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Abstract. Ultracold gases provide an excellent platform for the realization of quantum
interferometers. In the case of implementations based on Bose-Einstein condensates in double
well potentials, an effective two-mode model allows to study how the interactions among particles
affect the sensitivity of the interferometer. In this work we review the properties of such a
model and its application to interferometric protocols, focusing on the achievable sensitivity in
the presence of interactions turned on. In particular we study the full interferometric sequence
when the initial state is a Twin Fock state, which is perfectly number squeezed. We found
that in the presence of interactions and for certain values of the holding time in which a phase
difference between the two modes is accumulated, the same sensitivity as in the non interacting
case is recovered when using the population imbalance between the two wells as observable.
Finally, we characterize the behaviour of the sensitivity by looking at the δ-derivative and the
variance of the operator used for the measurement and studying the squeezing parameters.

1. Introduction
The aim of quantum interferometry is in general to resolve the phase shift φ between two sources
generated by the physical effect under investigation, taking advantage of quantum resources and
improve upon the performance of classical interferometers [1, 2]. The precise modelization of the
task depends on the particular physical system used to implement the quantum interferometer,
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but a first information can be obtained using simplified models to describe the sources entering
the interferometric scheme, such as effective two-mode (2M) models in the case of atomic
iterferometers based on a Bose-Einstein condensate in a double well. In this way one can
study the effect of interactions among particles on the sensitivity of the interferometer. This
is particularly important since from one side one can obtain an improvement of the sensitivity
taking advantage of interactions in the splitting process or to generate squeezed input states, but
from the other side the presence of interactions in specific steps of the interferometric scheme
may lead to a degradation of the sensitivity [2]. The effects of the presence of interactions and
the connection with entanglement have been intensively studied [3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
see as well the reviews [2, 13, 14].

In general interferometric schemes as implemented in quantum optics contexts, a splitting
process between two sources, realised via a beam splitter, is needed in order to accumulate
a phase shift [2]. After a phase shift is accumulated, recombination of the two sources is
performed, thanks to a second beam splitter. This shows that a crucial role in any interferometric
scheme is provided by the beam splitter. Interaction affects the beam splitter giving non-linear
contributions to the scaling of the phase sensitivity [4, 15, 16, 17, 19, 20, 21], more references
being in [13].

Ultracold gases provide an ideal platform to implement quantum interferometric tasks [2].
The rationale is that in these systems interactions can be tuned directly, using Feshbach
resonances [22] or confining the system in lower dimensions [23, 24, 25], but also indirectly,
modifying the ratio between the kinetic and the interaction terms [2]. This can be achieved in
double- and multi- well potentials [26, 27, 28, 29] by varying the energy barrier between the
wells, resulting in a tunable hopping coefficient J . In a double well, the effective dynamics is
described by a 2M model [26], which can be then used to model interferometric scheme in double
well potentials. The goal of this paper is to review the use and the properties of the 2M model
used in ultracold quantum interferometers, and focus on the interferometers sensitivity when
the interactions are turned on during all the different steps of the interferometric process.

The presentation is organized according to the following scheme. In Section 2 we introduce
the 2M model. We remind in Section 3 basic properties of quantum interferometery used in
the study of the performance of ultracold quantum interferometers. In Section 4 we provide
the details of the interferometric protocol and discuss how to characterize the behaviour of the
phase sensitivity. In Section 5, focusing on the Twin Fock state as initial state, we study the
behaviour of the interferometer sensitivity varying the holding time, the particle number, and the
interaction energy, commenting our results with known findings in literature. Our conclusions
are presented in Section 6.

2. The model
In this section we introduce the model we are going to use in the rest of the paper, the 2M
model, encoding the many-body description of N condensed bosons in a double well potential
in a 2M Bose-Hubbard Hamiltonian with the two modes, â and b̂, well separated in energy from
the other ones [13, 26, 30, 31, 32]:

Ĥ = −J(â†b̂+ b̂†â) +
U

2
(â†â†ââ+ b̂†b̂†b̂b̂) +

δ

2
(â†â− b̂†b̂) . (1)

In (1) â† and b̂† create a particle in the left and right well, respectively. The parameters entering
(1) are: J the tunnelling strength, U the particle interaction in each mode, and δ the energy
shift between the two modes. Since during the interferometric process U , J and δ can be varied,
they are time-dependent. Through this work we set h̄ = 1. The system is well described in the
Fock space, the elements of which are denoted by |n〉 ≡ |na = n;nb = N − n〉. We additionally
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introduce the number operators n̂a = â†â and n̂b = b̂†b̂, and the population imbalance between
the two wells z = na−nb

N .

Given a state |ψ〉 =
∑N
n=0 cn(t)|n〉, the dynamics of the system can be described by the

time evolution of the coefficients cn(t) = 〈n|ψ(t)〉 obtained by solving the Schrödinger equation

i∂ψ(t)
∂t = Hψ(t) with H given by (1).

By introducing the pseudo-spin operators Ĵx = 1
2(â†b̂ + b̂†â), Ĵy = 1

2i(â
†b̂ − b̂†â) and

Ĵz = 1
2(â†â − b̂†b̂), the Hamiltonian (1) can be written as Ĥ = −2JĴx + U

2 Ĵ
2
z + δĴz. In the

Bloch sphere representation the tunnelling term rotates a state around the x-axis, while the
interaction term twists its components above and below the equator respectively to the right
and to the left and the twist rate increases increasing the distance from the equator, offering
the possibility to create spin squeezed states [33].

3. Phase sensitivity of a quantum interferometer
Spin squeezed states can be used to perform interferometric tasks better than the shot noise
limit ∆φ = 1/

√
N and several criteria to determine if a state is squeezed have been introduced

[34]. The parameter ξN is related to the variance of a spin component being smaller than the

shot-noise limit J/2 for a coherent spin state so that the criterion reads ξ2
N ≡ 2

J (∆Ĵ⊥,min)2 < 1.

One can also defined the quantity ξ2
S ≡ N

(∆Ĵ⊥,min)2

〈Ĵ〉2 , so that the criterion reads ξ2
S < 1. In order

to measure the useful squeezing, the quantity ξR ≡
√

2J
∆Ĵ⊥,min
〈Ĵ〉 has been also introduced.

To estimate the phase φ accumulated after an interferometric sequence, one can measure an
observable Ô having a φ-dependent expectation values and, from error propagation, it follows
that

∆φ =
∆Ô∣∣∣∣∂〈Ô〉/∂φ∣∣∣∣ =

ξ√
N
, (2)

where ∆Ô =
√
〈Ô2〉 − 〈Ô〉2 is the variance of the operator Ô.

4. The interferometric protocol
In this section we introduce the complete interferometric sequence, consisting of a first beam
splitter, acting for a time TBS , a phase accumulation stage, during an holding time TH , and a
second beam splitter, acting again for a time TBS . In the following all quantities are expressed
in units of J .

The goal is to determine the sensitivity with which this interferometric sequence is able to
measure the parameter δ. An example of the protocol used is the following: the first beam splitter
is realized by allowing the particles to tunnel from one well to the other for an optimal time,
to be determined, afterwards the tunnelling coupling is suddenly switched off. Notice indeed
that the best splitting process is found for an abruptly turning off of the tunnelling coupling [4].
Asymmetry between the wells is introduced by setting δ 6= 0. The system evolves with these
conditions for an arbitrary holding time TH , in which a phase φ =

∫
δdt is accumulated. After

this process, the second beam splitter acts, by setting δ = 0 and allowing the particles to tunnel
again for the same time, TBS , used for the first beam splitter.

If interactions are present, they affect the whole process described above. A parametric scan
of the aforementioned protocol around the parameter δ can be performed in order to find the
sensitivity at each holding time: once the behaviour of the operator used for the measurement
has been obtained as a function of δ, the sensitivity is defined as

∆δ ≡ ∆〈Ô〉
|∂〈Ô〉/∂δ|

∣∣∣∣
min

. (3)
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Finally, the whole interferometric procedure is repeated for different holding times.
Notice that in the following discussion decoherence phenomena are not taken into account

(atoms can be held up to ∼ 100ms to 10s, according to the cases, without significant decoherence
effects [35]).

5. Initial state Twin Fock
The so-called Twin Fock state, |N2 ,

N
2 〉, is a perfectly number squeezed state in the sense of the

squeezing parameter ξ2
N and can allow for interferometry beyond the classical limit, improving

the sensitivity near the Heisenberg limit [36]. If no energy shift is present between the wells, the
particles are equally distributed among them and a population imbalance measurement would
give no information about phase accumulation, so that other operators but z, such as Ĵ2

z or the

parity operator Π̂b = eiπnb [37], have to be used in order to make a meaningful measurement.
In the following we choose to investigate measurements performed using the parity operator as
observable, which behaviour, as a function of δ, is described, in the non interacting case, by
PN

2
(cos 2φ), where PN

2
are the Legendre polynomials of order N/2 and φ =

∫
δdt.

5.1. Results for U = 0 and N = 2
In this paragraph we report the results of analytical calculations for the simplest case of N = 2
and without interactions.

We realized the beam splitters by letting the particles tunnelling for a time TBS = π
4J without

asymmetries between the wells (δ = 0), so that the system evolves according to the Hamiltonian
H = −J(a†b + b†a). During the phase accumulation stage the state evolves according to the
Hamiltonian H = δ

2(na− nb) for a time TH . At the end of the full interferometric sequence, the
coefficients cn(t), are given by

c2(TBS) =
sin(δTH)√

2
, c1(TBS) = − cos(δTH) , c0(TBS) = −sin(δTH)√

2
. (4)

The expectation value, the variance and the δ-derivative of the parity operator are then

〈Π̂〉 =
∑
n

〈n|eiπn̂b |n〉 = − cos(2δTH) ,∆Π̂ = sin(2δTH) ,
∂〈Π̂〉
∂δ

= 2TH sin(2δTH) . (5)

According to (3) the sensitivity is thus

∆δ =
1

2TH
(6)

and it scales as α
NβT γH

, with α = β = γ = 1 according to the Heisenberg limited sensitivity.

In the following we describe how the sensitivity is influenced by varying the holding time for
different values of the interaction energy and the particle number.

5.2. Non interacting case
As predicted by the analytical results presented in the previous paragraph, in the non interacting
case the sensitivity is near the Heisenberg limit, as shown in the following figures and tables.
The state evolution during the interferometric process is represented on the Bloch sphere in Fig.
1, the blue circle representing the variance along the Ji axes, ∆Ĵi. If there are not interactions,
the initial and final states are perfectly number squeezed states with vanishing mean spin length.
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Figure 1. Variance along the Ji axes represented on the Bloch sphere in case of a Twin Fock
as initial state. First: initial state; Second: after the first beam splitter; Third: after the
accumulation stage; Last: after the full interferometric sequence. U = 0 and N = 10.

In Fig. 2 the sensitivity ∆δ is plotted as a function of the holding time TH for different values
of the particle number N (left panel) and as a function of N for different values of TH (right
panel). In order to compare with the Heisenberg limited sensitivity, the behavior is fitted with
the function ∆δ = α

NβT γH
in the first case and with the function ∆δ = α

NβTH
in the second case.

The resulting coefficients are reported in Tables 1. We find that β remains constant and close
to unity for different values of the particle number and holding times, in agreement with the
Heisenberg limited sensitivity as expected from Eq. (6).

Figure 2. Left: Sensitivity ∆δ as a function of the holding time TH for different values of the
particle number N . Right: Sensitivity ∆δ as a function of the particle number N at different
holding times TH . Dashed lines are fitting curves, see text.

5.3. Varying interactions
In this paragraph we analyse the behaviour of the system for different values of the interaction
energy U at fixed particle number N = 10.

The goal is to check whether some values of the holding time exist for which a good sensitivity,
hopefully better than the one for the non interacting case, could be reached. The joint effect of
interactions and asymmetry in the two wells leads to a measurable population imbalance z after
the full interferometric sequence, so that z becomes a measurable observable, in opposition to
what happens in the absence of interactions. In the following only repulsive interactions (U > 0)
are considered.
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N α γ β
2 0.999 ± 0.002 0.999 ± 0.001 1.00 ± 0.02
10 1.28 ± 0.01 0.997 ± 0.004 1.00 ± 0.02
20 1.35 ± 0.03 1.007 ± 0.008 1.00 ± 0.03
30 1.37 ± 0.04 1.005 ± 0.006 1.00 ± 0.02
40 1.38 ± 0.03 1.005 ± 0.007 1.00 ± 0.03

TH α β
1 1.37 ± 0.04 0.99 ± 0.04
25 1.37 ± 0.04 0.99 ± 0.04
35 1.37 ± 0.04 1.01 ± 0.02

Table 1. Left: Fit coefficients for ∆δ vs TH for different values of the particle number N
obtained by fitting the data in the left panel of Fig. 2 with the function ∆δ = α

NβT γH
. Right: Fit

coefficients for ∆δ vs N for different values of the holding time TH obtained by fitting the data
in the right panel of Fig. 2 with the function ∆δ = α

NβTH
.

In Fig. 3 the sensitivity ∆δ is plotted as a function of the holding time TH at a fixed particle
number N = 10, for different values of the interaction energy U using either the parity operator
Π̂b (left panel) or the population imbalance z (right panel) as observables. We can see that with
the interactions always turned on there is no gain in sensitivity with respect to the non interacting
case, neither using parity nor population imbalance measurements. A more complete study with
time-dependent interactions would require the use of the Fisher information, as carried out in
[7]. In the case of z measurements two kind of minima in the sensitivity are identified: primary

Figure 3. Sensitivity against holding time varying interaction energy at fixed N = 10, obtained
from parity measurement (left) and population imbalance measurements (right); the dashed line,
indicating the case U = 0, is obtained always from parity measurements.

ones, close to the non interacting results (dashed black line in the left panel), and secondary
ones, occurring, respectively, at times TH such that: THI

+TBS = m π
U , THII

+TBS = (2m+1) π
2U

where m is a integer. After the holding time the coefficients cn(t) have evolved according to

cn(TH) = e−i(
U
2

(2n(n−N)+N(N−1))+ δ
2

(2n−N))TH cn(TBS). We see that e−iU(THI
+TBS) = ±1 for

times corresponding to primary minima, and e−iU(THII
+TBS) = ±i for times corresponding to

secondary minima. The period of the minima corresponding to the same class is π/U . The

values of δ that give the best sensitivity are those for which the term e−i
δ
2 ∼ 1 in cn(TH).

Even though the values of the sensitivity achieved for the primary minima are close to the ones
obtained in the non interacting case, no gain is reached.

Additionally, we have checked the effect of varying the particle number N at fixed interaction
energy values U = 0 and U = 0.1 on the achievable sensitivity ∆δ. We found that by increasing
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the particle number, the sensitivity worsen for finite interaction energy with respect to the non
interacting case.

5.4. Characterizing the behaviour of the sensitivity
We now characterize the behaviour of the sensitivity by looking at the δ-derivative and the
variance of the operator used for the measurement and studying the squeezing parameters ξ2

N
and ξ2

S , defined in Section 3.
As expressed in (3), the δ-derivative and the variance of the operator chosen to perform the

measurement are important quantities in defining the sensitivity with which the interferometer
can determine the energy difference δ between the two wells. In Fig 4 we present the results
of our simulation for the sensitivity as a function of the holding time, together with the results
obtained for the δ-derivative and the variance of the parity operator Π̂b (left panel) and the
population imbalance z (right panel) in the case of finite interaction energy U = 0.1 and N = 10
particles. In particular we notice that, when z is used to perform the measurement, the primary
and secondary minima identified in the right panel of Fig. 3 coincide with precise values of the
δ-derivative and the variance. In the right panel of Fig 4 we show that primary minima of ∆δ
correspond to points for which the δ-derivative of z has a local maximum and the variance of
z has a minimum, while secondary minima correspond to maxima of the δ-derivative and local
minima of the variance. Maxima of ∆δ are associated to maxima of the δ-derivative and minima
of the variance.

Figure 4. Sensitivity ∆δ, δ-derivative ∂〈Ô〉
∂δ , and variance ∆Ô of the operator Ô as functions

of the holding time at fixed U = 0.1 and N = 10. Left: Ô = Π̂b. Right: Ô = z. For better
readability, when needed, different quantities have been rescaled.

In order to understand the structure of maxima and minima of ∆δ as a function of the
holding time when z measurements are used, we calculated the squeezing parameters ξ2

N and ξ2
S

at the end of the interferometric sequence. Primary minima of ∆δ are found at holding times
for which the final states result squeezed according to both the considered parameters. Both ξ2

N
and ξ2

S are found to be smaller than unity where the δ-derivative of Jz has a maximum (note
that Jz = Nz

2 ). Secondary minima of ∆δ are found when the final states result squeezed only in
the sense of ξ2

N . Finally, maxima of ∆δ correspond to final states that are not squeezed at all.

6. Conclusions
Our results show the richness and the interest of studying and characterizing the performance
of an ultracold quantum interferometer. Our interferometric sequence is very simple: it is made
up of a first beam splitter, a phase accumulation stage, and a second beam splitter identical to
the first. In the chosen interferometer scheme, with the interaction turned on, during the beam
splitter process the energy offset δ does not act and the tunnelling constant J is simply set equal
to zero. Dealing with the Twin Fock as initial state, we found that a value of the sensitivity
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close to the one for the non interacting case is found at specific phase accumulation times when
population imbalance measurements are performed.

As future works, motivated by the results presented in this paper, we mention the
interest in considering other initial states in optimized interferometric schemes and in studying
the Loschmidt echo [38], and the possibility of systematically study the interplay between
interactions always turned on and projective measurements performed during the phase
accumulation stage.
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[21] Berrada T, van Frank S, Bücker R, T.Schumm T, Schaff J - F, Schmiedmayer J, Juĺıa-Dı́az B and Polls A
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