23] P. Yaskov, On pathwise Riemann-Stieltjes integrals, Stat. Probab. Lett. 150 (2019) 101–107.
[24] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 

67 (1) (1936) 251–282.
[25] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. 

Ann. 115 (1) (1938) 581–612.
[26] R. Züst, Integration of Hölder forms and currents in snowflake spaces, Calc. Var. Partial Differ. 

Equ. 40 (1–2) (2011) 99–124.
[27] R. Züst, Some results on maps that factor through a tree, Anal. Geom. Metric Spaces 3 (2015) 

73–92.
[28] R. Züst, Functions of bounded fractional variation and fractal currents, Geom. Funct. Anal. 29 (4) 

(2019) 1235–1294.

http://refhub.elsevier.com/S0022-1236(23)00369-5/bib254F462C12CD297525913ED553E39B67s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib254F462C12CD297525913ED553E39B67s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibC9936D4881C3905C0E5D471744C8EDD3s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib14F867731BB6F02B7785FC867DC6CDBCs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib77FE5BEEBA3E7F4384FD70F935049040s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib77FE5BEEBA3E7F4384FD70F935049040s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib3E67361537273A52F63B4BEAD1AFA465s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib72844B4ADC849140FF7D57010B2D070Fs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib72844B4ADC849140FF7D57010B2D070Fs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibF41E48FF71E672C19821751AA44891C9s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibDA31A2080BDE0CC98507F5FDBAC760DDs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibDA31A2080BDE0CC98507F5FDBAC760DDs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibEA106069741DEB6ED6E4E335D85BD203s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibEA106069741DEB6ED6E4E335D85BD203s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib5C4504831606B5372AEAA9A41B8AFB6Bs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib5C4504831606B5372AEAA9A41B8AFB6Bs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibD6B7D0305372403EB42D0DA5C3F8CC14s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib3F9386DFF7270DE47C24EF1C50A35242s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib3F9386DFF7270DE47C24EF1C50A35242s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib9104F55C4005783328D5E3A232ECE184s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib9104F55C4005783328D5E3A232ECE184s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibC138F659226BC0E5F76BF0FF347D8AA1s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibC138F659226BC0E5F76BF0FF347D8AA1s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib2FC3380411A10F0998989A13D0AE27BEs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib2FC3380411A10F0998989A13D0AE27BEs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib14E25895AC5783198DA04F850FE7AFB7s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib305019E4F84C1605B460FEDC7A84B1E3s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib305019E4F84C1605B460FEDC7A84B1E3s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibABC4645137CFE9DE95FAD973A4E4F1A8s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibABC4645137CFE9DE95FAD973A4E4F1A8s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibAF472F6F5C6B6C057C75133F15324E5Fs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibAF472F6F5C6B6C057C75133F15324E5Fs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibE1B72839A126A3483374CF1724D647C5s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibE1B72839A126A3483374CF1724D647C5s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibE803379FAB5386FA5ECBAF8C17939C97s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibE803379FAB5386FA5ECBAF8C17939C97s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib20CC04E3C8B33E284B4BE1F908836A6Bs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib20CC04E3C8B33E284B4BE1F908836A6Bs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibE58BE0D633566399F69595ED084C2ADBs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibDAD23D1991B4F5F373F398092F1E1068s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibDAD23D1991B4F5F373F398092F1E1068s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibAFA5BD9A7F41F638A8F2EAA83342BDEEs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bibAFA5BD9A7F41F638A8F2EAA83342BDEEs1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib01CF2B218758948FC3F7765CD2B31F44s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib01CF2B218758948FC3F7765CD2B31F44s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib3C2A34DB6BBE2567DBAAB062DF006B62s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib3C2A34DB6BBE2567DBAAB062DF006B62s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib44B91BF13E70124FAA8AD509EC888F28s1
http://refhub.elsevier.com/S0022-1236(23)00369-5/bib44B91BF13E70124FAA8AD509EC888F28s1

	Integration of nonsmooth 2-forms: From Young to Itô and Stratonovich
	1 Introduction
	1.1 History
	1.1.1 One-dimensional integrals
	1.1.2 Multidimensional integrals

	1.2 Our contribution

	2 Notation and preliminaries
	2.1 Spaces
	2.2 Simplices, chains, germs and rough differential forms

	3 Estimates on germs
	4 Riemann summation over dyadic partitions
	5 General partitions
	6 Integration over general domains
	7 Stratonovich type integrals of more irregular forms
	Data availability
	Acknowledgments
	Appendix A Existence, uniqueness and stability of integrals
	References


