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Abstract. We consider motion by anisotropic curvature of a network of three
curves immersed in the plane meeting at a triple junction and with the other
ends fixed. We show existence, uniqueness and regularity of a maximal geometric
solution and we prove that, if the maximal time is finite, then either the length of
one of the curves goes to zero or the L2-norm of the anisotropic curvature blows
up.
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1. Introduction

The aim of this work is to study motion by anisotropic curvature of a network
of three curves in the plane. This evolution corresponds to a gradient flow of the
anisotropic length of the network, which is the sum of the anisotropic lengths of
the three curves. Since multiple points of order greater than three are always ener-
getically unstable (see [11,18]), it is natural to consider networks with only triple
junctions, the simplest of which is a network with three curves meeting at a common
point.

The isotropic version of this problem attracted a considerable attention in
recent years (see for instance the extended survey [14] and references therein). In
particular, the short-time existence for the evolution has been first proved by L.
Bronsard and F. Reitich in [5], and later extended in [12,15] where it is shown that,
at the maximal existence time, either one curve disappears or the curvature blows
up.

The main result of this paper, contained in Theorem 5.8, is the extension of
the result in [15] to the smooth anisotropic setting. More precisely, we show that at
the maximal existence time of the geometric solution (see Definition 2.8), either the
length of one curve goes to zero or the L2-norm of the anisotropic curvature blows
up. In the latter case, we also provide a lower bound on the blow up rate of the
curvature (see Lemma 5.3).

A relevant technical issue in this paper is due to the fact that, in the case of
networks, the evolution is governed by a system of PDE’s rather than by a single
equation, hence it is difficult to use the maximum principle, which is usually the
main tool to get estimates on the geometric quantities for curvature flows. As a
consequence, following [15] in order to control these quantities we rely on delicate
integral estimates and interpolation inequalities.

A challenging open problem is the extension of such result to the nonsmooth
(including crystalline) anisotropic setting, as it was done in [6,16] for the case of
closed planar curves. In the case of networks, the dependence of the integral esti-
mates on the anisotropy, makes such extension problematic.

Let us point out that, in the paper [3], the authors proved a short-time existence
result for the crystalline evolution of embedded networks, under a suitable assump-
tion on the initial data which allows to reduce the evolution equation to a system
of ODE’s. We also recall that in the papers [2,10] the authors discuss existence
of global weak solutions for the evolutions of embedded networks by anisotropic
curvature flow.

In [12,15] the authors proved, in the isotropic case, the long-time existence
for the evolution of a network of three curves and the convergence to the minimal
Steiner configuration, under the assumption that the length of each curve is bounded
away from zero. The main difficulty in extending such a result to the anisotropic
setting is the lack of a monotonicity formula as in [9] (see [15, Proposition 6.4] for
its adaptation to the case of a network), which in turns prevents a characterization
of the parabolic blow-up of the evolution at singular times. This is a challenging
and very interesting research direction.
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The paper is organized as follows: In Section 2 we introduce the notation and
define the relevant geometric object that we shall use throughout the paper. In
Section 3 we prove a short-time existence result for the evolution following the
approach in [5,15]. In Section 4 we show the existence and uniqueness of a maximal
geometric solution and we prove that, at the maximal time, either the length of one
curve tends to zero or the H1-norm of the anisotropic curvature blows up. Finally,
in Section 5 we refine this conclusion by showing that, if the H1-norm blows up,
then also the L2-norm of the anisotropic curvature blows up. We conclude the paper
with an Appendix containing some technical result which are used in the paper.

2. Notation and Preliminary Definitions

We consider a flow of regular planar curves parametrized by u : [0, T ] × I → R
2,

where I = [0, 1]. We denote by s the arc-length parameter of the curve (thus
∂s(·) = ∂x(·)/|ux|), by τ = ux/|ux| = us = (sin θ, − cos θ) its unit tangent and
ν = (cos θ, sin θ) its unit normal. The Euclidean scalar product in R

2 is denoted by ·.
The symbol ⊥ stands for anti-clockwise rotation by π/2, therefore (a, b)⊥ = (−b, a).
Recall the classical Frenet formulas

uss = τs = �κ = κν, νs = −κτ. (2.1)

Obviously �κ =
uxx

|ux|2 − uxx

|ux|2 · ττ and κ =
uxx

|ux|2 · ν. Moreover recall that from the

expression for νs one infers that for the scalar curvature κ we have

κ = θs. (2.2)

2.1. Anisotropies

Let us recall some definitions and properties of anisotropy maps (see for instance [4]).

Definition 2.1. We call anisotropy a norm ϕ : R2 → [0,∞). We say that ϕ is smooth
if ϕ ∈ C∞(R2 \ {0}) and ϕ is elliptic if ϕ2 is uniformly convex, that is, there exists
C > 0 such that

D2(ϕ2) � C Id (2.3)

in the distributional sense.
The set Wϕ := {ϕ � 1} is called Wulff shape. We say that ϕ is crystalline if

Wϕ is a polygon.

Definition 2.2. Given an anisotropy ϕ, we introduce the polar norm ϕ◦ relative
to ϕ as

ϕ◦(x) = sup{ξ · x |ϕ(ξ) � 1}.

Remark 2.3. Note that ϕ is smooth and elliptic if and only if ϕ◦ is smooth and
elliptic ( [6, § 2]).
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The ellipticity condition implies that the Wulff shape is uniformly convex.
Moreover, from (2.3) one infers that

D2ϕ(ν)τ · τ ≥ ˜C, ˜C :=
C

2 max{ϕ(ν̃) | ν̃ ∈ S1} , (2.4)

for unit vectors ν and τ with ν · τ = 0 (see [16, Remark 1]).

In the following, we shall restrict ourselves to the case of smooth and elliptic
anisotropies.

Observe that the homogeneity property of a norm ϕ yields Dϕ(p) · p = ϕ(p)
and D2ϕ(p)p = 0 for any p �= 0, two facts that we will use repeatedly in our
computations.

2.2. Anisotropic Scalar Curvature and Anisotropic Curve Shortening Flow

When u is smooth and the anisotropy ϕ is smooth and elliptic the classical formu-
lation of the anisotropic curvature flow is given by the equation (see [1])

ut = ϕ◦(ν)κϕν, (2.5)

where the scalar anisotropic curvature is given by

κϕ := −Ns · τ (2.6)

with N = Dϕ◦(ν) the Cahn-Hoffman vector. Thus

κϕ = D2ϕ◦(ν)τ · τκ.

Clearly, boundary and initial conditions (and compatibility conditions) have to be
specified as well, but for the moment we neglelct those and focus only on the evo-
lution equation. By setting

φ(θ) := ϕ◦(ν) = ϕ◦(cos θ, sin θ), (2.7)

a straightforward calculation gives

φ(θ) + φ′′(θ) = D2ϕ◦(ν)τ · τ, (2.8)

so that we can rewrite the flow (2.5) as

ut = φ(θ)(φ(θ) + φ′′(θ)) κν = ψ(θ)κν, (2.9)

where κ is the Euclidean curvature and

ψ(θ) := φ(θ)(φ(θ) + φ′′(θ)) = ϕ◦(ν)D2ϕ◦(ν)τ · τ. (2.10)

Note that by (2.4), the ellipticity of ϕ implies uniform bounds for ψ, i.e.,

M ≥ ψ ≥ m > 0. (2.11)

In the following we shall admit tangential components to the flow, therefore we
will consider evolution equations of type

ut = ϕ◦(ν)κϕν + λτ = ψ(θ)κν + λτ, (2.12)

for some sufficiently smooth scalar function λ.
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Figure 1 Network with one triple point O and three endpoints
P 1, P 2, P 3.

Definition 2.4. The special anisotropic curve shortening flow is defined through a
specific choice of tangential term, namely we take λ = ϕ◦(ν)(D2ϕ◦(ν)τ · τ) uxx

|ux|2 · τ

in (2.12). Thus, the special anisotropic curve shortening flow is given by

ut = ϕ◦(ν)(D2ϕ◦(ν)τ · τ)
uxx

|ux|2 = ψ(θ)
uxx

|ux|2 . (2.13)

Next we derive the evolution laws of relevant geometric quantities.

Lemma 2.5. Assume u satisfies (2.12). Then, the following equalities hold

∂t∂s(·) = ∂s∂t(·) + ψ(θ)κ2∂s(·) − λs∂s(·)
τt = [(ψ(θ)κ)s + λκ]ν

νt = −[(ψ(θ)κ)s + λκ]τ

κt = (ψ(θ)κ)ss + ψ(θ)κ3 + λκs

θt = (ψ(θ)κ)s + λκ.

(2.14)

For the special flow (2.13) where λ = ψ(θ) uxx

|ux|2 · τ = −ψ(θ) ∂
∂x

(

1
|ux|
)

we have that

λt =
λ

ψ(θ)
ψ′(θ)[(ψ(θ)κ)s + λκ] + ψ(θ)λss − ψ(θ)(ψ(θ)κ2)s − λλs + λψ(θ)κ2.

(2.15)

Proof. The assertions easily follow by straightforward calculations, see for instance
[16, Lemma 1] for the special case where λ = 0 and [14, Lemma 3.1] for the isotropic
case . �

Lemma 2.6. Assume u satisfies (2.12). Then the following holds for the isotropic
and anisotropic length of the curve

d

dt
L(u) =

d

dt

∫

I

ds = −
∫

I

ψ(θ)κ2ds + [λ]10, (2.16)

d

dt
Lϕ(u) :=

d

dt

∫

I

ϕ◦(ν)ds = −
∫

I

κ2
ϕϕ◦(ν)ds + [ϕ◦(ν)λ − ψ(θ)κDϕ◦(ν) · τ ]10.

(2.17)

Proof. We compute
d

dt
L(u) =

∫

I

τ · utxdx = −
∫

I

κν · ψ(θ)κνds +
∫

I

τ · (λτ)xdx = −
∫

I

ψ(θ)κ2ds + [λ]10
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and
d

dt
Lϕ(u) =

d

dt

∫

I

ϕ◦(ν)ds =
∫

I

Dϕ◦(ν) · u⊥
txdx =

∫

I

Dϕ◦(ν) · (−ψ(θ)κτ + λν)xdx

= −
∫

I

D2ϕ◦(ν)τ · τψ(θ)κ2ds + [ϕ◦(ν)λ − ψ(θ)κDϕ◦(ν) · τ ]10

= −
∫

I

ψ(θ)2

ϕ◦(ν)
κ2ds + [ϕ◦(ν)λ − ψ(θ)κDϕ◦(ν) · τ ]10.

�

2.3. The Geometric Problem

For basic definitions of networks see for instance [14, § 2]. We consider networks
S of curves parametrized by regular maps ui : [0, 1] → R

2, i = 1, 2, 3, such that
ui(1) = P i (with P i ∈ R

2 given) and ui(0) = uj(0), for i, j ∈ {1, 2, 3}, that is
the curves are parametrized in such a way that the origin is mapped to the triple
junction (Fig. 1).

Definition 2.7. (Geometrically admissible networks) A network S is called admissible
if there exist regular parametrizations σi ∈ C2,α([0, 1],R2), i = 1, 2, 3 such that
S = ∪3

i=1σ
i([0, 1]) and there holds

⎧

⎪

⎨

⎪

⎩

σi(1) = P i i = 1, 2, 3,
σ1(0) = σ2(0) = σ3(0)
∑3

i=1 Dϕ◦(νi
0) = 0 where νi

0 := (σi
x)

⊥

|σi
x| ,

together with

κi
ϕ = 0 at x = 1,

(where κi
ϕ denotes the anisotropic curvature of the curve σi) and

κi
ϕϕ◦(νi

0)ν
i
0 + λi

0τ
i
0 = κj

ϕϕ◦(νj
0)ν

j
0 + λj

0τ
j
0 for i, j ∈ {1, 2, 3} at x = 0.

Here λi
0 denotes a further geometric quantity, whose expression is formulated in

(2.26) below. In particular we see that λi
0 is given as a linear combination of ψ(θi)κi

and ψ(θi±1)κi±1.

Definition 2.8. Given an initial admissible network σ := (σ1, σ2, σ3) as in Defini-
tion 2.7 we look for T > 0 and regular maps ui : [0, T ) × [0, 1] → R

2, i = 1, 2, 3,
with ui ∈ C

2+α
2 ,2+α([0, T ) × [0, 1],R2) such that

(ui
t · νi)νi = ψ(θi)κiνi on (0, T ) × (0, 1) i = 1, 2, 3, (2.18)

with initial datum ui(0, ·) = σi(·) up to reparametrization ( i.e., ui(0, ·) = σi(φi(·))
for some orientation preserving diffeomorphism φi ∈ C2+α([0, 1], [0, 1]) ) and (natu-
ral) boundary conditions

⎧

⎨

⎩

ui(t, 1) = P i for all t ∈ (0, T ), i = 1, 2, 3,
u1(t, 0) = u2(t, 0) = u3(t, 0) for all t ∈ (0, T ),
∑3

i=1 Dϕ◦(νi(t, 0)) = 0 for all t ∈ (0, T ).
(2.19)

A solution to such problem is called geometric solution.
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Remark 2.9. (Anisotropic angle condition) The boundary condition
3
∑

i=1

Dϕ◦(νi) = 0 (2.20)

at the triple junction is the anisotropic version of the Herring condition (cf. [14, Def.
2.5]) and is derived by considering the first variation of E(S) :=

∑3
i=1

∫

I
ϕ◦(νi)dsi.

Indeed, for variations of type ui+εϕi, where ϕi are smooth functions with ϕi(1) = 0,
ϕi(0) = ϕj(0) for all i, j ∈ {1, 2, 3} we can write

d

dε
E(Sε) = −

3
∑

i=1

∫

[0,1]

(D2ϕ◦(νi)τ i · τ i)κiνi · ϕids −
3
∑

i=1

Dϕ◦(νi(0)) · (ϕi(0))⊥,

(where here and in the following we write ds instead of dsi, the meaning being
clear from the context) and (2.20) is immediately deduced. Note that the vectors
ξi := Dϕ◦(νi) appearing in (2.20) belong to the boundary of the Wulff shape, i.e.,
ξi ∈ ∂Wϕ, i = 1, 2, 3. We can state that the angles at which the tangent planes to
∂Wϕ at ξi can meet are bounded away from zero and π: indeed in one of these two
limit cases, the three vectors must be in shape of a Y (possibly with two vectors
coinciding), but we get a contradiction using the symmetry and convexity of the
Wulff shape.

Since νi is normal to the tangent plane at ξi = Dϕ◦(νi) ∈ ∂Wϕ, this means
that there exists a positive constant C depending on ϕ◦ such that

0 � |νi · νj | � C < 1, i �= j, (i, j ∈ {1, 2, 3}).

In turns this implies the existence of a postive constant a0 depending on ϕ◦ such
that

|νi · τ j | ≥ a0 > 0 i �= j, (i, j ∈ {1, 2, 3}). (2.21)

For the notion of geometric solution it is enough to specify the normal velocity.
To attack the problem analytically, we actually consider the system

ui
t = ψ(θi)κiνi + λiτ i i = 1, 2, 3, (2.22)

for some scalar maps λi ∈ C
α
2 ,α([0, T ) × [0, 1],R2). Note that the presence of tan-

gential components λi is necessary to allow for movements of the triple junction.
In principle there is some freedom in the choice of these maps, but the freedom
is restricted only to the points in the interior of the interval of definition. Indeed
we show below in Section 2.4 that λi, i = 1, 2, 3 are fixed by the problem at the
boundary. More precisely we show that at the boundary we can express λi as a
linear combination of the geometric quantities ψ(θi)κi and ψ(θi±1)κi±1.

Among all possible choices of tangential components λi, we highlight one spe-
cific flow that will play an important role in our discussion:

Definition 2.10. A solution as in Definition 2.8 such that ui
t, i = 1, 2, 3, evolves

according to (2.13) is called Special Flow.

The Special Flow provides a well posed problem that we can attack analytically.
We shall use the Special Flow to derive short-time existence of a geometric solution,
and to show its uniqueness and smoothness.
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2.4. Behavior of a Generic Tangential Component λi at the Triple Junction

At the triple junction beside the concurrency condition we impose that the velocity
be the same for all curves involved, hence we impose

ψ(θi)κiνi + λiτ i = ψ(θj)κjνj + λjτ j (2.23)

or equivalently (after rotation by π/2)

−ψ(θi)κiτ i + λiνi = −ψ(θj)κjτ j + λjνj

for every i, j ∈ {1, 2, 3}. Multiplying by Dϕ◦(νi), summing over i, and using (2.20)
gives

0 =
3
∑

i=1

ψ(θi)ϕ◦(νi)κi + λi(τ i · Dϕ◦(νi)) (2.24)

and

0 =
3
∑

i=1

ϕ◦(νi)λi − ψ(θi)κi(τ i · Dϕ◦(νi)). (2.25)

In the isotropic case this amounts to
∑3

i=1 κi = 0 =
∑3

i=1 λi.
On the other hand, starting from (2.23) and taking the inner product with

appropriate normals and tangents we get (with the convention that the superscripts
are considered “modulus 3”)

ψ(θi)κi = ψ(θi±1)κi±1(νi±1 · νi) + λi±1(τ i±1 · νi),

λi = ψ(θi±1)κi±1(νi±1 · τ i) + λi±1(τ i±1 · τ i).

For the isotropic case where all constants and coefficients can be given explicitly see
[14, §3]. The above system can be written as
⎛

⎜

⎜

⎝

(νi+1 · νi) 0 (τ i+1 · νi) 0
0 (νi−1 · νi) 0 (τ i−1 · νi)

(νi+1 · τ i) 0 (τ i+1 · τ i) 0
0 (νi−1 · τ i) 0 (τ i−1 · τ i)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ψ(θi+1)κi+1

ψ(θi−1)κi−1

λi+1

λi−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

ψ(θi)κi

ψ(θi)κi

λi

λi

⎞

⎟

⎟

⎠

.

Writing α = (νi+1 · νi), β = (τ i+1 · νi), γ = (νi−1 · νi), δ = (τ i−1 · νi) we see that
above matrix has determinant equal to det = (α2 + β2)(δ2 + γ2), which can never
be zero since α and β, respectively δ and γ, can not vanish simultaneously. Thus we
obtain

⎛

⎜

⎜

⎝

ψ(θi+1)κi+1

ψ(θi−1)κi−1

λi+1

λi−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

α
α2+β2 0 − β

α2+β2 0
0 γ

γ2+δ2 0 − δ
γ2+δ2

β
α2+β2 0 α

α2+β2 0
0 δ

γ2+δ2 0 γ
γ2+δ2

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ψ(θi)κi

ψ(θi)κi

λi

λi

⎞

⎟

⎟

⎠

.

From the first two equations we infer that if β �= 0 or δ �= 0 then we can express λi

as a linear combination of ψ(θi)κi and ψ(θi±1)κi±1. By (2.21) we know that in fact
|β| and |δ| are bounded from below. In particular we obtain that

λi =
α

β
ψ(θi)κi − 1

β
ψ(θi+1)κi+1 and λi =

γ

δ
ψ(θi)κi − 1

δ
ψ(θi−1)κi−1, (2.26)
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so that

|λi| � C

3
∑

j=1

|ψ(θj)κj | i = 1, 2, 3 (2.27)

at the triple junction with C = C(a0) depending on the anisotropy.
For the analysis that follows we will also need expressions for the time derivative

λi
t. Using (2.26) we can write

|λi
t| �
∣

∣

∣

∣

(

α

β

)

t

∣

∣

∣

∣

|ψ(θi)κi| + C|(ψ(θi)κi)t| +
∣

∣

∣

∣

(

1
β

)

t

∣

∣

∣

∣

|ψ(θi+1)κi+1| + C|(ψ(θi+1)κi+1)t|
(2.28)

with C = C(a0) depending on the anisotropy.

Lemma 2.11. The total anisotropic length of the network decreases in time along the
evolution.

Proof. The statement follows by adding the contribution of each curve as computed
in (2.17), using (2.25) at the triple junction, and the fact that λi = 0 = κi at the
fixed points P i, i = 1, 2, 3 (this follows from (2.12) and ∂tu

i = 0 at Pi). �

2.5. Special Flow: Behavior of λi in the Interior Points

In the following we assume that (2.13) holds for every curve of the network and that
we have a uniform bound on the curvatures, namely

3
∑

i=1

sup
t∈[0,T ]

‖κi(t, ·)‖L∞ � C0.

Since the following considerations hold for any curve of the network we drop the
indices for simplicity of notation. Upon recalling (2.12) let us denote with V the
length of the velocity vector. Then

V 2 = |ut|2 = (ψ(θ)κ)2 + λ2 (2.29)

Using Lemma 2.5 (in particular also (2.15)) we observe that w := V 2 satisfies (cp.
with [15, page 263] for the isotropic case)

wt = ψ(θ)wss − λws + 2ψ(θ)κ2w − 2ψ(θ)[(ψ(θ)κ)s]2 − 2ψ(θ)(λs)2 + N

where

N = 2((ψ(θ)κ)s + λκ)
(

(ψ(θ)κ)(ψ(θ))s + λ2ψ′(θ)
ψ(θ)

)

= 2((ψ(θ)κ)s + λκ)

ψ′(θ)
ψ(θ)

((ψ(θ)κ)2 + λ2)

= 2((ψ(θ)κ)s + λκ)
ψ′(θ)
ψ(θ)

w = 2θt
ψ′(θ)
ψ(θ)

w = 2(lnψ(θ))tw.

Note that N vanishes in the isotropic case. Bringing N to the left-hand side and
multiplying both sides of the equation by e−2 lnψ(θ) we obtain

(we−2 lnψ(θ))t = ψ(θ)e−2 lnψ(θ)wss − λe−2 lnψ(θ)ws + 2ψ(θ)κ2we−2 lnψ(θ)
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− (2ψ(θ)[(ψ(θ)κ)s]2 + 2ψ(θ)(λs)2
)

e−2 lnψ(θ)

If w(t, ·) = V 2(t, ·) ≥ 0 does not take its maximum at the boundary (where κ
and hence λ, recall (2.27), are controlled by assumption) then it achieves its max-
imum wmax(t) = max[0,1] w(t, ·) in an interior point. By Hamilton’s trick ( [13,
Lemma 2.1.3]) we have that ∂

∂twmax(t) = wt(t, xmax) where xmax ∈ (0, 1) is an
interior point where w(t, ·) assumes its maximum. Then

(wmaxe−2 lnψ(θ))t � 2ψ(θ)κ2wmaxe−2 lnψ(θ) � Cwmaxe−2 lnψ(θ)

where C depends on C0 and on the anisotropy map (recall (2.11)). Gronwall’s in-
equality yields

wmaxe−2 lnψ(θ) � eCT (wmaxe−2 lnψ(θ))|t=0.

It follows that V i and λi are uniformly bounded on [0, T ) for i = 1, 2, 3.

3. Short-time Existence for the Special Flow

The aim of this section is to establish a short-time existence result for the spe-
cial anisotropic curve shortening flow (recall Definition 2.10 and (2.13)). More pre-
cisely, given an initial network σ := (σ1, σ2, σ3) of sufficiently smooth regular curves
satisfying appropriate boundary conditions (see below) we look for T > 0 and
ui : [0, T ]× [0, 1] → R

2, ui ∈ C
2+α
2 ,2+α([0, T ]× [0, 1]), i = 1, 2, 3, α ∈ (0, 1) such that

ui
t = ψ(θi)

ui
xx

|ui
x|2 = ϕ◦(νi)(D2ϕ◦(νi)τ i · τ i)

ui
xx

|ui
x|2 i = 1, 2, 3, (3.1)

with initial datum ui(0, ·) = σi(·) and boundary conditions
⎧

⎨

⎩

ui(t, 1) = P i for all t ∈ [0, T ], i = 1, 2, 3,
u1(t, 0) = u2(t, 0) = u3(t, 0) for all t ∈ [0, T ],
∑3

i=1 Dϕ◦(νi(t, 0)) = 0 for all t ∈ [0, T ].
(3.2)

We assume that σi ∈ C2,α([0, 1],R2), i = 1, 2, 3, are regular maps fulfilling the
following compatibility conditions:

⎧

⎪

⎨

⎪

⎩

σi(1) = P i i = 1, 2, 3,
σ1(0) = σ2(0) = σ3(0)
∑3

i=1 Dϕ◦(νi
0) = 0 where we set νi

0 := (σi
x)

⊥

|σi
x| ,

(3.3)

as well as
σi

xx

|σi
x|2 = 0 at x = 1 for i = 1, 2, 3 (3.4)

ψ(θi
0)

σi
xx

|σi
x|2 = ψ(θj

0)
σj

xx

|σj
x|2 at x = 0 for i, j ∈ {1, 2, 3} (3.5)

where

ψ(θi
0) := ϕ◦(νi

0)
(

D2ϕ◦(νi
0)

σi
x

|σi
x| · σi

x

|σi
x|
)

.
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Existence and uniqueness in the isotropic case have been shown in Bronsard
and Reitich [5]. There the short-time existence proof is carried out in three steps:
first a linearization around the initial data is performed, second the classical theory
for parabolic system is used to prove existence for the linearized system, third a
fixed-point argument is applied to obtain short-time existence for the original non-
linear problem. Due to the presence of the anisotropy map the problem is now
clearly highly nonlinear and some details require attention. In the following we
provide the main arguments. With respect to [5] one striking difference consists
in the treatment of the boundary condition at the triple junction. In the isotropic
case (2.20) yields τ1 + τ2 + τ3 = 0, which gives an angle condition described in
[5, eq.(28)] as τ1 · τ2 = cos(2π/3) = τ2 · τ3. The latter two equations are then
accordingly linearized around the initial datum. Here we need to work with (2.20)
directly, since ϕ◦ is a given arbitrary (smooth and elliptic) anisotropy map.

Function spaces and notation. For the convenience of the reader let us recall the
definition of the parabolic Hölder spaces (recall [17, page 66 and 91]) and fix some
notation.

For a function v : [0, T ] × [0, 1] → R and ρ ∈ (0, 1) we let

[v]ρ,x := sup
(t,x),(t,y)∈[0,T ]×[0,1]

|v(t, x) − v(t, y)|
|x − y|ρ ,

[v]ρ,t := sup
(t,x),(t′,x)∈[0,T ]×[0,1]

|v(t, x) − v(t′, x)|
|t − t′|ρ .

For α ∈ (0, 1) and k ∈ N0 we define C
k+α

2 ,k+α([0, T ] × [0, 1]) to be the space of all
maps v : [0, T ]× [0, 1] → R with continuous derivatives ∂i

t∂
j
xv for i, j ∈ N∪{0} with

2i + j � k and such that the norm

‖v‖
C

k+α
2 ,k+α([0,T ]×[0,1])

:=
k
∑

2i+j=0

sup
(t,x)∈[0,T ]×[0,1]

|∂i
t∂

j
xv(t, x)|

+
∑

2i+j=k

[∂i
t∂

j
xv]α,x +

∑

0<k+α−2i−j<2

[∂i
t∂

j
xv]k+α−2i−j

2 ,t

is finite. Note that C
2+α
2 ,2+α([0, T ]×[0, 1]) ⊂ C

1+α
2 ,1+α([0, T ]×[0, 1]) ⊂ C

α
2 ,α([0, T ]×

[0, 1]). We adopt the following conventions:

• whenever clear from the context we shall not write the set of the parabolic
Hölder spaces, that is, we simply write ‖v‖

C
k+α

2 ,k+α instead of ‖v‖
C

k+α
2 ,k+α([0,T ]

×[0, 1]);
• the C

k+α
2 ,k+α-norm of a vector-valued map is the sum of the norms of its

components.
• for Ck,α-Hölder norms on spaces in only one variable we always write the

set and use the notation k + α, for instance C2+α([0, 1]) or C
α
2 ([0, T ]) =

C0+α
2 ([0, T ]);

Useful lemmas for parabolic Hölder spaces are collected in Appendix A.



158 H. Kröner et al. Vol. 89 (2021)

3.1. Linearized Problem

For some 0 < T < 1 and M > 0 to be chosen later on (cf. (3.12)) define

Xi =
{

v ∈ C
2+α
2 ,2+α([0, T ] × [0, 1];R2) : ‖v‖

C
2+α
2 ,2+α � M, v(0, ·) = σi(·)

}

(3.6)

for i = 1, 2, 3. Furthermore let δ := min{|σi
x(x)| : x ∈ [0, 1], and i ∈ {1, 2, 3}}. It is

δ > 0. Upon considering σi as a map σi ∈ C
2+α
2 ,2+α([0, T ]× [0, 1];R2), by extending

it as a constant function in time, a similar reasoning as in [7, Lemma 3.1] (using
now Lemma 6.3) yields that it is possible to choose T = T (M, δ, σ) so small in the
definition of Xi above that any map v ∈ Xi is regular for all times. From now on we
assume that T is fixed in such a way that the regularity of the curves is guaranteed,
that is

|ūi
x(t, x)| ≥ 1

2
δ for all (t, x) ∈ [0, T ] × [0, 1] (3.7)

for any ūi ∈ Xi, i = 1, 2, 3. As in [5] we seek a fixed point of the map

R :
3
∏

j=1

Xj →
3
∏

j=1

Xj

ū = (ū1, ū2, ū3) �→ Rū = u = (u1, u2, u3) (3.8)

where u solves the following linearized system, which we refer to as the linear prob-
lem.
The Linear Problem (LP) Given ū = (ū1, ū2, ū3) ∈ ∏3

j=1 Xj we look for u =
(u1, u2, u3), u ∈∏3

j=1 C
2+α
2 ,2+α([0, T ] × [0, 1];R2) solution to

uj
t − Dju

j
xx = f j (3.9)

uj(0, x) = σj(x) (3.10)

where

Dj =
ψ(θj

0)
|σj

x|2 > 0, f j :=

(

ψ(θ̄j)
|ūj

x|2 − ψ(θj
0)

|σj
x|2

)

ūj
xx ∈ R

2

for j = 1, 2, 3, with (the linearized) boundary conditions (recall (3.2) and νi
0 = (σi

x)
⊥

|σi
x| )

ui(t, 1) = P i ∀t ∈ (0, T ), i = 1, 2, 3

u1(t, 0) = u2(t, 0) = u3(t, 0) ∀t ∈ (0, T )
3
∑

i=1

(

ϕ◦(νi
0)

(ui
x)⊥

|σi
x| + (Dϕ◦(νi

0) · σi
x

|σi
x|)

ui
x

|σi
x|
)

=
3
∑

i=1

(

ϕ◦(νi
0)

1
|σi

x| − ϕ◦(ν̄i)
1

|ūi
x|
)

(ūi
x)⊥

+
(

(Dϕ◦(νi
0) · σi

x

|σi
x|)

1
|σi

x| − (Dϕ◦(ν̄i) · τ̄ i)
1

|ūi
x|
)

ūi
x =: b̄ ∀t ∈ (0, T ).

Solution of the linear problem (LP)
As in [5] we follow the theory developed in [17]. The above system can be

written as L(x, t, ∂x, ∂t)u, with L(x, t, ∂x, ∂t) = diag(lkk)6k=1 where

lkk(x, t, ∂x, ∂t) = ∂t − Di∂
2
x if k = 2(i − 1) + j
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for some j ∈ {1, 2} and i ∈ {1, 2, 3}. In the following let (for i =
√−1, ξ ∈ R, p ∈ C)

L(x, t, iξ, p) := det L(x, t, iξ, p) =
3
∏

i=1

(p + Diξ
2)2

L̂(x, t, iξ, p) := L(x, t, iξ, p)L−1(x, t, iξ, p) = diag(Akk)6k=1

with

Akk = Akk(x, t, iξ, p) =
∏3

i=1(p + Diξ
2)2

p + Dlξ2
if k = 2(l − 1) + j

for l ∈ {1, 2, 3} and j ∈ {1, 2}. Since many terms coincide in the following we simply
write

A1 := A11 = A22, A2 := A33 = A44, A3 := A55 = A66.

As in [5] we note that the parabolicity condition [17, p. 8] is fulfilled since for any
i = 1, 2, 3 we have that

Di ≥ m · min

{

1
|σj

x(x)|2 : j = 1, 2, 3, x ∈ [0, 1]

}

> 0

where m is as in (2.11).
At the boundary we need to check the so-called complementary conditions [17,

p. 11]. First of all we consider the system of boundary conditions at the junction

point at x = 0. Here the system reads Bu =

⎛

⎝

0
0
b̄

⎞

⎠ where u = (u1, u2, u3) ∈ R
6 with

B a 6 × 6 matrix given by

B(x = 0, t, ∂x, ∂t) =

⎛

⎝

Id −Id 0
0 Id −Id

Q1 Q2 Q3

⎞

⎠

where each block entry is a (2 × 2) matrix with

Qi :=
ϕ◦(νi

0)
|σi

x|
(

0 −∂x

∂x 0

)

+
(

Dϕ◦(νi
0) · σi

x

|σi
x|2
)(

∂x 0
0 ∂x

)

with all coefficients evaluated at x = 0. Therefore we obtain

B(x = 0, t, iτ, p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1

iτb51 −iτb52 iτb53 −iτb54 iτb55 −iτb56
iτb52 iτb51 iτb54 iτb53 iτb56 iτb55

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where

b51 =
(

Dϕ◦(ν1
0) · σ1

x

|σ1
x|2
)

, b52 =
ϕ◦(ν1

0)
|σ1

x|
b53 =

(

Dϕ◦(ν2
0) · σ2

x

|σ2
x|2
)

, b54 =
ϕ◦(ν2

0)
|σ2

x|



160 H. Kröner et al. Vol. 89 (2021)

b55 =
(

Dϕ◦(ν3
0) · σ3

x

|σ3
x|2
)

, b56 =
ϕ◦(ν3

0)
|σ3

x|
with all expressions evaluated at x = 0. In the isotropic case b51 = b53 = b55 = 0
and ϕ◦(νi

0)
|σi

x| = 1
|σi

x| . Next note that as a function of τ the polynomial L(x, t, iτ, p)
has six roots with positive imaginary parts and six roots with negative imaginary
parts provided Re(p) ≥ 0 and p �= 0. More precisely writing p = |p|eiθp with
−π/2 � θp � π/2 and |p| �= 0 we may write

L(x, t, iτ, p) =
3
∏

i=1

D2
i (τ − τ+

i )2(τ − τ−
i )2

with

τ+
i = τ+

i (x, p) =

√

|p|
Di

e
i
(

π
2 +

θp
2

)

= i
√

p

Di

τ−
i = τ−

i (x, p) =

√

|p|
Di

e
i
(

3π
2 +

θp
2

)

= −i
√

p

Di
.

Following [17, p. 11] we set

M+ = M+(x, τ, p) =
3
∏

i=1

(τ − τ+
i )2.

By [17, p. 11] the complementary condition at x = 0 is satisfied if the rows of the
matrix

A(x = 0, t, iτ, p) := B(x = 0, t, iτ, p)L̂(x = 0, t, iτ, p)

are linearly independent modulo M+ whereby p �= 0, Re(p) ≥ 0. Therefore we need
to verify that if there exists w ∈ R

6 such that

wT · A(x = 0, t, iτ, p) = (0, 0, 0, 0, 0, 0) mod M+

then w = �0. This gives the six equations

A1(w1 + w5iτb51 + w6iτb52) = 0 mod M+

A1(w2 − w5iτb52 + w6iτb51) = 0 mod M+

A2(−w1 + w3 + w5iτb53 + w6iτb54) = 0 mod M+

A2(−w2 + w4 − w5iτb54 + w6iτb53) = 0 mod M+

A3(−w3 + w5iτb55 + w6iτb56) = 0 mod M+

A3(−w4 − w5iτb56 + w6iτb55) = 0 mod M+.

Using the fact that Ai and M+ have many factors in common, we infer that the
first equation in equivalent to

p1(τ)(w1 + w5iτb51 + w6iτb52) = 0 mod (τ − τ+
1 )

where

p1(τ) = (τ − τ−
1 )(τ − τ−

2 )2(τ − τ−
3 )2.
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Since (τ − τ+
1 ) can not divide p1(τ) then τ+

1 must be a root of the remaning linear
factor. Reasoning in a similar way for the other five equations we obtain that w
must satisfy the system

w1 + w5ib51τ+
1 + w6ib52τ+

1 = 0

w2 − w5iτ+
1 b52 + w6iτ+

1 b51 = 0

−w1 + w3 + w5iτ+
2 b53 + w6iτ+

2 b54 = 0

−w2 + w4 − w5iτ+
2 b54 + w6iτ+

2 b53 = 0

−w3 + w5iτ+
3 b55 + w6iτ+

3 b56 = 0

−w4 − w5iτ+
3 b56 + w6iτ+

3 b55 = 0

for whose determinant we compute

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 ib51τ+
1 ib52τ+

1

0 1 0 0 −iτ+
1 b52 iτ+

1 b51
−1 0 1 0 iτ+

2 b53 iτ+
2 b54

0 −1 0 1 −iτ+
2 b54 iτ+

2 b53
0 0 −1 0 iτ+

3 b55 iτ+
3 b56

0 0 0 −1 −iτ+
3 b56 iτ+

3 b55

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −(b52τ+
1 + b54τ

+
2 + b56τ

+
3 )2 − (b51τ+

1 + b53τ
+
2 + b55τ

+
3 )2

= −
(

3
∑

i=1

i
ϕ◦(νi

0)
|σi

x|

√

p
|σi

x|2
ψ(θi

0)

)2

−
(

3
∑

i=1

i
Dϕ◦(νi

0) · σi
x

|σi
x|2

√

p
|σi

x|2
ψ(θi

0)

)2

= p

(

3
∑

i=1

ϕ◦(νi
0)

√

ψ(θi
0)

)2

+ p

(

3
∑

i=1

Dϕ◦(νi
0) · σi

x

|σi
x|

√

1
ψ(θi

0)

)2

�= 0

since p �= 0 and
(

∑3
i=1

ϕ◦(νi
0)√

ψ(θi
0)

)2

> 0. It follows that w = �0 and the complementary

condition at x = 0 is fulfilled. Checking the complementary condition at x = 1 is
done in a similar way, but here computations are much simpler since B(x = 1, t, iτ, p)
is given by the identity matrix.

Finally we observe that at t = 0 the initial condition is given by the system
Cu = σ where C ∈ R

6×6 is the identity matrix. The complementary condition here
(cf. [17, p 12]) requires that the rows of the matrix D(x, p) = C · L̂(x, 0, 0, p) are
linearly independent modulo p6 at each point x ∈ (0, 1). This is readily checked.

Using (3.3), (3.4), (3.5) and the definition of the spaces Xj we also observe
that the linear problem fulfills the compatibility conditions of order zero (cf. [17,
p. 98]). Application of [17, Thm. 4.9] yields the existence of a unique solution u ∈
∏3

j=1 C
2+α
2 ,2+α([0, T ] × [0, 1];R2) satisfying

3
∑

i=1

‖ui‖
C

2+α
2 ,2+α([0,T ]×[0,1])
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� C0

(

3
∑

i=1

(‖f i‖
C

α
2 ,α([0,T ]×[0,1])

+ ‖σi‖C2+α([0,1]) + |P i|) + ‖b̄‖
C

1+α
2 ([0,T ])

)

.

(3.11)

3.2. Fixed Point Argument

Let u = (u1, u2, u3) ∈∏3
j=1 C

2+α
2 ,2+α([0, T ]× [0, 1];R2) be the solution of the linear

problem (LP). We would like to verify the self-map and self-contraction property of
the operator R (recall (3.8)). To that end we employ (3.11).

Self-map property We need to estimate the right-hand side in (3.11). For j = 1, 2, 3
and using the definition of Xj as well as Lemma 6.1 we compute

‖f j‖
C

α
2 ,α � C

∥

∥

∥

∥

∥

(

ψ(θ̄j)

|ūj
x|2 − ψ(θj

0)

|σj
x|2

)∥

∥

∥

∥

∥

C
α
2 ,α

‖ūj
xx‖

C
α
2 ,α

� CM

(

‖ψ(θ̄j) − ψ(θj
0)‖C

α
2 ,α

∥

∥

∥

∥

∥

1

|ūj
x|2

∥

∥

∥

∥

∥

C
α
2 ,α

+ ‖ψ(θj
0)‖C

α
2 ,α

∥

∥

∥

∥

∥

1

|ūj
x|2 − 1

|σj
x|2

∥

∥

∥

∥

∥

C
α
2 ,α

)

.

Writing out the expressions of type ψ(θ) in terms of tangents and normals (recall
(2.10), (2.8)), manipulating them appropriately into products of differences (simi-
larly to what we have done above) and application of Remark 6.1 and of Lemmas
6.1, 6.2, 6.4, 6.5, and 6.6 yields

‖f j‖
C

α
2 ,α � C1T

α
2

where C1 = C1(δ, ‖σj‖C2+α([0,1]),M, ‖ϕ◦‖C4). Next we write

b̄ =
3
∑

i=1

(

[ϕ◦(νi
0) − ϕ◦(ν̄i)]

1
|σi

x| + ϕ◦(ν̄i)
[

1
|σi

x| − 1
|ūi

x|
])

(ūi
x)⊥

+
([

Dϕ◦(νi
0) · σi

x

|σi
x| − Dϕ◦(ν̄i) · τ̄i

]

1
|σi

x| + (Dϕ◦(ν̄i) · τ̄i)
[

1
|σi

x| − 1
|ūi

x|
])

ūi
x

Similar considerations yield now

‖b̄‖
C

1+α
2 ([0,T ])

� C2T
α
2

with C1 = C1(δ, ‖σj‖C2+α([0,1]),M, ‖ϕ◦‖C3). Putting all estimates together we derive
from (3.11)

‖ui‖
C

2+α
2 ,2+α([0,T ]×[0,1])

� 3C0(C1 + C2)T
α
2 + C0

3
∑

i=1

(‖σi‖C2+α([0,1]) + |P i|).

Hence choosing

M := 2C0

3
∑

i=1

(‖σi‖C2+α([0,1]) + |P i|) (3.12)

and taking T < 1 so that 3C0(C1+C2)T
α
2 � M/2 we infer that R maps X1×X2×X3

into itself. This will be assumed henceforth.
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Contraction property Let u = (u1, u2, u3) = R(ū) and v = (v1, v2, v3) = R(v̄) ∈
∏3

j=1 Xj be two solutions of the linear problem (LP). Set w = (w1, w2, w3) with
wj = uj − vj , j = 1, 2, 3. Then the wj ’s satisfy

wj
t − Djw

j
xx = f j(ū) − f j(v̄) (3.13)

wj(0, x) = 0 (3.14)

where Dj = ψ(θj
0)

|σj
x|2 > 0 and

f j(ū) − f j(v̄) :=

(

ψ(θ(ū)j)
|ūj

x|2 − ψ(θj
0)

|σj
x|2

)

ūj
xx −

(

ψ(θ(v̄)j)
|v̄j

x|2 − ψ(θj
0)

|σj
x|2

)

v̄j
xx

for j = 1, 2, 3, with boundary conditions (recall that νi
0 = (σi

x)
⊥

|σi
x| and note that here

ψ(θ(u)) is given by (2.8) and (2.10) with tangent and normal vector of the curve u)
wi(t, 1) = 0 ∀t ∈ [0, T ], i = 1, 2, 3

w1(t, 0) = w2(t, 0) = w3(t, 0) ∀t ∈ [0, T ]

3
∑

i=1

(

ϕ◦(νi
0)

(wi
x)

⊥

|σi
x| + (Dϕ◦(νi

0) · σi
x

|σi
x| )

wi
x

|σi
x|
)

=

3
∑

i=1

(

ϕ◦(νi
0)

1

|σi
x| − ϕ◦(ν(ū)i)

1

|ūi
x|
)

(ūi
x)

⊥

+

((

Dϕ◦(νi
0) · σi

x

|σi
x|
)

1

|σi
x| − (Dϕ◦(ν(ū)i) · τ(ū)i)

1

|ūi
x|
)

ūi
x

−
3
∑

i=1

(

ϕ◦(νi
0)

1

|σi
x| − ϕ◦(ν(v̄)i)

1

|v̄i
x|
)

(v̄i
x)

⊥

−
((

Dϕ◦(νi
0) · σi

x

|σi
x|
)

1

|σi
x| − (Dϕ◦(ν(v̄)i) · τ(v̄)i)

1

|v̄i
x|
)

v̄i
x =: b(ū) − b(v̄) ∀t ∈ [0, T ].

This is again a linear parabolic system and it satisfies the complementary and
compatibility conditions. In particular it satisfies the Schauder-type estimate

3
∑

i=1

‖wi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

� C0

(

3
∑

i=1

(‖f i(ū) − f i(v̄)‖
C

α
2 ,α([0,T ]×[0,1])

) + ‖b(ū) − b(v̄)‖
C

1+α
2 ([0,T ])

)

. (3.15)

Using the lemmas from the Appendix A, the definition of Xj , and arguments similar
to those employed in the verification of the self-map property we compute for j =
1, 2, 3

‖f j(ū) − f j(v̄)‖
C

α
2 ,α �

∥

∥

∥

∥

∥

ψ(θ(ū)j)
|ūj

x|2 − ψ(θ(v̄)j)
|v̄j

x|2

∥

∥

∥

∥

∥

C
α
2 ,α

‖ūj
xx‖

C
α
2 ,α

+

∥

∥

∥

∥

∥

ψ(θ(v̄)j)
|v̄j

x|2 − ψ(θj
0)

|σj
x|2

∥

∥

∥

∥

∥

C
α
2 ,α

‖ūj
xx − v̄j

xx‖
C

α
2 ,α

� CT
α
2 ‖ūj − v̄j‖

C
2+α
2 ,2+α



164 H. Kröner et al. Vol. 89 (2021)

and

‖b(ū) − b(v̄)‖
C

1+α
2 ([0,T ])

�
3
∑

i=1

(

∥

∥

∥

∥

ϕ◦(νi
0)

1

|σi
x| − ϕ◦(ν(ū)i)

1

|ūi
x|
∥

∥

∥

∥

C
1+α
2 ([0,T ])

‖(ūi
x)

⊥ − (v̄i
x)

⊥‖
C

1+α
2 ([0,T ])

+

∥

∥

∥

∥

ϕ◦(ν(ū)i)
1

|ūi
x| − ϕ◦(ν(v̄)i)

1

|v̄i
x|
∥

∥

∥

∥

C
1+α
2 ([0,T ])

‖(v̄i
x)

⊥‖
C

1+α
2 ([0,T ])

+

∥

∥

∥

∥

(

Dϕ◦(νi
0) · σi

x

|σi
x|
)

1

|σi
x| − (Dϕ◦(ν(ū)i) · τ(ū)i)

1

|ūi
x|
∥

∥

∥

∥

C
1+α
2 ([0,T ])

‖ūi
x − v̄i

x‖
C

1+α
2 ([0,T ])

+

∥

∥

∥

∥

(Dϕ◦(ν(ū)i) · τ(ū)i)
1

|ūi
x| − (Dϕ◦(ν(v̄)i) · τ(v̄)i)

1

|v̄i
x|
∥

∥

∥

∥

C
1+α
2 ([0,T ])

‖v̄i
x‖

C
1+α
2 ([0,T ])

)

� CT
α
2

3
∑

i=1

‖ūj − v̄j‖
C

2+α
2 ,2+α

where C = C(M, δ, ‖σ‖C2+α([0,1]), ‖ϕ◦‖C4). Thus, by possibly choosing an even
smaller T , we obtain

3
∑

i=1

‖wi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

� 1
2

3
∑

i=1

‖w̄i‖
C

2+α
2 ,2+α([0,T ]×[0,1])

and the contraction property of R is established.
Finally application of the Banach’s fixed point theorem yields the existence of

a unique map u ∈ ∏3
j=1 Xj with u = R(u), that is a solution to (3.1), (3.2). In

particular we can state the following theorem.

Theorem 3.1. Let P i ∈ R
2, i = 1, 2, 3, be given points and α ∈ (0, 1). Let σi ∈

C2+α([0, 1],R2), i = 1, 2, 3 be regular maps fulfilling the compatibility conditions
(3.3), (3.4), (3.5). Then there exist T > 0 and unique regular maps ui ∈
C

2+α
2 ,2+α([0, T ] × [0, 1],R2), i = 1, 2, 3 such that (3.1), (3.2) are satisfied together

with the initial conditions ui(0, x) = σi(x), x ∈ [0, 1], i = 1, 2, 3.

Corollary 3.2. Let ui ∈ C
2+α
2 ,2+α([0, T ]×[0, 1],R2), i = 1, 2, 3 be the solutions found

in Theorem 3.1. Then ui ∈ C∞((0, T ] × [0, 1],R2).

Proof. The instant parabolic smoothing can be shown by some standard arguments
employing a cut-off function and a boot-strap argument in the same fashion as in
[7, Thm 2.3].

�

4. Maximal Solution for the Geometric Problem

We now prove existence, uniqueness and regularity of a maximal geometric solution.
We first show that a geometric solution is also a solution to the special flow up to
a diffeomorphism.

Lemma 4.1. Let (u1, u2, u3), with ui ∈ C
2+α
2 ,2+α([0, T ] × [0, 1],R2), i = 1, 2, 3, be

a solution of the geometric problem (according to Definition 2.8) with tangential
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components λi = ui
t · τ i. Then there exists a orientation preserving diffeomorphism

φi ∈ C
2+α
2 ,2+α([0, T ′] × [0, 1], [0, 1]), i = 1, 2, 3, for some 0 < T ′ � T , such that

(ũ1, ũ2, ũ3), with ũi(t, y) := ui(t, φi(t, y)) ∈ C
2+α
2 ,2+α([0, T ′] × [0, 1],R2) is the solu-

tion of the Special Flow (recall Definition 2.10 and Section 3).

Proof. Since the proof of existence of φi is performed identically for every map
i = 1, 2, 3, let us omit the index i for simplicity of notation. Note that by the
assumptions on the initial data (recall Definition 2.7) we have that the anisotropic
curvature (and hence the curvature and curvature vector) vanishes at x = 1 at time
zero, that is

(κν)|(t=0,x=1) = 0. (4.1)

Moreover we have that at the junction point at time zero there holds

(ψ(θi)κiνi + λiτ i)|(t=0,x=0) = (ψ(θj)κjνj + λjτ j)|(t=0,x=0) for i, j ∈ {1, 2, 3}.
(4.2)

First of all construct a diffeomorphism φ0 : [0, 1] → [0, 1] such that φ0(0) = 0,
φ0(1) = 1, φ0,y > 0 in [0, 1] and

0 =
ψ(θ(0, y))
|ux(0, y)|2

φ0,yy(y)
(φ0,y(y))2

+ ψ(θ(0, y))
uxx(0, y) · ux(0, y)

|ux(0, y)|4 − λ(0, y)
|ux(0, y)| (4.3)

at y = 0, 1 (whereby recall that λ(0, 1) = 0). This can be done for instance by
imposing also that φ0,y(y) = 1 at y = 0, 1, and by taking a suitable perturbation
(near the boundary points) of the identity map. Next, note that at a boundary point
y = 0, 1 we have

ũyy

|ũy|2 (t, y) =
uxx(t, y)(φy(t, y))

2 + ux(t, y)φyy(t, y)

|ux(t, y)|2(φy(t, y))2
=

uxx(t, y)

|ux(t, y)|2 +
φyy(t, y)

|ux(t, y)|(φy(t, y))2
τ(t, y)

= (κν)(t, y) +

(

uxx(t, y)

|ux(t, y)|2 · τ(t, y) +
φyy(t, y)

|ux(t, y)|(φy(t, y))2

)

τ(t, y)

therefore by (4.1), (4.3), and (2.11) we infer that ũyy

|ũy|2 (0, 1) = 0 that is (3.4) is
fulfilled. Similarly using (4.2) and (4.3) we infer that (3.5) is also fulfilled. Since

ũt(t, y) = ut(t, φ(t, y)) + ux(t, φ(t, y))φt(t, y)

= (ψ(θ)κν + λτ)(t, φ(t, y)) + φt(t, y)|ux(t, φ(t, y))|τ(t, φ(t, y))

= (ψ(θ̃)κ̃ν̃)(t, y) +
(

λ(t, φ(t, y)) + φt(t, y)|ux(t, φ(t, y))|)τ(t, φ(t, y))

we see that for ũ to fulfill (2.13), we need φ to be a solution of

φt(t, y) =
1

|ux(t, φ(t, y))|
(

ψ(θ̃)(
ũyy

|ũy|2 · τ̃)(t, y) − λ(t, φ(t, y))

)

=
ψ(θ̃)

|ux(t, φ(t, y))|2
φyy(t, y)

(φy(t, y))2
+ ψ(θ̃)

uxx(t, φ(t, y)) · ux(t, φ(t, y))

|ux(t, φ(t, y))|4 − λ(t, φ(t, y))

|ux(t, φ(t, y))|
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(where ψ(θ̃) = ϕ◦(ν̃)D2ϕ◦(ν̃)τ̃ · τ̃ with τ̃(t, y) = τ(t, φ(t, y))) together with

φ(t, 0) = 0, φ(t, 1) = 1, φy(t, y) > 0 ∀ t and y ∈ [0, 1],

and

φ(0, ·) = φ0(·).
Observe that by the construction of φ0 the compatibility conditions of order zero are
fulfilled. Instead of solving the PDE for φ, it is convenient to work with the inverse
diffeomorphism η = η(t, x), such that φ(t, η(t, x)) = x, and derive its existence first
(as proposed in [8]). Indeed we see that η must solve the linear PDE

ηt(t, x) = − φt(t, y)

φy(t, y)
=

ψ(θ)

|ux(t, x)|2 ηxx(t, x) − ηx(t, x)

(

ψ(θ)
uxx(t, x) · ux(t, x)

|ux(t, x)|4 − λ(t, x)

|ux(t, x)|
)

together with

η(t, 0) = 0, η(t, 1) = 1, ηx(t, x) > 0 ∀ t and x ∈ [0, 1],

and

η(0, ·) = φ−1
0 (·).

The existence of η ∈ C
2+α
2 ,2+α([0, T ] × [0, 1],R) follows from standard theory [17].

Possibly making the time interval smaller we can ensure that η(t, ·) is a diffeomor-
phism. Finally we take φ(t, ·) = η−1(t, ·). �

From Lemma 4.1, Theorem 3.1 and Corollary 3.2 we directly obtain the fol-
lowing result.

Theorem 4.2. Let α ∈ (0, 1), P i ∈ R
2, i = 1, 2, 3, be given points and σi, i = 1, 2, 3,

as in Definition 2.7. Then there exist T > 0 and regular maps ui ∈ C
2+α
2 ,2+α([0, T )×

[0, 1],R2)∩C∞((0, T )× [0, 1],R2), i = 1, 2, 3, which solve the geometric problem with
initial conditions ui(0, x) = σi(x), x ∈ [0, 1], in the sense of Definition 2.8 (i.e., up
to reparametrization of the given initial data). Moreover, the solutions ui are unique
up to reparametrization, that is, they parametrize a geometrically unique evolving
network.

We eventually show that at the maximal existence time either the length of
one curve goes to zero or the H1-norm of the curvature blows up.

Proposition 4.3. Let T be the maximal time such that there exist solutions of the
geometric problem as in Theorem 4.2, then we have

lim inf
t→T

min
i∈{1,2,3}

L(ui(t)) = 0 or lim sup
t→T

max
i∈{1,2,3}

‖κi
ϕ‖H1(I) = +∞. (4.4)

Proof. Assume by contradiction that L(ui(t)) ≥ δ and ‖κi
ϕ‖H1(I) ≤ C, for all i =

1, 2, 3 and t ∈ [0, T ), and for some δ, C > 0. By Lemma 6.7, for any ε ∈ (0, T ) we can
reparametrize the admissible network ui(·, T − ε), i = 1, 2, 3, in such a way that the
reparametrized network σi

ε satisfies the compatibility conditions (3.3), (3.4), (3.5)
and moreover

‖σi
ε‖C2+1

2 (I)
≤ C ′, ‖(σi

ε)x‖L∞(I) ≥ 1
C ′ ,
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where the constant C ′ > 0 depends only on δ and C. Indeed, we can first reparametri-
ze ui(·, T−ε) by constant speed. Then we notice that for the so obtained parametriza-
tion vi the uniform bound on the (anisotropic) curvature yields that

‖ vi
xx

|vi
x|2 ‖C1/2(I) = ‖vi

xx(L(vi))2‖C1/2(I) � C.

For the compatibility conditions (3.3), (3.4), (3.5) to hold we need now to reparamet-
rize vi again (as explained in (4.3) with v instead of u, so that |vx| = 1/L(vi) and
vxx ·vx = 0). As appropriate diffeomorphisms φi we take now suitable perturbations
near the junction of the identity map such that (φi)′(0) = (φi)′(1) = 1, (φi)′ > 0
on [0, 1], (4.3) holds, and the ‖φi‖C2,1/2-norm is uniformly bounded by a constant
depending only on C, δ, L(ui(T − ε)), and the anisotropy map (see (4.3) and recall
(2.27), (2.11), Lemma 6.7). The maps σi

ε = vi(φi) satisfy the claims.
Then, by Theorem 3.1 there exist solutions ui

ε to the special flow starting from
σi

ε at T − ε, defined on the time interval [T − ε, T − ε + τ), where τ > 0 depends
only on δ and C ′ (in particular it is independent of ε). By choosing ε small enough
we then have T − ε + τ > T . Notice that, by Lemma 4.1 (see also Corollary 3.2)
there exist smooth diffeomorphisms φi

ε : (a, b) × [0, 1] → [0, 1], (a, b) ⊂ (T − ε, T )
such that ui

ε = ui ◦φi
ε, i = 1, 2, 3. Let now η ∈ C∞(R) be such that 0 ≤ η(t) ≤ 1 for

all t, η(t) = 0 for t ≤ a and η(t) = 1 for all t ≥ b, with a < b and [a, b] ⊂ (T − ε, T ),
then the functions

ũi(t, x) =

⎧

⎨

⎩

ui(t, x) for (t, x) ∈ [0, a] × [0, 1]
ui(t, (1 − η(t))x + η(t)φi

ε(t, x)) for (t, x) ∈ (a, b) × [0, 1]
ui

ε(t, x) for (t, x) ∈ [b, T − ε + τ) × [0, 1]

give rise to geometric solution defined on the time interval [0, T−ε+τ), contradicting
the maximality of T . �

5. Integral Estimates and Main Result

In this section we derive integral estimates for a solution of the geometric problem
(recall Section 2.3). We shall always assume that the flow is smooth up to the initial
time t = 0, which is not restrictive in view of Theorem 4.2.

We start with a general lemma.

Lemma 5.1. Let u : I → R
2 satisfy (2.12) for some smooth map λ. Let S : I → R

2

be a normal vector field along the curve u, that is (S · τ) ≡ 0. Then

d

dt

(

1
2

∫

I

|S|2 1
ϕ◦(ν)

ds

)

+
∫

I

|Ss|2 ψ(θ)
ϕ◦(ν)

ds

=
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

+
∫

I

(S · (St − ψ(θ)Sss))
1

ϕ◦(ν)
ds −

∫

I

(S · Ss)
λ

ϕ◦(ν)
ds

−
∫

I

(S · Ss)
(ψ(θ))s

ϕ◦(ν)
ds − 1

2

∫

I

|S|2ψ(θ)κ2

ϕ◦(ν)
ds
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+
∫

I

Dϕ◦(ν) · τ

(ϕ◦(ν))2

(

1
2
|S|2(ψ(θ)κ)s − ψ(θ)κ(S · Ss)

)

ds (5.1)

Proof. Since

(ds)t = (λs − (κν · ut))ds = (λs − ψ(θ)κ2)ds

a direct computation gives
d

dt

(

1
2

∫

I

|S|2 1
ϕ◦(ν)

ds

)

+
∫

I

|Ss|2 ψ(θ)
ϕ◦(ν)

ds

=
∫

I

(S · (St − ψSss))
1

ϕ◦(ν)
ds +

1
2

∫

I

|S|2
(

1
ϕ◦(ν)

ds

)

t

+
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

]1

0

−
∫

I

(S · Ss)
(

ψ(θ)
ϕ◦(ν)

)

s

ds

=
∫

I

(S · (St − ψ(θ)Sss))
1

ϕ◦(ν)
ds +

1
2

∫

I

|S|2
(

1
ϕ◦(ν)

)

t

ds

+
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

−
∫

I

(S · Ss)
(

ψ(θ)
ϕ◦(ν)

)

s

ds − 1
2

∫

I

|S|2ψ(θ)κ2

ϕ◦(ν)
ds

−
∫

I

(S · Ss)
λ

ϕ◦(ν)
ds − 1

2

∫

I

|S|2λ
(

1
ϕ◦(ν)

)

s

ds.

Using the expression for θt from Lemma 2.5 we observe
1
2
|S|2
(

1
ϕ◦(ν)

)

t

− (S · Ss)ψ(θ)
(

1
ϕ◦(ν)

)

s

− 1
2
|S|2λ

(

1
ϕ◦(ν)

)

s

=
Dϕ◦(ν) · τ

(ϕ◦(ν))2

(

1
2
|S|2(ψ(θ)κ)s − ψ(θ)κ(S · Ss)

)

and the claim follows. �

Also we recall some useful interpolation estimates (here we cite [15, Proposi-
tion 3.11, Remark 3.12]):

Proposition 5.2. Let u : I → R
2 be a smooth regular curve in R

2 with finite length
L, and let f : I → R be a smooth function. For p ≥ 2 we set

‖∂n
s f‖Lp :=

(∫

I

|∂n
s f |pds

)
1
p

, where ds := |u′(x)| dx.

Then, for any m ≥ 1 and p ∈ [2, +∞], we have the estimates

‖∂n
s f‖Lp � Cn,m,p‖∂m

s f‖σ
L2‖f‖1−σ

L2 +
Bn,m,p

Lmσ
‖f‖L2

for every n ∈ {0, . . . ,m−1} where σ = n+1/2−1/p
m and the constants Cn,m,p, Bn,m,p

are independent of u. In particular

‖∂n
s f‖L∞ � Cn,m‖∂m

s f‖σ
L2‖f‖1−σ

L2 +
Bn,m

Lmσ
‖f‖L2 with σ =

n + 1/2
m

.
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5.1. Estimates on ||κ||L2 and ||κϕ ||L2

We now apply the Lemma 5.1 for the special choice of S = ψ(θ)κν, which is the
normal component of the velocity vector. Using Lemma 2.5 we compute (here and
below we write w⊥ = (w · ν)ν for the normal component of a vector w ∈ R

2)

S = (ut)⊥ = ψ(θ)κν, |S|2 = (ψ(θ)κ)2,

Ss = (ψ(θ)κ)sν − (ψ(θ)κ)κτ, |Ss|2 = ((ψ(θ)κ)s)2 + (ψ(θ)κ)2κ2,

as well as

Sss = ((ψ(θ)κ)ss − (ψ(θ)κ)κ2)ν + (. . .)τ,

St = [ψ′(θ)((ψ(θ)κ)s + λκ)κ + ψ(θ)((ψ(θ)κ)ss + ψ(θ)κ3 + λκs)]ν + (. . .)τ

(S · (St − ψ(θ)Sss)) = ψ(θ)ψ′(θ)κ2(ψ(θ)κ)s + 2(ψ(θ)κ)3κ + λ
1

2
(|S2|)s

= (ψ(θ))s(S · Ss) + 2(ψ(θ)κ)3κ + λ(S · Ss).

Therefore the integral terms appearing in the right-hand side of (5.1) amount to
∫

I

(S · (St − ψ(θ)Sss))
1

ϕ◦(ν)
ds −

∫

I

(S · Ss)
λ

ϕ◦(ν)
ds

−
∫

I

(S · Ss)
(ψ(θ))s

ϕ◦(ν)
ds − 1

2

∫

I

|S|2ψ(θ)κ2

ϕ◦(ν)
ds

+
∫

I

Dϕ◦(ν) · τ

(ϕ◦(ν))2

(

1
2
|S|2(ψ(θ)κ)s − ψ(θ)κ(S · Ss)

)

ds

=
∫

I

3
2

(ψ(θ)κ)3κ
ϕ◦(ν)

ds − 1
2

∫

I

Dϕ◦(ν) · τ

(ϕ◦(ν))2
(ψ(θ)κ)2(ψ(θ)κ)sds.

In particular notice that with St − ψ(θ)Sss high order terms disappear. Equation
(5.1) becomes

d

dt

(

1
2

∫

I

(ψ(θ)κ)2

ϕ◦(ν)
ds

)

+
∫

I

|(ψ(θ)κ)s|2 ψ(θ)
ϕ◦(ν)

ds =
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0
(5.2)

+
∫

I

1
2

(ψ(θ)κ)3κ
ϕ◦(ν)

ds − 1
2

∫

I

Dϕ◦(ν) · τ

(ϕ◦(ν))2
(ψ(θ)κ)2(ψ(θ)κ)sds. (5.3)

For the boundary term we notice that

(S · Ss)
ψ(θ)
ϕ◦(ν)

= (S · (Ss)⊥)
ψ(θ)
ϕ◦(ν)

= (ut · (Ss)⊥)
ψ(θ)
ϕ◦(ν)

.

This motivates the choice of S since at the boundary the velocity ut is either zero
(at the fixed boundary point) or coincides with the velocity of the other curves
meeting at the triple junction. We can then lower the order of the terms at the
moving boundary point by exploiting the boundary conditions. More precisely we
write

(S · Ss)
ψ(θ)

ϕ◦(ν)
= (ut · (ψ(θ)κ)sν) ψ(θ)

ϕ◦(ν)
= (ut · ((ψ(θ)κ)s + λκ)ν)

ψ(θ)

ϕ◦(ν)
− (ut · λκν)

ψ(θ)

ϕ◦(ν)

=

(

ut · ψ(θ)θt

ϕ◦(ν)
ν

)

− λψ(θ)κ2 ψ(θ)

ϕ◦(ν)
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which yields
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

=
[(

ut · ψ(θ)θt

ϕ◦(ν)
ν

)

− 1
2
λ

(ψ(θ)κ)2

ϕ◦(ν)

]1

0

.

Derivation in time of (2.20) gives (at the junction)

0 = −
3
∑

i=1

(Dϕ◦(νi))t =
3
∑

i=1

D2ϕ◦(νi)θi
tτ

i =
3
∑

i=1

ψ(θi)θi
t

τ i

ϕ◦(νi)
.

After multiplication by
(

0 −1
1 0

)

, which rotates vectors by π/2, we finally infer that

0 =
3
∑

i=1

ψ(θi)θi
t

νi

ϕ◦(νi)

holds at the junction point. In particular, since u1
t = u2

t = u3
t at the junction point,

we infer
3
∑

i=1

(

ui
t · ψ(θi)θi

t

ϕ◦(νi)
νi

)

=

(

ui
t ·

3
∑

i=1

ψ(θi)θi
t

ϕ◦(νi)
νi

)

= 0.

Summing (5.2) for every curve in the network, we therefore obtain
3
∑

i=1

d

dt

(1

2

∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds
)

+

3
∑

i=1

∫

I

|(ψ(θi)κi)s|2 ψ(θi)

ϕ◦(νi)
ds =

3
∑

i=1

1

2
λi (ψ(θ

i)κi)2

ϕ◦(νi)

∣

∣

∣

x=0

+
3
∑

i=1

(∫

I

1

2

(ψ(θi)κi)3κi

ϕ◦(νi)
ds − 1

2

∫

I

Dϕ◦(νi) · τ i

(ϕ◦(νi))2
(ψ(θi)κi)2(ψ(θi)κi)sds

)

. (5.4)

A more geometrical interpretation of the above expression is discussed in Remark 5.4
below. Using (2.11) as well as C−1 � ϕ◦(ν) � C and |Dϕ◦(ν)| � C (recall that
Dϕ◦(ν) lies on the Wulff shape) we can write
3
∑

i=1

d

dt

(

1
2

∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)

+ m

∫

I

|(ψ(θi)κi)s|2 1
ϕ◦(νi)

ds

�
3
∑

i=1

C|λi|(ψ(θi)κi)2
∣

∣

∣

x=0
+

3
∑

i=1

(

Cε

∫

I

(ψ(θi)κi)4ds+ε

∫

I

|(ψ(θi)κi)s|2 1
ϕ◦(νi)

ds

)

.

Choosing ε = m/2 we obtain
3
∑

i=1

d

dt

(

1
2

∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)

+
m

2

∫

I

|(ψ(θi)κi)s|2 1
ϕ◦(νi)

ds

�
3
∑

i=1

C|λi|(ψ(θi)κi)2
∣

∣

∣

x=0
+

3
∑

i=1

C‖ψ(θi)κi‖4L4(I).

Next we apply interpolation estimates, under the assumption that we have a uni-
form control (from below) of the lengths of the curves composing the network. By
Proposition 5.2 it follows

‖ψ(θi)κi‖4L4 � C(‖(ψ(θi)κi)s‖1/4
L2 ‖ψ(θi)κi‖3/4

L2 + ‖ψ(θi)κi‖L2)4

� C‖(ψ(θi)κi)s‖L2‖ψ(θi)κi‖3L2 + C‖ψ(θi)κi‖4L2
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� ε

∫

I

|(ψ(θi)κi)s|2 1
ϕ◦(νi)

ds + Cε

(∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)3

+ C.

Moreover, for the boundary term we use (2.27) and Proposition 5.2 to infer

|λi|(ψ(θi)κi)2
∣

∣

∣

x=0
� C(ψ(θi)κi)2

3
∑

j=1

|ψ(θj)κj |
∣

∣

∣

x=0
� C‖ψ(θi)κi‖2L∞

3
∑

j=1

‖ψ(θj)κj‖L∞

� C(‖(ψ(θi)κi)s‖1/2
L2 ‖ψ(θi)κi‖1/2

L2 + ‖ψ(θi)κi‖L2)2

·
⎛

⎝

3
∑

j=1

(‖(ψ(θj)κj)s‖1/2
L2 ‖ψ(θj)κj‖1/2

L2 + ‖ψ(θj)κj‖L2)

⎞

⎠

� ε

3
∑

j=1

∫

I

|(ψ(θj)κj)s|2 1

ϕ◦(νj)
ds+Cε

3
∑

j=1

(∫

I

(ψ(θj)κj)2

ϕ◦(νj)
ds

)3

+Cε,

where for the last step, we have used several times the Young-inequality. Putting
all estimates together and choosing ε appropriately we infer

3
∑

i=1

d

dt

(

1
2

∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)

�
3
∑

i=1

C

(∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)3

+ C

� C

3
∑

i=1

(

1 +
∫

I

(ψ(θi)κi)2

ϕ◦(νi)
ds

)3

,

where C depends on the anisotropy (precisely (2.11), a0 as in (2.21), as well as
C−1 � ϕ◦(ν) � C and |Dϕ◦(ν)| � C) and on the uniform bound from below on the
lengths of the curves. Note also that so far only information of λi at the boundary
has played a role. Recalling that κϕ = ψ(θ)

ϕ◦(ν)κ and integration in time for 0 � t1 < t2
yields

− 1
(
∑3

i=1(1 +
∫

I
(κi

ϕ)2ϕ◦(νi)ds)
)2 |t=t2

+
1

(
∑3

i=1(1 +
∫

I
(κi

ϕ)2ϕ◦(νi)ds)
)2 |t=t1

� C(t2 − t1).

In particular if, for 0 < T < ∞, there exists a sequence of times tj → T , for j → ∞,
such that

(

3
∑

i=1

∫

I

(κi
ϕ)2ϕ◦(νi)ds

)

∣

∣

∣

t=tj

→ ∞ as j → ∞ (5.5)

then we obtain for any t ∈ [0, T ) that

1
(

∑3
i=1(1 +

∫

I
(κi

ϕ)2ϕ◦(νi)ds)
)2 � C(T − t).

Therefore we can conclude with the following statement, that is valid for a solution
to the geometric problem posed in Sect. 2.3:

Lemma 5.3. If for 0 < T < ∞, the lengths of the curves are uniformly bounded from
below

L(ui(t)) ≥ δ > 0, i = 1, 2, 3, for any t ∈ [0, T )



172 H. Kröner et al. Vol. 89 (2021)

and there exists a sequence of times tj → T , for j → ∞, such that (5.5) holds, then
there exists a positive constant C such that

3
∑

i=1

∫

I

(κi
ϕ)2ϕ◦(νi)ds ≥ C√

T − t
for any t ∈ [0, T ),

where the constant C > 0 depends on δ and ϕ◦ (namely m, M (recall (2.11)), a0

(recall (2.21)), C−1 � ϕ◦(ν) � C and |Dϕ◦(ν)| � C).
In particular, taking t = 0 we have

√
T ≥ C

∑3
i=1 ‖κi

ϕ(0, ·)‖2L2(I)

.

Remark 5.4. Upon recalling that κϕ = ψ(θ)
ϕ◦(ν)κ, observe that (5.4) can also be written

as

3
∑

i=1

d

dt

(

1
2

∫

I

|κi
ϕ|2ϕ◦(νi)ds

)

+
3
∑

i=1

∫

I

|(ψ(θi)κi)s|2 ψ(θi)
ϕ◦(νi)

ds=
3
∑

i=1

1
2
λi(κi

ϕ)2ϕ◦(νi)
∣

∣

∣

x=0

+
3
∑

i=1

(∫

I

1
2

(ψ(θi)κi)3κi

ϕ◦(νi)
ds − 1

2

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

)

=
3
∑

i=1

1
2
λi(κi

ϕ)2ϕ◦(νi)
∣

∣

∣

x=0
−

3
∑

i=1

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

+
3
∑

i=1

(∫

I

1
2

(ψ(θi)κi)3κi

ϕ◦(νi)
ds +

1
2

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

)

=
3
∑

i=1

1
2
(

λi(κi
ϕ)2 − Dϕ◦(νi) · τ i(κi

ϕ)3
)

ϕ◦(νi)
∣

∣

∣

x=0

−
3
∑

i=1

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

+
3
∑

i=1

(

∫

I

1
2

(ψ(θi)κi)3κi

ϕ◦(νi)
ds +

∫

I

1
2
(κi

ϕ)4ϕ◦(νi)ds

−
∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(κi

ϕ)sϕ
◦(νi)ds − 1

2

∫

I

Dϕ◦(νi) · νiκi(κi
ϕ)2ψ(θi)κids

)

=
3
∑

i=1

1
2
(

λi(κi
ϕ)2 − Dϕ◦(νi) · τ i(κi

ϕ)3
)

ϕ◦(νi)
∣

∣

∣

x=0

−
3
∑

i=1

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

+
3
∑

i=1

(

∫

I

1
2
(κi

ϕ)4ϕ◦(νi)ds −
∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(κi

ϕ)sϕ
◦(νi)ds

)

.
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where in the integration by parts we have used the fact that the velocities and hence
the curvatures vanish at the fixed boundary points. On the other hand note that

(κϕ)s =
(ψ(θ)κ)s

ϕ◦(ν)
+ ψ(θ)κ

(

1
ϕ◦(ν)

)

s

=
(ψ(θ)κ)s

ϕ◦(ν)
+ κϕκ

Dϕ◦(ν) · τ

ϕ◦(ν)

and therefore

1
2

∫

I

|(ψ(θi)κi)s|2 ψ(θi)
ϕ◦(νi)

ds

=
1
2

∫

I

ψ(θi)|(κi
ϕ)s|2ϕ◦(νi)ds +

1
2

∫

I

(

κi
ϕκi Dϕ◦(νi) · τ i

ϕ◦(νi)

)2

ψ(θi)ϕ◦(νi)ds

−
∫

I

(κi
ϕ)s(κi

ϕ)2(Dϕ◦(νi) · τ i)ϕ◦(νi)ds.

It follows then
3
∑

i=1

{ d

dt

(

1

2

∫

I

|κi
ϕ|2ϕ◦(νi)ds

)

+
1

2

∫

I

|(ψ(θi)κi)s|2 ψ(θi)

ϕ◦(νi)
ds +

1

2

∫

I

ψ(θi)|(κi
ϕ)s|2ϕ◦(νi)ds

+
1

2

∫

I

(

κi
ϕκi Dϕ◦(νi) · τ i

ϕ◦(νi)

)2

ψ(θi)ϕ◦(νi)ds
}

=

3
∑

i=1

1

2

(

λi(κi
ϕ)

2 − Dϕ◦(νi) · τ i(κi
ϕ)

3
)

ϕ◦(νi)
∣

∣

∣

x=0

−
3
∑

i=1

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)

2(ψ(θi)κi)sds +

3
∑

i=1

∫

I

1

2
(κi

ϕ)
4ϕ◦(νi)ds.

For the second last integral on the right-hand side note that

∣

∣

∣

∫

I

Dϕ◦(νi) · τ i(κi
ϕ)2(ψ(θi)κi)sds

∣

∣

∣ =
∣

∣

∣

∫

I

Dϕ◦(νi) · τ iκi
ϕκi

√

ψ

ϕ◦

√

ψ

ϕ◦ (ψ(θi)κi)sds
∣

∣

∣

� 1
2

∫

I

|(ψ(θi)κi)s|2 ψ(θi)
ϕ◦(νi)

ds +
1
2

∫

I

(

κi
ϕκi Dϕ◦(νi) · τ i

ϕ◦(νi)

)2

ψ(θi)ϕ◦(νi)ds

and so it can be nicely absorbed. It follows then

3
∑

i=1

d

dt

(

1
2

∫

I

|κi
ϕ|2ϕ◦(νi)ds

)

+
3
∑

i=1

1
2

∫

I

ψ(θi)|(κi
ϕ)s|2ϕ◦(νi)ds

�
3
∑

i=1

1
2
(

λi(κi
ϕ)2 − Dϕ◦(νi) · τ i(κi

ϕ)3
)

ϕ◦(νi)
∣

∣

∣

x=0
+

3
∑

i=1

∫

I

1
2
(κi

ϕ)4ϕ◦(νi)ds.

5.2. Estimates on ||(ψκ)ss||L2 and ||(κϕ)ss||L2

Similarly to [15] (where the isotropic setting is considered) we now introduce some
notation that simplifies exposition and reading. We indicate by pσ(∂h

s (ψκ)) a polyno-
mial in the variables (ψ(θ)κ), . . . , ∂h

s (ψ(θ)κ) with coefficient functions C = C( 1
ψ , ψ,

. . . , ∂h+1
θ ψ) that depend on 1

ψ , ψ, . . . , ∂h+1
θ ψ and such that every monomial is of the
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form

C

(

1
ψ

, ψ, . . . , ∂h+1
θ ψ

) h
∏

l=0

(∂l
s(ψκ))βl with

h
∑

l=0

(l + 1)βl = σ.

Note that, due to the smoothness assumptions on the anisotropy map ϕ◦ we will
be able to bound uniformly from above all the coefficient maps C( 1

ψ , ψ, . . . , ∂h+1
θ ψ),

that is

|C
(

1
ψ

,ψ, . . . , ∂h+1
θ ψ

)

| � Ch, for any h ∈ N0.

For this reason we treat these maps as coefficients and refer to them as such. More
precisely the maps C( 1

ψ , ψ, . . . , ∂h
θ ψ) are assumed to be sums of rational functions

of type

polynomial with constant coefficients in the variablesψ(θ), . . . , ∂h
θ ψ(θ)

ψr(θ)
for some r ∈ N0 and, as a consequence, the following rule applies

∂s

(

C

(

1
ψ

,ψ, . . . , ∂h
θ ψ

))

= C

(

1
ψ

, ψ, . . . , ∂h+1
θ ψ

)

(ψκ) (5.6)

which is obtained by differentiating the left-hand side and recalling that θs = κ =
1
ψ (ψκ).

Similarly, we denote by pσ(|∂h
s (ψκ)|) a polynomial in the variables |ψ(θ)κ)|, . . . ,

|∂h
s (ψ(θ)κ)|, with constants coefficients such that each monomial is of the form

C
h
∏

l=0

|∂l
s(ψκ)|βl with

h
∑

l=0

(l + 1)βl = σ.

We denote by qσ(∂j
t λ, ∂h

s (ψκ)) a polynomial as before in λ, . . . , ∂j
t λ and (ψ(θ)κ),

. . . , ∂h
s (ψ(θ)κ) with coefficient functions C = C( 1

ψ , ψ, . . . , ∂h+1
θ ψ) such that all its

monomial are of the form

C

(

1

ψ
, ψ, . . . , ∂h+1

θ ψ

) j
∏

l=0

(∂l
tλ)

αl

h
∏

l=0

(∂l
s(ψκ))βl with

j
∑

l=0

(2l + 1)αl +
h
∑

l=0

(l + 1)βl = σ.

We exemplify the notation just introduced in the next lemma (which is partially
the anisotropic counterpart of [15, Lemma 3.7] and) which will be used subsequently.

Lemma 5.5. For j = 0, 1, 2 we have that

∂t∂
j
s(ψκ) = ψ∂j+2

s (ψκ) + λ∂j+1
s (ψκ) + C

(

1
ψ

,ψ′
)

(ψκ)∂j+1
s (ψκ) + pj+3(∂j

s(ψκ)).

In particular it follows that

θtt = [(ψκ)s + λκ]t = ∂t∂s(ψκ) + (λκ)t

= (λκ)t + ψ(ψκ)sss + λ(ψκ)ss + C

(

1
ψ

,ψ′
)

(ψκ)(ψκ)ss + p4(∂s(ψκ))

= ψ(ψκ)sss + q4(λt, ∂
2
s (ψκ)).
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Proof. Using Lemma 2.5 and (2.11) we obtain (we write ψ′ for ∂θψ and write ψ
instead of ψ(θ) to simplify the notation)

∂t(ψκ) = ψtκ + ψκt = ψ′((ψκ)s + λκ)κ + ψ[(ψκ)ss + ψκ3 + λκs]

= ψ(ψκ)ss + λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1
ψ

(ψκ)3

= ψ(ψκ)ss + λ(ψκ)s + C

(

1
ψ

, ψ′
)

(ψκ)s(ψκ) + C

(

1
ψ

)

(ψκ)3 (5.7)

and the claim follows for j = 0. Next, using again Lemma 2.5, the previous step
and (5.6), we compute

∂t(ψκ)s = ∂t∂s(ψκ) = ∂s∂t(ψκ) + ψκ2(ψκ)s − λs(ψκ)s

= ψ′κ(ψκ)ss + ψ(ψκ)sss + λs(ψκ)s + λ(ψκ)ss

+

(

ψ′′

ψ
− (ψ′)2

ψ2

)

1

ψ
(ψκ)(ψκ)s(ψκ) +

ψ′

ψ
((ψκ)ss(ψκ) + (ψκ)s(ψκ)s)

− ψ′

ψ3
(ψκ)(ψκ)3 +

3

ψ
(ψκ)2(ψκ)s +

1

ψ
(ψκ)2(ψκ)s − λs(ψκ)s

= ψ(ψκ)sss + λ(ψκ)ss + C

(

1

ψ
, ψ′
)

(ψκ)ss(ψκ) + C

(

1

ψ
, ψ, ψ′, ψ′′

)

(ψκ)2(ψκ)s

+ C

(

1

ψ
, ψ′
)

((ψκ)s)
2 + C

(

1

ψ
, ψ′
)

(ψκ)4.

The case j = 2 is computed analogously. The last statement follows by the definition
of the polynomial q4(λt, ∂

2
s (ψκ)) and the fact that by Lemma 2.5 we can write

kt = (ψκ)ss +
1
ψ2

(ψκ)3+λ∂s

(

1
ψ

(ψκ)
)

= (ψκ)ss +
1
ψ2

(ψκ)3+
λ

ψ
(ψκ)s − λ

ψ′

ψ3
(ψκ)2.

�

Next we apply Lemma 5.1 to

S := ψ(ψκ)ssν

which is a term in the normal component of utt (see (5.9) below). We have that

S = ψ(ψκ)ssν,

|S|2 = ψ2|(ψκ)ss|2,
Ss = (ψ′κ(ψκ)ss + ψ(ψκ)sss)ν − (ψκ)(ψκ)ssτ

=

(

ψ′

ψ
(ψκ)(ψκ)ss + ψ(ψκ)sss

)

ν − (ψκ)(ψκ)ssτ,

S · Ss = ψ′(ψκ)((ψκ)ss)
2 + ψ2(ψκ)ss(ψκ)sss,

|Ss|2 =

(

ψ′

ψ

)2

|(ψκ)(ψκ)ss|2 + ψ2|(ψκ)sss|2 + |(ψκ)(ψκ)ss|2 + 2ψ′(ψκ)(ψκ)ss(ψκ)sss

= ψ2|(ψκ)sss|2 + 2ψ′(ψκ)(ψκ)ss(ψκ)sss + p8(∂
2
s (ψκ)),

Sss = (ψ(ψκ)ssss + 2
ψ′

ψ
(ψκ)(ψκ)sss + p5(∂

2
s (ψκ)))ν + (. . .)τ.
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Moreover using Lemma 5.5 with j = 2, and Lemma 2.5 we can write

St = [ψt(ψκ)ss + ψ∂t∂
2
s (ψκ)]ν + (. . .)τ

=
[

ψ′((ψκ)s + λκ)(ψκ)ss + ψ
(

ψ∂4
s (ψκ) + λ∂3

s (ψκ)

+C

(

1
ψ

,ψ′
)

(ψκ)∂3
s (ψκ) + p5(∂2

s (ψκ))
)

]

ν + (. . .)τ

= {ψ2(ψκ)ssss + λ[ψ′κ(ψκ)ss + ψ∂3
s (ψκ)]

+ C

(

1
ψ

,ψ′
)

(ψκ)∂3
s (ψκ) + p5(∂2

s (ψκ))}ν + (. . .)τ.

Therefore

(St − ψSss)⊥ =
(

λ[ψ′κ(ψκ)ss + ψ∂3
s (ψκ)] + C

(

1
ψ

, ψ′
)

(ψκ)∂3
s (ψκ)

+ p5(∂2
s (ψκ)) − 2ψ′(ψκ)(ψκ)sss

)

ν,

(St − ψSss) · S = λ[ψ′(ψκ)((ψκ)ss)2 + ψ2(ψκ)ss∂
3
s (ψκ)]

+ C
( 1

ψ
,ψ, ψ′

)

(ψκ)(ψκ)ss∂
3
s (ψκ) + p8(∂2

s (ψκ)),

and we obtain

S · (St − ψSss) − λ(S · Ss) − (S · Ss)(ψ)s − 1
2
|S|2(ψκ2)

= C

(

1
ψ

,ψ, ψ′
)

(ψκ)(ψκ)ss∂
3
s (ψκ) + p8(∂2

s (ψκ)),

as well as
1
2
|S|2(ψ(θ)κ)s − ψ(θ)κ(S · Ss) = C

(

1
ψ

, ψ, ψ′
)

(ψκ)(ψκ)ss∂
3
s (ψκ) + p8(∂2

s (ψκ)).

Plugging the above expression into (5.1) yields

d

dt

(

1
2

∫

I

|S|2 1
ϕ◦(ν)

ds

)

+
∫

I

ψ2|(ψκ)sss|2 ψ(θ)
ϕ◦(ν)

ds =
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

+
∫

I

(

C

(

1
ψ

,ψ, ψ′
)

(ψκ)(ψκ)ss∂
3
s (ψκ) + p8(∂2

s (ψκ))
)

1
ϕ◦(ν)

ds

+
∫

I

Dϕ◦(ν) · τ

(ϕ◦(ν))2

(

C

(

1
ψ

,ψ, ψ′
)

(ψκ)(ψκ)ss∂
3
s (ψκ) + p8(∂2

s (ψκ))
)

ds.

With help of Young inequality and using (2.11) we achieve

d

dt

(

1
2

∫

I

|S|2 1
ϕ◦(ν)

ds

)

+
1
2

∫

I

ψ2|(ψκ)sss|2 ψ(θ)
ϕ◦(ν)

ds

�
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

+ C

∫

I

p8(|∂2
s (ψκ)|)ds. (5.8)

To treat the boundary term
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0
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=
[

ψ

ϕ◦(ν)

(

ψ′(ψκ)((ψκ)ss)2 + ψ2(ψκ)ss(ψκ)sss

)

+
λ

2ϕ◦(ν)
ψ2|(ψκ)ss|2

]1

0

it is imperative to be able to lower the order of the term with three spacial deriva-
tives. Note that the λ-term is of type

λ

2ϕ◦(ν)
ψ2|(ψκ)ss|2 =

1
ϕ◦(ν)

q7(∂tλ, ∂2
s (ψκ)).

To handle the term (S · Ss) observe that by Lemma 2.5 and (5.7) we can write

utt = [ψκν + λτ ]t = (ψκ)tν + (ψκ)νt + λtτ + λτt

= [(ψκ)t + λθt]ν + (λt − (ψκ)θt)τ

= [ψ(ψκ)ss + λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1
ψ

(ψκ)3 + λθt]ν + (λt − (ψκ)θt)τ

= S + [λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1
ψ

(ψκ)3 + λθt]ν + (. . .)τ. (5.9)

At the fixed boundary point (that is at x = 1) we have that (ψκ) = λ = λt =
(ψκ)ss = 0 since the here ut = utt = 0. Hence we need to treat only the boundary
terms at the junction point. Here we have, using (5.9),

(S · Ss) = S · (Ss)⊥ = (utt · (Ss)⊥)

−
[

λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1
ψ

(ψκ)3 + λθt

]

(ψ′κ(ψκ)ss + ψ(ψκ)sss)

= (utt · (Ss)⊥) − R.

Concerning the term R we observe
[

λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1

ψ
(ψκ)3 + λθt

]

(ψ′κ(ψκ)ss)

=

[

2λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1

ψ
(ψκ)3 + λ2 1

ψ
(ψκ)x

](

ψ′

ψ
(ψκ)(ψκ)ss

)

= q7(∂tλ, ∂2
s (ψκ)).

Using Lemma 5.5 we also compute

[λ(ψκ)s +
ψ′

ψ
(ψκ)s(ψκ) +

1
ψ

(ψκ)3 + λθt]ψ(ψκ)sss

= [(2λ + ψ′κ)(ψκ)s +
1
ψ

(ψκ)3 + λ2κ](∂t(ψκ)s + q4(∂tλ, ∂2
s (ψκ)))

= (2λ + ψ′κ)
( |(ψκ)s|2

2

)

t

+
(

1
ψ

(ψκ)3 + λ2κ

)

(∂t(ψκ)s) + q7(∂tλ, ∂2
s (ψκ))

=

(

(

2λ +
ψ′

ψ
(ψκ)

) |(ψκ)s|2
2

+
(

1
ψ

(ψκ

)3

+
1
ψ

λ2(ψκ))(ψκ)s

)

t

− (2λ + ψ′κ)t
|(ψκ)s|2

2
− (ψκ)s

(

1
ψ

(ψκ)3 + λ2κ

)

t

+ q7(∂tλ, ∂2
s (ψκ))

= ∂t

(

q5(λ, ∂s(ψκ))
)

+ q7(∂tλ, ∂2
s (ψκ)).
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Hence

R = ∂t

(

q5(λ, ∂s(ψκ))
)

+ q7(∂tλ, ∂2
s (ψκ)).

Therefore we obtain that at the junction point we have

ψ(θ)
ϕ◦(ν)

(S · Ss) =
ψ(θ)
ϕ◦(ν)

(utt · (Ss)⊥) − ψ(θ)
ϕ◦(ν)

(

∂t

(

q5(λ, ∂s(ψκ))
)

+ q7(∂tλ, ∂2
s (ψκ))

)

=
ψ(θ)
ϕ◦(ν)

(utt · (Ss)⊥) − 1
ϕ◦(ν)

[

∂t

(

q5(λ, ∂s(ψκ))
)

+ q7(∂tλ, ∂2
s (ψκ))

]

.

Next, using (5.9) and the expression derived above for Ss, we observe that

ψ(θ)
ϕ◦(ν)

(utt · (Ss)⊥)

=
ψ(θ)
ϕ◦(ν)

[(ψκ)t + λθt]
(

ψ′

ψ
(ψκ)(ψκ)ss + ψ(ψκ)sss

)

=
ψ(θ)
ϕ◦(ν)

[(ψκ)t + λθt]ψ(ψκ)sss +
1

ϕ◦(ν)
q7(∂tλ, ∂2

s (ψκ))

=
ψ(θ)
ϕ◦(ν)

[(ψκ)t + λθt](θtt + q4(∂tλ, ∂2
s (ψκ))) +

1
ϕ◦(ν)

q7(∂tλ, ∂2
s (ψκ))

=
1

ϕ◦(ν)
q7(∂tλ, ∂2

s (ψκ)) +
ψ(θ)
ϕ◦(ν)

[(ψκ)t + λθt]θtt

where we have used Lemma 5.5 in the second last equality. Hence so far we have
shown that
[

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

]1

0

= −
(

(S · Ss)
ψ(θ)
ϕ◦(ν)

+
1
2
|S|2 λ

ϕ◦(ν)

)

∣

∣

∣

x=0

=
1

ϕ◦(ν)
q7(∂tλ, ∂2

s (ψκ)) +
1

ϕ◦(ν)
∂t

(

q5(λ, ∂s(ψκ))
)− ψ(θ)

ϕ◦(ν)
[(ψκ)t + λθt]θtt.

(5.10)

To handle the last term we use the boundary conditions: twice derivation in time
of (2.20) gives (at the junction point)

0 = −
3
∑

i=1

(Dϕ◦(νi))tt =
3
∑

i=1

(D2ϕ◦(νi)θi
tτ

i)t =
3
∑

i=1

D3ϕ◦(νi)νi
tθ

i
tτ

i+
3
∑

i=1

D2ϕ◦(νi)θi
ttτ

i

= −
3
∑

i=1

D3ϕ◦(νi)τ iτ i(θi
t)

2 +
3
∑

i=1

ψ(θi)
ϕ◦(νi)

θi
ttτ

i.

Since here u1
tt = u2

tt = u3
tt, we obtain Ru1

tt = Ru2
tt = Ru3

tt with R =
(

0 −1
1 0

)

which
rotates vectors by π/2, and hence (recall (5.9))

0 = Ru1
tt ·
(

−
3
∑

i=1

D3ϕ◦(νi)τ iτ i(θi
t)

2 +
3
∑

i=1

ψ(θi)
ϕ◦(νi)

θi
ttτ

i

)

=
3
∑

i=1

(Rui
tt) ·
(

−D3ϕ◦(νi)τ iτ i(θi
t)

2 +
ψ(θi)
ϕ◦(νi)

θi
ttτ

i

)
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=
3
∑

i=1

(−[(ψ(θi)κi)t + λiθi
t]τ

i + (λi
t − (ψ(θi)κi)θi

t)ν
i)

·
(

−D3ϕ◦(νi)τ iτ i(θi
t)

2 +
ψ(θi)
ϕ◦(νi)

θi
ttτ

i

)

.

It follows that
3
∑

i=1

ψ(θi)
ϕ◦(νi)

θi
tt[(ψ(θi)κi)t + λiθi

t]

=
3
∑

i=1

D3ϕ◦(νi)τ iτ iτ i(θi
t)

2[(ψ(θi)κi)t + λiθi
t]

−
3
∑

i=1

D3ϕ◦(νi)τ iτ iνi(θi
t)

2(λi
t − (ψ(θi)κi)θi

t)

=
3
∑

i=1

(D3ϕ◦(νi)τ iτ iτ i + D3ϕ◦(νi)τ iτ iνi) q7(∂tλ
i, ∂2

s (ψ(θi)κi)),

where note that |D3ϕ◦(νi)τ iτ iτ i + D3ϕ◦(νi)τ iτ iνi| � C. The expression above
together with (5.8) and (5.10) yields

3
∑

i=1

d

dt

(

1
2

∫

I

|ψ(θi)(ψ(θi)κi)ss|2 1
ϕ◦(νi)

ds

)

+
1
2

∫

I

(ψ(θi))2|(ψ(θi)κi)sss|2 ψ(θi)
ϕ◦(νi)

ds

�
3
∑

i=1

∂t

(

1
ϕ◦(νi)

q5(λi, ∂s(ψ(θi)κi))
)

∣

∣

∣

x=0
+

3
∑

i=1

C|q7(∂tλ
i, ∂2

s (ψ(θi)κi))|
∣

∣

∣

x=0

+
3
∑

i=1

C

∫

I

p8(|∂2
s (ψ(θi)κi)|)ds. (5.11)

Finally we apply interpolation inequalities. Using Proposition 5.2 and Hölder in-
equality as demonstrated and carefully explained in [15, p.260-261] we obtain that
∫

I

p8(|∂2
s (ψ(θi)κi)|)ds�ε

∫

I

(ψ(θi))2|(ψ(θi)κi)sss|2 ψ(θi)
ϕ◦(νi)

ds2+Cε‖ψ(θi)κi‖14L2(I)+C

(5.12)

where the constants depend on (2.11), the anisotropy map, and the bounds of the
lengths of the curves.

At the triple junction recall that we can write λi in terms of (ψ(θj)κj) for
j �= i. In particular, we have that (2.27) holds. Together with (2.28), Lemma 2.5
and Lemma 5.5 we infer that

Lemma 5.6. We have that at the junction point there holds

3
∑

i=1

|q7(∂tλ
i, ∂2

s (ψ(θi)κi))| � Cp7(|∂2
s (ψ(θj)κj)|; j = 1, 2, 3) ,
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3
∑

i=1

|q5(λi, ∂s(ψ(θi)κi))| � Cp5(|∂s(ψ(θj)κj)|; j = 1, 2, 3) ,

where C depends on the anisotropy map and where the polynomials on the right-hand
side now contains derivatives of (ψ(θj)κj) for the three different curves.

Using Lemma 5.6, interpolation estimates, and Hölder inequality as in [15, p.
262] we obtain

3
∑

i=1

|q7(∂tλ
i, ∂2

s (ψ(θi)κi))| � Cp7(|∂2
s (ψ(θj)κj)|; j = 1, 2, 3)

�
3
∑

i=1

ε

∫

I

(ψ(θi))2|(ψ(θi)κi)sss|2 ψ(θi)
ϕ◦(νi)

ds2 + Cε‖ψ(θi)κi‖14L2(I) + C. (5.13)

From (5.11), (5.12), (5.13), choosing ε appropriately, integrating in time and using
(2.11) we obtain

3
∑

i=1

‖(ψ(θi)κi)ss‖2L2(I)(t) � C

3
∑

i=1

‖(ψ(θi)κi)ss‖2L2(I)(0) + Ct +

3
∑

i=1

C

∫ t

0

‖ψ(θi)κi‖14L2(I)dt

+

3
∑

i=1

C|q5(λi, ∂s(ψ(θ
i)κi))|(t)

∣

∣

∣

(x=0)
+

3
∑

i=1

C|q5(λi, ∂s(ψ(θ
i)κi))|(0)

∣

∣

∣

(x=0)
.

By Lemma 5.6, and together again with interpolation and Hölder inequalities (cp.
with [15, p263]) we obtain that at the junction point we have, for any time t,

3
∑

i=1

C|q5(λi, ∂s(ψ(θi)κi))|(t) � Cp5(|∂s(ψ(θj)κj)|; j = 1, 2, 3)

� 1
2

3
∑

i=1

‖(ψ(θi)κi)ss‖2L2(I)(t) + C‖ψ(θi)κi‖10L2(I)(t),

so that we finally infer
3
∑

i=1

‖(ψ(θi)κi)ss‖2L2(I)(t) � C0 + Ct +
3
∑

i=1

C

(

‖ψ(θi)κi‖10L2(I)(t) +

∫ t

0

‖ψ(θi)κi‖14L2(I)dt

)

,

where

C0 = C
3
∑

i=1

‖(ψ(θi)κi)ss‖2L2(I)(0) + C
3
∑

i=1

‖ψ(θi)κi‖10L2(I)(0)

and C depends on (2.11), the anisotropy map, and the bound on the lengths of the
curves.

Upon recalling that κϕ = 1
ϕ◦(ν)(ψ(θ)κ) and interpolation inequalities from

Proposition 5.2 we can summarize our above findings as follows:

Lemma 5.7. If for 0 < T < ∞, the lengths of the curves of the network are uniformly
bounded from below

L(ui(t)) ≥ δ > 0, i = 1, 2, 3, for any t ∈ [0, T ),
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and we have a uniform bound for the curvatures

sup
t∈[0,T )

3
∑

i=1

‖κi
ϕ‖L2(I) � CK

then

sup
t∈[0,T )

3
∑

i=1

(‖(κi
ϕ)s‖L2(I) + ‖(κi

ϕ)ss‖L2(I)) � C

sup
t∈[0,T )

3
∑

i=1

(‖κi
s‖L2(I) + ‖κi

ss‖L2(I)) � C,

hold for a solution of the geometric problem (cf. Section 2.3). The constant C de-
pends on δ, CK , T , the initial data ‖(ψκi)ss‖L2(0) for i = 1, 2, 3, m, M (recall
(2.11)), a0 (recall (2.21)), and on C−1 � ϕ◦(ν) � C, |Dϕ◦(ν)| � C, supS1(|ψ′| +
|ψ′′| + |ψ′′′|).
5.3. Main Result

From Lemma 5.7, Theorem 4.2 and Proposition 4.3 we finally obtain our main result
on the behavior of a geometric solution at the maximal existence time.

Theorem 5.8. Let α ∈ (0, 1), σi be as in Definition 2.7, and ui ∈ C
2+α
2 ,2+α([0, T ) ×

[0, 1],R2) ∩ C∞((0, T ) × [0, 1],R2), i = 1, 2, 3, be geometric solutions (as in Theo-
rem 4.2) defined in the maximal time interval [0, T ). Then we have

lim inf
t→T

min
i∈{1,2,3}

L(ui(t)) = 0 or lim sup
t→T

max
i∈{1,2,3}

‖κi
ϕ‖L2(I) = +∞. (5.14)
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Appendix A. Some Useful Results

The following remark and the next three lemmas are a straightforward adaptation
to the present setting of the lemmas presented in [7, Appendix B].

Remark 6.1. If v ∈ C
k+α

2 ,k+α([0, T ]×[0, 1]), k ∈ N0, then ∂l
xv ∈ C

k−l+α
2 ,k−l+α([0, T ]×

[0, 1]) for all 0 � l � k and

‖∂l
xv‖

C
k−l+α

2 ,k−l+α([0,T ]×[0,1])
� ‖v‖

C
k+α

2 ,k+α([0,T ]×[0,1])
.

In particular at each fixed x ∈ [0, 1] we have ∂l
xv(·, x) ∈ Cs,β([0, T ]) with s = [k−l+α

2 ]
and β = k−l+α

2 − s.

Lemma 6.1. For k ∈ N0, α, β ∈ (0, 1) and T > 0 we have

1. if v, w ∈ C
k+α

2 ,k+α([0, T ] × [0, 1]), then

‖vw‖
C

k+α
2 ,k+α � C‖v‖

C
k+α

2 ,k+α‖w‖
C

k+α
2 ,k+α ,

with C = C(k) > 0;
2. if v ∈ C

α
2 ,α([0, T ] × [0, 1]), v(t, x) �= 0 for all (t, x), then

∥

∥

∥

1
v

∥

∥

∥

C
α
2 ,α

�
∥

∥

∥

1
v

∥

∥

∥

2

C0([0,T ]×[0,1])
‖v‖

C
α
2 ,α .

Similar statements are true for functions in Ck+β([0, T ]) and Ck+β([0, 1]).

Lemma 6.2. For n ∈ N, k ∈ N0, α, β ∈ (0, 1) and T > 0 we have
1. if a vector-field v ∈ C

α
2 ,α([0, T ] × [0, 1];Rn), then

‖ |v| ‖
C

α
2 ,α � C‖v‖

C
α
2 ,α ,

with C = C(n).
2. for v, w ∈ C

α
2 ,α([0, T ] × [0, 1];Rn) we have

‖ |v| − |w| ‖
C

α
2 ,α � C

∥

∥

∥

∥

1
|v| + |w|

∥

∥

∥

∥

2

C0([0,T ]×[0,1])

(‖v‖
C

α
2 ,α + ‖w‖

C
α
2 ,α)2‖v − w‖

C
α
2 ,α

with C = C(n). Similar statements are true for functions in Ck+β([0, T ]) and
Ck+β([0, 1]).

Lemma 6.3. Let T < 1 and v ∈ C
2+α
2 ,2+α([0, T ] × [0, 1]) such that v(0, x) = 0, for

any x ∈ [0, 1] then

‖∂l
xv‖

C
m+α

2 ,m+α � C(m)T β‖v‖
C

2+α
2 ,2+α

for all l,m ∈ N0 such that l+m < 2. Here β = max{1−α
2 , α

2 } ∈ (0, 1); more precisely
if l = 1 then β = α

2 .
In particular, for each x ∈ [0, 1] fixed

‖∂l
xv(·, x)‖

C
m+α

2 ([0,T ])
� C(m)T β‖v‖

C
2+α
2 ,2+α

for all l,m ∈ N0 such that l + m < 2.
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Next we provide a list of results that are useful in the contraction argument
in the proof of the short-time existence. In the following lemma we use that, given
σi ∈ C2+α([0, 1]), then σi ∈ C

2+α
2 ,2+α([0, T ] × [0, 1]) by extending it as a constant

function in time. For the definition of Xi, δ and T recall (3.6) and (3.7) and the
remarks in between.

Lemma 6.4. Let σi ∈ C2+α([0, 1]) and ūi, v̄i ∈ Xi. Then we have that

‖σi
x − ūi

x‖
C

α
2 ,α([0,T ]×[0,1])

� CT
α
2

(

‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

+ ‖σi‖C2+α([0,1])

)

for some universal constant C. Moreover, for T < 1 we have that

‖|σi
x| − |ūi

x|‖
C

α
2 ,α([0,T ]×[0,1])

� CT
α
2

(

‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

+ ‖σi‖C2+α([0,1])

)3

,

with C = C(δ). Furthermore, for m ∈ N we have
∥

∥

∥

1
|σi

x|m − 1
|ūi

x|m
∥

∥

∥

C
α
2 ,α([0,T ]×[0,1])

� CT
α
2

∥

∥

∥

1
|σi

x(·, x)|m − 1
|ūi

x(·, x)|m
∥

∥

∥

C
1+α
2 ([0,T ])

� CT
α
2

for any x ∈ [0, 1] and with C = C(m, δ, ‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

, ‖σi‖C2+α([0,1])) as

well as
∥

∥

∥

1
|ūi

x|m − 1
|v̄i

x|m
∥

∥

∥

C
α
2 ,α([0,T ]×[0,1])

� CT
α
2 ‖ūi − v̄i‖

C
2+α
2 ,2+α([0,T ]×[0,1])

,

∥

∥

∥

1
|ūi

x(·, x)|m − 1
|v̄i

x(·, x)|m
∥

∥

∥

C
1+α
2 ([0,T ])

� CT
α
2 ‖ūi − v̄i‖

C
2+α
2 ,2+α([0,T ]×[0,1])

,

again for x ∈ [0, 1] and with C = C(m, δ, ‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

,

‖v̄i‖
C

2+α
2 ,2+α([0,T ]×[0,1])

).

Proof. It follows by an adaptation to the present setting of [7, Lemma 3.1] and [7,
Lemma 3.4] using Remark 6.1 and the Lemmas 6.1, 6.2, 6.3 stated above. �

Lemma 6.5. Let σi ∈ C2+α([0, 1]), ūi, v̄i ∈ Xi, T < 1 and x ∈ [0, 1]. Then we have
∥

∥

∥

∥

σi
x

|σi
x| − ūi

x

|ūi
x|
∥

∥

∥

∥

C
α
2 ,α([0,T ]×[0,1])

� CT
α
2 ,

∥

∥

∥

∥

σi
x

|σi
x|(·, x) − ūi

x

|ūi
x|(·, x)

∥

∥

∥

∥

C
1+α
2 ([0,T ])

� CT
α
2

with C = C(δ, ‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

, ‖σi‖C2+α([0,1])). Similarly
∥

∥

∥

∥

v̄i
x

|v̄i
x| − ūi

x

|ūi
x|
∥

∥

∥

∥

C
α
2 ,α([0,T ]×[0,1])

� CT
α
2 ‖ūi − v̄i‖

C
2+α
2 ,2+α([0,T ]×[0,1])

∥

∥

∥

∥

v̄i
x

|v̄i
x|(·, x) − ūi

x

|ūi
x|(·, x)

∥

∥

∥

∥

C
1+α
2 ([0,T ])

� CT
α
2 ‖ūi − v̄i‖

C
2+α
2 ,2+α([0,T ]×[0,1])

with C = C(δ, ‖ūi‖
C

2+α
2 ,2+α([0,T ]×[0,1])

, ‖v̄i‖
C

2+α
2 ,2+α([0,T ]×[0,1])

).
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Proof. It follows by writing every equation in the form

a

|a| − b

|b| =
1
|a|(a − b) + b

(

1
|a| − 1

|b|
)

and using the previous Lemmas 6.1, 6.2, 6.4. �

Lemma 6.6. Let h : R → R be a smooth map and u, v ∈ C
α
2 ,α([0, T ] × [0, 1]). Then

‖h(u)‖
C

α
2 ,α([0,T ]×[0,1])

� C‖u‖
C

α
2 ,α([0,T ]×[0,1])

,

where C depends on the C1-norm of h evaluated on the compact set K1 = u([0, T ]×
[0, 1]). Similarly, we have

‖h(u) − h(v)‖
C

α
2 ,α([0,T ]×[0,1])

� C
(

1 + ‖v‖
C

α
2 ,α([0,T ]×[0,1])

+ ‖u‖
C

α
2 ,α([0,T ]×[0,1])

)

‖u − v‖
C

α
2 ,α([0,T ]×[0,1])

,

where C depends on the C2-norm of h evaluated on the compact set

K2 = conv(u([0, T ] × [0, 1]) ∪ v([0, T ] × [0, 1])),

where conv(E) denotes the convex envelope of a set E ⊂ R
2.

Proof. By definition of the norm we have that

‖h(u)‖
C

α
2 ,α([0,T ]×[0,1])

= sup
[0,T ]×[0,1]

|h(u(t, x))| + [h(u)]α,x + [h(u)]α
2 ,t

so that, using the mean value theorem, we infer that

‖h(u)‖
C

α
2 ,α([0,T ]×[0,1])

� sup
K1

(|h| + |h′|)(1 + [u]α,x + [u]α
2 ,t)

and the first statement follows. The second statement is derived in a similar way.
For instance, to estimate [h(u) − h(v)]α,x we compute

|h(u(t, x)) − h(v(t, x)) − h(u(t, y)) + h(v(t, y))|
|x − y|α

=
| ∫ 1

0
d

dλ [h(λu(t, x) + (1 − λ)v(t, x)) − h(λu(t, y) + (1 − λ)v(t, y))]dλ|
|x − y|α

=
∣

∣

∣

∫ 1

0
h′(λu(t, x) + (1 − λ)v(t, x))(u(t, x) − v(t, x)) dλ

|x − y|α

−
∫ 1

0
h′(λu(t, y) + (1 − λ)v(t, y))(u(t, y) − v(t, y)) dλ

|x − y|α
∣

∣

∣

� sup
K2

|h′′|([u]α,x + [v]α,x)‖u − v‖C0 + sup
K2

|h′|[u − v]α,x.

�

We conclude the Appendix with a repametrization result used in the proof of
Proposition 4.3.
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Lemma 6.7. Let μ ∈ R and γ : [0, L] → R
2 of class H3, with |γ′(x)| = 1 for all

x ∈ [0, L]. We claim that there exist C = C(L, μ, ‖γ‖H3) > 0 and a parametrization
φ : [0, L] → [0, L] such that, letting γ̃ = γ ◦ φ, it holds

|γ̃′(x)| = φ′(x) ≥ 1
2

for all x ∈ [0, L],

γ̃′′(0) · γ̃′(0)
|γ̃′(0)|3 =

φ′′(0)
φ′(0)2

= μ,

‖γ̃‖C2+1/2([0,L]) ≤ C.

Proof. Let δ = min(L/2, 1/(2|μ|)) and fix a smooth function f : [0, L] → R such
that |f | ≤ |μ|, f(0) = μ, f = 0 in [δ, L] and

∫ L

0
f = 0. We then set φ(x) = x + h(x),

with

h(x) = −
∫ L

x

∫ y

0

f(t)dtdy.

We then have

h′(x) =
∫ x

0

f(t)dt, h′′(x) = f(x),

so that h′(0) = 0, h′(L) = 0, h′′(0) = f(0) = μ, h′′(L) = f(L) = 0 and

|h′(x)| =
∣

∣

∣

∣

∫ x

0

f(t)dt

∣

∣

∣

∣

≤ δ|μ| ≤ 1
2
.

Finally we have ‖φ‖C2+1/2([0,L]) ≤ C(L, ‖f‖
C

1
2 ([0,L])

), and the curve γ̃ = γ◦φ satisfies
the required properties. �
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