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Valenza G, Citi L, Saul JP, Barbieri R. Measures of sympathetic
and parasympathetic autonomic outflow from heartbeat dynamics. J
Appl Physiol 125: 19–39, 2018. First published February 15, 2018;
doi:10.1152/japplphysiol.00842.2017.—Reliable and effective nonin-
vasive measures of sympathetic and parasympathetic peripheral out-
flow are of crucial importance in cardiovascular physiology. Although
many techniques have been proposed to take up this long-lasting
challenge, none has proposed a satisfying discrimination of the dy-
namics of the two separate branches. Spectral analysis of heart rate
variability is the most currently used technique for such assessment.
Despite its widespread use, it has been demonstrated that the subdi-
vision in the low-frequency (LF) and high-frequency (HF) bands does
not fully reflect separate influences of the sympathetic and parasym-
pathetic branches, respectively, mainly due to their simultaneous
action in the LF. Two novel heartbeat-derived autonomic measures,
the sympathetic activity index (SAI) and parasympathetic activity
index (PAI), are proposed to separately assess the time-varying
autonomic nervous system synergic functions. Their efficacy is vali-
dated in landmark autonomic maneuvers generally employed in clin-
ical settings. The novel measures move beyond the classical frequency
domain paradigm through identification of a set of coefficients asso-
ciated with a proper combination of Laguerre base functions. The
resulting measures were compared with the traditional LF and HF
power. A total of 236 ECG recordings were analyzed for validation,
including autonomic outflow changes elicited by procedures of dif-
ferent nature and temporal variation, such as postural changes, lower
body negative pressure, and handgrip tests. The proposed SAI-PAI
measures consistently outperform traditional frequency-domain in-
dexes in tracking expected instantaneous autonomic variations, both
vagal and sympathetic, and may aid clinical decision making, showing
reduced intersubject variability and physiologically plausible dynam-
ics.

NEW & NOTEWORTHY While it is possible to obtain reliable
estimates of parasympathetic activity from the ECG, a satisfying
method to disentangle the sympathetic component from HRV has not
been proposed yet. To overcome this long-lasting limitation, we
propose two novel HRV-based indexes, the sympathetic and parasym-
pathetic activity indexes.

autonomic nervous system; heart rate variability; Laguerre expansion;
parasympathetic activity index; sympathetic activity index; sympa-
thovagal balance

INTRODUCTION

Heartbeat dynamics and its spontaneous fluctuations are
directly controlled by autonomic nervous system (ANS) out-
flow to the heart (34). Specifically, the multipath feedback
system for neural control of the heart is manifested by the
complex interaction between the sympathetic and parasympa-
thetic (vagal) limbs of the ANS (44). Typically, for cardiovas-
cular control, the sympathetic system is activated during the
so-called “fight-or-flight” reactions, when there are drops in
arterial pressure due to gravitational changes and during exer-
cise, whereas the parasympathetic system predominates during
a variety of resting conditions. The two systems generally act
complementary, i.e., the increase of one usually corresponds to
a decrease of the other. However, they present quite different
temporal dynamics, mainly due to the different response prop-
erties of the two systems.

Sympathetic and parasympathetic activity interact to modify
sinus node activity and produce the time-varying spontaneous
variability of heart rate (HR), which is modulated by three
major physiological factors: blood pressure control, thermal
regulation, and respiration. Indeed, the cardiovascular homeo-
static control is directed at maintaining arterial blood pressure
according to peripheral blood flow demand.

Accordingly, in many cardiovascular diseases, abnormalities
of autonomic cardiac control play an important role in the
development and/or in the progression of the underlying path-
ological process. Examples include hypertension (18, 30),
major depression (57), cirrhosis and ascites (16), obesity (15,
56), diabetes (13, 15), and heart failure (25, 36). Because the
two systems might be differently affected by pathological
outcomes, significant cardiovascular research has been focused
on the reliable and effective assessment of the separate influ-
ences of parasympathetic and sympathetic neural pathways (2,
3, 19, 26, 32, 35, 37, 39, 41).

In this study, we present a novel parametric model of
cardiovascular control, based on a specific combinatorial use of
orthonormal Laguerre functions. This unique representation is
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able to separately characterize sympathetic and parasympa-
thetic activity by using only the timing of heartbeats. The
rationale behind the proposed sympathetic activity index
(SAI)-parasympathetic activity index (PAI) approach starts
from the observation that the cholinergic and adrenergic drives
have different temporal dynamics, partly overlapping in the
frequency domain. For this reason, instead of base functions
defined in limited frequency ranges (like the sinusoids for a
simple frequency transform), a proper weighted sum and/or
subtraction of primitives unselectively spanning the frequency
domain would be able to decompose the heartbeat variability
due to ANS activity by disentangling the unique contribution
of each autonomic branch. Such primitives can be defined from
discrete-time orthonormal Laguerre bases, which, for a given
�, have equal magnitude and different phase spectra in the
frequency domain (31, 33, 53).

Technically, heartbeat series are convolved through the
Laguerre functions to identify personalized time-varying La-
guerre coefficients, which are embedded in an autoregressive
(AR) model combining the input data. Finally, a specifically
tailored combination of the Laguerre coefficients defines two
independent measures: the SAI and the PAI. According to the
estimation method chosen to derive the Laguerre coefficients,
it is possible to obtain finite SAI and PAI estimates within a
given observation in time (e.g., by using least squares and
maximum likelihood estimation methods), to obtain beat-to-
beat SAI and PAI estimates in time (e.g., by using Kalman
filtering), or to obtain instantaneous SAI and PAI estimates in
time by using point-process modeling (7, 53).

The presented results are aimed at comparing the new
definitions of ANS activity with current frequency-based meth-
ods in several electrocardiogram (ECG) studies involving sym-
pathovagal modulations induced by postural changes (stand-
ing, slow tilting, and fast tilting) (53), selective autonomic
blockade (42), lower body negative pressure (LBNP) (61, 62),
and handgrip (61, 62).

We show experimental results on SAI, PAI, as well as low
frequency (LF) and high frequency (HF) powers using time-
varying estimates gathered from Kalman and point-process
methods. When possible, we emphasize the use of point-
process statistics for the SAI and PAI estimates because of
several advantages (7, 53): 1) from the event-related structure
of the R-waves, this approach provides instantaneous heartbeat
estimates in the time and frequency domains; 2) it assesses the
model goodness of fit (7, 53), i.e., how well a given model
describes the observed R-R interval series; and 3) there is no
need for interpolation methods to be applied on the original
R-R interval series. Note that our point-process modeling is
based on a physiological plausible, history-dependent inverse
Gaussian probability functions (7, 14, 53).

The paper is organized as follows: PHYSIOLOGY OF THE

SYMPATHETIC AND PARASYMPATHETIC SYSTEMS AT A GLANCE

briefly describes the fundamental physiology of the sympa-
thetic and parasympathetic nervous systems; ESTIMATION

METHODS OF SYMPATHETIC AND PARASYMPATHETIC PERIPHERAL

OUTFLOW IN HUMANS reports on the current state of the art of
estimation of ANS DYNAMICS FROM HEARTBEATS; DERIVATION OF

THE NOVEL SYMPATHETIC AND PARASYMPATHETIC ACTIVITY MEA-
SURES explains technical details on the SAI and PAI estima-
tion based on Laguerre functions; EXPERIMENTAL SETUP and
EXPERIMENTAL RESULTS describe data and results, respec-

tively, related to the several experimental protocols em-
ployed for the measures validation.

PHYSIOLOGY OF THE SYMPATHETIC AND
PARASYMPATHETIC SYSTEMS AT A GLANCE

The sympathetic and parasympathetic nervous systems are
quite different functionally, anatomically, and physiologically.
Both systems carry sensory (afferent) signals to the brain and
spinal cord, and efferent signals from the brain to the target
organs. The central nervous system (CNS) control comes
mostly from the hypothalamus, with inputs also from the
limbic system and the reticular activating system (47). The
nucleus of the solitary tract in the medulla is the primary site
of termination of cardiopulmonary afferents from cranial
nerves involved in brain stem reflex control. Here, the connec-
tion between the CNS and its effector consists of two kinds of
neurons: the preganglionic neuron and the postganglionic neu-
ron. The synapses between these two neurons lie outside the
CNS, in autonomic ganglia.

The parasympathetic system originates in the brain stem
(cranial nerves III, VII, IX, and X) and sacral region of the
spinal cord (S2–S4). The functions associated with this system
are basically related to rest and digestive activity. Non-cardio-
pulmonary parasympathetic control is involved in salivation,
production of digestive enzymes, peristalsis, urination, and
defecation. Cardiopulmonary actions include reducing HR and
blood pressure, reducing the respiratory rate, and conserving
energy through relaxation and rest. The principal neurotrans-
mitter is acetylcholine, released from both the preganglionic
and the postganglionic neurons, and binding to cholinergic
receptors. For the organism as a whole, the most important part
of this system is the vagus nerve, which supplies parasympa-
thetic signals to almost all of the organs of the thorax and
abdomen.

The sympathetic system originates in the thoracic and
lumbar regions of the spinal cord (T1–L2). The role of this
system is related to the so called “fight-or-flight” response.
Thus the sympathetic system prepares the body for situa-
tions requiring alertness or strength, or situations that arouse
fear, anger, excitement, or embarrassment. In these kind of
situations, the sympathetic nervous system may increase the
HR, causes dilation of the bronchioles of the lungs (increas-
ing oxygen intake), and contributes to dilation of blood
vessels that supply the heart and skeletal muscles (increas-
ing blood supply), while decreasing blood supply to organs
not involved in the response (e.g., gut). The adrenal medulla
is stimulated to release epinephrine (adrenaline) and norepi-
nephrine (noradrenaline), which, in turn, increase the met-
abolic rate of cells and stimulate the liver to release glucose
into the blood. Sweat glands are stimulated to produce
sweat. The sympathetic nervous system afferents are also
responsible for the transmission of visceral pain from organs
such as the gut, bladder, and uterus.

Many functions of the sympathetic nervous system oppose
those of the parasympathetic nervous system. Although it is
noteworthy that not all organs receive innervation from both
components of the ANS, it is quite often the case that multiple
interactions between the two systems result in a nonlinear
transmission of neural information to the organ of interest. A
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good example of such interaction is evident in considering the
autonomic outflow to the heart.

In fact, the sympathetic and parasympathetic branches,
through their continuous dynamic interaction, modulate the HR
response by means of the so-called bidirectional augmentation
(46): during a predominant sympathetic control, a concomitant
tonic vagal signal increases the gain of the transfer function
relating dynamic sympathetic stimulation to HR, and vice
versa (during a predominant parasympathetic control, a con-
comitant tonic sympathetic signal increases the gain of the
transfer function relating dynamic vagal stimulation to HR).
Such a bidirectional augmentation is mediated by cytosolic
adenosine 3=,5=-cyclic monophosphate, which constitutes a
component of the biological basis of nonlinear autonomic
control on heartbeat dynamics.

ESTIMATION METHODS OF SYMPATHETIC AND
PARASYMPATHETIC PERIPHERAL OUTFLOW IN HUMANS

Several methodologies for the assessment of sympathetic
and parasympathetic activity in humans have been proposed
throughout the past decades. Historically, measurement of
plasma noradrenaline has represented a gold standard for the
quantification of sympathetic neural functions (19). More re-
cently, direct recording of sympathetic nerve activity via mi-
croneurography, direct catecholamine measurements, and nor-
adrenaline radiotracer have largely supplanted the plasma nor-
adrenaline approach (19). Neural imaging techniques also
allow for direct visualization of sympathetic innervation of
human organs, providing information on the in vivo metabo-
lism of noradrenaline in different cardiovascular regions (19).
However, such techniques require expensive equipment and
technical support, and are not useful for assessing daily activ-
ities, as do devices such as a Holter monitor or other minia-
turized wearable devices. Furthermore, power spectral density
analysis of electrodermal activity has been recently proposed
for the assessment of sympathetic functions (38).

Current autonomic estimates using HR variability and the
frequency domain paradigm. Despite being widely introduced
into the scientific practice and literature, the methods of auto-
nomic activity evaluation noted above are not commonly used
in clinical settings (19). Conversely, processing of HR data,
commonly measured by detecting R-waves from the ECG, and
the superimposed instantaneous heartbeat variations, referred
to as HR variability (HRV) has been of growing importance in
the attempt to develop real-time applications that use simple,
noninvasive sensors in clinical and nonclinical settings (35, 39,
45). In fact, monitors of cardiovascular variability based on
standard clinical multichannel signal acquisition equipment,
single-channel miniature devices, smartphones, or wearable
technology for ambulatory monitoring, have been effectively
used in numerous settings, including the intensive care unit, the
operating room, during normal daily activities, sleep, exercise,
and during changes in emotional state or well-being states (see
Refs. 35, 39, 41 for reviews, including many other applica-
tions).

From a technical point of view, the most widely used
methodology to quantitatively assess ANS dynamics is based
on a frequency-domain analysis, i.e., computing the HRV
power spectral density (2, 3, 26, 35, 37, 39). Specifically,
power in the HFs (0.15–0.4 Hz) of the HRV comprises

respiratory-associated oscillations, which are mediated via the
vagus nerve. Of note, the modulation of HR due to respiratory
drive to cardiac vagal motoneurons refers to the so-called
respiratory sinus arrhythmia (3, 35, 39, 65). Slower oscillations
in the LFs (0.04–0.15 Hz) reflect to some extent slower
closed-loop compensatory changes of blood pressure and HR
mediated through the baroreflex and involving both autonomic
branches (sympathetic and parasympathetic drive) (2, 3, 26, 35,
37, 39).

Specifically, the LF rhythm (centered at 0.1 Hz) of HRV is
mainly due to arterial baroreflex modulation. It is also dramat-
ically affected by the presence of vasomotor noise, which is
amplified by the resonance in the baroreflex loop, placed
around 0.1 Hz. Previous studies (1, 27, 29) suggested that the
LF component of the power spectrum of HRV is strongly
affected by the sympathetic system, as changes in the sympa-
thetic gains cause a significant alteration in this component of
the spectrum. However, it is clear that changes �0.15 Hz can
be and are mediated by both cardiac vagal and sympathetic
activity (42). Furthermore, recent evidences and meta-analyses
point out how the HRV-LF band can be dramatically affected
by parasympathetic dynamics (17, 40).

The HRV-HF components (�0.15 Hz) are determined by
two concurrent mechanisms. The first is the effect of systemic
arterial pressure changes mediated by the baroreflex. Such a
pressure exhibits respiratory fluctuations caused by the in-
trathoracic and abdominal pressure changes (mechanical ef-
fect) and by the lung stretch receptor reflex working on
resistance (neurogenic effect). These fluctuations systemati-
cally stimulate the baroreflex at the respiratory period. In this
HF band, however, the baroreflex works entirely through its
strong and fast vagal component, whereas the sympathetic
component is almost completely suppressed because of its
low-pass filtering dynamics. The second mechanism is due to
a combination of the lung stretch receptor reflex effect on vagal
activity and respiratory-related brain stem gating of vagal
outflow. A common and widely accepted viewpoint in the
literature is that the HF peak and power in the HRV-HF band
can always be considered as a reliable index of vagal activity
(17, 35, 39, 40, 50). Nevertheless, the HF peak is modulated by
all factors affecting the input to baroreflex and the lung stretch
reflex [such as the depth and frequency of breathing (22),
venous compliances in the thoracic and abdominal cavity,
posture changes (48), etc.] and depends strongly on the sensi-
tivity of the cardiac pacemaker to efferent activity. Hence, as
suggested by Akselrod (1) and Malpas (29), in different sub-
jects and/or under different breathing conditions, the HF spec-
tral component may be largely different, even in the presence
of an equivalent vagal gain. Importantly, due to the mentioned
ambiguity of the LF and HF power indexes, Malliani et al. (28)
proposed the ratio of the LF power to HF power (hereinafter
LF/HF) as an index of sympathovagal balance. Note that the
use of LF/HF to assess the sympathetic and parasympathetic
balance has also been challenged (17, 40).

Despite the mentioned references and its widespread use,
HRV spectral analysis is far from being a definitive, reliable
methodology for the noninvasive assessment of ANS func-
tions. This has been known for more than 20 yr. As a matter of
fact, a review on how to assess sympathetic activity in humans
from Grassi and Esler (19) in 1999 reports that “the approach
based on spectral analysis of HR and blood pressure signals has
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been shown to have important limitations which prevent the
method from faithfully reflecting sympathetic cardiovascular
drive.”

To date, standard HRV-based approaches have not been able to
provide measures of autonomic activity, which overcome the
large variability between normal subjects, thus limiting their use
in clinical settings. A few investigations have attempted to over-
come this significant limitation. Specifically, Vetter et al. pro-
posed to quantify the ANS activity using a blind source
separation technique of HR and blood pressure variability (58),
as well using HR and QT-wave interval variability (59),
whereas, more recently, Chen et al. (10) derived ANS activity
indexes based on a multisignal analysis of the R-R variability
by processing the HR, blood pressure, and the instantaneous
lung volume. Similarly, Xiao et al. (63, 64) represented sym-
pathetic and parasympathetic functions modeling the coupling
mechanism between lung volume and HR. Although these
sophisticated methods might have been successful in separat-
ing sympathetic and parasympathetic dynamics, they do re-
quire recordings of multiple physiological parameters to obtain
the estimations.

Concerning the use of R-R interval series exclusively,
Zhong et al. (66, 67) introduced a principal dynamic mode
analysis of HRV to separately characterize the sympathetic and
the parasympathetic activity. However, the authors reported
that the algorithm requires proper calibration, and that a broad-
band HR spectrum is a strict requirement of such principal
dynamic modes, a condition that may not be satisfied in some
subjects (66).

To summarize, despite a few encouraging attempts, no
methodology to date has been able to provide a separate,
simultaneous, independent assessment of sympathetic and va-
gal instantaneous dynamics that can be 1) obtained exclusively
from the heartbeat, 2) applied to a wide range of subjects, 3)
specifically tailored to the individual, and 4) allowing for
time-varying/instantaneous quantification (see Ref. 8 for re-
view).

DERIVATION OF THE NOVEL SYMPATHETIC AND
PARASYMPATHETIC ACTIVITY MEASURES

The “classic” frequency-domain characterization is based on
the Fourier transform, an operator that represents HRV in the
frequency space. The base functions of this space are defined
by each sample along frequency. In the HRV case, these values
are “grouped” by frequency range [very low frequency (VLF),
LF, HF], as recommended in a 1996 guidelines document (35).
The AR formulation has the property of reducing the dimen-
sionality of the frequency space by defining a limited number
of preferred oscillations (associated with the poles of the
transfer function), dependent on the autoregression order. The
variability related to each pole is then univocally associated to
a specific frequency and can only be accounted for within each
respective frequency range (again, VLF, LF, HF). This model
has been of great success in many applications for autonomic
assessment, as the frequencies/poles within the HF range have
been directly associated with vagal dynamics in several in-
stances. On the other hand, important limitations of such
frequency subdivision have been recently pointed out (17, 19,
40), the most important being related to the fact that the LF
range contains both vagal and sympathetic dynamics, and that

respiratory dynamics shifts to the LF range would, conse-
quently, affect the HF quantification of vagal influence. The
primary rationale of this study is to overcome limitations
imposed by the artificial separation of frequency ranges by
defining a model whose base functions are not defined in the
frequency domain, namely, Laguerre functions, which are a set
of mathematical functions of time. Laguerre functions are
characterized by a specific “order” (which can vary from zero
to any other positive integer number), and a specific value “�,”
which characterizes fine modulation of the number of oscilla-
tions across zero, as well as very specific time responses. If we
multiply two Laguerre functions of any order, the area under
the curve is zero, a function of the property of “orthogonality.”
These functions are adopted as the base functions of a “new”
Laguerre space.

The proposed SAI and PAI measures are derived character-
izing and predicting each heartbeat event, given a combination
of past information expressed as cardiovascular variability.
Such formulation has been shown to improve the model pa-
rameter identification and reduce the number of parameters to
be estimated (31, 33, 53).

Since the R-R intervals constitute the observation values
used to estimate the model, the Laguerre-based characteriza-
tion and prediction of heartbeat events by definition embed
both sympathetic and parasympathetic information. Most im-
portantly, the SAI collects a combination of Laguerre functions
with slow responses (reflecting the slower conduction velocity
associated with the sympathetic nerve), whereas the PAI com-
bines contributions from Laguerre functions of higher order,
thus representing responses along the entire frequency range
(and not only HF, as in the standard spectral identification). As
described below, a pharmacological autonomic blockade pro-
tocol was used as the training set to identify isolated dynamics.
In this stage, extensive analysis was performed in confirming
the effectiveness of the Laguerre-derived dynamics to separate
the two cardiovascular autonomic outflows and, consequently,
identify the best combinatorial coefficients.

Derivation methodology. As noted in the INTRODUCTION, the
scientific rationale behind the hereby proposed measures of
autonomic activity, SAI and PAI, relies on a proper combina-
tion of the so-called Laguerre coefficients, derived from the use
of Laguerre functions, which have unique properties in the
time and frequency domains, as well as in their high-order
statistics (31, 33, 53).

Block schemes of all of the methodological stages involved
in the SAI-PAI estimation are described in Figs. A3 and A4 of
the APPENDIX.

The jth-order discrete-time orthonormal Laguerre function is
defined as follows:

� j(n) � �
n�j

2 (1 � �)
1
2�

i�0

j

(�1)i�n

i �� j

i �� j�i(1 � �)i, (n � 0)

Figure 1 shows the first Laguerre functions for a given �
value (0 � � � 1), which determines the rate of exponential
asymptotic decline of these functions.

Given a set of K heartbeat events, �uk�k�1
K (e.g., R-waves

from the ECG), let RRk � uk � uk�1 � 0 denote the kth R-R
interval, or equivalently, the waiting time until the next R-wave
event.

22 SYMPATHETIC AND PARASYMPATHETIC ACTIVITY FROM HRV

J Appl Physiol • doi:10.1152/japplphysiol.00842.2017 • www.jappl.org
Downloaded from journals.physiology.org/journal/jappl (146.241.237.173) on June 5, 2024.



Here, we propose to model heartbeat dynamics with �RR [t,
Ht, �(t)] at each time t as function of past R-R intervals, along
with the Laguerre expansion. We take one step further and try
to separate the influence of the sympathetic and parasympa-
thetic system to the �RR [t, Ht, �(t)] estimation. Hence:

�RR�t, Ht, �(t)� � g0(t) 	 �
j�0

PSymp

g1(j, t)lj(t)

Ç
Sympathetic

	 �
j�PSymp	1

PParSymp

g1(j, t)lj(t)

Ç
Parasympathetic

(1)

where

lj(t) � �
n�1

Ñ(t)

� j(n)RRÑ(t)�n (2)

is the jth-order Laguerre filter output, and Ñ(t) denotes the
index of the previous R-wave event occurred before time t,
Ht � (uk, RRk, RRk�1,�, RRk�K	1) is the history of all previ-
ous R-R intervals before time t, and �(t) � {g0(t), g1(t)} is the
vector of the time-varying Laguerre coefficients to be esti-
mated.

In an attempt to match the frequency response of the La-
guerre filters with the dynamic response of the sympathetic and
the parasympathetic systems (2, 3, 26, 35, 37, 39, 42), we have
chosen PSymp � 1 and PParSymp � 8. After preliminary testing
on synthetic and experimental data (not shown), � � 0.2 was
chosen for the SAI and PAI derivation.

Finally, the definition of the SAI and PAI as a combination
of disentangled Laguerre coefficients {g1} is as follows:

SAI�t, �(t)� � 
S0
	 �

j�1

N1


Sj
g1(j � 1, t) (3)

PAI�t, �(t)� � 
P0
	 �

j�1

N2


Pj
g1� j 	 (PSymp 	 1), t� (4)

with N1 � PSymp 	 1 and N2 � PParSymp � (PSymp 	 1).
Thanks to its parametric structure, the model-defined param-

eters can be updated along time using the most efficient and
popular methods reported in recent literature for recursive
parameter estimation.

However, by using point-process modeling, the Laguerre
coefficients and, consequently, �RR [t, Ht, �(t)], SAI [t, �(t)],
and PAI [t, �(t)] can be defined in a continuous-time fashion,
thus obtaining instantaneous autonomic activity measures at a
very fine timescale with no interpolation between the arrival
times of two beats.

In this study, the estimation of all model coefficients,
including Laguerre coefficients {g1}, was performed using a
local maximum-likelihood estimation method. Additionally,
model goodness of fit was based on the Kolmogorov-
Smirnov (KS) tests and associated KS statistics (7). Partic-
ularly, the recursive, causal nature of the estimation allows
for prediction of each new observation, given the previous
history, independently at each iteration. The model and all
of its parameters are, therefore, also updated at each itera-
tion without priors. Autocorrelation plots were also utilized
to test the independence of the model-transformed intervals
(7). Exhaustive mathematical details on this matter are
reported in the APPENDIX.

Optimal estimation of the 
S and 
P coefficients is a
critical aspect in the proposed methodology. In fact, these
values determine the capability of the algorithm to separate
the sympathetic and parasympathetic components, both em-
bedded in the disentangled Laguerre coefficients g1. The 
S

and 
P coefficients were obtained from respective sympa-
thetic and parasympathetic blockades. Then, averaged val-
ues from subjects were fixed and used to obtain the linear
impulse response functions from the Laguerre expansion
approach.

To find unique 
S and 
P coefficients of broad applicabil-
ity, i.e., suitable for a generic human subject, a specific a priori
estimation was performed using a multiple linear regression
technique on data involving selective autonomic blockade
during postural changes (see Ref. 42 for experimental details).
This data set was used as a training set by following the
procedure, which is summarized as follows:

• ECG data were utilized from seven healthy subjects with
atropine-induced parasympathetic blockade during a su-
pine resting state and after a postural change by standing
test.

• These data from each subject were used to derive the
“purely” sympathetic coefficients �
S	j,n
�n�1

N by means
of multiple linear regression considering a step function
template having low value throughout the supine resting
state, and high value throughout the standing phase after
standing.

• Coefficients of general applicability for the sympathetic
activity were then obtained through the average among
subjects: �
Sj

� � ��
S	j,n
�n�1
N �N.

Likewise, the “purely” parasympathetic coefficients �
Pj
�

were obtained by averaging among seven subjects using data
gathered during sympathetic blockade, which was induced
through a bolus of propranolol, and performing a multiple
linear regression of a step function template having high value
throughout the supine resting state, and low value throughout
the standing phase after standing. Estimated coefficients are
reported in Working model coefficients 
S and 
P below.
Further test and validation data sets follow below.
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EXPERIMENTAL SETUP

Autonomic activity measures were validated by analyzing an
extensive collection of experimental ECG data, and comparing
SAI, PAI, and their SAI-to-PAI ratio (SAI/PAI) with LF and
HF power, and their LF/HF derived from standard frequency
domain analyses. Experimental recordings were gathered dur-
ing maneuvers that are well known in the literature to induce
strong sympathovagal changes. These “gold-standard” studies
for assessing autonomic activity are as follows: tilt-table pro-
tocols including 1) stand up, 2) slow tilt (i.e., 50 s from 0 to
70°), and 3) fast tilt (i.e., 2 s from 0 to 70°); 4) supine and
standing during full autonomic blockade; 5) LBNP test; and 6)
handgrip test.

Details on these experimental protocols follow below.
Tilt-table protocol. A single-lead ECG was continuously

recorded from 10 healthy subjects undergoing a tilt-table pro-
tocol. Each subject was first placed horizontally in a supine
position, with restraints used to secure him/her at the waist,
arms, and hands. The subject was then tilted from the horizon-
tal to the vertical position and returned to the horizontal
position either through a “slow” tilt (50 s from 0 to 70°), or
“fast” (i.e., 2 s from 0 to 70°). Stand-up sessions were also
included.

The study was conducted at the Massachusetts Institute of
Technology (MIT) General Clinical Research Center (GCRC)
and was approved by the MIT Institutional Review Board and
the GCRC Scientific Advisory Committee. Subjects were five
men and five women: age 28.7 � 1.2 yr (mean � SD). Each
subject performed six sessions (two stand up, two slow tilt, and
two fast tilt) remaining in each upright state for 3 min. The
protocol lasted 55–75 min (3,300–4,500 s).

Resting state is known to be associated with a dominant
vagal activity, whereas states after tilting are known to be
associated with a dominant sympathetic activity.

Full details on this experimental protocol can be found in
Refs. 7, 20, 21, 53.

Lower body negative pressure. Fifty-eight healthy controls
between 12 and 18 yr volunteered from schools in Oslo,
Norway. Controls having a chronic disease (such as allergy) or
using drugs (including contraceptive pills) on a regular basis
were excluded for the study. One week before the experiments,
all participants were instructed not to drink beverages contain-
ing alcohol or caffeine, not to take any drugs, and not to use
tobacco products. They were instructed to fast overnight the
day before the experiments. Written, informed consent was
obtained from all participants and their parents. The study
complied with the Declaration of Helsinki and was approved
by the regional committee for ethics in medical research.
Experiments started at 11 AM. The participants had been
offered a light meal 2 h before, but were not allowed to eat or
drink otherwise. They lay supine with their lower body in a
plastic chamber from which air could be evacuated very
rapidly, reaching a predefined negative pressure within milli-
seconds. They were familiarized with the test situations in two
pilot experiments. Five minutes were used for baseline record-
ing (resting state). Then LBNP of �20 mmHg was applied for
6 min. All subjects but one performed this procedure twice
with continuous ECG recordings. Eight additional recordings
were excluded from the analyses due to low technical quality;

therefore, the total number of recordings used for this study
was 106.

It is known that the resting state is associated with a
dominant vagal activity, whereas the LBNP state is associated
with a dominant sympathetic activity. Full details on this
experimental protocol can be found in Refs. 61, 62.

Handgrip. The same subjects who performed the LBNP
described in the previous paragraph also underwent a handgrip
experimental procedure. Handgrip is a common test for studies
of cardiovascular adjustments during isometric exercise. Dur-
ing handgrip, the cardiovascular adjustments are mainly due to
CNS input to the baroreflex, thereby enhancing sympathetic
neural activity.

Data used for this study included, for each subject, a 1-min
segment before each handgrip (baseline) and a 1-min subse-
quent segment during handgrip with 30% of maximal volun-
tary contraction force (handgrip). Full details on this experi-
mental protocol can be found in Refs. 61, 62.

Heartbeat correction and statistical analysis. To provide
reliable results, all R-R-interval series must be free of algo-
rithmic (e.g., from automatic peak detection procedure) errors
and ectopic beats to avoid potential biases in statistical out-
comes. To eliminate such anomalies, we preprocessed all
heartbeat data with a previously developed real-time R-R
interval error detection and correction algorithm based on the
point-process statistics (local likelihood) (14). Visual inspec-
tion analysis of all HRV series was also carried out.

All analyses were performed using the Matlab software
suite. Concerning descriptive statistics, for every subject and
for every feature (SAI, PAI, SAI/PAI, LF power, HF power,
and LF/HF) we condensed the information about the time-
varying dynamics of feature through its median across time.
Then, for each feature, we evaluated between-group differ-
ences using bivariate nonparametric statistics (Mann-Whitney
or Wilcoxon test in case of unpaired or paired samples, respec-
tively) under the null hypothesis that the between-subject
medians of the two groups were equal.

Experimental results related to feature dynamics, presented
in all of the figures and summary tables below, are condensed
as median and its respective standard error based on the median
absolute deviation (MAD) across subjects/recordings. This is
consistent with the non-Gaussian distribution of some data
samples (P � 0.05 from a KS normality test with null hypoth-
esis of Gaussian distribution of data). Specifically, standard
error was estimated as 1.4826 MAD (X)/
n, where
MAD(X) � Median [|X � Median(X)|], where X is the variable
of interest (e.g., SAI, PAI, LF, HF, etc.), and n is the number
of subjects in the data set of interest.

A P value of 0.05 was considered statistically significant.

EXPERIMENTAL RESULTS

From each single ECG recording, the R-R intervals were
extracted using a curve length-based QRS detection algorithm
(68). Then the resulting R-R interval series was visually
inspected and eventually corrected through a previously devel-
oped error detection and correction algorithm (14). All record-
ings showed �5% of ectopic beats, and no significant algo-
rithmic artifacts were detected.

The SAI-PAI validation was performed using the six exper-
imental data sets described in EXPERIMENTAL SETUP.
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Beat-to-beat SAI-PAI estimates were derived from the double
blockade data set using Kalman filtering, whereas, in all of the
other data sets, instantaneous SAI-PAI estimates with a 5-ms
temporal resolution were calculated using the point-process
modeling. Full methodological details can be found in the
APPENDIX.

To allow the reader to reproduce the methodology, in the
following section, generic 
 values gathered from a multiple
linear regression are reported using data from all of the avail-
able data/subjects undergoing autonomic blockade.

Working model coefficients 
S and 
P. Following are gen-
eralized values of sympathetic kernels 
S gathered from mul-
tiple linear regression performed on data from all of the
available data/subjects undergoing autonomic blockade (i.e.,
parasympathetic suppression), as well as parasympathetic ker-
nels 
P gathered from multiple linear regression performed on
data from all of the available data/subjects undergoing auto-
nomic blockade (i.e., sympathetic suppression).

The use of these coefficients, although with limited gener-
ality, is the first working attempt to estimate sympathetic and
parasympathetic dynamics from ECG without the need of any
calibration procedure at a single-subject level.

Particularly, results reported in the following sections were
obtained using the following realizations of 
S and 
P coef-
ficients: 
S � {39.2343, 10.1963, �5.9242} and 
P �
{28.4875, �17.3627, 5.8798, 12.0628, 5.6408, �7.0664,
�5.6779, �3.9474}.

Considering also the standard deviation among realizations
of 
S and 
P coefficients, statistical inference on healthy
subjects is reported here (95% t-Student-based confidence
interval). See Table 1.

Validation 1: tilt-table protocols. A first extensive validation
was performed using data gathered from the tilt-table protocol,
including stand-up, slow-tilting, and fast-tilting maneuvers.
Instantaneous estimates of all of the features were obtained
using the point-process modeling with Laguerre expansion (7,
53). To this extent, all KS plots and �98% of the autocorre-
lation samples fell within 95% confidence intervals, indicating
that our modeling always provides a good characterization of
the RR series, thus predicting heartbeats with satisfactory
accuracy. Overall, KS distances were as low as 0.0220 �
0.0056 (median � MAD). Results from a comprehensive
goodness-of-fit analysis are reported in the APPENDIX.

Instantaneous estimates from a single subject are reported in
Fig. 2. From this exemplary visual comparison between LF vs.
SAI, HF vs. PAI, and LF/HF vs. SAI/PAI, it is of striking
evidence how responses from the gravitational changes are
clearly tracked at the individual level by the new indexes (note
the pattern corresponding to the vertical lines, indicating the
postural transitions for SAI, PAI, and SAI/PAI). Importantly,
the old frequency band quantification has been effective at the
group level, but (as clear from the figure) has never been able
to work at the individual level. Results from other subjects

confirm this example, and a few more examples are reported in
the APPENDIX. Instantaneous series averaged among all subjects
are shown in Figs. 3, 4, and 5 aligned for each gravitational
change: fast-tilt, slow-tilt, and stand-up, respectively. Several
other instantaneous estimates at a single subject level are
reported in the APPENDIX for further validation. Results give
evidence that the proposed SAI and PAI measures, as well as
the SAI/PAI outperform the traditional autonomic character-
ization given by standard HRV instantaneous spectral analysis
(7). From the figures, it is possible to visually appreciate how
the response from the proposed SAI, different from the LF
power, increases after gravitational stress (with a further delay
after slow tilt) and remains at higher levels than the baseline
session, thus reflecting sustained sympathetic activation. Con-
versely, the LF sharply increases with stimulation after fast tilt
(Fig. 3), behaves erratically with stand up (Fig. 5), and even
decreases after slow-tilt (Fig. 4), possibly mirroring vascular-
related blood pressure dynamic responses. Note the sharper
step responses tracked by the PAI index compared with the HF
measure.

Overall, we performed a comprehensive comparison of
autonomic measures on the stand-up, slow-tilt, and fast-tilt
transitions, including standard estimates defined in the time
and frequency domains from a traditional linear AR model;
instantaneous standard estimates defined in the time and
frequency domains from a traditional linear AR point-
process model (ARPP) (7); instantaneous standard estimates
defined in the time and frequency domains from a linear AR
point-process model using the Laguerre expansion (ARLPP)
(53); and instantaneous SAI and PAI estimates from a
point-process model having the kernels, 
S and 
P, calcu-
lated through:

• NEW (0): a multiple linear regression using subject-
specific (i.e., performed for each subject) recording from
one rest-upright condition.

• NEW (1): a multiple linear regression using subject-
specific (i.e., performed for each subject) recording aver-
aging 
S and 
P estimates from stand-up, slow-tilting,
and fast-tilting conditions.

• NEW (2): a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and

P estimates from stand-up, slow-tilting, and fast-tilting
conditions, following a leave-one-subject-out procedure.

• NEW (3): a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and

P estimates from the rest-tilt control session of an indepen-
dent data set.

• NEW (4): a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and

P from subjects of an independent data set undergoing
autonomic blockade (parasympathetic suppression ¡ sym-
pathetic kernels 
S; sympathetic suppression ¡ parasympa-

Table 1. Confidence interval of sympathetic and parasympathetic coefficients 


j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6 j � 7


Sj
39.2343 � 16.9821 10.1963 � 9.9895 �5.9242 � 6.0936


Pj
28.4875 � 11.4879 �17.3627 � 8.4911 5.8798 � 7.9916 12.0628 � 7.2923 5.6408 � 6.7928 �7.0664 � 4.8948 �5.6779 � 5.1945 �3.9474 � 5.8938

Values are median absolute deviation � SE. 
Sj
, sympathetic coefficient; 
Pj

parasympathetic coefficient.
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thetic kernels 
P. See Derivation of the Novel Sympathetic
and Parasympathetic Activity Measures for details.)

Standard HRV measures, i.e., RMSSD (root mean square of
the successive differences), pNN50 (the proportion derived by
dividing the number of interval differences of successive NN
intervals �50 ms by the total number of NN intervals) (%),

HRV triangular index (HRV_tri_ind), and TINN (triangular
interpolation of NN interval histogram), are also calculated and
reported.

Numerical results using the NEW (4) estimation method are
shown in Tables 2, 3, and 4. All other results are included in
the APPENDIX.
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Fig. 2. Instantaneous heartbeat statistics computed from an exemplary subject of the tilt-table protocol. Top left: the estimated mean R-R interval at time t, �RR(t),
superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation of the R-R intervals at time t, �RR(t), are shown. Instantaneous
sympathetic and parasympathetic activity, and sympathovagal balance as estimated through sympathetic activity index (SAI) and parasympathetic activity index
(PAI), and ratio of SAI to PAI (SAI/PAI) measures, along with the low frequency (LF), high frequency (HF), and ratio of LF to HF (LF/HF) are shown in the
other panels. Vertical dashed lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R) to stand-up
(SU) and back, the second is from R to fast tilt (FT) and back, the third from R to SU, then R to FT, and the final two are from R to slow tilt (ST) and back.
Transitions are randomized for each subject. a.u., Arbitrary units.

Fig. 3. Tilt-table protocol: fast-tilt. Instantaneous point-process estimates averaged along all subjects, aligned with the transitions before and after fast-tilt. A:
estimated instantaneous power low frequency at time t, LF(t), and the sympathetic activity index at time t, SAI(t), can be compared. At each time, the median
value is superimposed (solid line) on the standard error of the median (shaded area). Vertical line indicates the beginning of the fast-tilt maneuver. B: likewise,
the estimated instantaneous power high frequency at time t, HF(t), and the parasympathetic activity index at time t, PAI(t), are shown. C: the estimated
instantaneous LF-to-HF ratio at time t, LF/HF(t), and the SAI-to-PAI ratio at time t, SAI/PAI(t), can be compared. a.u., Arbitrary units.
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Concerning sympathetic activity, results show that SAI es-
timates are always able to effectively discern between resting
and upright conditions. Using 
S and 
P kernels of general
applicability, increased sympathetic activity after stand-up is
significantly revealed, with P � 4 
 10�5, as well as after slow
tilt (P � 0.007) and fast tilt (P � 9 
 10�4). No significant
results are reported using indexes of LF power (P � 0.05).
Likewise, for parasympathetic activity, results show that PAI
estimates are always able to effectively discern between resting
and upright conditions. Using 
S and 
P kernels of general
applicability, decreased parasympathetic activity after stand-up
was revealed with P � 6 
 10�4, as well as after slow tilt (P �
0.011) and fast tilt (P � 0.002). Significant results are achieved
using indexes of HF power, as estimated through standard AR
modeling on the slow tilt (P � 0.03). Statistical analysis for all
other indexes yielded no significant results (P � 0.05). Finally,
groupwise statistics of sympathovagal balance show that SAI/
PAI estimates were always able to effectively discern between
resting and upright conditions. Using 
S and 
P kernels of

general applicability, increased sympathovagal balance after
stand-up was revealed with P � 4 
 10�6, as well as after slow
tilt (P � 0.001) and fast tilt (P � 2.629 
 10�4). No significant
results were achieved using indexes of LF/HF (P � 0.05).

Validation 2: lower body negative pressure. A second val-
idation of our SAI-PAI estimates was performed using data
gathered from the LBNP protocol. Instantaneous estimates of
all of the features were obtained using point-process modeling
with Laguerre expansion (7, 53). All KS plots but three, and
�98% of the autocorrelation samples fell within 95% confi-
dence intervals, indicating a very good fit. Considering all of
the 108 recordings, KS distances were as low as 0.0366 �
0.0082 (median � MAD). Results from a comprehensive
goodness-of-fit analysis are reported in the APPENDIX. Instanta-
neous series averaged among all 58 subjects are shown in Fig.
6. Results of the statistical comparison are reported in Table 5.
From the Fig. 6, it is possible to visually appreciate how the
proposed SAI, different from the LF power, increases after
gravitational stress by tracking a clear exponential-like step

Fig. 4. Tilt-table protocol: slow-tilt. Instantaneous point-process estimates averaged along all subjects, aligned with the slow-tilt transitions. A: estimated
instantaneous power low frequency at time t, LF(t), and the sympathetic activity index at time t, SAI(t), can be compared. At each time, the median value is
superimposed (solid line) on the standard error of the median (shaded area). The two vertical lines indicate the start and end of the slow tilting maneuver. B:
likewise, the estimated instantaneous power high frequency at time t, HF(t), and the parasympathetic activity index at time t, PAI(t), can be compared. C: the
estimated instantaneous LF-to-HF ratio at time t, LF/HF (t), and the SAI-to-PAI ratio at time t, SAI/PAI(t), can be compared. a.u., Arbitrary units.

Fig. 5. Tilt-table protocol: stand up. Instantaneous point-process estimates averaged along all subjects, aligned with the stand-up transitions. A: the estimated
instantaneous power low frequency at time t, LF(t), and the sympathetic activity index at time t, SAI(t), can be compared. At each time, the median value is
superimposed (solid line) on the standard error of the median (shaded area). Vertical lines indicate the beginning of the stand-up maneuver. B: likewise, the
estimated instantaneous power high frequency at time t, HF(t), and the parasympathetic activity index at time t, PAI(t), can be compared. C: the estimated
instantaneous LF-to-HF ratio at time t, LF/HF (t), and the SAI-to-PAI ratio at time t, SAI/PAI(t), can be compared. a.u., Arbitrary units.
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response, thus reflecting sustained sympathetic activation.
Conversely, the LF sharply increases with stimulation right
after the step pressure change and then behaves erratically
along time. Also here, note the sharper step responses tracked
by the PAI index compared with the HF measure.

It should be noted that, based on the P values for this
paradigmatic case, the proposed SAI and PAI measures, as
well as the SAI/PAI, outperform the traditional autonomic
characterization given by standard HRV instantaneous spectral
analysis (7). Once again, the increase of sympathetic activity,
as identified by the SAI index, presents a slower time constant
than the parasympathetic one, which is identified by the PAI
index.

Concerning sympathetic activity, results show that SAI es-
timates are able to effectively identify expected increases
during LBNP conditions with respect to resting state with P �
5 
 10�16, despite that no significant statistics were obtained
through indexes of LF power (P � 0.05).

Moreover, expected decreases in parasympathetic activity
during LBNP are effectively revealed through PAI estimates
with P � 2 
 10�12, as well as indexes of HF power (P �
10�8), whereas increases in the sympathovagal balance during
LBNP are identified through SAI/PAI estimates with P �
8 
 10�16, as well as indexes of LF/HF (P � 2 
 10�8).

Validation 3: handgrip. A further validation of our SAI-PAI
estimates was performed using data gathered from the handgrip
protocol. Instantaneous estimates of all of the features were
obtained using point-process modeling with Laguerre expan-
sion (7, 53). All KS plots but seven, and �98% of the
autocorrelation samples fell within 95% confidence intervals,
indicating a very good fit. Considering all 108 recordings, KS
distances were as low as 0.0647 � 0.0102 (median � MAD).
Results from a comprehensive goodness-of-fit analysis are
reported in the APPENDIX. Instantaneous series from all subjects
are shown in Fig. 7. Results of the statistical comparison are
reported in Table 6.

Once again, the proposed SAI and PAI measures, as well as
the SAI/PAI, outperform the traditional autonomic character-

ization given by standard HRV instantaneous spectral analysis
(7). The increase in sympathetic activity during the handgrip
task, with respect to baseline, is effectively identified by the
SAI index, both visually (Fig. 6) and with statistical signifi-
cance (P � 0.006). No significant statistics are reported
through indexes of LF power (P � 0.05).

Furthermore, decreases in parasympathetic activity during
handgrip are effectively revealed through PAI estimates with
P � 0.002, as well as indexes of HF power (P � 0.009),
whereas increases in sympathovagal balance during handgrip
are identified through SAI/PAI estimates exclusively, with
P � 9 
 10�4. No significant statistics are obtained through
LF/HF indexes (P � 0.05).

DISCUSSION AND CONCLUSIONS

Despite widespread use during the last two decades, HRV
analyses based on frequency domain techniques have faced sig-
nificant challenges in assessing cardiac autonomic activity (17, 19,
40). Several pharmacological studies have confirmed the intrinsic
ambiguity of this approach, as HRV-related changes �0.15 Hz
are mediated by both cardiac vagal and sympathetic nerves (9, 23,
24, 42). In addition, changes in the LF power of HRV often occur
in response to arterial blood pressure fluctuations, which cause
HR fluctuations through the baroreflex (2). A variety of sophisti-
cated methodologies have been proposed to address these issues
(10, 58, 59, 63, 64, 66, 67). However, their impact in cardiovas-
cular research has been limited due to methodological (e.g.,
stationarity, the need of a broadband HR spectrum) or practical
shortcomings (e.g., the need of multivariate autonomic recordings,
such as ECG and respiration). The issues are even more challeng-
ing for clinical monitoring, where relatively rudimentary concepts
and simple computational algorithms for HRV analysis have been
used for clinical monitoring. Moreover, using HRV spectra, sev-
eral commercially available mobile applications have not been
able to provide precise, reliable assessments of stress levels, sleep
quality, or recovery from athletic activity (49, 60). These short-
comings in current autonomic measures are due, in part, to high

Table 2. Results from the rest-stand-up experimental data set

Autonomic Index Rest Stand Up P Value

Sympathetic activity LF 516.16 � 311.31 152.33 � 379.46 0.270000
SAI 30.03 � 3.17 39.05 � 2.05 0.000031

Parasympathetic activity HF 337.17 � 247.07 155.23 � 73.60 0.408000
PAI 35.91 � 1.84 29.63 � 3.25 0.000570

Sympathovagal balance LF/HF 1.88 � 1.36 3.25 � 2.59 0.242000
SAI/PAI 0.85 � 0.14 1.29 � 0.13 0.000003

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and stand-up sessions. HF, high frequency; LF,
low frequency; LF/HF, ratio of LF to HF; PAI, parasympathetic activity index; SAI, sympathetic activity index; SAI/PAI, ratio of SAI to PAI.

Table 3. Results from the rest-slow tilt-table experimental data set

Autonomic Index Rest Titl-Table Slow P Value

Sympathetic activity LF 552.42 � 388.69 368.13 � 220.38 0.715000
SAI 33.50 � 3.17 36.05 � 1.59 0.007000

Parasympathetic activity HF 295.12 � 192.60 128.92 � 77.27 0.060000
PAI 36.42 � 2.92 31.96 � 3.15 0.011000

Sympathovagal balance LF/HF 1.39 � 1.071 3.00 � 1.43 0.126000
SAI/PAI 0.95 � 0.13 1.15 � 0.13 0.001000

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and slow-tilt sessions. HF, high frequency; LF,
low frequency; LF/HF, ratio of LF to HF; PAI, parasympathetic activity index; SAI, sympathetic activity index; SAI/PAI, ratio of SAI to PAI.
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interindividual variability. Current techniques have not been ac-
curate enough to provide meaningful autonomic measures that are
valid for group analysis, while simultaneously being tailored to
the individual subject, particularly for sympathetic activity.

This paper introduces a set of autonomic measures that differ
from those used previously. PAI and SAI 1) provide indepen-
dent parasympathetic and sympathetic dynamics, 2) exclu-
sively use heartbeat intervals, 3) can be computed continuously
in real time without concerns of stationarity, and 4) appear to
be reliable for both group and individual assessment. The novel
identification procedure is a simple nontrivial way to calculate
noninvasive, time-resolved autonomic markers that have fea-
tures of effectiveness, reliability, and high resolution in time.
Importantly, the metrics offer the potential to continuously
track cardiac autonomic control in both clinical and research
settings. The methodology is also applicable to any sequence
of heartbeat events, e.g., ECG, echocardiographic parameters,
arterial pressure parameters, video signals, ballistogram, ultra-
wideband cardiogram, etc. The time-varying estimates of SAI
and PAI were shown to provide instantaneous features consis-
tent with a wide range of individual subject’s conditions in a
variety of autonomic states. Several estimation techniques can
be used to obtain beat-to-beat or finite estimates in time using,
e.g., Kalman or least squares methods, respectively. In addi-
tion, instantaneous SAI and PAI estimates can be obtained
through point-process modeling (7, 53).

These novel measures were validated using data sets col-
lected in controlled physiological conditions and involving
well-known sympathovagal changes, including orthostatic
changes from standing; slow tilting and fast tilting; autonomic

blockade during postural changes; LBNP; and handgrip. In all
of the cases evaluated, the results of the new technique dem-
onstrated superiority at separating the sympathetic and para-
sympathetic components using the SAI and PAI signals, com-
pared with existing methods.

By using comprehensive intersubject statistics computed every
5 ms, the SAI index correctly demonstrated the expected increases
of sympathetic activation and vagal withdrawal in all of the
autonomic scenarios that have been tested. The analyses are
scientifically thorough, with time-varying estimates, avoiding the
loss of information inherent in the static metrics typically reported
in the literature. The results were also compared with three
different reported methodologies: 1) a simple window-based AR
model demonstrating comparison to the published HRV guide-
lines (35); 2) a time-varying point-process AR model providing a
comparison which accounts for nonstationary (7), and 3) a time-
varying point-process model using Laguerre functions (53). For
assessment of sympathetic and parasympathetic activity, SAI,
PAI, and SAI/PAI appear to track expected physiological re-
sponses much more closely than LF, HF or LF/HF in all the data
sets evaluated. The new parameters showed particular improve-
ment in inter-subject variability, reflected in lower standard errors,
and more significant difference in the statistical comparisons (see
details in Tables A2, A3, and A4).

Importantly, the SAI and PAI measures are derived in a
nonobvious and original way. Although the methodological
framework may share relevant features adopted in the past,
such as the use of Laguerre expansion (5), the derivation is the
first attempt at proposing a proper combination of coefficients
derived by Laguerre functions, which yield very specific fea-

Table 4. Results from the rest-fast tilt-table experimental data set

Autonomic Index Rest Titl-Table Fast P Value

Sympathetic activity LF 568.28 � 299.64 504.37 � 269.77 0.704000
SAI 31.80 � 2.21 36.79 � 1.85 0.000870

Parasympathetic activity HF 239.12 � 177.12 203.04 � 102.98 0.815000
PAI 35.89 � 2.95 30.62 � 1.58 0.002000

Sympathovagal balance LF/HF 1.82 � 1.43 1.56 � 0.65 0.977000
SAI/PAI 0.87 � 0.13 1.21 � 0.13 0.000263

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and fast-tilt sessions. HF, high frequency; LF, low
frequency; LF/HF, ratio of LF to HF; PAI, parasympathetic activity index; SAI, sympathetic activity index; SAI/PAI, ratio of SAI to PAI.

Fig. 6. Lower body negative pressure (LBNP) protocol. Instantaneous point-process estimates averaged along all subjects, aligned with the LBNP transitions.
A: the estimated instantaneous power low frequency at time t, LF(t), and the sympathetic activity index at time t, SAI(t), are shown. At each time, the median
value is superimposed (solid line) on the standard error of the median (shaded area). Vertical line indicates the beginning of the LBNP maneuver. B: likewise,
the estimated instantaneous power high frequency at time t, HF(t), and the parasympathetic activity index at time t, PAI(t), are shown. C: the estimated
instantaneous LF-to-HF ratio at time t, LF/HF (t), and the SAI-to-PAI ratio at time t, SAI/PAI(t) are shown. a.u., Arbitrary units.
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tures in the time and frequency domains (31, 33, 53). It is also
noteworthy that, once a standard AR model has been identified
along the Laguerre bases (i.e., after convolving the original
R-R interval series with the Laguerre bases), the use of SAI
and PAI measures does not need calibration. The derivation of
preestimated kernels of general applicability for the SAI and
PAI estimation are taken from data gathered from selective
sympathetic and parasympathetic blockade.

The overall approach stems from the intuitive hypothesis that
the cholinergic and adrenergic systems have different temporal
dynamics that overlap in the frequency domain. Thus a proper
weighted sum and/or subtraction of primitives derived from or-
thonormal Laguerre bases is able to reflect the actual autonomic
activity, disentangling the specific sympathetic and parasympa-
thetic contributions. In the frequency domain, for a given �, the
spectra of Laguerre functions have equal magnitude and different
phase spectra. The classic HRV analysis is limited by the pre-
defined frequency ranges (VLF, LF, and HF), whereas the La-
guerre functions do not define a space in the frequency domain but
constitute a set of mathematical functions, characterizing a spe-
cific fine modulation of the number of oscillations across zero, as
well as very specific time responses.

An important limitation of the study is that the identification
of kernels of general applicability has been performed using
data coming from a limited number of subjects. Consequently,
nonparametric paired comparisons using data from selective
parasympathetic and sympathetic blockade resulted in nonsig-
nificant P values; however, central trends were as expected.

Although an extensive validation was performed of the pro-
posed SAI and PAI through more than 230 ECG recordings, all
of the data were from healthy volunteers. Therefore, it cannot
be excluded that a more accurate identification of 
S and 
P

kernels of general applicability may be necessary when dealing
with data from subjects with various cardiovascular patholo-
gies or subjects with peculiar heartbeat dynamics (e.g., infants
and newborns). Likewise, it cannot be excluded that the 
S and

P kernel estimation could be improved by considering cases
where subjects elicit peculiar respiratory patterns. Also, the
absolute value of SAI and PAI estimates is currently dependent
on the arbitrary ranges chosen for the fitting procedure de-
scribed in Derivation of the Novel Sympathetic and Parasym-
pathetic Activity Measures above. A proper study on the
scalability of SAI and PAI estimates should be performed to
obtain normalized indexes with improved interpretability. Fi-
nally, depending on the estimation method used to identify the
Laguerre coefficients, the initial part of the recording is left
without actual SAI and PAI estimates because the point-
process modeling needs at least the first 70 s of ECG, which
must be used for model initialization (7, 53). There is also
likely room to improve the proposed identification using data
from a more diverse pool of subjects undergoing selective
autonomic blockade while undergoing significant orthostatic
changes. Moreover, given the ability of our model to charac-
terize the probabilistic structure of R-R interval generation as
related to mean HR, future studies might consider more de-
tailed analyses on the relationship between these two variables

Table 5. Comparison of autonomic indexes between rest and LBNP

Autonomic Index Rest LBNP P Value

LF, ms2 875.530 � 525.734 964.204 � 402.282 0.440
SAI, AU 29.890 � 3.828 34.353 � 2.708 3.950 
 10�16*
HF, ms2 766.415 � 602.566 457.434 � 324.865 9.248 
 10�8*
PAI, AU 38.218 � 3.586 32.647 � 2.712 1.665 
 10�12*
LF/HF 1.043 � 0.578 1.542 � 0.878 1.614 
 10�8*
SAI/PAI 0.774 � 0.146 1.067 � 0.151 7.496 
 10�16*

Values are median absolute deviation � SE. P values are from the sign-rank nonparametric test for paired data. AU, arbitrary units; HF, high frequency; LF,
low frequency; LF/HF, ratio of LF to HF; LBNP, lower body negative pressure; PAI, parasympathetic activity index; SAI, sympathetic activity index; SAI/PAI,
ratio of SAI to PAI. *Significant differences between rest and LBNP sessions.

Fig. 7. Handgrip protocol. Instantaneous point-process estimates averaged along all subjects, aligned with the handgrip transitions. A: the estimated instantaneous
power low frequency at time t, LF(t), and the sympathetic activity index at time t, SAI(t), are shown. At each time, the median value is superimposed (solid line)
on the standard error of the median (shaded area). Vertical line indicates the beginning of the handgrip task. B: likewise, the estimated instantaneous power high
frequency at time t, HF(t), and the parasympathetic activity index at time t, PAI(t), are shown. C: the estimated instantaneous LF-to-HF ratio at time t, LF/HF
(t), and the SAI-to-PAI ratio at time t, SAI/PAI(t) are shown. a.u., Arbitrary units.
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as linked to other cardiovascular correlates (e.g., respiration,
blood pressure, etc.). Future studies might include a variety of
different manipulations of cardiovascular control.

Despite the above limitations, the strength of the algo-
rithm lies in estimating SAI-PAI values through an appro-
priate combination of orthonormal Laguerre bases. When
applied to physiological data, there has been strong statis-
tical support for demonstrating changes in sympathovagal
balance in all of the experimental settings. Note that the
proposed framework has been particularly successful in
significantly reducing intersubject variability with respect to
HRV frequency domain analysis. These improvements en-
hance the statistical power of the SAI and PAI measures
compared with standard measures using LF and HF powers
(in some instances by as much as 1016).

By definition, SAI and PAI are dimensionless numbers.
Moreover, SAI and PAI estimates are relative to “reference
levels” of sympathetic and parasympathetic activity during
supine resting state, and upright position after postural change.
By definition, the actual value of such “reference levels” is
arbitrary, as long as prior constraints from physiological dy-
namics are taken into account (dominant parasympathetic ac-
tivity during supine resting state, dominant sympathetic activ-
ity during upright position after postural change).

From a methodological point of view, extension of the
SAI-PAI derivation with nonlinear modeling could open new
avenues for the estimation of sympathetic and parasympathetic
nonlinear dynamics, as well as effective quantification of
nonlinear sympathetic-parasympathetic interactions, which
may be based on bispectral and other higher order spectral
analyses. There are a variety of major clinical and nonclinical
applications using SAI-PAI estimates. Finally, since the SAI
and PAI measures are derived from heartbeats exclusively, so
it is possible to calculate them through any portable, possibly
wearable device carrying heartbeat event information.

APPENDIX

Autoregressive Models and Laguerre Expansion

Let us consider a general formulation of an AR model:

y(k) � F�y(k � 1), y(k � 2), ..., y(k � M)� 	 �(k) (A1)

By taking into account a linear combination of the past events, the
AR model can be can be written as following:

y(k) � �0 	 �
i�1

M

�1(i)y(k � i) 	 �(k) (A2)

where �(k) are independent, identically distributed Gaussian random
variables, and M is the memory of the model. Due to the AR structure
of Eq. A2, the system can be identified with only exact knowledge of
the output data and with only few assumptions on the input data. To
improve the system identification process (i.e., �0, �1 estimations) and
to reduce the number of required parameters, it is possible to expand
the AR kernels by means of orthonormal bases. A widely used
expansion uses the Laguerre functions (31, 33, 53). Specifically, let us
define the jth-order discrete time orthonormal Laguerre function (see
Fig. A1):

� j(k) � �
k�j

2 (1 � �)
1
2�

i�0

j

(�1)i�k

i �� j

i �� j�i(1 � �)i, (k � 0)

where � is the discrete-time Laguerre parameter (0 � � � 1), which
determines the rate of exponential asymptotic decline of these func-
tions.

Given the Laguerre function, �j(k), and the signal, y(k), the jth-
order Laguerre filter output is:

lj(k) � �
i�0




� j(i)y(k � i � 1) (A3)

The computation of the Laguerre filter output can be accelerated
significantly by use of the following recursive relation (31, 33, 53):

l0(k) � 
�l0(k � 1) 	 
1 � �y(k � 1) (A4)

lj(k) � 
�lj(k � 1) 	 
�lj�1(k)	 (A5)

Table 6. Comparison of autonomic indexes between baseline
and handgrip

Autonomic Index Baseline Handgrip P Value

LF, ms2 982.257 � 579.178 924.135 � 479.580 0.135
SAI, AU 34.569 � 2.946 35.719 � 3.022 0.006*
HF, ms2 414.418 � 324.917 416.781 � 332.342 0.009*
PAI, AU 33.055 � 2.979 31.527 � 2.744 0.002*
LF/HF 2.059 � 1.438 2.465 � 1.636 0.302
SAI/PAI 1.052 � 0.179 1.130 � 0.153 8.584 
 10�4*

Values are median absolute deviation � SE. P values are from the sign-rank
nonparametric test for paired data. AU, arbitrary units; HF, high frequency; LF,
low frequency; LF/HF, ratio of LF to HF; LBNP, lower body negative pressure;
PAI, parasympathetic activity index; SAI, sympathetic activity index; SAI/PAI,
ratio of SAI to PAI. *Significant differences between rest and LBNP sessions.
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Fig. A2. Graphical representation of point-process modeling of heartbeat
dynamics. The horizontal axis represents the counting process along the
number (N) of heartbeats, whereas the vertical axis represents the duration of
heartbeat intervals. Inverse-Gaussian (IG) distributions (right) characterize the
prediction of the future heartbeat event along the time. u1, u2, uk, and uk	1

indicate the times of heartbeat events. (From Ref. 55 with permission.)
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�lj�1(k � 1), j � 1 (A6)

Since the {�i(t)} form a complete orthonormal set in functional
space L2, we can write (43):

�0 � g0 (A7)

�1(i) � �
j�0

P

g1(j)� j(i) (A8)

Here g0 and g1(j) are constant coefficients. The expansion goes to
zero as i goes to infinity. Using Eqs. A3, A7, and A8, the model in Eq.
A2 becomes:

y(k) � g0 	 �
j�0

P

g1(j)lj(k) 	 �(k) (A9)

hereinafter called AR with Laguerre expansion (ARL) model. The
number of parameters to estimate is N � 1 	 (P 	 1). Although the
Laguerre filters have infinite memory, the AR model corresponding to
the ARL representation can be truncated to an order M, which depends

on how fast the Laguerre functions decade to zero. It is also notewor-
thy that, when � � 0, the filter output becomes lj(k) � (�1)j

y(k � j � 1) and the ARL model corresponds to the AR model apart
for the sign.

Time-Varying Implementation

The iterative estimation along time of the novel SAI-PAI measures
can be performed using several signal processing methods. For ex-
ample, a simple Kalman filtering can be used to track the SAI-PAI
dynamics at each heartbeat, whereas an instantaneous estimation (i.e.,
at each moment in time) can be performed using the point-process
modeling. Of note, traditional recursive least-squares and window-
based methods can also be applied.

Heartbeat interval point-process model. A random point process
is a stochastic process that can be thought of as registering the
occurrence in time of discrete events (4). Point-process theory has
been widely used in modeling various types of random events (e.g.,
eruptions of earthquakes, queueing of customers, spiking of neurons,
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etc.), where the timing of the events is of central interest. Bearing a
similar spirit, the point-process theory has been used for modeling
human heartbeats (7, 12, 51–54). The point-process framework pri-
marily defines the probability of having a heartbeat event at each
moment in time (see Fig. A2).

A parametric formulation of the probability function allows for a
systematic, parsimonious estimation of the parameter vector in a
recursive way and at any desired time resolution. Instantaneous

indexes can then be derived from the parameters to quantify important
features as related to cardiovascular control dynamics. Mathemati-
cally, let (0,T] denote the observation interval and 0 � u1 ��� uk �
uk 	 1 ��� uK � T the times of the events. For t � (0,T ], let
N(t) � max{k : uk � t} be the sample path of the associated counting
process. Its differential, dN(t), denotes a continuous-time indicator
function, where dN(t) � 1, when there is an event (such as the
ventricular contraction) or dN(t) � 0, otherwise. Let us define also a

Table A1. Comparison of autonomic indexes between baseline and handgrip

ACP-SSD KS Distance

Autonomic Index Interval Minimum Maximum Interval Minimum Maximum

Tilt-table 0.024 � 0.0060 0.0042 0.0459 0.022 � 0.0056 0.0078 0.0412
Lower body negative pressure 0.0891 � 0.066 0.001 0.336 0.0366 � 0.0082 0.0146 0.0797
Handgrip 0.0228 � 0.0207 0.002 0.160 0.0647 � 0.0102 0.0373 0.1091

Intervals are expressed as median � median absolute deviation. ACP-SSD, autocorrelation plot-sum of the squared distances; KS, Kolmogorov-Smirnov.

Table A2. Results from the rest-stand up experimental data set

Statistical Index Model Rest Stand Up P Value

�RR, ms ARPP 906.17 � 116.21 774.48 � 80.41 0.015907
ARLPP 914.94 � 122.70 773.46 � 80.67 0.011924
AR 910.94 � 123.08 781.92 � 55.96 0.013141

�RR, ms ARPP 19.69 � 9.37 15.84 � 5.06 0.406973
ARLPP 19.72 � 9.37 16.57 � 4.89 0.521672
AR 47.48 � 18.59 48.65 � 16.42 0.998264

Sympathetic activity LF(ARPP) 328.54 � 260.34 410.03 � 305.24 0.986259
LF(ARLPP) 516.16 � 311.31 152.33 � 379.46 0.270000
LF(AR) 349.86 � 331.22 514.13 � 506.35 0.947366
SAINEW(0) 8.78 � 1.21 12.55 � 0.87 0.000078
SAINEW(1) 8.52 � 2.08 12.83 � 0.34 0.000155
SAINEW(2) 9.14 � 0.87 10.11 � 1.17 0.027497
SAINEW(3) 33.05 � 5.59 43.56 � 5.15 0.000256
SAINEW(4) 30.03 � 3.17 39.05 � 2.05 0.000031

Parasympathetic activity HF(ARPP) 179.39 � 149.43 76.13 � 51.63 0.125312
HF(ARLPP) 337.17 � 247.07 155.23 � 73.60 0.408000
HF(AR) 234.17 � 150.02 121.52 � 71.68 0.088179
PAINEW(0) 10.83 � 1.01 7.16 � 1.97 0.001805
PAINEW(1) 11.37 � 0.84 8.93 � 1.56 0.028127
PAINEW(2) 11.42 � 1.09 10.00 � 0.38 0.002437
PAINEW(3) 38.39 � 3.20 32.03 � 3.74 0.002631
PAINEW(4) 35.91 � 1.84 29.63 � 3.25 0.000570

Sympathovagal balance LF/HF(ARPP) 1.37 � 0.78 2.58 � 2.41 0.221391
LF/HF(ARLPP) 1.88 � 1.36 3.25 � 2.59 0.242000
LF/HF(AR) 0.87 � 0.66 0.89 � 0.89 0.597419
SAI/PAINEW(0) 0.86 � 0.30 1.49 � 0.17 0.002463
SAI/PAINEW(1) 0.81 � 0.19 1.35 � 0.29 0.001088
SAI/PAINEW(2) 0.80 � 0.14 1.12 � 0.11 0.000650
SAI/PAINEW(3) 0.83 � 0.18 1.38 � 0.23 0.000014
SAI/PAINEW(4) 0.85 � 0.14 1.29 � 0.13 0.000003

RMSSD, ms 26.28 � 9.78 19.46 � 4.41 0.144596
pNN50, % 5.98 � 5.89 2.18 � 2.18 0.098656
HRV_tri_ind 8.10 � 1.71 7.61 � 2.01 0.605398
TINN, ms 147.50 � 40.00 185.00 � 25.00 0.563922

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and stand-up sessions. AR, estimates from linear
autoregressive model; ARPP, estimates from linear point-process method; ARLPP, estimates from linear point-process method with Laguerre expansion; HF, high
frequency; HRV_tri_ind, HRV triangular index; LF, low frequency; LF/HF, ratio of LF to HF; NEW(0), a multiple linear regression using subject-specific (i.e.,
performed for each subject) recording from one rest-upright condition; NEW(1), a multiple linear regression using subject-specific (i.e., performed for each
subject) recording averaging 
S and 
P estimates from stand-up, slow, and fast-tilting conditions; NEW(2), a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and 
P estimates from stand-up, slow- and fast-tilting conditions, following a leave-one-subject-out
procedure; NEW(3), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and 
P estimates from the rest-tilt
control session of an independent data set; NEW(4), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and

P from subjects of an independent data set undergoing autonomic blockade (parasympathetic suppression ¡ sympathetic kernels 
S; sympathetic suppression ¡
parasympathetic kernels 
P); PAI, parasympathetic activity index; pNN50, the proportion derived by dividing the number of interval differences of successive NN
intervals �50 ms by the total number of NN intervals; RMSSD, root mean square of the successive differences; SAI, sympathetic activity index; SAI/PAI, ratio of SAI
to PAI; TINN; triangular interpolation of NN interval histogram; �RR, estimated mean R-R interval; �RR, standard deviation of the R-R intervals.
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left continuous function Ñ(t) � lim
�¡t�

N	�
 � max�k : uk � t�, which will

be useful in the following definitions.
By treating the R-waves as discrete events, we may develop a

point-process probability model in the continuous time domain (7).
Assuming history dependence, the probability density of the waiting
time t – uj until the next R-wave event follows an inverse Gaussian
model:

f �t�Ht, �(t)� � � �0(t)

2�(t � uj)
3� 1

2

� exp��
1

2

�0(t)�t � uj � �RR�t, Ht, �(t)��2

�RR�t, Ht, �(t)�2(t � uj)
� (A10)

where j � Ñ(t) denotes the index of the previous R-wave event
occurred before time t, Ht � 	uj,RRj,RRj�1,...,RRj�M	1
, �	t
 is the
vector of the time-varing parameters, �RR [t, Ht, �(t)] represents the
first-moment statistic (mean) of the distribution, and �0(t) � � � 0
denotes the shape parameter of the inverse Gaussian distribution, (as

�/� ¡ �, the inverse Gaussian distribution converges to a Gaussian
distribution). The function f [t | Ht, �(t)] indicates the probability of
having a beat at time t, given that a previous beat has occurred at uj,
and �RR [t, Ht, �(t)] can be interpreted as signifying the prediction of
the time when the next beat is expected to occur. By definition, f [ t |
Ht, �(t)] is characterized at each moment in time, at the beat as well
as in between beats.

The use of an inverse Gaussian distribution to characterize the R-R
interval occurrences is motivated by the fact that, if the rise of the
membrane potential to a threshold initiating the cardiac contraction is
modeled as a Gaussian random walk with drift, then the probability
density of the times between threshold crossings (the R-R intervals) is
indeed the inverse Gaussian distribution (7). In Chen et al. (11), our
laboratory has compared heartbeat interval fitting point process mod-
els using different probability distributions, and found that the inverse
Gaussian model achieved the overall best fitting results. The param-
eter �RR [t, Ht, �(t)] denotes the instantaneous R-R mean that can be
modeled as a generic function of the past (finite) R-R values
�RR�t, Ht, �	t
� � g�RRÑ	t
, RRÑ	t
�1,..., RRÑ	t
�h	1�, where RRÑ	t
�j	1

Table A3. Results from the rest-slow tilt-table experimental data set

Statistical Index Model Rest Tilt-Table Slow P Value

�RR, ms ARPP 875.25 � 73.14 765.03 � 58.91 0.000512
ARLPP 877.80 � 72.50 764.79 � 56.81 0.000412
AR 879.59 � 75.09 772.82 � 46.10 0.001063

�RR, ms ARPP 21.51 � 6.07 15.13 � 4.95 0.057883
ARLPP 22.29 � 5.92 15.11 � 4.62 0.057883
AR 52.57 � 17.69 62.80 � 16.30 0.843425

Sympathetic activity LF(ARPP) 417.76 � 240.68 332.88 � 162.72 0.438254
LF(ARLPP) 552.42 � 388.69 368.13 � 220.38 0.715000
LF(AR) 465.03 � 241.99 394.37 � 310.24 0.661443
SAINEW(0) 8.18 � 1.50 11.14 � 1.48 0.000965
SAINEW(1) 9.22 � 0.80 10.00 � 1.16 0.052808
SAINEW(2) 9.26 � 0.56 10.52 � 0.72 0.000970
SAINEW(3) 30.78 � 5.19 35.54 � 5.45 0.011087
SAINEW(4) 33.50 � 3.17 36.05 � 1.59 0.007000

Parasympathetic activity HF(ARPP) 235.59 � 166.53 88.15 � 68.42 0.046554
HF(ARLPP) 295.12 � 192.60 128.92 � 77.27 0.060000
HF(AR) 263.67 � 141.88 150.51 � 74.30 0.050001
PAINEW(0) 11.96 � 2.00 7.27 � 2.58 0.000177
PAINEW(1) 14.09 � 0.41 9.13 � 2.40 0.001355
PAINEW(2) 11.66 � 0.93 10.25 � 0.65 0.000708
PAINEW(3) 39.14 � 2.67 36.02 � 1.01 0.066003
PAINEW(4) 36.42 � 2.92 31.96 � 3.15 0.011000

Sympathovagal balance LF/HF(ARPP) 1.03 � 0.74 2.73 � 1.64 0.209343
LF/HF(ARLPP) 1.39 � 1.071 3.00 � 1.43 0.126000
LF/HF(AR) 0.66 � 0.23 1.21 � 0.68 0.168735
SAI/PAINEW(0) 0.66 � 0.19 1.51 � 0.69 0.000189
SAI/PAINEW(1) 0.63 � 0.09 1.18 � 0.33 0.000376
SAI/PAINEW(2) 0.82 � 0.12 0.95 � 0.07 0.004746
SAI/PAINEW(3) 0.81 � 0.20 1.05 � 0.21 0.007233
SAI/PAINEW(4) 0.95 � 0.13 1.15 � 0.13 0.001000

RMSSD, ms 32.10 � 12.56 19.68 � 4.52 (lt)0.05
pNN50, % 10.20 � 9.47 1.74 � 1.37 (lt)0.02
HRV_tri_ind 8.03 � 1.41 7.31 � 1.61 (mt)0.05
TINN, ms 195.00 � 70.00 150.00 � 45.00 (mt)0.05

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and slow-tilt sessions. AR, estimates from linear
autoregressive model; ARPP, estimates from linear point-process method; ARLPP, estimates from linear point-process method with Laguerre expansion; HF, high
frequency; HRV_tri_ind, HRV triangular index; LF, low frequency; LF/HF, ratio of LF to HF; NEW(0), a multiple linear regression using subject-specific (i.e.,
performed for each subject) recording from one rest-upright condition; NEW(1), a multiple linear regression using subject-specific (i.e., performed for each
subject) recording averaging 
S and 
P estimates from stand-up, slow, and fast-tilting conditions; NEW(2), a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and 
P estimates from stand-up, slow- and fast-tilting conditions, following a leave-one-subject-out
procedure; NEW(3), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and 
P estimates from the rest-tilt
control session of an independent data set; NEW(4), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and

P from subjects of an independent data set undergoing autonomic blockade (parasympathetic suppression ¡ sympathetic kernels 
S; sympathetic suppression
¡ parasympathetic kernels 
P); PAI, parasympathetic activity index; pNN50, the proportion derived by dividing the number of interval differences of successive
NN intervals �50 ms by the total number of NN intervals; RMSSD, root mean square of the successive differences; SAI, sympathetic activity index; SAI/PAI,
ratio of SAI to PAI; TINN; triangular interpolation of NN interval histogram; �RR, estimated mean R-R interval; �RR, standard deviation of the R-R intervals.
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denotes the previous jth R-R interval occurred before the present time
t. In our laboratory’s previous work (6, 11), the history dependence is
defined by expressing the instantaneous mean �RR [t, Ht, �(t)] as a
linear combination of present and past R-R intervals (in terms of an
AR model), i.e., function g is linear.

Concerning the parameter estimation, we used a Newton-Raphson
procedure to maximize the local log-likelihood and compute the local
maximum-likelihood estimate of �(t) (7, 53) within W � 90 s. Be-
cause there is significant overlap between adjacent local likelihood
intervals, we started the Newton-Raphson procedure at t with the
previous local maximum-likelihood estimate at time t � �, in which
� defines how much the local likelihood time interval is shifted to
compute the next parameter update. The model goodness-of-fit is
based on the KS test and associated KS statistics (see details in Refs.
7, 53). Autocorrelation plots were considered to test the independence
of the model-transformed intervals (7, 53). Once the model order is
determined, the initial model coefficients were estimated by the
method of least squares (7, 53).

Block Schemes

Block schemes of all of the stages involved in the SAI-PAI
estimation are described in Figs. A3 and A4. A modeling stage has
been devised to establish the combination and structure of the base
functions attributed to either the sympathetic or parasympathetic
activity. On a real set of heartbeats, given such a modeling
structure as specified in Eq. 1, the estimation of model-defined
parameters (g1s, g1p) can be updated along the time using the most
efficient and popular methods reported in the literature for recur-
sive parameter estimation (Kalman filtering, point processes, re-
cursive least squares, etc.). A final step linearly combines the
time-varying estimation using the disentangling coefficients 
s,

p to yield the final SAI and PAI measures. The block scheme
reported in Fig. A4 has to be considered as an in-depth look of the
block “Modeling and Multiple Regression” in Fig. A3. Here,
heartbeat data gathered during sympathetic activity only (parasym-
pathetic blockade), and during sympathetic activity only (parasym-
pathetic blockade), both in a supine resting phase and a standing

Table A4. Results from the rest-fast tilt-table experimental data set

Statistical Index Model Rest Titl-Table Fast P Value

�RR, ms ARPP 881.03 � 94.55 776.18 � 66.49 0.004627
ARLPP 883.03 � 95.78 774.62 � 54.46 0.005068
AR 860.50 � 80.48 777.18 � 51.58 0.009375

�RR, ms ARPP 21.68 � 8.02 16.33 � 4.00 0.064190
ARLPP 22.18 � 8.31 16.92 � 4.51 0.073844
AR 48.20 � 9.40 46.00 � 15.01 0.318951

Sympathetic activity LF(ARPP) 476.41 � 285.63 349.72 � 203.75 0.303830
LF(ARLPP) 568.28 � 299.64 504.37 � 269.77 0.704000
LF(AR) 401.86 � 330.31 338.33 � 278.42 0.739734
SAINEW(0) 10.14 � 1.30 12.21 � 1.43 0.002616
SAINEW(1) 9.51 � 0.50 12.95 � 2.07 0.013986
SAINEW(2) 9.33 � 0.50 10.70 � 0.49 0.000156
SAINEW(3) 33.70 � 5.42 41.42 � 3.33 0.002173
SAINEW(4) 31.80 � 2.21 36.79 � 1.85 0.000870

Parasympathetic activity HF(ARPP) 214.90 � 159.75 123.14 � 79.59 0.103231
HF(ARLPP) 239.12 � 177.12 203.04 � 102.98 0.815000
HF(AR) 296.05 � 153.27 136.80 � 59.81 0.023688
PAINEW(0) 10.77 � 0.81 8.17 � 1.90 0.001019
PAINEW(1) 11.59 � 0.91 8.56 � 1.48 0.002331
PAINEW(2) 11.69 � 1.39 10.46 � 0.67 0.027591
PAINEW(3) 39.13 � 3.15 34.12 � 1.84 0.002259
PAINEW(4) 35.89 � 2.95 30.62 � 1.58 0.002000

Sympathovagal balance LF/HF(ARPP) 2.05 � 1.57 1.96 � 1.26 0.753865
LF/HF(ARLPP) 1.82 � 1.43 1.56 � 0.65 0.977000
LF/HF(AR) 0.93 � 0.46 1.51 � 1.10 0.116943
SAI/PAINEW(0) 0.83 � 0.35 1.74 � 0.47 0.000612
SAI/PAINEW(1) 0.85 � 0.18 1.57 � 0.31 0.011072
SAI/PAINEW(2) 0.84 � 0.16 1.03 � 0.07 0.000977
SAI/PAINEW(3) 0.94 � 0.22 1.25 � 0.13 0.000704
SAI/PAINEW(4) 0.87 � 0.13 1.21 � 0.13 0.000263

RMSSD, ms 28.70 � 11.32 18.10 � 3.60 0.038235
pNN50, % 6.54 � 6.18 1.14 � 1.14 0.018120
HRV_tri_ind 8.49 � 2.00 6.50 � 0.93 0.062213
TINN, ms 182.50 � 60.00 140.00 � 45.00 0.160440

Values are median absolute deviation � SE. P values are obtained from the rank-sum test between the rest and fast-tilt sessions. AR, estimates from linear
autoregressive model; ARPP, estimates from linear point-process method; ARLPP, estimates from linear point-process method with Laguerre expansion; HF, high
frequency; HRV_tri_ind, HRV triangular index; LF, low frequency; LF/HF, ratio of LF to HF; NEW(0), a multiple linear regression using subject-specific (i.e.,
performed for each subject) recording from one rest-upright condition; NEW(1), a multiple linear regression using subject-specific (i.e., performed for each
subject) recording averaging 
S and 
P estimates from stand-up, slow, and fast-tilting conditions; NEW(2), a multiple linear regression using general values
(i.e., calculated over all of the subjects), averaging 
S and 
P estimates from stand-up, slow- and fast-tilting conditions, following a leave-one-subject-out
procedure; NEW(3), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and 
P estimates from the rest-tilt
control session of an independent data set; NEW(4), a multiple linear regression using general values (i.e., calculated over all of the subjects) averaging 
S and

P from subjects of an independent data set undergoing autonomic blockade (parasympathetic suppression ¡ sympathetic kernels 
S; sympathetic suppression
¡ parasympathetic kernels 
P); PAI, parasympathetic activity index; pNN50, the proportion derived by dividing the number of interval differences of successive
NN intervals �50 ms by the total number of NN intervals; RMSSD, root mean square of the successive differences; SAI, sympathetic activity index; SAI/PAI,
ratio of SAI to PAI; TINN; triangular interpolation of NN interval histogram; �RR, estimated mean R-R interval; �RR, standard deviation of the R-R intervals.
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tilting phase, were considered as reference heartbeat data. For each
of these data sets, after fitting an AR model with Laguerre
expansion of the terms, a multiple-regression stage considering
desired changes (e.g., increase of the sympathetic activity during
tilt with respect to rest) has been performed for each subject. Then,
coefficients of general applicability 
s, 
p were obtained through
the average among subjects.

Experimental Results

Goodness of fit analysis. Table A1 shows results from a compre-
hensive goodness-of-fit analysis performed on the tilt-table protocol,
as well as the LBNP and handgrip protocols. Specifically, we show
intersubject statistics summarized as interval (median � MAD), min-
imum and maximum values on the sum of the squared distances of the
points outside the confidence interval of the autocorrelation plot, as
well as KS distance.

Tilt-table protocol. To demonstrate how the proposed SAI and PAI
measures are able to follow sympathetic and parasympathetic
changes, respectively, at a single-subject level, SAI-PAI estimates
along with their LF-HF counterpart, as well as standard instantaneous
heartbeat statistics in the time domain, are reported here in Tables A2,
A3, and A4. See Figs. A5, and A6.

Tables A2, A3, and A4 show comprehensive results gathered from
three estimation methodologies: linear point-process method (ARPP),
linear point-process method with Laguerre expansion (ARLPP), and
standard linear AR modeling. Through each of these methods, con-
sidering rest-to-stand-up (Table A2), rest-to-slow-tilt (Table A4), and
rest-to-fast-tilt (Table A3) procedures, the following heartbeat dynam-
ics measures were evaluated: mean R-R interval (�RR), standard

deviation of the R-R intervals (�RR), sympathetic and parasympa-
thetic activity, and sympathovagal balance.

Table A1 shows similar performances between the three mod-
eling methods while discerning rest from stand-up sessions using
�RR and �RR estimates. The same applies for the estimation of LF,
HF, and LF/HF. Nevertheless, the use of ARLPP modeling for the
estimation of SAI, PAI, and SAI/PAI measures significantly out-
perform the use of ARPP and AR modeling for the identification of
sympathetic and parasympathetic activities. All SAI and PAI
estimates are associated with significant differences between rest
and stand-up sessions with P values as low as �10�5.

Table A3 also shows similar performances between the three
modeling methods while discerning rest from slow-tilt sessions using
�RR, �RR, LF, HF, and LF/HF. All SAI and PAI estimates are
associated with significant differences between rest and stand-up
sessions with P values as low as �10�3.

Table A4 also shows similar performances between the three
modeling methods while discerning rest from fast-tilt sessions using
�RR, �RR, LF, HF, and LF/HF. All SAI and PAI estimates are
associated with significant differences between rest and stand-up
sessions with P values as low as �10�3.

Autonomic blockade

For the sake of completeness, we here report results and related
statistics (median � MAD) considering postural changes during con-
trol and sympathetic/parasympathetic blockades, following a previ-
ously validated approach described in Schetzen (42).

During the control postural changes, SAI and PAI estimates, along
with their ratio, follow physiologically plausible trends (i.e., SAI
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Fig. A5. Instantaneous heartbeat statistics computed from an exemplary subject of the tilt-table protocol. Top left: the estimated mean R-R interval at time t,
�RR(t), superimposed on the recorded R-R series, and the instantaneous heartbeat standard deviation at time t, �RR(t), are shown. Instantaneous sympathetic and
parasympathetic activity, and sympathovagal balance as estimated through sympathetic activity index (SAI) and parasympathetic activity index (PAI), and ratio
of SAI to PAI (SAI/PAI) measures, along with the low frequency (LF), high frequency (HF), and ratio of LF to HF (LF/HF) are shown in the other panels.
Vertical dotted lines indicate the beginning and end of each experimental transition. For this subject, the first transition is from rest (R) to slow tilt (ST) and back,
the second is from R to fast tilt (FT) and back, the third and fourth are from R to stand-up (SU), then R to ST, and the final R to FT and back. Transitions are
randomized for each subject. a.u., Arbitrary units.
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increases after standing with respect to rest; PAI decreases after
standing with respect to rest). As expected, autonomic blockades
make SAI and PAI reaching relative minimum and maximal values.
Specifically, the PAI is at a minimum in the upright 	 atropine case
(i.e., parasympathetic blockade after standing) and at maximum in the
supine 	 propanolol case (i.e., resting state during sympathetic
blockade), whereas the SAI is at a maximum in the control standing
case, and at a minimum in the supine 	 propranolol case (i.e., resting
state during sympathetic blockade). Consistently, the sympathovagal
balance SAI/PAI is at minimum in the supine 	 propanolol case (i.e.,
resting state during sympathetic blockade), and at maximum in the
upright 	 atropine case (i.e., parasympathetic blockade after stand-
ing). See Table A5.
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Table A5. Results from the autonomic blockade protocol

Control Test, No Drugs (n � 14 Subjects) Control and Autonomic Blockade (n � 7 	 7 Subjects)

Autonomic Index Rest Standing P Value Control/Propranorol, Rest Control/Athropine, Standing

SAI, AU 40.010 � 2.046 42.569 � 1.339 0.001 34.921 � 1.086 43.668 � 2.342
PAI, AU 30.308 � 1.243 28.544 � 1.218 0.048 30.825 � 1.08 23.469 � 4.689
SAI/PAI 1.357 � 0.156 1.514 � 0.079 0.024 1.129 � 0.099 1.667 � 0.229

Values are median absolute deviation � SE. P values are from the sign-rank nonparametric test for paired data. PAI, parasympathetic activity index; SAI,
sympathetic activity index; SAI/PAI, ratio of SAI to PAI.�/.�
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